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Abstract
A large amount of data available today and the complex situations present in the industry make decision support systems
increasingly necessary. This work deals with a problem of amining-metallurgical industry in which the production of products
used to feed arc furnaces must be sequenced in work shifts. There is a due date and a quality specification for each product.
These products are generated from rawmaterials available in a set of silos and must satisfy the required quality specifications.
The aim is tominimize the total production time and the total tardiness. To solve it, we developed a decision support system that
applies a matheuristic algorithm to do the product schedule and determine the amount of rawmaterial to produce each product.
In the proposed algorithm, the products generated in each work shift are chosen through a dispatch heuristic rule based on the
shortest production time. In turn, the amount of raw material to be used is calculated by solving a goal linear programming
formulation of a blending problem. We generate instances that simulate real cases to evaluate the developed algorithm. The
results show a good performance of the proposed algorithm, validating its use as a tool to support decision-making.
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1 Introduction

Arc furnaces are one of the most important pieces of equip-
ment in the metallurgical industry due to their versatility
in producing different types of steel. According to World-
steel (2020), of all global crude steel production in 2019,
27.9% result from arc furnaces. Usually, an arc furnace is
fed by scrap and elements from different alloys, allowing
the adjustment of the steel’s chemical composition to be
generated.

Equipment such as arc furnaces still has a low level of
automation in its operation, leaving the production decisions
to be carried out by its operators according to their expe-
riences (Shyamal and Swartz 2017). A survey carried out
by Olivier and Craig (2017) on the degree of automation in
the global mineral processing industry shows that operators’
actions on processes are still frequent. Given the massive
amount of data generated by industrial processes and the
different situations for decision making, decision support
systems are increasingly important, as they allow a complete
analysis of the entire production chain (Liu and Zaraté 2014).

The present work deals with a problem of a mining-
metallurgical industry in which the production that feeds arc

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40313-021-00837-3&domain=pdf
http://orcid.org/0000-0002-7141-357X
http://orcid.org/0000-0002-8385-7573


Journal of Control, Automation and Electrical Systems

furnaces must be sequenced in work shifts. In the company
under study, this task is done manually.

Sequencing the production and performing the correct
blending of materials is a problem found in different indus-
try types. For example, in the oil industry, Bayu et al.
(2020) deals with the scheduling of gasoline blending and
distribution. Franzoi et al. (2019) address the scheduling
of processing units and blending for gasoline production.
Pereira et al. (2018, 2020) deals with a crude oil scheduling
problem in a refinery using a multi-objective evolutionary
algorithm. For the mineral industry, Rezakhah et al. (2020)
consider ore blending in stockpiles from the open-pit mine
scheduling.However, to our knowledge, the problemof prod-
uct sequencing and blending of raw materials to feed arc
furnaces has not yet been addressed in the literature. Feed-
ing an arc furnace with the correct blend of raw materials
requires important decisions, as this can affect steel specifica-
tions. The blending process allows generating a product with
the right proportions of raw material, increasing the quality
of production and its economic benefits (Lingshuang et al.
2013). Besides, scheduling efficiently the products that feed
the furnace reduces the total production time and generates
more products.

In this work, we propose a decision support system
based on a matheuristic algorithm to perform the production
scheduling and determine the blends that form each prod-
uct in different planning horizons. A heuristic dispatch rule
chooses the products to be produced in each work shift. The
optimal quantities of raw materials to generate each product
are determined through a goal linear programming formu-
lation. As the proposed algorithm combines heuristic and
exact procedures, it is considered a matheuristic, according
to Ribeiro et al. (2020). We generate instances that simulate
real cases to evaluate the developed algorithm. The results
generated show a good performance of the proposed algo-
rithm, validating its use as a tool to support decision-making.

The remainder of this paper is organized as follows. A
literature review is done in Sect. 2. In Sect. 3, the problem
is characterized. Section 4 shows the formulation developed
for the blending problem. Section 5 presents the proposed
algorithm for the scheduling production. Computational
experiments are reported and discussed in Sect. 6. Finally,
the conclusions and proposals for future work are presented
in Sect. 7.

2 Literature Review

A literature review involving arc furnaces, scheduling prob-
lems, and blending problems in mining and metallurgical
industries is performed in this section.

