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Abstract. This paper presents an implementation of the Variable
Neighborhood Search (VNS) metaheuristic for solving the optimization
version of the Multidimensional Multi-Way Number Partitioning Prob-
lem (MDMWNPP). This problem consists in distributing the vectors of
a given sequence into k disjoint subsets such that the sums of each sub-
set form a set of vectors with minimum diameter. The proposed VNS
for solving MDMWNPP has a good performance over instances with
three and four subsets. A comparative study of results found from this
proposed VNS and an implementation of Memetic Algorithm (MA) is
carried out, running in the same proportional time interval. Although
the average results are different, the statistical tests show that results
of the proposed VNS are not significantly better than MA in a set of
instances analyzed.

Keywords: Multidimensional Multi-Way Number Partitioning
Problem · Variable Neighborhood Search ·
Number Partitioning Problem · Combinatorial optimization

1 Introduction

This paper addresses the Multidimensional Multi-Way Number Partitioning
Problem (MDMWNPP), a more general version of the classical Number Par-
titioning Problem (NPP). This problem is related to any problems involving
partitions set like Bin Packing, Machine Scheduling and Clustering, for example.
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244 A. F. Faria et al.

As it is a generalization, it is necessary to review the problems that originated
it to contextualize its study. Throughout this text, a partition of a X set is
a collection of mutually disjoint subsets whose union forms X. A k-partition
of a set X is a partition of this set, with exactly k non-empty subsets. In
this text, the subsets belonging to the partition are called parts. The notation
Ip = {y ∈ ZZ : 1 ≤ y ≤ p} denotes the closed set of all integers between 1 and p.

The Two-Way Number Partitioning Problem (TWNPP) is a well known
problem in the literature. Its purpose is to find a 2-partition of the indexes of
a V sequence so that the difference between the sums of the elements of each
part is minimal. This problem was listed in [7] as one of the basic NP-complete
problems, and a series of equivalences between TWNPP and other NP-complete
problems are also demonstrated. The first exact algorithms trivially adaptable
to TWNPP were presented in [5] and [24], both proposed to solve the Knapsack
Problem. In [9], two proposals are presented to transform the heuristics into exact
methods of the Branch & Bound type, which are: (i) Complete Greedy Algo-
rithm (CGA), using the Longest Processing Time heuristic (LPT) [4]; and (ii)
Complete Karmarkar-Karp Algorithm (CKK), using the Differencing Method,
well-known as Karmarkar-Karp Heuristic (KKH) [6]. An exact method based
on CKK appears in [14]. In this case, the proposal is to increase the number
of prunings in the CKK search tree using a new heuristic called the Balanced
Largest Differencing Method (BLDM). Already [19] presents an improvement in
the CKK search tree search using a new data structure.

The first generalization of TWNPP is the Multi-Way Number Partitioning
Problem (MWNPP), which expands the number of parts in which the sequence
indices V must be distributed. Given a numeric sequence V , the goal is to find
a k-partition for its indexes, such that the sums of the elements of each part fits
into the shortest possible interval. MWNPP is explicitly stated in [6], in which
an analysis of Karmarkar-Karp Heuristics (KKH) is presented. This heuristic is
focused on the idea of dividing the largest numbers into distinct parts, inserting
the differences between the removed elements in the set of unallocated elements
as long as this set is not empty. In [2], it is shown that MWNPP is a very
difficult problem to be solved by general-purpose metaheuristics, such as Genetic
Algorithms, Simulated Annealing, and others. In many cases, these methods have
a worse computational cost (in terms of time and performance) when compared
to HKK and even to LPT. The exact algorithms presented in [9] were already
adapted for the MWNPP.

