INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH

WILEY

INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH

Intl. Trans. in Op. Res. 27 (2020) 112–137 DOI: 10.1111/itor.12623

A variable neighborhood search heuristic algorithm for the double vehicle routing problem with multiple stacks

Jonatas B. C. Chagas^a, Ulisses E. F. Silveira^b, André G. Santos^b and Marcone J. F. Souza^a

^aDepartamento de Computação, Universidade Federal de Ouro Preto, Ouro Preto, Brazil

^bDepartamento de Informática, Universidade Federal de Viçosa, Viçosa, Brazil
E-mail: jonatas.chagas@iceb.ufop.br [Chagas]; ulisses.silveira@ufv.br [Silveira]; andre@dpi.ufv.br [Santos];

marcone@iceb.ufop.br [Souza]

Received 9 February 2018; received in revised form 14 December 2018; accepted 14 December 2018

Abstract

This paper addresses the double vehicle routing problem with multiple stacks (DVRPMS) in which a fleet of vehicles must collect items in a pickup region and then travel to a delivery region where all items are delivered. The load compartment of all vehicles is divided into rows (horizontal stacks) of fixed profundity (horizontal heights), and on each row, the unloading process must respect the last-in-first-out policy. The objective of the DVRPMS is to find optimal routes visiting all pickup and delivery points while ensuring the feasibility of the vehicle loading plans. We propose a new integer linear programming formulation, which was useful to find inconsistencies in the results of exact algorithms proposed in the literature, and a variable neighborhood search based algorithm that was able to find solutions with same or higher quality in shorter computational time for most instances when compared to the methods already present in the literature.

Keywords: vehicle routing; pickup and delivery; loading constraints; mathematical formulation; variable neighborhood search

1. Introduction

The double vehicle routing problem with multiple stacks (DVRPMS) arose in its simplest form as the double traveling salesman problem with multiple stacks (DTSPMS), proposed by Petersen and Madsen (2009), when a software company that set up routes in its intermodal traffic encountered this problem with one of its customers.

In the DTSPMS, a single vehicle, which has its load compartment (container) divided into rows (horizontal stacks) of fixed depth (horizontal heights), must collect all items spread in a region known as pickup region and, henceforth, deliver all these collected items in another region, denominated delivery region. All items have the same size and shape. The items are stored in the

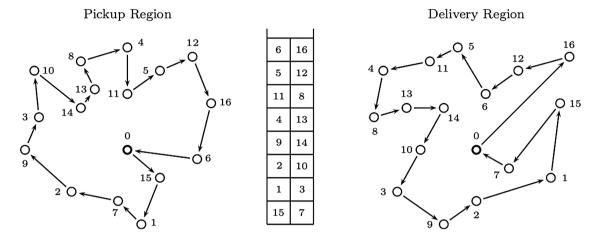


Fig. 1. DTSPMS example—adapted from Iori and Riera-Ledesma (2015).

stacks as they are collected. It is important to state that the items are not stored on top of each other, they are arranged in the same plane (container base) according to rows (horizontal stacks) and their depths (horizontal heights). The items' positions cannot be changed when they are already inside the container, that is, the items should be stationary until their unloading. The delivery must then respect the last-in-first-out (LIFO) policy. Thus, the delivery route is limited by the stack configurations set up by the pickup route.

The DTSPMS is a variation of the pickup and delivery traveling salesman problem (TSP) with multiple stacks (Cordeau et al., 2010; Côté et al., 2012; Sampaio and Urrutia, 2016), where the pickup and delivery operations must be completely separate. This is due to the fact that the DTSPMS arises in the context where the pickup and delivery regions are widely separated. In this way, all items in the pickup region must be gathered prior to any unloading in the delivery region. The transportation cost between the two regions is fixed and it is not considered as part of the optimization problem. The problem has applicability in deliveries where items are loaded and unloaded from the rear of the vehicle and item reallocation is prohibited due to the fact that the items are heavy and/or fragile or the handling of these items is dangerous.

The objective of the DTSPMS is to find two Hamiltonian cycles, one for the pickup region and the other for the delivery region, so that the sum of the distances traveled in both regions is the minimum possible, respecting the precedence constraints imposed by the vehicle's stacks.

Figure 1 depicts a feasible solution for the DTSPMS in a case involving 16 items. Each item is associated with a pickup client and a delivery client (item 1 is associated with pickup client 1 and with delivery client 1, item 2 is associated with pickup client 2 and with delivery client 2, and so on). The container of this vehicle is divided into two stacks of height 8, that is, the container has dimensions (2×8) . The vehicle always starts its route in the pickup region at the vertex 0 (depot) and, in this example, the vehicle visits customer 15, collects and stores the item in the first stack, then visits customer 7, storing the item in the second stack, then customer 1 is visited and has his item stored on the first stack. The gathering continues as shown in the figure until all customers have been served and their items stored in the vehicle container. At the end, the vehicle returns to the depot from where the entire container is transported to the delivery region depot. In the delivery

region, the container is loaded into a vehicle that also always starts its route at the vertex 0 (depot) and, in this example, from the depot, the vehicle has only two possible customers to visit, since only items 6 and 16 are accessible from the top of the two stacks. As illustrated in the figure, the vehicle initially satisfies customer 16, unloads its item from the second stack, and customer 12 becomes available to be served. The process continues as illustrated, always satisfying a customer who has its item on top of any of the stacks. At the end of delivering, the vehicle returns to the depot in its respective region (in this case, the delivery region).

Petersen and Madsen (2009) proposed the DTSPMS, presented a mathematical formulation for the problem, and also proposed four heuristic approaches to solve it. The four heuristic approaches were based on the iterated local search (ILS), tabu search, simulated annealing (SA), and large neighborhood search (LNS) metaheuristics. These heuristics were tested on a set of instances that became the reference for future works. Among the proposed heuristics, the one based on LNS had better overall performance.

Since it was presented, the DTSPMS aroused great interest in the academic community, with several exact and heuristic approaches. Felipe et al. (2009) proposed a heuristic approach based on the variable neighborhood search (VNS) metaheuristic in which six neighborhood structures were used. Computational results showed that the VNS approach overcame the results presented by Petersen and Madsen (2009).

Petersen et al. (2010) proposed different exact mathematical formulations for the DTSPMS, including a branch-and-cut algorithm to solve the DTSPMS instances to optimality. Based on these results, it was determined that the difficulty of a given instance depends not only on the number of items, but also strongly depends on the height of the stacks.

Lusby et al. (2010) presented an exact method based on matching k-best tours for each of the regions separately. This method consists of repeatedly finding solutions for the two separate TSP (delivery region and pickup region) until a feasible loading plan is found. The results showed a significant superiority of this method compared to the previous method proposed by Petersen et al. (2010).

Carrabs et al. (2010) developed a branch-and-bound algorithm for the double traveling salesman problem with two stacks (DTSP2S), a special case of the DTSPMS in which the vehicle has exactly two stacks. The results showed that the branch-and-bound algorithm performed better than the other exact approaches in the literature (Lusby et al., 2010; Petersen et al., 2010) in terms of computational time and the number of global optima. According to Carrabs et al. (2010), for the exact approaches proposed by Lusby et al. (2010) and Petersen et al. (2010), the difficulty of an instance depends on the capacity of the stacks, consequently, it depends on the number of items and on the number of stacks in the container. In this case, the performance of the algorithms improves when the number of stacks increases. This is probably due to the fact that the construction of the routes in the pickup region and delivery region becomes less restricted.