Several works related to arc furnaces deal with reduc-
ing energy consumption since this consumption represents a

high cost. Hernández et al. (2020) seek an optimal melting
profile to minimize energy losses during production batches
using mathematical models of an arc furnace. The models
are solved by differential equations, while a control vector
parametrization technique obtains the optimumvalues for the
setpoints. Saboohi et al. (2019) propose a framework todefine
various settings for the control of an arc furnace, such as the
employed power, carbon injection, among others. Based on
models of an arc furnace and their restrictions, the authors
seek to increase their efficiency by maximizing the energy
transferred to the scrap during refining and, consequently,
reduce operating costs. The authors combine optimization
algorithms such as genetic algorithms (GA) and sequential
quadratic programming (SQP) to solve the proposed model.
The results show a reduction in energy consumption, in con-
trast to an increase in additives, such as oxygen and carbon.
Lin et al. (2012) propose a Multi-objective Particle Swarm
Optimization (MOPSO) algorithm to reduce electricity con-
sumption, refining time, electrode consumption, and extend
the life of the interior furnace. As an output of the algorithm,
the developed power supply model achieves the objectives
established in the simulations performed.

There are several approaches in the literature to solve
scheduling problems. The most common is applying heuris-
tic methods, given the complexity of the problem (Pinedo
2012). Gomes et al. (2021) develop a matheuristic to sched-
ule the heat treatment line of a multinational steel company,
seeking to minimize the total tardiness and energy costs.
Thus, the initial solutions for each objective are generated
by a Mixed-Integer Linear Programming (MILP) formula-
tion. The Multi-objective General Variable Neighborhood
Search (MOVNS) metaheuristic is used to explore the solu-
tion space. Tests carried out with industry data showed
reductions in energy consumption and tardiness. Baykasoğlu
and Ozsoydan (2018) present a study of dynamic schedul-
ing of production in heat treatment furnaces. Events such as
machine breakdown, change in due dates, change in task
priorities, and the arrival of new tasks are considered in
the scheduling. The authors used the Greedy Randomized
Adaptive Search Procedure (GRASP) algorithm to gener-
ate the solution. In the pilot study carried out, the proposed
solution reduced the total downtime of the furnaces and the
consequent increase in production. Araujo et al. (2008) treat
the problem of batch sizing and scheduling production in
small foundries in Brazil. The developed model considers
characteristics such as a planning horizon, variation of the
furnace capacity, stock generation, the penalty for delay,
and changing the furnace setup. The authors developed two
local searchmethods and used the SimulatedAnnealing (SA)
metaheuristic to find better solutions. In the literature, there
are several works that address scheduling problems (Saberi-
Aliabad et al. 2020; Cota et al. 2014, 2019; Haddad et al.
2015).
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Goal linear programming is widely used to solve blend-
ing problems (Chanda and Dagdelen 1995; Costa et al. 2005;
Moraes et al. 2006). This optimization technique is used in
these works to minimize the quality deviations of the gener-
ated products.

Other approaches to the problem are also used, such as
fuzzy logic in Xu et al. (2008) and stochastic optimization
in Lingshuang et al. (2013). Yuan et al. (2020) propose an
optimization model for blending coke to be used in blast fur-
naces. The goal is to determine the best blend for coke at the
lowest cost. Initially, the authors seek to estimate the quality
of the coke using Gaussian functions and the Extreme Gradi-
ent Boosting Algorithm (Xgboost) to select the most relevant
characteristics. Then, they apply the Support Vector Regres-
sion (SVR) algorithm to forecast the products to begenerated.
Next, the blending optimizationmodel is solved using amod-
ified version of the Particle Swarm Optimization (MPSO)
algorithm. A similar approach to the preparation of the sinter
blend is covered in Zhang et al. (2019). Seeking to maxi-
mize profit in the blending of sinter, the authors use the SVR
algorithm to estimate the sinter classification based on the
properties of the raw materials and, thus, price the generated
blend. Finally, they use the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) algorithm to solve the blending
problem. The authors report a reduction in the cost of the sin-
ter and an increase in production profit. Huang et al. (2019)
seek to reduce energy consumption and production costswith
an optimizationmodel for the sinter blend. Initially, the quan-
tities of raw materials that make up the blending are defined
considering, in addition to the different qualities, the granula-
tion, andmineralization properties. An initial solution for the
blend is generated through linear programming. This solu-
tion is used as input to a GA, which generates a group of
blending schemes. Then, the chemical properties of the raw
materials of these blending schemes are used as inputs of the
Least Squares Support VectorMachine (LS-SVM) algorithm
for the prediction of energy consumption and productivity in
the sintering process. Finally, the blends and their respective
blending cost, energy consumption, and productivity rates
are evaluated. The blending scheme with the highest eco-
nomic and technical value is selected. The authors report a
significant reduction in carbon emissions.

This work differs from the others in the literature for deal-
ing with the problem of product sequencing and blending of
raw materials to feed arc furnaces, considering simultane-
ously: (1) the blending of raw materials, stored in silos, to
generate products obeying lower and upper bounds for their
control parameters; (2) the blending aiming tominimize devi-
ations from the grade targets for the control parameters of the
products generated; (3) the continuous feeding of silos; (4)
the sequencing of these products into work shifts within a
planning horizon.