The first improvement of these works happens with the algorithm Recursive
Number Partitioning (RNP), proposed by [10] working with the resolution of
minor subproblems derived from MWNPP. Through successive MWNPP con-
versions of a (k − 1)-partition to a k-partition, [16] propose an algorithm based
on solving smaller subproblems. Currently, the state of the art for the resolution
of MWNPP is the Sequential Number Partitioning (SNP) algorithm, presented
in [11], and the Cached Iterative Weakening (CIW) algorithm, presented in [23],
both fully analyzed in [22]. An application of VNS algorithm for solving MWNPP
is described in [1].
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The second generalization of TWNPP is the Multidimensional Two-Way
Number Partitioning Problem (MDTWNPP). This variant considers a V

sequence of vectors of dimension m instead of real numbers, as TWNPP is origi-
nally defined. Its purpose is to find a 2-partition of the set of vectors so that the
vectors resulting from the sum of each part have minimized the distance induced
by the infinite norm. This generalization is initially proposed in [8]. In this same
article, a mathematical model in integer linear optimization for MDTWNPP is
proposed and solved using CPLEX. This is the only known exact method for
solving this problem up to the present moment, according to the knowledge of
the authors of this current article. MDTWNPP is also addressed in [20], but
in this case using population metaheuristics, such as Memetic Algorithm (MA)
and Genetic Algorithm (GA), for its solution. Already [12] presents implementa-
tions of Variable Neighborhood Search (VNS) and Electromagnetism-like (EM)
metaheuristics to the solution of MDTWNPP and compares the results with
those presented in [8] and [20]. The results show that the EM metaheuristic per-
forms slightly superior to the others and strongly superior to the direct solution
of the exact model. Another important article addressing MDTWNPP is [21],
in which this problem is solved using GRASP+Exterior Path-relinking hybrid
metaheuristics. The results obtained, from the same set of instances used in
[8,12,20], show the superiority of the proposed procedure.

The third generalization of TWNPP is the Multidimensional Multi-Way
Number Partitioning Problem (MDMWNPP). Given a V sequence of vectors
of dimension m, the goal of MDMWNPP is to determine a k-partition of vectors
such that, added the elements of each part, the diameter of the resulting vectors
is minimized. MDMWNPP is originally proposed in [20] with the resolution of
three-way (k = 3) and four-way (k = 4) cases using Memetic Algorithm (MA).
It should be stressed that this problem is still little studied in the literature and,
on the other hand, is the central object of study of the current article.

This article presents an adaptation of the VNS metaheuristic proposed in [15]
for the MDMWNPP solution. The results are compared with those presented in
[20] using the same instances of this last article. The justification for applying
VNS to MDMWNPP is the set of good results found in [12] for this metaheuristic
when solving MDTWNPP.

The article is organized as follows. Section 2 presents the synthetic statement
of MDMWNPP and a equivalence proof between the diameter induced by the
infinite norm and the objective function introduced in [20]. Section 3 shows the
operation of the proposed VNS and the particularity of its neighborhood in
rings. Section 4 presents a delineation of the tests performed for the comparison
between the results, while Sect. 5 criticizes the results obtained regarding the
number of executions required and the form of the instances used for a really
valid statistical test. Finally, Sect. 5 concludes the article and presents proposals
for future work.

marcone@iceb.ufop.br



246 A. F. Faria et al.

2 Problem Statement

2.1 Fundamental Notions

This section introduces fundamental notions concerning MDMWNPP. Let V =
{vi}i∈In

be a set of vectors. The function gv : P (In) → IRm receives a discrete
subset of vectors in IRm and returns the sum of its elements. Calculate the
function gv(·) as:

X ∈ P (In) : gv(X) =
∑

i∈X

vi (1)

Referring to the l-th coordinate of gv(X), the notation gvl(X) is used.

Definition 1. Let V = {vi}i∈In
be a sequence of vectors such that vi ∈ IRm and

k an integer positive number. Find a k-partition of the V indexes, in the form

{Aj}j∈Ik
, that minimizes the diameter of the multiset {gv(Aj)}j∈Ik

given by:

diam∞ ({Aj}j∈Ik
) = max

j′,j
{‖gv(Aj′) − gv(Aj)‖∞} (2)

(a) Set of vectors V . (b) 3-partition of V .