Casazza et al. (2012) studied the theoretical properties of the DTSPMS, analyzing the structure of DTSPMS solutions in two separate components: routes and loading plan. It was shown that some DTSPMS subproblems can be solved in polynomial time, considering specific cases of the problem.

Alba Martínez et al. (2013) proposed improvements to the branch-and-cut algorithm of Petersen et al. (2010), adding new valid inequalities (cut planes) that allowed greater efficiency. The results showed that the new algorithm overcame the exact methods that existed in the literature to that date.

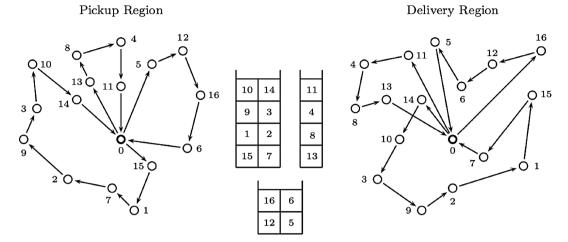


Fig. 2. DVRPMS example (completely filled containers)—adapted from Iori and Riera-Ledesma (2015).

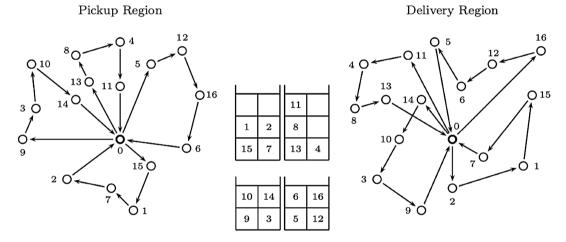


Fig. 3. DVRPMS example (noncompletely filled containers)—adapted from Iori and Riera-Ledesma (2015).

More recently, the exact algorithm proposed by Barbato et al. (2016) was able to solve instances involving containers of two stacks, which were not previously solved in the literature. To the best of our knowledge, it is the last report on the DTSPMS.

Iori and Riera-Ledesma (2015) proposed the DVRPMS, a generalization of the DTSPMS. The DVRPMS has the same characteristics and constraints as the DTSPMS, except that now there is a fleet of vehicles available to meet the demand of the customers. According to the authors, the DVRPMS was motivated by the fact that not always a single vehicle is enough to transport all items. In addition, using multiple vehicles can be interesting even if all products could be transported by a single vehicle, as the addition of more vehicles causes an increase in the flexibility of the loading/unloading process and this can lead to a reduction in the operating costs of transport.

Figures 2 and 3 show two feasible solutions for the same instance involving 16 requests. Figure 2 represents a solution using three heterogeneous vehicles with containers of size (2×4) , (1×4) , and

 (2×2) , where all containers are completely filled. Figure 3 represents a solution using four vehicles with containers of (2×4) , (2×4) , (2×2) , and (2×2) , but not all containers spaces are filled. In both examples, for each vehicle are associated a route in the pickup region, a route in the delivery region, and a loading plan of the container. The pickup and delivery route for each vehicle respects the LIFO policy on the respective container.

Besides proposing the DVRPMS, Iori and Riera-Ledesma (2015) presented three exact algorithms: branch-and-cut, branch-and-price, and branch-and-cut-and-price. As stated by the authors, the three exact algorithms had different behavior and efficiency with respect to different instances, created to evaluate the quality of their algorithms.

To the best of our knowledge, only two works have addressed the DVRPMS by heuristic algorithms. Silveira et al. (2015) proposed three methods based on ILS, SA, and variable neighborhood descent metaheuristics, while Chagas et al. (2016) proposed another method based on the SA metaheuristic, which outperformed all heuristic algorithms proposed by Silveira et al. (2015) and was able to find several solutions with the same quality as those found by Iori and Riera-Ledesma (2015).

Chagas and Santos (2016) introduced the double vehicle routing problem with multiple stacks and heterogeneous demand (DVRPMSHD), a generalization of the DVRPMS, which occurs when customers have heterogeneous demands and the demand of each customer cannot be divided among two or more vehicles. The authors also proposed a simple branch-and-price algorithm that was able to solve only instances of up to 15 customer requests. Posteriorly, a simple and effective heuristic based on the SA metaheuristic was proposed by the same authors in (Chagas and Santos, 2017). Their algorithm was able to overcome several results found by the branch-and-price algorithm.

In this paper, we address the DVRPMS, propose an integer linear programming (ILP) formulation and a heuristic algorithm based on the VNS metaheuristic to solve it.

The remainder of the paper is organized as follows. Section 2 formally describes the DVRPMS and presents our ILP formulation. In Section 3, the details of the proposed heuristic algorithm is described. The computational experiments are reported in Section 4 in which we make a comparative analysis between our methods here proposed and the ones already described in the literature. Finally, in Section 5 we present our conclusions and emphasize the contributions of this paper.

2. Problem definition

As introduced in Iori and Riera-Ledesma (2015), the DVRPMS can be formally described as follows. Let $I = \{1, 2, ..., n\}$ be the set of customer requests carried by the vehicles in the pickup and delivery regions. Let also $V_c^P = \{1^P, 2^P, ..., n^P\}$ be the set of customers related to the pickup regions and $V_c^D = \{1^D, 2^D, ..., n^D\}$ the corresponding customers in the delivery region. Following the region dependencies, each request $i \in I$ corresponds to its $i^T \in V_c^T$ vertex, where T refers to any of the two regions.

It is possible to represent the DVRPMS as a directed graph G = (V, E), where V is the set of vertices given by $V = V^P \cup V^D$, where $V^P = \{0^P\} \cup V_c^P$ and $V^D = \{0^P\} \cup V_c^D$. The members 0^P and 0^D are the depots for the pickup and delivery regions and members V_c^P and V_c^D are, respectively, the sets of vertices excluding the depots for the pickup and delivery regions. Likewise, the set of arcs is given by $E = E^P \cup E^D$, where $E^P = \{(i^P, j^P) \in V^P \times V^P \mid i^P \neq j^P\}$ and $E^D = \{(i^D, j^D) \in V^D \mid i^D \neq j^D\}$ and $E^D = \{(i^D, j^D) \in V^D \mid i^D \neq j^D\}$

 $V^D \times V^D \mid i^D \neq j^D$ }. For each arc $(i, j) \in E^P$ and $(i, j) \in E^D$, there is an associated routing cost of c_{ij}^P and c_{ij}^D , respectively.

Let K be the set of vehicles available to meet the transportation requirements. The loading compartment (container) of each vehicle $k \in K$ is divided into R_k stacks, all with the same height L_k . All vehicles in the K set must start and end their routes in the depots defined in each region. The vehicles must collect all items from customers located in the pickup region, store those items in their container, and then deliver the items to the respective customers located in the delivery region.

The routes of each vehicle must satisfy the LIFO policy in all its stacks, that is, if a client located at vertex i^P (pickup region) is visited before the client located at vertex j^P (pickup region), and the requested item j is stored in the same stack in which the i item was stored, then the request client j must be visited (vertex j^D) before the client of the requisition i (vertex i^D) in the delivery region.

The objective of the DVRPMS is to serve all |I| requests, so that the total distance traveled by the |K| vehicles is the smallest possible one.