3 Problem Statement

The problem of sequencing products to feed the arc furnace
under study has the following characteristics:

1. There is a set M of ores of different qualities to be used
as raw material, M = {1, . . . , |M |};

2. There is a set SM of silos to store the rawmaterial, SM =
{1, . . . , |SM |};

3. There is a set PR of products to be generated from the
blend of raw materials, PR = {1, . . . , |PR|};

4. There is a set S of quality parameters for raw materials
and products, S = {1, . . . , |S|};

5. There is a production planning horizon H , in minutes;
6. There is a set AL of screw feeders, AL = {1, . . . , |AL|};
7. Each screw feeder ar ∈ AL belongs to a raw material

silo a ∈ SM ;
8. There is a setCT of conveyor belts,CT = {1, . . . , |CT |};
9. Each product j ∈ PR is associated with a processing

time p j , a due date d j ;
10. Each product j ∈ PR is associated with a type of raw

material;
11. Every silo a ∈ SM stores a maximum of Qu tonnes of

raw material;
12. Every silo a ∈ SM must store at least Ql tonnes of raw

material;
13. The material contained in each rawmaterial silo a ∈ SM

is associated with a type of raw material;
14. The grade of the parameter b ∈ S in the raw material silo

a ∈ SM is given by tab, in %;
15. The recommended grade of the parameter b ∈ S in the

product j ∈ PR is given by tr jb in %;
16. For each product j ∈ PR, there is a lower and upper

bound for the control parameter b ∈ S, given by tl jb and
tu jb, in %, respectively, to be met;

17. When a raw material silo is being fed, it cannot be used
in the productive process.

The goal is to generate a production sequence that
meets the required quality specifications and minimizes the
weighted sum of the makespan and the total tardiness, given
by:

min αCmax + (1 − α)
∑

j∈PR

Tj (1)

where:

1. α ∈ [0.1] is a parameter that reflects the importance of
each parcel of the objective function;

2. C j is the completion time of the product j , in minutes;
3. Cmax = max{C j , j ∈ PR}, in minutes;
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(a) (b)

Fig. 1 Stages of the analyzed production process

Table 1 Production planning to
be executed

Products Mass (tonnes) Material Due date (min) Parameters (%)

A B C D E

1 18 0 480 21.65 0.87 0.66 68.59 4.32

2 18 3 960 24.11 2.26 1.23 69.17 4.16

3 18 1 960 24.39 1.32 0.59 68.53 5.38

4 21 2 480 22.75 1.92 1.17 67.49 4.29

4. Tj = max{C j − d j , 0} is the tardiness of the product j ,
in minutes.

The following images describe the production process.
Figure 1a illustrates raw material silos and the tripper car
to distribute the material into the silos. As Wills and Finch
(2015), a tripper car is a machine capable of moving on rails
and positioning itself above the silos, allowing its load to be
delivered to one or more silos. In the analyzed process, a silo
is fed at a time. Each raw material silo receives a type of ore
with a given chemical composition, determined by laboratory
analysis. Thematerial that feeds each of the rawmaterial silos
comes from a previous process step, not covered in this work.

Below each silo of raw material, there is a screw feeder,
equipment responsible for removing the desired amount
of material to compose the product to be generated. This
removed material is then deposited on conveyor belts, which
send it to the product storage silo, represented in Fig. 1b.
Once the product is generated, it is then consumed in the
next stage of the production process, that is, in the feeding
of the arc furnace.

To illustrate a solution to this problem, let Table 1 be an
example of a production planning to be executed. Table 1
reports the product characteristics in this sequence: product
ID, mass, type of material, the due date, and its respective
desired chemical composition.

Table 2 Characteristics of raw material silos

Mass Parameters (%)
Silo (tonnes) Material A B C D E

1 67 0 24.23 2.48 0.69 68.58 4.08

2 67.51 2 20.66 2.48 1.12 67.69 5.38

3 70.18 3 24.02 0.85 1.00 68.22 5.33

4 159.65 3 24.93 2.24 1.15 69.47 4.28

5 61.23 1 21.37 1.59 0.89 68.26 5.44

6 171.16 0 26.57 0.74 1.23 69.79 5.89

7 253.44 2 24.35 0.50 1.04 68.11 5.12

Table 2 presents the values of mass, type of material, and
the grade of each control parameter of the ores contained in
the silos of raw materials in the initial instant.

From Tables 1 and 2, it is possible to calculate the com-
position of the blending required to generate each product.
The raw materials used in this blend must be those available
in silos that have the same type of raw material required by
the product.