(c) {gv(A), gv(B), gv(C)}. (d) gv(A) − gv(C), gv(A) −
gv(B), gv(C) − gv(B).

Fig. 1. Representation of V = {(1, 3), (4, 4), (3, −2), (2, 5), (2, −1)} from Example 1.

marcone@iceb.ufop.br



VNS Approach for Solving MDMWNPP 247

Example 1. Let V = {(1, 3), (4, 4), (3,−2), (2, 5), (2,−1)} be a set of vectors, as
shown in Fig. 1(a). This example comes from [20]. Figure 1(b) shows an opti-
mal 3-partition for V . The value of the objective function, from Eq. (2), is
maxl{|gvl(A) − gvl(C)|, |gvl(A) − gvl(B)|, |gvl(C) − gvl(B)|} = 2.

2.2 Analysis of the Objective Function

The objective function for MDMWNPP proposed in this article, presented in
Eq. (2), appears to be different from that originally introduced in [20], given by:

f({Aj}j∈Ik
) = max

l

{∣

∣

∣

∣

max
j′

gvl(Aj′) − min
j

gvl(Aj)

∣

∣

∣

∣

}

(3)

In fact, these two functions represent different ways for calculating the diameter
of a set of vectors. In the following, an analysis of these two objective functions
is presented.

First, it is possible to remove the module from the Expression (3) without any
loss, since maxj′ gvl(Aj′)−minj gvl(Aj) ≥ 0 in any case. The idea is to denote the
objective function only as the set diameter, allowing a clear interpretation that
applies to all variants of the NPP problem (TWNPP, MWNPP, MDTWNPP
and MDMWNPP) listed in the current article.

Proposition 1 and Corollary 1 are applied in the demonstration of equivalence
of the two expressions in Proposition 2.

Proposition 1. Let I be a limited real interval. Then:

max
x,y∈I

|x − y| = max
z∈I

z − min
z∈I

z (4)

Proof. Since x, y ∈ I, then:

min
z∈I

z ≤ x ≤ max
z∈I

z (5)

min
z∈I

z ≤ y ≤ max
z∈I

z (6)

Manipulating these two expressions, the result is:

min
z∈I

z − max
z∈I

z ≤ x − y ≤ max
z∈I

z − min
z∈I

z (7)

That is:
|x − y| ≤ max

z∈I
z − min

z∈I
z (8)

Therefore:
max
x,y∈I

|x − y| ≤ max
z∈I

(z) − min
z∈I

(z) (9)

Equality occurs for the maximum value. This is verified by fixing x = maxz∈I z

and y = minz∈I z.
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Corollary 1. Let I be a limited real interval and consider a discrete sequence

{ai}i∈In
⊂ I. Then:

max
i,j∈In

|ai − aj | = max
i∈In

ai − min
j∈In

aj (10)

Proposition 2. The distance induced by the infinite norm is given by:

diam∞({gv(Aj)}j∈Ik
) = max

l∈Im

{

max
j∈Ik

gvl(Aj) − min
j′∈Ik

gvl(Aj′)

}

(11)

Proof. From Definition 1:

diam∞({gv(Aj)}j∈Ik
) = max

j,j′∈Ik

‖gv(Aj) − gv(Aj′)‖∞

= max
j,j′∈Ik

max
l∈Im

|gvl(Aj) − gvl(Aj′)|

= max
l∈Im

max
j,j′∈Ik

|gvl(Aj) − gvl(Aj′)| (12)

Then, by Corollary 1:

max
l∈Im

max
j,j′∈Ik

|gvl(Aj) − gvl(Aj′)| = max
l∈Im

{

max
j∈Ik

gvl(Aj) − min
j′∈Ik

gvl(Aj′)

}

(13)

and the proof is finished.