The DVRPMS can be formally modeled as a binary ILP problem. In the rest of this section, we describe an ILP formulation that was based on the mathematical formulation described by Chagas and Santos (2016) for the DVRPMSHD, which in turn was based on the mathematical formulation of the DTSPMS proposed by Petersen and Madsen (2009) and on the mathematical formulation for the DVRPMS proposed by Iori and Riera-Ledesma (2015). The variables used in the ILP formulation are described below:

- x_{ij}^{kT} : binary variable that gets 1 if the vehicle k crosses the arc (i, j) in the region T, and 0 otherwise.
- y_{ij}^T : binary variable that gets 1 if the vertex i is visited before the vertex j in region T, and 0 otherwise.
- w_i^k : binary variable that gets 1 if the vehicle k carries out the requested item i, and 0 otherwise.
- z_{ir}^k : binary variable that gets 1 if the item referring to the request *i* is stored in the *r*th stack of the vehicle *k*, and 0 otherwise.

With these variables, we can describe the following ILP formulation for the DVRPMS:

$$\min \sum_{k \in K} \sum_{T \in \{P,D\}} \sum_{(i,j) \in E^T} c_{ij}^T \cdot x_{ij}^{kT} \tag{1}$$

s.t.

$$\sum_{j \in V^T} x_{0j}^{kT} = 1 \qquad k \in K, T \in \{P, D\}$$
 (2)

$$\sum_{i \in V^T} x_{i0}^{kT} = 1 \qquad k \in K, T \in \{P, D\}$$
 (3)

$$\sum_{i \in V^T \setminus \{j\}} x_{ij}^{kT} = w_j^k \qquad k \in K, T \in \{P, D\}, j \in V_c^T$$
(4)

$$\sum_{j \in V^T \setminus \{i\}} x_{ij}^{kT} = \sum_{j \in V^T \setminus \{i\}} x_{ji}^{kT} \qquad k \in K, T \in \{P, D\}, i \in V_c^T$$
(5)

© 2019 The Authors.

$$\sum_{k \in K} w_i^k = 1 \qquad i \in I \tag{6}$$

$$\sum_{i \in I} z_{ir}^k \le L_k \qquad k \in K, r = 1..R_k \tag{7}$$

$$\sum_{r=1}^{R_k} z_{ir}^k = w_i^k \qquad k \in K, i \in I$$

$$\tag{8}$$

$$y_{ij}^T + y_{ji}^T = 1$$
 $T \in \{P, D\}, i \in V_c^T, j \in V_c^T \setminus \{i\}$ (9)

$$y_{il}^T + y_{lj}^T \le y_{ij}^T + 1$$
 $T \in \{P, D\}, l \in V_c^T, i \in V_c^T \setminus \{l\}, j \in V_c^T \setminus \{i, l\}$ (10)

$$x_{ij}^{kT} \le y_{ij}^{T} \qquad k \in K, T \in \{P, D\}, i \in V^{T}, j \in V^{T} \setminus \{i\}$$
 (11)

$$y_{ij}^{P} + z_{ir}^{k} + z_{jr}^{k} \le 3 - y_{ij}^{D}$$
 $k \in K, i \in I, j \in I \setminus \{i\}, r = 1..R_{k}$ (12)

$$\sum_{j \in I} j \cdot x_{0j}^{kP} \le \sum_{j \in I} j \cdot x_{0j}^{k'P} \qquad k \in K, k' \in K \mid k < k', R_k = R_{k'}, L_k = L_{k'}$$
(13)

$$x_{ij}^{kT} \in \{0, 1\} \qquad k \in K, T \in \{P, D\}, (i, j) \in E^{T}$$
 (14)

$$y_{ij}^T \in \{0, 1\}$$
 $T \in \{P, D\}, i \in V^T, j \in V^T \setminus \{i\}$ (15)

$$z_{ir}^k \in \{0, 1\} \qquad k \in K, i \in I, r = 1..R_k$$
 (16)

$$w_i^k \in \{0, 1\} \qquad k \in K, i \in I.$$
 (17)

The objective function of the problem is defined by Equation (1), which minimizes the total distance traveled by the vehicles. Constraints (2) and (3) ensure that each vehicle starts and ends its route in the depot of each region. Note that for instances where the total capacity of the vehicles is greater than the total customer demand, a vehicle k may not be used, in this case, the variable $x_{00}^{k\bar{T}}$ gets $1 \ \forall T \in \{P, D\}$, indicating that the vehicle did not serve any customer request. Constraints (4) ensure that each request j is served by a vehicle k only if the vehicle k reaches the vertex j. Constraints (5) guarantee that the same vehicle must arrive and leave a vertex that represents the location of a client. Constraints (6) ensure that each request is served by one and only one vehicle. Constraints (7) ensure that the capacity of the stacks is not extrapolated. Constraints (8) ensure that the item of a request served by a vehicle k must be stored in its container. Constraints (9) and (10) establish a visitation order between all vertex pairs in both regions and ensure a transitivity in this order, respectively. In other words, if i precedes l and l precedes j, then i precedes j. Constraints (11) ensure that if an arc (i, j) is traversed by a vehicle, then i is strictly visited before j. Constraints (12) indicate the restrictions regarding the LIFO policy applied in all stacks of all vehicles. If the item related to the requests i and j are stored in the same stack r of vehicle k, being i visited before j in the pickup region, then i cannot be visited before j in the delivery region. Constraints (13) break the resulting symmetry from the formulation, imposing a lexicographic order on the routes of

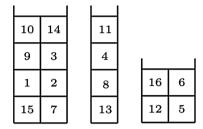


Fig. 4. DVRPMS solution representation example (Chagas et al., 2016).

vehicles with the same container configuration. And, finally, constraints (14)–(17) define the scope and domain of the decision variables.

Although this formulation does not use advanced optimization methods (e.g., branch-cut, branch-and-price, among others), it may be used as an alternative to the exact methods proposed by Iori and Riera-Ledesma (2015).

3. Heuristic approach

Since the DVRPMS is a complex combinatorial problem, for some large instance none of the exact methods proposed by Iori and Riera-Ledesma (2015) and neither our ILP formulation could solve the problem within an acceptable time. To work around this difficulty, implementing heuristic algorithms to solve large-scale instances is inevitable. Considering that the VNS metaheuristic is widely used in the literature to solve combinatorial problems (Hansen and Mladenović, 2001), we also have been motivated to propose a method based on VNS to solve the DVRPMS. The remainder of this section is intended to describe it in detail.

3.1. Solution representation

The solution representation defined by Chagas et al. (2016) was used in this paper, where a solution for the DVRPMS is represented by the items of the |I| customer requests, which are distributed and allocated in the containers of the |K| vehicles in the fleet. This representation defines the loading plan of the items in each container and, consequently, defines the loading/unloading constraints that must be obeyed in order to respect the LIFO policy.

Figure 4 shows an example of representation for a solution involving 16 transport requests and 3 vehicles with containers of dimensions (2×4) , (1×4) , and (2×2) . As seen in the figure, the representation of the solution only informs the designation of the requests and the container loading plan for each vehicle. For each vehicle, the routes in the pickup and delivery regions are obtained by the evaluation functions described in Section 3.2.