When defining the amount of material to be removed from
each raw material silo, the screw feeders located just below
these are activated, except for thosewhose amount ofmaterial
is null. Then, thematerial is transferred by conveyor belts and
sent to the product silo.
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4 TheMathematical Formulation of the
Blending Problem

The blending problem can be approached through a goal
linear programming formulation, associating a deviation
variable for each constraint that cannot be obeyed. These
deviation variables measure distances from target values to
be achieved and represent goals to be reached. So, the objec-
tive function of this formulation is formed by the weighted
sum of these goals and should be minimized. We adapt the
model by Moraes et al. (2006) to solve the blending prob-
lem. As the model is applied to generate a single product, for
simplicity, we have eliminated the index j in the input data
defined in items 15, and 16 of Sect. 3.
Input data:

1. SM : Set of raw material storage silos;
2. S: Set of quality parameters for raw materials and prod-

ucts;
3. PR: Set of products to be generated from the blend of

raw materials;
4. tab: Grade of the parameter b ∈ S of the raw material

stored in the silo a ∈ SM ;
5. trb: Target for the parameter b ∈ S in the blending;
6. tlb: Lower bound for the parameter b ∈ S in the blending;
7. tub:Upper bound for the parameterb ∈ S in the blending;
8. Qa : Mass available in the silo a ∈ SM ;
9. wsa : Weight for the use of the silo a ∈ SM ;

10. Qdes: Desired mass for the product;
11. wmb: Weight for the deviations from the grade target of

the parameter b ∈ S;
12. typea : Binary parameter that assumes value 1 if the raw

material silo a ∈ SM has the same type of material
desired for the product j to be blended and 0, otherwise;

Decision variables:

1. xa : Quantity of mass to be taken from the raw material
of the silo a ∈ SM ;

2. dnSiloSMa : Negative deviation concerning the amount
of raw material remaining in the silo a ∈ SM , used for
blending, in tonnes;

3. dnmb: Negative deviation concerning the grade target for
the parameter b ∈ S, in tonnes;

4. dpmb: Positive deviation concerning the grade target for
the parameter b ∈ S, in tonnes;

Theblendingproblemcanbe formulated throughEqs. (2)–
(12).

min
∑

b∈S
wmb × (dpmb + dnmb) +

∑

a∈SM
wsa × dnSiloSMa

(2)

∑

a∈SM
xa = Qdes (3)

xa ≤ Qa ∀ a ∈ SM (4)
∑

a∈SM
(tab − tlb) × xa ≥ 0 ∀ b ∈ S (5)

∑

a∈SM
(tab − tub) × xa ≤ 0 ∀ b ∈ S (6)

∑

a∈SM
(tab − trb) × xa + dnmb − dpmb = 0 ∀ b ∈ S (7)

xa + dnSiloSMa = Qa × typea ∀ a ∈ SM (8)

xa ≥ 0 ∀ a ∈ SM (9)

dnSiloSMa ≥ 0 ∀ a ∈ SM (10)

dnmb ≥ 0 ∀ b ∈ S (11)

dpmb ≥ 0 ∀ b ∈ S (12)

The objective function described by Eq. (2) seeks to
minimize the deviations concerning the grade target for all
parameters and the amount of raw material remaining in the
silo used for blending. The constraints applied to the model
are presented by Eqs. (3)–(8). Constraints (3) determine that
Qdes tonnes of product will be produced. Constraints (4)
ensure that the mass to be removed from each raw material
silo cannot be greater than its available mass. Constraints (5)
and (6) ensure compliance with the lower and upper speci-
fication limits, while constraints (7) seek to meet the grade
target. Constraints (8) indicate that all material from a raw
material silo should be removed whenever possible. Equa-
tions (9–12) establish the domain of the decision variables.

When solving the blending problem, the mathematical
model returns that there is no feasible solution or, if there is,
it returns a solution that satisfies the lower and upper bounds
stated for the product, minimizing the weighted objective
function given by Eq. (2).

5 Proposed Algorithm

A matheuristic algorithm for decision support, named DSS_
ASPT, is proposed to schedule the desired products. It
combines the Adaptive Shortest Processing Time (ASPT)
(Baker 1974) heuristic procedure to generate the production
sequence and a goal linear programming formulation to solve
the blending problem. Its pseudocode is presented by Algo-
rithm 1.

As input parameters, Algorithm 1 receives the set SM of
rawmaterial silos, the set PR of products to be generated, and
the production planning horizon H . Besides, the parameter
α, the minimum (Ql) and maximum (Qu) mass values for a
rawmaterial silo, and a list containing theminimum (tlb) and
maximum (tub) values of grades for each parameter b of a
given type of material are algorithm inputs. Finally, the algo-
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rithm’s outputs are the solution s containing the production
sequence and its value fo according to Eq. (1).