Example 2. Consider the sequence:

V = {(14, 48, 23), (87, 61, 48), (76, 14, 23), (24, 25, 33), (84, 13, 49), (25, 48, 78),

(56, 14, 73), (55, 21, 20), (16, 13, 86), (74, 55, 31)}

with n = 10 and m = 3. For k ∈ {3, 4, 5}, Table 1 shows a feasible (non-optimal)
partition and the optimal partition of this sequence V when solving MDTWNPP,
with the associated values of objective function. It is worth mentioning that V

has a larger dimension than that associated to sequence shown in Example 1. To
represent the partitions, the classic coding in [18] is used: a sequence (si)i∈In

,
where si ∈ Ik, indicating the part to which the vector vi belongs. This notation
has some extra details that will be explained in Sect. 3.

Table 1. Example 2: feasible solutions vs optimal solutions

k Feasible Obj. val. Optimal Obj. val.

3 [1, 1, 1, 2, 3, 3, 2, 3, 1, 2] 54 [1, 2, 1, 2, 3, 3, 2, 1, 1, 3] 22

4 [1, 2, 3, 3, 3, 2, 4, 4, 1, 1] 81 [1, 2, 3, 1, 1, 3, 2, 4, 4, 4] 44

5 [1, 2, 3, 1, 1, 3, 4, 5, 5, 4] 59 [1, 2, 3, 2, 1, 3, 4, 4, 5, 5] 51
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In this problem, it should be emphasized not only that the calculation of the
objective function is particularly complicated, but also how difficult it is to
perform the complete search in the whole space of feasible solutions. According
to [25], the number of possibilities for each value of k in Example 2 is given by the
Stirling Numbers: S(10, 3)k=3 = 9330, S(10, 4)k=4 = 34105 and S(10, 5)k=5 =
42525, respectively.

3 Proposed Algorithm

The proposed Variable Neighborhood Search (VNS) algorithm works with real-
location moves of an element between parts of the partition {Aj}j∈Ik

. The move
mi,j means that an index element i �∈ Aj leaves the part where it is and goes to
the index part j. This move derives from the enumeration algorithm presented
in [18]. It is able to generate all k-partitions of a set.

Consider s′ = {A′
j}j∈Ik

e s = {Aj}j∈Ik
. The neighborhoods N1(s), N2(s) e

N3(s) are given by:

N1(s) = {s′ : s′ ← s ⊕ mi,j , ∀(i, j) ∈ In × Ik} (14)

N2(s) = {s′ : s′ ← s ⊕ mi,j ⊕ mi′,j′ , ∀(i, j) ∈ In × Ik} (15)

N3(s) = {s′ : s′ ← s ⊕ mi,j ⊕ mi′,j′ ⊕ mi′′,j′′ , ∀(i, j) ∈ In × Ik} (16)

Therefore, these neighborhoods are formed, respectively, by compositions of
one, two and three distinct moves mi,j . Thus, if i ∈ Al, a reallocation
move {A1, . . . , Al, . . . , Aj , . . . , Ak} ⊕ mi,j leads to {A1, . . . , Al − {i}, . . . , Aj ∪
{i}, . . . , Ak}. The neighborhoods are such that Nl(s) ∩ Nj(s) = ∅, ∀i �= j.

The encoding used is a vector of size n whose entries are numbers from 1 to
k. There are restrictions to these moves, in the form of the following rules:

(i) The index 1 of v1 must always be in the part 1;
(ii) If vi is in a part with a single element, the motion mi,j can not be applied;
(iii) A part j will always have at least a i′ index less than any index contained

in the part j + 1. This holds for all j ∈ Ik−1.

Example 3. Consider the two encodings below:

[1, 1, 1, 3, 2], [1, 1, 1, 2, 3]

Note that the first vector does not satisfy the rule (iii) while the second vector
satisfies. It is possible to make a move by following rules (i) and (ii) as:

[1, 1, 1, 2, 3] ⊕ m2,2 = [1, 2, 1, 2, 3]

but not:
[1, 1, 1, 2, 3] ⊕ m2,3 = [1, 3, 1, 2, 3]

since [1, 3, 1, 2, 3] = [1, 2, 1, 3, 2], representing the 3-partition {v1, v3}, {v2, v5},

{v4}.
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Algorithm 1. Codification of solutions s