3.2. Evaluation function

As previously mentioned, the solution representation does not report the routes performed by each vehicle. We assign this task to the evaluation function, which is responsible to evaluate

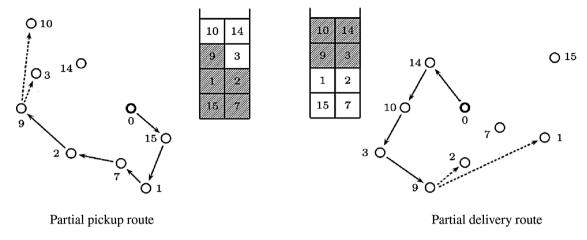


Fig. 5. Greedy phase of the evaluation heuristic.

and determine a route in the pickup region and another in the delivery region for each vehicle from its container (solution representation) and thus to return the total distance traveled by the vehicles.

Finding the shortest route in the pickup region (or the delivery region) with LIFO constraints imposed by a known loading plan can be seen as the traveling salesman problem with precedence constraints (TSPPC), proposed by Savelsbergh and Sol (1995), where the precedence constraints are given by the loading plan. According to Moon et al. (2002), TSPPC belongs to the class of problems \mathcal{NP} -hard problems, therefore the optimal solution to the problem cannot be obtained within a reasonable computational time when large instances are considered.

In this work, we developed two different evaluation functions. At first, we consider the evaluation function, denoted as $f_{opt}(\cdot)$, that consists in applying the dynamic programming algorithm described by Casazza et al. (2012) in each container $k \in K$ to determine the shortest pickup (delivery) route that satisfies the LIFO constraints imposed by the loading plan.

From preliminary tests, we concluded that evaluating all solutions explored by the VNS algorithm using the evaluation function $f_{opt}(\cdot)$ is impracticable due to its exponential complexity, that is, though the number of stacks is small, during the execution of the algorithm a countless number of solutions are evaluated. Therefore, we proposed a simple heuristic evaluation, denoted as $f_{heur}(\cdot)$, in order to find good-quality routes in shorter computational time. This heuristic evaluation can be divided into two phases that are subsequently performed: a greedy phase and a local search phase.

In the greedy phase, for each vehicle, a pickup route (respectively, a delivery route) is constructed choosing at each time, among the items at the bottom (top) of each stack, the item that has the least impact (least distance) on the pickup (delivery) route. In other words, at each moment an item is chosen, the pickup route (delivery route) is constructed, so that the item collected (delivered) is the closest item to the partially constructed route.

Figure 5 illustrates the greedy phase of the evaluation heuristic when applied to the pickup region (a) and other in the delivery region (b), considering a vehicle with a container of dimensions (2×4) . The dashed positions in the container indicate that the items already have been inserted in the routes by previous iterations. In the case shown in Fig. 5(a), the last vertex inserted in the pickup

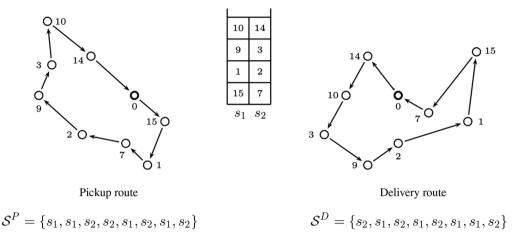


Fig. 6. Representation of the routes through the operations carried out in the stacks.

route is vertex 9^P , which refers to request 9. From this vertex, only vertices 3^P and 10^P , associated with requests 3 and 10, respectively, are accessible in the pickup region, since the constraints of the loading plan must be satisfied. Amid vertices 3^P and 10^P , vertex 3^P will be chosen, since vertex 3^P is the closest to the vertex 9^P . Similarly, in Fig. 5(b) the vertex 2^D will be chosen, since, among the candidates 1^D and 2^D , 2^D is the closest to the last vertex (9^D) inserted in the delivery route.

Note that the routes assigned to a vehicle can be represented by the order that the operations are performed on the container stacks. Figure 6 illustrates this statement, where the stacks of a container of size (2×4) were named s_1 and s_2 to facilitate the appropriate referencing of each stack. The sequences S^P and S^D represent, respectively, the route assigned to the vehicle in the pickup and delivery regions.

The second phase of the evaluation heuristic consists of applying a refinement algorithm to the routes determined by the greedy phase. In this phase, a local search is applied separately in each one of the sequences S^P and S^D in order to find better routes. The neighborhood structure defined to perform this local search consists of exchanging two operations s_i and $s_j \mid i \neq j$ of their positions. Figure 7 shows a neighbor S^P from S^P , as well as the changes caused in the pickup route.

In the local search procedure, the inspection of neighbors is done casually (a neighbor is chosen randomly from the neighbors of a neighborhood structure) and the neighborhood of the current sequence is explored until a sequence that represents a shorter route is found than the route already known, that is, we use a first improvement strategy.

In possession of a solution representation and a defined strategy to evaluate these solutions, the next section defines and details the neighborhood structures to be applied to DVRPMS solutions.

3.3. Neighborhood structures

In order to explore the solution space of the DVRPMS, we define four neighborhood structures: item swap (IS), item ejection chain (IC), stack permutation (SP), and stack swap (SS). All these structures are used in our VNS algorithm and are described and detailed as follows.

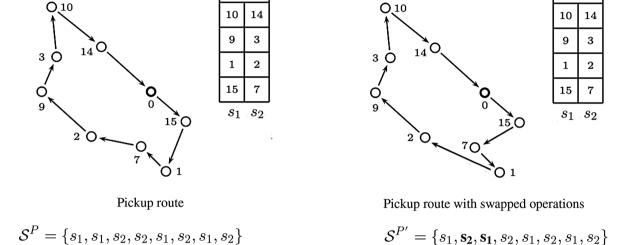


Fig. 7. Local search phase of the evaluation heuristic.

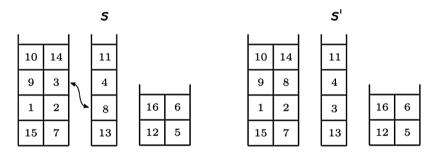


Fig. 8. An item swap (IS) example (Chagas et al., 2016).

3.3.1. *Item swap*

The IS neighborhood of a solution of the DVRPMS, defined by Chagas et al. (2016), contains the solutions that can be obtained by swapping two items of the containers. The items to be relocated may belong to the same container or to different container, then the size of IS neighborhood is $O(\binom{|I|}{2}) = O(|I|^2)$. Figure 8 shows an example of a solution s and one of its neighbors s'.

3.3.2. Item ejection chain

The IC neighborhood of a solution of the DVRPMS contains the solutions that can be obtained by exchanging three items of the containers by way of ejection chain, that is, the first item is relocated in position of the second one, the second item is relocated in position of the third one, and the third item is relocated in position of the first one. As in the neighborhood structure IS, the items to be relocated may belong to the same container or to a different container, so the size of IC neighborhood is $O(|I|^3)$. Figure 9 shows a solution s and one of its neighbors s'.

© 2019 The Authors.

International Transactions in Operational Research © 2019 International Federation of Operational Research Societies

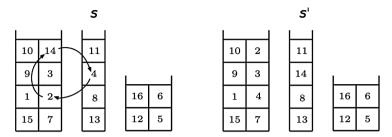


Fig. 9. An item ejection chain example.

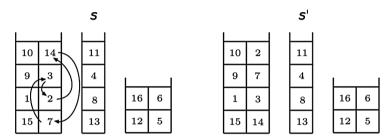


Fig. 10. A stack permutation example.