First, some variables, sets, and counters used in the algo-
rithm are initialized, such as the makespan Cmax, the total
tardiness T , the instant h of the horizon planning, and oth-
ers. In line 9, the list with the limit values of the grades is
obtained. In line 10, it is determined howmany days make up
the production planning horizon H . So a loop is initialized,
and in line 12, it is determined which products p ∈ PR have
a due date for the day analyzed, generating the set PRDay .
These products are then removed from the set PR so that
they are not analyzed in the next iteration.

In line 14, the rejected products from the set PRRejected

are handled by the rejected products treatment (RPT) func-
tion. Nothing will be processed in the first iteration of
the loop, as there are still no rejected products. Algo-
rithm 2 describes the pseudocode of the RPT function
(see Sect. 5.1.1).

Once processed the rejected products, line 15 checks
which products belonging to the set PRDay are candidates
to be produced. Then, it is solved the blending problem for
each product in the set PRDay . The optimizer returns the
mass values to be extracted from the raw material silos, indi-
cating whether the product is a candidate to be generated or
not. If the optimizer returns null values for the mass to be
removed, the product is considered rejected. If the product
is rejected, its priority is increased in one unit. The rejected
products are then added to the set PRRejected to be treated
in the next iteration.

Then, we start a loop that operates as long as there is a
product p ∈ PRCandidates . First, in line 21, we select a prod-
uct with the shortest completion time to be produced during
the current work shift. This product is associated with all the
information necessary for its production, such as mass, rec-
ommended grades, and acceptable quality limits, i.e., lower
andupper bounds for its control parameters.Once the product
is selected, the raw material feed (RMF) function analyzes
in line 22 if there is any raw material silo that must be fed.
The RMF function is described through the pseudocode of
Algorithm 3 (see Sect. 5.1.2).

Next, we check whether the raw material silos at that time
analyzed contain sufficient mass to generate the product p.
The product is rejected in the lack of mass, and its priority
is increased by one unit for each rejection. If the product is
rejected, it is included in the set PRRejected and is removed
from the set PRCandidates in lines 32 to 34.

If there are sufficient raw materials in silos, the time ana-
lyzed h is updated by increasing it with the processing time
of the product generated. The processing time p j is deter-
mined by the longest time spent by the screw feeders for
extracting the required amount of mass from the raw mate-
rial silos. As the feeders are activated simultaneously, the one
that consumes the most time to finish its activity will be the

one that will determine the total duration of the product pro-
cessing. The makespan Cmax, the total tardiness T , and the
mass present in each silo of rawmaterial are updated using the
UpdateMass(.) function. Then, in line 28, the partial solution
s is updated with the product p and then excluded from the
set PRCandidates . The loop ends when the set PRCandidates

is empty.
Finally, we increase the variable Day in line 37, and the

loop continues until all the days of the planning horizon are
analyzed.

After evaluating the products for each day of the planning
horizon, there may still be rejected products. Therefore, they
are treated in the loop initialized in line 40 until all products
have been generated, ending the production schedule.

5.1 Complementary Functions

This section presents the functions that contribute to the exe-
cution of the DSS_ASPT algorithm.

5.1.1 RPT Function

This function does the treatment of the rejected products in
the DSS_ASPT algorithm. It receives as input parameters the
set SM of raw material silos, the set PRRejected of rejected
products, the time horizon H , the mass limit values for a
silo of raw material (Qu, Ql), and the lower and upper grade
bounds (tl jb, tu jb) for each parameter b in the product j .
The output is the solution s updated and the set of rejected
products PRRejected .

Algorithm 2 describes its pseudocode. First, we check
which product can be generated among the rejected prod-
ucts. Then, we initialize a loop to investigate the candidate
products. In line 3, the product of the set PR′

Candidates with
the highest priority and the shortest duration to generated it
is selected. Then, we check by the RMF function if there is
an empty raw material silo that must be fed.

Suppose there is a sufficient mass of raw material. In that
case, we generate the selected product, update the makespan
Cmax, the total tardiness T of the solution, and the mass
present in each raw material silo. We update the partial solu-
tion s with the product p in line 10 and exclude it from the set
PR′

Candidates . If there is not enoughmass, we reject the prod-
uct and increase its priority in line 14. Products that were not
considered candidates have their priority increased in line 19.