1: V, k, n, m

2: s : si ⊲ vector (si)i∈In
where si ∈ Ik

3: b : bi ⊲ vector (bi)i∈In
where b1 = 1 and bi = min{max2≤h≤i{sh + 1}, k}

4: card : cardj ⊲ cardinality of the parts

5: sum : sumj : sumjl ⊲ sumj = gv(Aj) and sumjl = gvl(Aj)

Algorithm 2. Objective function
1: function f(s)

2: r1 ← maxj sumj1 − minj sumj1

3: obj ← r1

4: for l ∈ Im \ {1} do

5: rl ← maxj sumjl − minj sumjl

6: if rl > obj then

7: obj ← rl

8: end if

9: end for

10: return obj

11: end function

By rule (iii), the leader element of j can not be passed to a part j′ > j,
because in this case the same solution would have many encodings. The leader
element in j can only be moved to j′ < j if the second lowest index in j is smaller
than all indices of j + 1.

These conditions are described in [17], which presents the most efficient
known codings to make enumerations of combinatorial structures. There is also
a demonstration of the bijection between the set of k-partitions and the coding
presented in [18].

With this encoding, the neighborhood size Nr(s) depends on the solu-
tion s. In Example 3, there is N1([1, 1, 1, 2, 3]) = {[1, 2, 1, 2, 3], [1, 1, 2, 2, 3]}
but, also, N1([1, 2, 1, 2, 3]) = {[1, 1, 1, 2, 3], [1, 2, 2, 2, 3], [1, 2, 3, 2, 3], [1, 2, 1, 3, 3],
[1, 2, 1, 1, 3]}.

These cardinality differences accumulate as r increases its value to 2 or 3.
It is only possible to limit the cardinality of neighborhoods by upper bounds to
show that they are polynomials. Thus, consider s being a vector (si)i∈In

and
si ∈ Ik representing a partition:

|Nr(s)| <





∑

i∈In\{1}

max
2≤h≤i

{sh}





r

≤

(

k(2n − k − 1)

2

)r

(17)

The upper bound shown in Expression (17) is not tight, that is, there is no case
where equality occurs, but its expression is compact and already shows that the
search space of the neighborhoods used is limited polynomially since r ≤ 3.

The proposed VNS, described in the Algorithm8, follows the guidelines of
[15]. The coding of the solution s is given by Algorithm1, which holds informa-
tion essential for the manipulation of the search space and to save computational
operations. Instance data can be accessed directly from solution s.

The objective function calculation is done by Algorithm2. This method is
equivalent to the implementation of function (3). The computational cost is
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Algorithm 3. Initial solution algorithm
1: function LPT(V , k)

2: for j ∈ Ik do

3: Lj = 0

4: end for

5: l ← rand(Im) ⊲ Select one coordinate in Im for all vectors of V

6: for i ∈ In do

7: si = arg minj Lj ⊲ build the k-partition

8: Lsi
= Lsi

+ vil ⊲ Update sums of the parts

9: end for

10: return s

11: end function

O(max{n, km}), being n − k operations necessary to obtain the vector sum in
Algorithm1 and (3

2k − 2)(m − 1) the number of operations of Algorithm2.
The initial solution, found by Algorithm3, is given by an adaptation of the

algorithm proposed in [3]. This is a greedy method that fixes a coordinate l

and applies a greedy allocation of vectors vi in the part Lj less loaded at each
iteration. A k-partition resulting from this method will be the initial solution of
the proposed VNS.

Algorithm 4. Movement of one element
1: function move(i, s)

2: s′ ← s

3: if cardsi
= 1 then ⊲ rule 1

4: return s′

5: end if

6: h ← si ⊲ part of element i

7: for j ∈ Ibi
\ {h} do

8: si ← j

9: sumj ← sumj + vi ⊲ vi move out from h to j

10: sumh ← sumh − vi

11: if f(s) < obj then

12: obj ← f(s)

13: s′ ← s ⊲ The new best solution

14: end if

15: end for

16: return s′

17: end function

Algorithm4 returns the best of all possible valid moves of a vector vi between
the possible parts. This procedure is used to enumerate all neighbors in the
structures N1(s), N2(s) and N3(s).