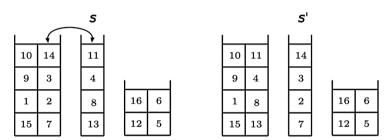


Fig. 11. A stack swap example.

3.3.3. Stack permutation

The SP neighborhood of a solution of the DVRPMS contains the solutions that can be obtained by rearranging items from the same row (horizontal stack) using a permutation of these items. As the total number of stacks of a solution is $\sum_{k \in K} R_k$ and each stack of size L_k has L_k ! permutations, the size of SP neighborhood is $O(\sum_{k \in K} L_k! R_k)$. Figure 10 shows an example of a solution s and one of its neighbors s'.

3.3.4. Stacks swap

The SS neighborhood of a solution of the DVRPMS contains the solutions that can be obtained by swapping two stacks of the different containers. As the stacks to be relocated must belong to different containers, the size of SS neighborhood is given by a combination of the total number of stacks grouped in pairs, disregarding the pairs of stacks that belong to the same vehicle, that is, $O((\frac{\sum_{k \in K} R_k}{2}) - \sum_{k \in K} {R_k \choose 2})$. Figure 11 shows an example of a solution s and one of its neighbors s'.

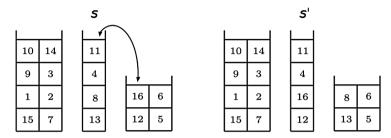


Fig. 12. A stack swap example, when the heights of the stacks are different.

For two stacks with different heights, the swap is made only between the items of the smallest stack and the items loaded in the first (bottom-up) positions of the largest stack. Figure 12 shows an example for this situation.

3.4. Initial solution

The initial solution of our VNS algorithm is created randomly. A random subset of customer requests is assigned to each vehicle in such a way that the number of requests does not exceed the capacity of each vehicle and that each request is to be served by a single vehicle.

3.5. Variable neighborhood search

The VNS metaheuristic, proposed by Mladenović and Hansen (1997) (for a recent description, see, e.g., Hansen and Mladenović, 2014), is a higher level procedure widely used to solve a large variety of practical and complex problems (Felipe et al., 2009; Tricoire et al., 2011; Wei et al., 2014, 2015; Pinto et al., 2020; Smiti et al., 2020). In its simplest form, known as basic VNS (Hansen and Mladenović, 2001), the VNS requires a local search procedure and a set of neighborhood structures \mathcal{N}_k ($k=1,2,\ldots,k_{\text{max}}$) which are used to perform shaking moves in order to escape from local optima solutions found throughout the algorithm.

Algorithm 1 describes our proposed VNS, where $f_{heur}(\cdot)$ and $f_{opt}(\cdot)$ are the functions that run the evaluation heuristics described in Section 3.2 for each container and return the total distance traveled by the vehicles. Initially, we define the set \mathcal{N} that consists of the four neighborhood structures previously described. These neighborhood structures are arranged hierarchically according to their perturbation strength, that is, the first neighborhood structure is the IS, followed by the IC, SP, and SS. The algorithm's initial solution (line 3) is generated randomly according to Section 3.4. While the number of iterations without improvement has not reached the established maximum (iter_max), the algorithm chooses a random neighbor s' using the kth neighborhood structure (initially k = 1) from the current solution s and then applies a local search in s', which produces a new solution s''. The local search (see Algorithm 2) consists of applying a descent method using the IS neighborhood structure with a first improvement strategy. If the solution s'' is better than s, s'' becomes the current solution and the procedure is repeated using the first neighborhood structure (k is reset to 1), otherwise the procedure is repeated using the next neighborhood structure (k + 1). The method stops when the current number of iterations reaches the stopping criteria, noted by

iter_max. Then, the best solution found is evaluated by the function $f_{opt}(\cdot)$ and then returned. Note that during the internal part of the algorithm (lines 5–19), all the solutions are evaluated by function $f_{heur}(\cdot)$. This means that throughout the algorithm, each solution is evaluated heuristically, favoring efficiency, while the last solution is evaluated optimally, favoring quality, so that the functioning of the algorithm does not become costly (time-consuming).

Algorithm 1. Variable neighborhood search

```
1: Let \mathcal{N} = \{\mathcal{N}_1, \mathcal{N}_2, \mathcal{N}_3, \mathcal{N}_4\} = \{\text{IS}, \text{IC}, \text{SP}, \text{SS}\} be the set of neighborhood structures
2: k_{\text{max}} \leftarrow |\mathcal{N}|
3: s \leftarrow generate a random solution
4: iter \leftarrow 0
5: while iter < iter_max do
6: k \leftarrow 1
7: repeat
        s' \leftarrow \text{pick a random neighbor in the } k\text{-th neighborhood structure of } s \ (s' \in \mathcal{N}_{k}(s))
8:
9:
        s'' \leftarrow apply local search in s' using the IS neighborhood structure
                                                                                                                      ⊳ Algorithm 2
10:
        if f_{heur}(s'') < f_{heur}(s) then
11:
            s \leftarrow s''
12:
            k \leftarrow 1
13:
            iter \leftarrow 0
14:
          else
15:
            k \leftarrow k + 1
16:
            iter \leftarrow iter + 1
17:
          end if
18: until k > k_{\text{max}}
19: end while
20: f_{opt}(s)
21: return s
```

Algorithm 2. Local search

```
1: Let s be the solution in which the local search will be applied
2: Let IS(s) be the set of solutions in the item swap (IS) neighborhood of solution s
3: improv \leftarrow true
4: while improv = true do
5: improv \leftarrow false
6: neighbors \leftarrow IS(s)
    while neighbors \neq \{\} and improv = false do
7:
8:
      s' \leftarrow \text{pick a random neighbor } s' \in neighbors
9:
      if f_{heur}(s') < f_{heur}(s) then
10:
          s \leftarrow s'
11:
          improv \leftarrow true
12:
13:
          neighbors \leftarrow neighbors \setminus \{s'\}
14:
        end if
15: end while
16: end while
17: return s
```

4. Computational results

The VNS algorithm was implemented in C++ and was sequentially (nonparallel) performed on a computer with the same settings as those used in the experiments reported by Chagas et al. (2016), that is, on an Intel Core i5-3570 @ 3.40 GHz × 4 computer with 16 GB RAM running the operating system Ubuntu 14.04 LTS 64 bits. Since for some instances, the ILP formulation requires a large amount of memory, we ran it on an Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20 GHz × 40 computer with 384 GB of RAM, running the operating system CentOS Release 6.8 (Final) Kernel Linux 2.6.32-642.1.1.el6.x86_64. Our ILP formulation was implemented in C++ using the Concert Technology Library of CPLEX 12.5 under an academic license, with all CPLEX default settings, except for the runtime that was limited to three hours. It is worth mentioning that unlike the VNS algorithm, the ILP formulation was executed on multiple threads, as defined by the CPLEX default settings.