5.1.2 RMF Function

This function executes the feed of a raw material silo identi-
fied as empty. Initially, we initialize the variables. In line 5,
we check if there is an empty raw material silo. A silo is
considered empty if its mass value is less than Ql. If it is
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Table 3 Characteristics of the
instances

# Instance # Products # Raw material Planning horizon

Per work shift Total silos Minutes Days

1 9 30 14 1440 1

2 9 81 14 4320 3

3 10 90 14 4320 3

4 9 189 14 10,080 7

5 10 210 14 10,080 7

6 9 270 14 14,400 10

7 10 300 14 14,400 10

empty, the variable EmptySilo assumes the ID of the empty
silo. Otherwise, it receives the value 0.

Lines 6–8 identify the most demanded raw material for
both the products of the following day of the planning horizon
and rejected products. Knowing the raw material to be fed,
the empty silo is fed until the mass value reaches the value
Qu (line 9).

When defining the raw material silo to be fed, the RMF
function also determines the position of the tripper car along
the production planning horizon.

6 Computational Experiments

The DSS_ASPT algorithm was implemented using the C#
programming language on the .NET Framework 4.7.2 plat-
form in the Microsoft Visual Studio Community 2017
development environment. We execute the tests on a com-
puterwith an IntelCore i7-8550U@1.80GHz×8processor,
with 16 GB of RAM and Windows 10 64-bit operating sys-
tem.

To test the algorithm, we generate seven instances based
on actual production data from amining-metallurgical indus-
try. Each instance has the number of raw material silos, the
number of products to be generated, the planning horizon,
and the due date of each product per work shift. We generate
these instances according to the schema below:

1. The flow rate of the screw feeders was set at 30 tonnes/h,
and the feed flow of the tripper car at 28 tonnes/h;

2. The mass of the product j ∈ PR is chosen randomly in
the range [0.7×24, 24], where the value 24 represents the
maximum mass of the product to be generated in tonnes;

3. The maximum capacity of each raw material silo is Qu
= 285 tonnes;

4. The rawmaterial type for generate the product j is chosen
randomly in the range [0, 3] to represent each of the four
products generated by the company under study;

Table 4 Weights for the quality
parameters

Quality parameters

A B C D E

Weight 5 5 10 100 5

5. The grades tab of the mass stored in the raw material silo
a ∈ SM are chosen randomly in the range [tlab, tuab],
according to the type of raw material stored in silo a;

6. The recommendedgrades tr jb are chosen randomly in the
range [tl jb, tu jb] according to the type of the product j ;

7. The due date d j of the product j ∈ PR is chosen accord-
ing to the number of products per work shift, that is, 9 or
10;

8. The mass of material stored in the raw material silo a ∈
SM is chosen randomly in the interval [0.7 × 24, Qu];

9. The rawmaterial type stored in silo a is chosen randomly
in the range [0, 3].

Table 3 shows the characteristics of the instances gener-
ated. It has the following organization: (i) the first column:
index of the instance; (ii) the second column: the total of
products to be generated; (iii) the third column: the number
of products with due date per shift work; (iv) the fourth col-
umn: number of raw material silos available; and (v) the fifth
and sixth: the horizon production planning. The number of
silos represents exactly the structure present in the studied
industry. We will not disclose the quality parameters and raw
materials due to industrial secrecy.

We modeled the blending problem through the goal lin-
ear programming formulation described in Sect. 4 and used
the LINGOmodeler and optimizer software from Lindo Sys-
tems Inc., version 10, to solve it. In the developed code, the
blending input data are passed to the optimizer through a
DLL. The optimizer, in turn, returns the mass to be extracted
from each raw material silo. The weights of quality parame-
ters in the model were classified as Very Important, Critical,
and Very Critical, with weights set to 5, 10, and 100, respec-
tively, according to the classification of Moraes et al. (2006).
Table 4 shows the weights used for each quality parameter
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Algorithm 1 DSS_ASPT
Input: Set SM of rawmaterial silos, set PR of products to be generated,

time horizon H , parameter α, minimum mass value Ql, maxi-
mummass value Qu, lower and upper bounds for the parameters

. Output: Solution s and objective function value fo1
Cmax = 0;1
T = 0;2
h = 0;3
Day = 0;4
fo = 0;5
PRRejected ← ∅;6
PRDay ← ∅;7
s ← ∅;8
GradeList = GradeBounds();9
NumDays = GetNumberofDays(H);10
while Day < NumDays do11

PRDay ← FindDayProducts(PR, Day);12
PR ← PR \ PRday ;13
(s, PRRejected ) = RPT (SM, PRRejected , h, PR, Day, Ql, Qu,14
GradeList);
(PRCandidates , PRRejectedDay)= FindPossibleProducts(PRDay,15