Algorithms 5, 6 and 7 show the implementations of the local search method
Best Improvement for neighborhoods N1(s), N2(s) and N3(s), respectively.
These algorithms explore all the neighbors of a solution s and return the one
with the lowest objective function value. The computational complexity of each
of them is upperly limited by Expression (17).
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Algorithm 5. Best improvement for N1(s)

1: function best1(s)

2: obj ← f(s) ⊲ Save objective value of the current solution

3: for i ∈ In do ⊲ For each vi the move() is applied

4: s′ ← move(i, s)

5: if f(s′) < obj then

6: obj ← f(s′)

7: s′′ ← s′ ⊲ The new best solution

8: end if

9: end for

10: return s′′

11: end function

Algorithm 6. Best improvement for N2(s)

1: function best2(s)

2: obj ← f(s)

3: for i1 ∈ In−1 do

4: s′ ← move(i1, s)

5: for i2 ∈ In \ {Ii1+1} do ⊲ For each tuple (vi1
, vi2

) the move() is applied

6: s′′ ← move(i2, s′)

7: if f(s′′) < obj then

8: obj ← f(s′′)

9: s′′′ ← s′′

10: end if

11: end for

12: end for

13: return s′′′

14: end function

Algorithm 7. Best improvement for N3(s)

1: function best3(s)

2: obj ← f(s)

3: for i1 ∈ In−2 do

4: s′ ← move(i1, s)

5: for i2 ∈ In−1 \ {Ii1+1} do

6: s′′ ← move(i2, s′)

7: for i3 ∈ In \ {Ii2+1} do ⊲ For each tuple (vi1
, vi2

, vi3
) move() is applied

8: s′′′ ← move(i3, s′′)

9: if f(s′′′) < obj then

10: obj ← f(s′′′)

11: s(4) ← s′′′

12: end if

13: end for

14: end for

15: end for

16: return s(4)

17: end function

Algorithm 8 shows the proposed VNS metaheuristic for solving MDTWNPP.
The input data are the initial solution, determined by Algorithm3, and the limit
value for runtime. The perturbation in the current solution is a valid random
move mi,j . The local search uses Best Improvement method to select the neighbor
that causes the greatest decrease of objective function and updates it as a current
solution, if it is worse than the global solution so far. This local search enumerates
the neighbors of a solution using the classical enumeration methods presented
in [17] and [18].
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Algorithm 8. Adapted VNS algorithm
1: function VNS(s, Time) ⊲ Initial solution and time limit

2: r ← 1 ⊲ Initial Nr(s).

3: s′ ← s

4: while t < Time do ⊲ Stopping criterion by the time limit

5: choose s′ ∈ Nr(s) at valid random ⊲ Shake

6: if r = 1 then

7: s′ ← best1(s′)

8: else if r = 2 then

9: s′ ← best2(s′)

10: else

11: s′ ← best3(s′)

12: end if

13: if f(s′) < f(s) then ⊲ Neighborhood exchange

14: s ← s′

15: r = 1

16: else

17: r ← 1 + (r mod 3)

18: end if

19: count time t

20: end while

21: return s, f(s)

22: end function

4 Experimental Results

The proposed VNS algorithm was implemented in C++ language. The computa-
tional tests were performed on a computer with Intel Core i7-3770 CPU, 3.4 GHz
with 8 cores, 32 GB RAM and Ubuntu 16.04 64-bit operating system using ver-
sion 3.8 of the clang compiler.

Algorithm8 uses only a single core for its execution. Of the 8 processor cores,
only 4 are used simultaneously in sets of distinct instances. The instances used
for the experiments are the same used in the articles [8,12,20,21]. The main
comparison is with the latest experiments in [20], where MDMWNPP is solved
with a Memetic Algorithm.