4.1. Benchmark instances

The set of benchmark instances used to validate the proposed approaches to solve the DVRPMS was the one described by Iori and Riera-Ledesma (2015). The authors defined 24 different types of instances, where each type contains the number of customer requests, the number of vehicles available, and the configurations of the vehicle's loading compartments. These 24 types of instances are divided into two sets. The first one, denoted by C, contains 15 types of instances for which the total capacity of the vehicles is equal to the total number of customer requests (number of items), that is, for all these types of instances the containers must be fully loaded in order to serve all customers. The second set, denoted by $\neg C$, contains nine types of instances for which the total number of customer requests (number of items) is less than the total capacity of the vehicles, so the containers do not need to be completely filled in order to serve customers. Tables 1 and 2 show, respectively, the specifications of sets C and $\neg C$. Each type is described by the number of customer requests |I|, the number of vehicles |K|, and the configuration of the containers of the vehicle fleet (column $(R \times L)'s$). The last column of each table shows the total capacity of each type of fleet.

Regarding customer locations, for each type of instances previously defined, Iori and Riera-Ledesma (2015) used the data from five DTSPMS benchmark instances (R05, R06, R07, R08, and R09), giving in total 120 instances. Each of these instances reports the customers' locations in the pickup region and in the delivery region. These locations were chosen at random within two different regions of dimensions 100×100 , and the depot of each region was fixed in coordinates (50, 50). The distance between any two points of the same region was calculated using the rounded Euclidean distance.

4.2. Parameter tuning

The proposed VNS algorithm has only one parameter (number of iterations without improvement) that is referenced as *iter_max* and it is responsible for stopping the execution of the algorithm

© 2019 The Authors.

Table 1 Instance specifications of group C

\overline{T}	I	K	$(R \times L)'s$	$\sum_{k \in K} R_k L_k$
(a)	12	2	$(2\times3)(2\times3)$	12
(b)	12	2	$(2 \times 2) (2 \times 4)$	12
(c)	12	3	$(2 \times 2) (2 \times 2) (2 \times 2)$	12
(d)	16	2	$(2 \times 4) (2 \times 4)$	16
(e)	16	3	$(2 \times 2) (2 \times 3) (2 \times 3)$	16
(f)	16	4	$(2 \times 2) (2 \times 2) (2 \times 2) (2 \times 2)$	16
(g)	18	2	$(2 \times 3) (3 \times 4)$	18
(h)	18	3	$(2 \times 3) (2 \times 3) (2 \times 3)$	18
(i)	18	4	$(2 \times 2) (2 \times 2) (2 \times 2) (2 \times 3)$	18
(j)	20	2	$(2 \times 4) (3 \times 4)$	20
(k)	20	3	$(2 \times 3) (2 \times 3) (2 \times 4)$	20
(1)	20	4	$(2 \times 3) (2 \times 3) (2 \times 2) (2 \times 2)$	20
(m)	24	2	$(3 \times 4) (3 \times 4)$	24
(n)	24	3	$(2 \times 4) (2 \times 4) (2 \times 4)$	24
(o)	24	4	$(2 \times 3) (2 \times 3) (2 \times 3) (2 \times 3)$	24

Table 2 Instance specifications of group $\neg C$

T	I	K	$(R \times L)'s$	$\sum_{k \in K} R_k L_k$
(p)	18	2	$(4 \times 4) \ (4 \times 4)$	32
(q)	18	3	$(3 \times 4) (3 \times 4) (3 \times 4)$	36
(r)	18	4	$(2 \times 4) (2 \times 4) (2 \times 4) (2 \times 4)$	32
(s)	20	2	$(4 \times 4) (4 \times 4)$	32
(t)	20	3	$(3 \times 4) (3 \times 4) (3 \times 4)$	36
(u)	20	4	$(2 \times 4) (2 \times 4) (2 \times 4) (2 \times 4)$	32
(v)	24	2	$(4 \times 4) (4 \times 4)$	32
(w)	24	3	$(3 \times 4) (3 \times 4) (3 \times 4)$	36
(x)	24	4	$(2 \times 4) (2 \times 4) (2 \times 4) (2 \times 4)$	32

(stopping criteria). Naturally, the higher the $iter_max$ value, the wider the search and, consequently, the algorithm finds better solutions but spends more time. In order to balance the quality of the solutions and the execution time, for each instance, we ran 30 times the VNS algorithm with different values of $iter_max$ and constructed the chart shown in Fig. 13. The values tested for $iter_max$ are arranged on the horizontal axis of the chart, such values have been defined in function of the number of customer requests |I|. For each $iter_max$ value, we plot the average value of the objective function and also the average execution time.

After analyzing the chart, it is inferred that from $item_max = 7 |I|$, the improvement is small in relation to the processing time. Therefore, the final experiments were performed with $item_max = 7 |I|$.

© 2019 The Authors.

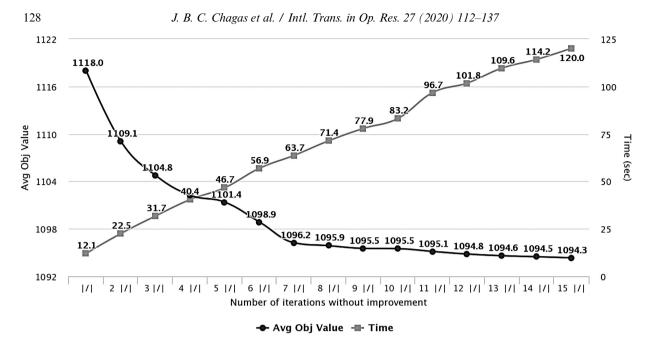


Fig. 13. Analysis of the stopping criteria of the VNS algorithm.

4.3. Results on test instances

The results obtained by our approaches to solve the DVPRMS is reported in this section. As pointed before, the execution time of the ILP formulation was limited to three hours. All exact algorithms proposed by Iori and Riera-Ledesma (2015) were limited to one hour. Our VNS algorithm was ran 10 independent times and the average and best value of the objective function obtained in these 10 runs were used in our analysis.

Tables 3 and 4 report the results on instances of group C, that is, those in which the total capacity of the fleet of vehicles and the number of customer requests are exactly the same. Thus, the containers must be completely filled so that all customers are served. Table 3 shows the results for the 30 instances (ID 001–ID 030), considered by Iori and Riera-Ledesma (2015) as small instances, and Table 4 shows the results for the 45 large instances (ID 031–ID 075). Table 5 reports the results for the 45 instances of group $\neg C$ (ID 076–ID 120), that is, those in which the total fleet capacity of vehicles is larger than the number of customers and, therefore, the containers will not necessarily be completely filled.

The first three columns of each table describe the instances, being that each instance is identified by a number (column ID), a name indicating the pickup and delivery regions (column R), and a type of instance (column T). The best results obtained by Iori and Riera-Ledesma (2015) are presented in the columns UB and t (seconds) that indicate, respectively, the upper bound and the execution time in seconds. The results obtained by our ILP formulation are described in columns LB, UB, Gap%, t (seconds), and Opt. Columns LB and UB, respectively, indicate the lower bound and upper bound obtained at the end of the execution. Column Gap% shows the relative gap between UB and LB, which can be calculated as $100 \times (UB - LB)/UB$. Column t (seconds)