SM);
while PRRejectedDay 	= ∅ do16

IncreasePriority(PRRejectedDay);17
PRRejected ← PRRejected ∪ PRRejectedDay ;18

end19
while PRCandidates 	= ∅ do20

(p, X) = FindBestProduct( PRCandidates , SM);21
RMF(SM, PR, PRRejected , Day, Ql, Qu,GradeList);22
if there are sufficent mass in raw material silos then23

h = h + p j ;24
C j = h;25
T = T + max{C j − d j , 0};26
UpdateMass(X , SM);27
s ← s ∪ {p};28
PRCandidates ← PRCandidates \ {p};29

end30
else31

IncreasePriority(p);32
PRRejected ← PRRejected ∪ {p};33
PRCandidates ← PRCandidates \ {p};34

end35

end36
Day++;37

end38
if PRRejectedDay 	= ∅ then39

while PRRejectedDay 	= ∅ do40
RMF(SM, PR, PRRejected , Day, Ql, Qu,GradeList);41
(s, PRrejei tados) = RPT (SM, PRRejected , h, PR, Day,42
Ql, Qu,GradeList);

end43

end44
Cmax = h;45
fo = CalculateFO(Cmax, T , α);46
return s, fo;47

Algorithm 2 RPT
Input: Set SM of raw materials silos, set PRRejected of rejected prod-

ucts, time h, set PR of products, analyzed day Day, minimum
mass value Ql, maximum mass value Qu, lower and upper
bounds for the parameters

Output: Solution s and set PRRejected
(PR′

Candidates , PR′
Rejected ) = FindPossibleProducts(PRRejected , SM);1

while PR′
Candidates 	= ∅ do2

(p′, X) = FindPriorityProducts( PR′
Candidates , SM);3

RMF(SM, PR, PRRejected , Day, Ql, Qu,GradeList);4
if there are sufficent mass in raw material silos then5

h = h + p′
j ;6

C ′
j = h;7

T = T + max{C ′
j − d ′

j , 0};8

UpdateMass(X , SM);9
s ← s ∪ {p′};10
PR′

Candidates ← PR′
Candidates \ {p′};11

end12
else13

IncreasePriority(PRRejected [p′]);14
PR′

Candidates ← PR′
Candidates \ {p′};15

end16

end17
while PR′

Rejected 	= ∅ do18
IncreasePriority(PRRejected );19

end20
return s,P RRejected ;21

Algorithm 3 RMF
Input: Set SM of raw materials silos, set PR of products, set

PRRejected of rejected products, analyzed day Day, minimum
mass value Ql, maximummass value Qu, list of grades for each
type of material

Output: Set SM
EmptySilo = 0;1
MaterialT ype = 0;2
MPRNextDay = 0;3
MPRRejected = 0;4
EmptySilo = FindEmptySilo(SM, Ql);5
MPRNextDay = FindNextDayMaterial(PR, Day);6
MPRRejected = FindProductRejectedMaterial(PRrejei tados);7
MaterialT ype = MostRequestedType(MPRNextDay, MPRRejected ,8
PR, PRRejected );
SM = FeedSilo(EmptySilo, MaterialT ype, Qu,GradeList);9
return SM ;10

considered in the model. The weights wsa were set to a high
value (bigM) for all silos.

We execute the DSS_ASPT algorithm considering equal
importance to the makespan and total tardiness objectives,
that is, the parameter α of Eq. (1) was set to 0.5.

Figure 2 shows the graphical interface of the decision sup-
port system. The user can define the number of raw material
silos, the number of products to be generated, the planning
horizon, the process flow rates, themaximummass, and other
parameters. Then, when activating the Run command, the
system suggests a product schedule.

Table 5 presents the algorithm results. The first three
columns report the instance identifier, the makespan in min-
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Fig. 2 User interface for the decision support system

Table 5 Results of the proposed algorithm per instance

Instance Makespan
(min)

Total tardi-
ness (min)

Maximum
tardiness
(min)

Objective
function
(min)

Runtime (seg) Average relative percentage deviation

A B C D E

1 660.24 0.00 0.00 330.12 5 0.10 0.16 0.03 0.00 0.08

2 2114.56 0.00 0.00 1057.28 16 0.18 0.12 0.04 0.01 0.13

3 2853.49 0.00 0.00 1426.75 21 0.14 0.14 0.03 0.01 0.06

4 8189.96 2379.56 834.87 5284.76 67 0.18 0.11 0.03 0.01 0.09

5 10,191.08 62,761.94 2564.33 36,476.51 157 0.14 0.21 0.04 0.01 0.09

6 12,526.98 76,006.57 3537.69 44,226.78 215 0.15 0.13 0.05 0.01 0.06

7 14,483.00 122,737.01 4178.04 68,610.01 267 0.15 0.15 0.07 0.01 0.04

utes, and the total tardiness in minutes, respectively. The
fourth column shows the longest tardiness, inminutes, among
the sequenced products. The value of the objective function
generated by the solution is presented, in minutes, in the fifth
column. Its sixth column reports the total execution time in
seconds. In the last five columns, we report the Average Rel-
ative Percentage Deviation (ARPDb) for the parameter b in
each instance, calculated according to Eq. (13):

ARPDb =
∑

j∈PR |te jb − tr jb|/tr jb
|PR| (13)

where te jb is the value encountered for the parameter b in
the product j .