The goal of the computational experiments of this paper is to compare the
result, i.e., the objective function values found by the algorithm, in a same time
interval in seconds. However, there is a difference in computational processing
capacity between the processor used in the current article and the processor used
in [20]. The difference between the single-core performance of the processors
used is approximately 3765

1109 , as shown in [13]1,2, which provides benchmarks for
processors. In consequence, it is fairer that the experiments in this paper use
1
3 of the average computational time used in [20] as the time limit. Thus, the
values of computacional time shown in Tables 2 and 3 reflect this adjustment
factor and are therefore equivalent.

The measures for the comparison of results are based on the average of ten
executions. With this average, the relative error measure is given by:

Gap(B,A) =
z(A) − z(B)

z(A)
.100% (18)

1 https://browser.geekbench.com/processors/748.
2 https://browser.geekbench.com/processors/309.
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This measure shows that the response of the algorithm B is less than that of
the algorithm A, when Gap(B,A) > 0, where z(A) and z(B) are their respective
objective function values on average.

Tables 2 and 3 show the results used in comparing the two methods for k = 3
and k = 4, respectively. The instances have the form n ma, following the pattern
of Definition 1. Table 4 shows the mean value, standard deviation and p-value of
a 95% confidence paired t-test, calculated from the results of the column “Avg.
Sol”. The hypothesis formulation of the test performed is:

{

H1 : fV NS < fMA

H0 : fV NS ≥ fMA

(19)

For a descriptive analysis of the results, we can observe, in these two tables,
the column Gap(V NS,MA). In Table 2 there are eight instances with mark
“no”, i.e., the MA algorithm was better than Algorithm8. On the other hand, in
Table 3, the number of times the MA beats the Algorithm8 is six. The difference
between the MA and VNS results are, on average, 3359.92 for k = 3 and 3509.21
for k = 4.

Table 2. Results of [20] vs results from Algorithm 8 for k = 3

Instance MA VNS Comparison

k=3 Avg. sol Avg. time Avg. sol Avg. time Gap (VNS, MA) Better

50 2a 86.2 182.45 130.98 60.94 51.95% No

50 3a 334.4 202.34 1045.94 67 −212.78% No

50 4a 3382.5 673.83 2044.01 223.98 39.57% Yes

50 5a 4125.8 781.82 14266.4 259.97 −245.79% No

50 10a 37521.6 1189.38 38136.1 395.96 −1.64% No

50 15a 56015.2 1212.27 68396.1 403.91 −22.10% No

50 20a 102652 1235.22 92299.1 410.92 10.09% Yes

100 2a 178.1 342.39 50.7 113.98 71.53% Yes

100 3a 531.3 428.38 2886.44 141.96 −443.28% No

100 4a 867.5 673.22 8374.57 223.96 −865.37% No

100 5a 6224.5 834.62 11527.3 277.97 −85.19% No

100 10a 47004.8 1436.08 37146.2 477.94 20.97% Yes

100 15a 96827.3 2073.76 61427.6 690.94 36.56% Yes

100 20a 113112.5 2564.38 84093.4 853.91 25.66% Yes

Table 4 reports that there is no significant statistical difference between the
averages of the results of the algorithms in the set of tested instances when
k = 3 and k = 4. Even if the average difference between the algorithms is
positive, the large standard deviation in the results does not allow to reject the
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Table 3. Results of [20] vs results from Algorithm 8 for k = 4

Instance MA VNS Comparison

k=4 Avg. sol Avg. time Avg. sol Avg. time Gap (VNS, MA) Better

50 2a 391.4 342.37 321.69 113.66 17.81% Yes

50 3a 678.3 536.24 687.75 177.95 −1.39% Yes

50 4a 836.7 1023.39 3185.66 340.95 −280.74% No

50 5a 1094.4 1243.28 19979.4 413.87 −1725.60% No

50 10a 42005.6 1647.76 57025.2 548.83 −35.76% No

50 15a 56034.7 1843.92 91035.6 613.82 −62.46% No

50 20a 123627.8 2135.48 108404 710.83 12.31% Yes

100 2a 687.2 564.02 99.28 187.94 85.55% Yes

100 3a 1213.7 847.37 5765.02 281.9 −375.00% No

100 4a 1924.6 922.14 12219.9 306.9 −534.93% Yes

100 5a 8356.8 1972.39 19056.7 656.78 −128.04% No

100 10a 75034.8 2819.32 58992.6 938.71 21.38% Yes

100 15a 122892.7 3193.84 76239.6 1063.82 37.96% Yes

100 20a 174981.6 4392.01 107619 1463.61 38.50% Yes

Table 4. Statistical analysis with paired sample for k ∈ {3, 4}.