Table 3 Comparative analysis on smaller-size instances of group ${\cal C}$

738 TAB Gap% 895 738.0 0.00 895 895.0 0.00 761 761.0 0.00 851 851.0 0.00 776 776.0 0.00 776 776.0 0.00 851 851.0 0.00 858 858.0 0.00 859 858.0 0.00 854 894.0 0.00 894 894.0 0.00 895 855.0 0.00 897 894.0 0.00 990 990.0 0.00 927 919.0 2.96 1036 1036.0 0.00 925 925.0 0.00 927 919.0 0.00 1036 1040 0.00 1041 1114.0 0.00 1072 958.1 10.63 1126 1126.0 10.43 1230 1155.5 10.43	ILP formulation	Silveira et al. (2015)		Chagas et al. (2016)	NNS	
RO5 (a) 738 2 738 738 738 738 738 738 738 738 738 738 738 741 761 895 896		Opt Best (seconds)	nds) Avg	t Best (seconds)	Avg Best	t (seconds)
ROG 895 0 895 0.00 ROJ 761 5 761 761.0 0.00 ROS 848† 0 851 851.0 0.00 ROS 771† 0 776 776.0 0.00 ROS 771† 0 776 776.0 0.00 ROS 885 2 866 860.0 0.00 ROS 733 3 733 733.0 0.00 ROS 858 3 858 858.0 0.00 ROS 855 1 741 741.0 0.00 ROS 1011 0 1011 0.00 0.00 ROS 852 0 852 0 0.00 ROS 1011 0 1010 0.00 0.00 ROS 43 1036 1040 0.00 0.00 ROS 1006 52 1010 0.00 0.00 <		* 746 31	738.0	738 13	738.0 738	2
ROJ 761 5 761 761 0.00 ROS 848† 0 851 851.0 0.00 ROS 771† 0 776 776.0 0.00 ROS 771† 1 716 776.0 0.00 ROS 859† 2 866 866.0 0.00 ROS 733 733 733.0 0.00 ROS 858 3 858 858.0 0.00 ROS 738† 1 741 741.0 0.00 ROS 855 0 858 858.0 0.00 ROS 1011 0 1011 0 0.00 ROS 1011 0 1010 0 0 ROS 43 1036 925.0 0 0 ROS 1006 52 1010 0 0 ROS 1005 21 0 0 0 ROS	0.00		895.0	895 13		7
ROB 848† 0 851 851.0 0.00 ROB 771 0 776 776.0 0.00 ROS 859† 2 866 866.0 0.00 ROB 858† 3 858 858.0 0.00 ROB 733 733 733.0 0.00 ROB 858 3 858 858.0 0.00 ROB 738† 1 741 741.0 0.00 ROB 738† 1 741 0.00 0.00 ROB 852 0 858 0.00 0.00 ROB 947 329 947 910.0 0.00 ROB 1036 43 1036 925 0.00 0.00 ROB 907† 97 924 924 0.00 0.00 ROB 1006† 52 1010 0.00 0.00 0.00 ROB 1005 2 1005 <td>0.00</td> <td>* 761 31</td> <td>761.0</td> <td>761 13</td> <td></td> <td>2</td>	0.00	* 761 31	761.0	761 13		2
RO9 7711 0 776 776.0 0.00 RO5 854 2 866 0.00 0.00 RO6 8594 2 866 0.00 0.00 RO8 858 3 858 0.00 0.00 RO8 738† 1 741 741.0 0.00 RO9 738† 1 741 0.00 0.00 RO9 1011 0 1011 0.00 0.00 RO8 1011 0 1011 0.00 0.00 RO8 1011 0 1010 0.00 0.00 RO8 43 1036 925 925.0 0.00 RO9 907 43 1036 0.00 0.00 RO8 1006 52 1010 0.00 0.00 RO9 1007 921 921 0.00 0.00 RO9 1003 2 1012 0.00 0.00	0.00		851.0			7
RO5 (b) 716 1 716 716. 0 RO6 8594 2 866 866.0 0.00 RO3 733 3 733.0 0.00 RO8 858 3 858 858.0 0.00 RO9 738‡ 1 741 741.0 0.00 RO5 852 0 855 855.0 0.00 RO6 1011 0 1011 0.00 0.00 RO7 852 0 855 850.0 0.00 RO8 10 947 1011 0.00 0.00 RO8 1036 43 1036 0.00 0.00 RO8 1036 43 1036 0.00 0.00 RO8 1006‡ 52 1010 1010 0.00 RO8 1005 23 1020 0.00 0.00 RO9 1102‡ 6 1114 114.0 0.00 <td>0.00</td> <td></td> <td>776.0</td> <td></td> <td></td> <td>2</td>	0.00		776.0			2
R06 859† 2 866 866.0 0.00 R07 733 3 733 733.0 0.00 R08 858 3 858 0.00 0.00 R09 738† 1 741 741.0 0.00 R05 855 0 855 0.00 0.00 R06 1011 0 1011 0.00 0.00 R07 852 0 852 0.00 0.00 R08 950 1 990 990 0.00 0.00 R08 947 329 952 852.0 0.00 R08 1036 43 1036 1000 0.00 R08 1006† 52 1010 1010 0.00 R09 1006† 52 1010 0.00 0.00 R09 1005 29 1050 0.00 0.00 R09 1005 29 1020 0.00 <td></td> <td>* 728 31</td> <td>716.9</td> <td>716 3</td> <td>716.0 716</td> <td>_</td>		* 728 31	716.9	716 3	716.0 716	_
ROJ 733 3 733 733.0 0.00 ROB 858 3 858 858.0 0.00 ROB 738† 1 741 741.0 0.00 ROS 855 0 855 0 0.00 ROS 1011 0 1011 0.00 ROS 990 1 990 990.0 0.00 ROS 920 1 990 990.0 0.00 ROS 925 925 950.0 0.00 ROS 1036 43 1036 1000 0.00 ROS 1006 52 1010 0.00 0.00 ROS 1006 52 1010 0.00 0.00 ROS 1006 52 1010 0.00 0.00 ROS 1005 22 1010 0.00 0.00 ROS 1005 102 958.1 10.63 0.00 ROS <td></td> <td>* 873 31</td> <td>866.0</td> <td>866 3</td> <td></td> <td>1</td>		* 873 31	866.0	866 3		1
R08 858 3 858 858.0 0.00 R09 738† 1 741 741.0 0.00 R05 855 0 855 855.0 0.00 R06 1011 0 1011 0.00 R07 894 1 894 894.0 0.00 R08 990 1 990 990.0 0.00 R08 852 0 852 852.0 0.00 R09 947 329 947 919.0 2.96 R09 1036 43 1036 1036 0.00 0.00 R09 907 45 925 925.0 0.00 0.00 R09 907 97 921 921.0 0.00 0.00 R09 1005 2 1010 1010.0 0.00 0.00 R09 1005 2 1020 1020 0.00 0.00 R09 1005		* 733 31	733.0	733 3		1
RO9 738† 1 741 741.0 0.00 RO5 855 0 855 0.00 RO6 1011 0 1011 0.00 RO7 894 1 894 894.0 0.00 RO8 990 1 990 990.0 0.00 RO8 852 0 0.00 0.00 0.00 RO9 1036 43 1036 1036 0.00 0.00 RO8 1006† 52 925 925.0 0.00 0.00 RO9 907† 97 921 921.0 0.00 0.00 RO9 1102† 52 1010 10.00 0.00 0.00 RO9 1102† 6 1114 114.0 0.00 0.00 RO9 1021 9 1021 0.00 0.00 0.00 RO9 1021 37 1124 114.0 0.00 0.00	0.00	* 875 31	858.0	858 3		1