Table 5 shows that algorithm DSS_ASPT sequences all
products. However, the planning horizon is extrapolated in
some instances. This extrapolation occurs in two instances
with more products per work shift. Regarding the total tar-
diness, although this value was high in some instances, such
as in instance 7, the maximum tardiness was less than three

days. These facts may indicate an oversizing of the produc-
tion target; fewer products should be produced per work shift
in these instances. The deviations from the quality parame-
ters varied according to the priority assigned to each one.
Thus, parameters with the highest priority had the smallest
deviations. In this case, control parameter D, which has the
highest priority, had a maximum deviation of 1%. Parameter
C, which has the second-highest priority, had a maximum
deviation of 7%. The other parameters had a higher devia-
tion, of up to 21%, to reach the target values. However, it is
worth noting that the solution proposed by the algorithm sat-
isfies the lower and upper bounds of the control parameters.
We also highlight that the proposed algorithm consumes a
low runtime, with the highest equal to 267 s.

Figure 3 shows the behavior of the mass of the materials
present in the raw material silos throughout the sequencing.
It is possible to observe the feeding behavior of the empty
silos. It is also possible to observe the instants in which only
rejected products are treated. In such instants, we observe
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Fig. 3 Behavior of raw material silos for instance 7

Fig. 4 Schedule generated for the instance with 30 products

that few products are generated due to the unavailability of
raw materials. Yet, at the same time, the empty silo is fed
with the most requested material type to meet the demand
for rejected products.

Figure 4 illustrates through the Gantt chart the schedule
generated by the developed algorithm for the instance 1. In
this figure, each colored rectangle represents a product. The
products are showed in the production sequence, and the
width of each rectangle indicates the processing time of the
respective product. In this sequencing, the DSS_ASPT gen-
erated a solution with a makespan of 660.24 min, respecting
the desired production planning horizon of 1440 min.

7 Conclusions

This work deals with a production scheduling problem to fed
an arc furnace in a mining-metallurgical industry. The objec-
tive of the schedule is to minimize the makespan and the total
tardiness. To solve it, we developed a matheuristic algorithm
called DSS_ASPT. First, we choose the products through
a heuristic dispatch rule. According to this rule, we select

the products with the shortest processing times among those
whose due dates correspond to the work shift analyzed. Sec-
ond, the proposed algorithm uses a goal linear programming
formulation to solve the blending problem of raw materials,
a sub-problem of the sequencing.

We use seven instances to test the proposed algorithm.
These instances contain 30, 90, 210, and 300 products to
be produced during the planning horizon in three daily work
shifts. Four of themhave 10 products perwork shift, and three
have 9 products. In these instances, the production planning
horizons can be 1, 3, 7, and 10 days.

The results showed that the DSS_ASPT algorithm gener-
ates all the requested products, but the makespan can exceed
the planning horizon, and there may be a delay in produc-
tion. We can observe that the planning horizon is respected
in instances with the least number of products per work shift.
This result can be indicative of the ideal number of products
per work shift in the industry under study. Regarding total
tardiness, as the number of products to be generated grows,
the delay in their production also increases. Regarding the
quality parameters of the products, it is clear that the blend-
ing problemwas successfully solved. The deviations from the
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quality parameters with the highest weights were minimal,
and those from the other parameters were not high.

In addition to sequencing all required products, respect-
ing production specifications, and reducing production delay,
the developed algorithm has a low runtime. In this way, we
validate its use to support decision-making in the company.

In the method proposed, a product is chosen to be inserted
into the solution greedily at each step. The advantage of this
type of algorithm is that a solution is found quickly and, in
general, has good quality. On the other hand, the disadvan-
tage is that greedy strategies do not always provide the best
solutions to a problem. In this sense, we propose as future
works to develop metaheuristic-based algorithms to generate
even better solutions, such as the Iterated Local Search and
Genetic Algorithm. In addition, we propose to evaluate the
proposed method in instances of other similar industries and
adapt it to handle other production processes that use, for
example, more than one conveyor belt to transport the raw
materials.
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