Measures k=3 k=4

Normality 1.63% 6.34%

p − valuet−test 19.01% 31.39%

p − valuewilcox−test 47.58% 54.84%

µMA − µV NS 3359.92 3509.21

σMA,V NS 13840.88 26436.14

null hypothesis. The t-test assumes that the data are normally distributed. The
Shapiro-Wilk test verifies this condition. The results of the column “Avg. Sol.”
with k = 3 do not satisfy the normality assumption; therefore, the Wilcoxon test
was used. For k = 4, the t-test can be used.

Table 5 shows the obtained results using the proposed VNS algorithm for
solving MDMWNPP to k ∈ {5, 6}, i.e., the Multidimensional Five-way and
Six-way Multidimensional Number Partitioning Problems, considering the same
instances used to solve the cases in which k ∈ {3, 4}. The results were obtained
considering ten executions for each instance with maximum computational time
equal to 1800 s. It is important to highlight that the cases for k ∈ {5, 6} have not
been solved previously in any other article, at least according to the knowledge
of the authors of the current article.
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Table 5. Results for k ∈ {5, 6} with Algorithm 8

VNS k=5 k=6

Instance Avg. sol Avg. time Avg. sol Avg. time

50 2a 194.77 1799.31 374.48 1799.7

50 3a 1498.14 1799.96 3073.79 1799.93

50 4a 6678.27 1799.95 9607.94 1799.93

50 5a 11388.1 1799.92 17682.3 1799.93

50 10a 66263.7 1799.49 76327.7 1799.56

50 15a 93023.4 1799.62 93350.7 1799.71

50 20a 113159 1799.58 131340 1799.83

100 2a 618.52 1799.49 393.75 1799.78

100 3a 1229.68 1799.77 2988.6 1799.87

100 4a 11480.8 1799.86 18304.9 1799.77

100 5a 23440.7 1799.45 27570.8 1799.74

100 10a 63401.4 1799.94 76073.5 1799.82

100 15a 98647.3 1799.89 106270 1799.85

100 20a 127963 1799.99 125540 1799.9

5 Conclusion

This article presents a proposal to adapt the VNS metaheuristic to the solution of
the Multidimensional Multi-Way Number Partitioning Problem (MDMWNPP).
This problem is a generalization of the classical Number Partition Problem
(NPP), in which it is assumed that each element of the sequence is a vector
and, in addition, k-partitions of the sequence are performed, for k ≥ 2. Despite
this attractive and challenging formulation, this problem remains little studied
in the literature. For the purposes of validation of the obtained results, a compar-
ison is made with the only algorithm found in the literature proposed directly
to solve the addressed problem, according to the knowledge of the authors of
the current article. The proposed VNS algorithm, shown in Algorithm8, was
tested using the same instances used in [20], in which MDMWNPP is solved
using Memetic Algorithm. The results are satisfactory as to the quality of the
proposed VNS by comparing only the averages and the gap() between the results
of the two algorithms, according to Tables 2 and 3. In the statistical analysis, it
is not possible to conclude that there is a significant difference between the VNS
and the MA in the instances with k ∈ {3, 4}.

Specific difficulties were found to support better statistical analysis, such as
the low number of executions, and the fact that instances used in this work
are dependent on one another. As future work, we intend to apply the VNS
metaheuristic combined with mathematical programming formulations for the
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solution of MDMWNPP, using, as a test basis, a new group of uniformly dis-
tributed generated instances.
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