RO5 (c) 855 0 855 0.00 RO6 1011 0 1011 0.00 RO7 894 1 894 894.0 0.00 RO8 990 1 990 990.0 0.00 RO8 852 0 852 852.0 0.00 RO9 852 852.0 0.00 0.00 RO5 43 1036 136.0 0.00 RO6 1036 43 1036 1036 0.00 RO8 1006† 52 1010 1010 0.00 RO9 907† 97 921 921.0 0.00 RO9 1102† 6 1114 114.0 0.00 RO8 1107† 1063 29 1021 0.00 RO9 1021 37 1250 1020 0.00 RO9 1230 1148.3 8.94 RO9 11234 996.9		* 760 31	741.5	741 3	752.8 741	_
R06 1011 0 1011 0.00 R07 894 1 894 894.0 0.00 R08 990 1 990 990.0 0.00 R09 852 0 852 852.0 0.00 R09 1036 43 1036 1036 0.00 R07 925 46 925 925.0 0.00 R08 1006† 52 1010 1010 0.00 R09 907† 97 921 921 0.00 R09 1102† 6 1114 1114.0 0.00 R07 1050 21 1072 958.1 10.63 R08 1117† 10 1126.0 0.00 0.00 R09 1021 9 1021 0.00 0.00 R09 1290 10 1250 10.43 10.43 R09 1230 14 1230 10.43 10.43		* 859 35	855.0	855 5	855.0 855	_
R07 894 1 894 894.0 0.00 R08 990 1 990 90.0 0.00 R09 852 0 852 0.00 0.00 R05 1036 43 1036 1036 0.00 R06 1036 43 1036 1036 0.00 R07 925 46 925 925.0 0.00 R08 1006† 52 1010 1010.0 0.00 R09 907† 97 921 921.0 0.00 R07 1050 21 1140 0.00 0.00 R08 1107† 4 1140 0.00 0.00 R09 1021 37 1210 1053 10.43 R06 1290 1056 1230 1043 8.94 R07 1230 44 1230 1046.8 14.90 R08 1261 183 8.94 18.94		* 1011 35	1011.0	1011 5	1011.0 1011	1
R08 990 1 990 900.0 0.00 R09 852 0 852 0.00 0.00 R05 1036 43 1036 1036 0.00 0.00 R06 1036 43 1036 1036 0.00 0.00 R07 925 46 925 925.0 0.00 R08 1006† 52 1010 1010 0.00 R09 1050 21 1050 1070 0.00 R07 1102† 6 1114 114.0 0.00 R07 1063 29 1072 958.1 10.63 R08 1117† 10 1126 1020 0.00 R09 1021 9 1021 0.00 0.00 R08 1217 37 1217 1054.5 13.35 R09 1230 14 118.3 8.94 R09 1230 1134 996.9		* 894 35	894.0	894 5	894.0 894	_
R09 852 0 852 0.00 R05 (d) 947 329 947 919.0 2.96 R06 1036 43 1036 1036.0 0.00 R07 925 46 925 925.0 0.00 R08 1006† 52 1010 1010 0.00 R09 907† 97 921.0 0.00 R05 1102† 6 1114.0 0.00 R07 1063 29 1072 958.1 10.63 R08 1117† 10 1126 0.00 0.00 R09 1021 9 1021 0.00 0.00 R09 1217 37 1217 1054.5 13.35 R06 1290 1156.3 1043 8.94 R09 1230 1448.3 8.94 R09 1121 7 1134 996.9 12.09		* 990 35	0.066	5 066	066 0.066	_
RO5 (d) 947 329 947 919.0 2.96 RO6 1036 43 1036 1036 0.00 0.00 RO3 1006† 52 46 925 925.0 0.00 RO8 1006† 52 1010 1010.0 0.00 RO9 907† 97 921.0 0.00 RO5 1102† 6 1114.0 0.00 RO7 1063 29 1072 958.1 10.63 RO8 1117† 10 1126.0 0.00 0.00 RO9 1021 9 1021 0.00 0.00 RO9 1217 37 1217 1054.5 13.35 RO6 1290 1156.3 1043 8.94 RO8 1261 18 1261 1148.3 8.94 RO9 1127 7 1134 996.9 12.09		* 853 35	852.0	852 5	852.0 852	_
R06 1036 43 1036 1036 0.00 R07 925 46 925 925.0 0.00 R08 1006† 52 1010 1010.0 0.00 R09 907† 97 921 921.0 0.00 R05 1050 21 1050 10.00 0.00 R06 1102† 6 1114 114.0 0.00 R08 1117† 10 1126 0.00 0.00 R09 1021 9 1021 0.00 0.00 R06 1290 10 125.0 115.5 10.43 R07 1230 44 1230 1046.8 14.90 R08 1261 18 1261 1148.3 8.94 R09 1127 7 1134 996.9 12.09		976 32	948.1	948 1	950.2 947	S
R07 925 46 925 925.0 0.00 R08 1006† 52 1010 1010.0 0.00 R09 907† 97 921 921.0 0.00 R05 11050 21 1050 0.00 0.00 R06 1102† 6 1114 114.0 0.00 R08 1117† 10 1126 10.63 R09 1021 9 1021 0.00 R06 7) 1217 37 1217 105.5 10.43 R07 1290 10 1290 1155.5 10.43 R08 1250 1230 1448.3 8.94 R09 1121 7 1134 996.9 12.09	0.00	* 1093 32	1040.2	1036 1	1045.1 1036	9
R08 1006† 52 1010 1010.0 0.00 R09 907† 97 921 921.0 0.00 R05 11050 21 1050 1050 0.00 R06 1102† 6 1114 1114.0 0.00 R07 1063 29 1072 958.1 10.63 R08 1117† 10 1126 10.00 0.00 R09 1021 9 1021 10.00 0.00 R06 1290 10 1250 1155.5 10.43 R07 1230 44 1230 1046.8 14.90 R08 1261 18 1261 1148.3 8.94 R09 1127 7 1134 996.9 12.09	0.00	* 971 32	925.0	925 1		4
R09 907‡ 97 921 921.0 0.00 R05 (e) 1050 21 1050 100 0.00 R06 1102‡ 6 1114 1114.0 0.00 R07 1063 29 1072 98.1 10.63 R08 1117‡ 10 1126 1126.0 0.00 R09 1021 9 1021 10.00 0.00 R07 1217 37 1217 1054.5 13.35 R06 1290 10 1290 1155.5 10.43 R07 1230 44 1230 1046.8 14.90 R08 1261 18 1261 1183.3 8.94 R09 1127 7 1134 996.9 12.09		* 1060 33	1021.5	1020 1	_	9
RO5 (e) 1050 21 1050 1050 0.00 RO6 1102† 6 1114 1114.0 0.00 RO7 1063 29 1072 958.1 10.63 RO8 1117† 10 1126 1126.0 0.00 RO9 1021 1021 0.00 0.00 RO5 1217 37 1217 1054.5 13.35 RO6 1290 10 1290 1155.5 10.43 RO7 1230 44 1230 1046.8 14.90 RO8 1261 18 1261 1184.3 8.94 RO9 1127 7 1134 996.9 12.09		* 3195 10	925.1	925 1	924.1 921	S
R06 1102† 6 1114 1114.0 0.00 R07 1063 29 1072 958.1 10.63 R08 1117† 10 1126 1126.0 0.00 R09 1021 1021 0.00 0.00 R05 1217 37 1217 1054.5 13.35 R06 1290 10 1290 1155.5 10.43 R07 1230 44 1230 1046.8 14.90 R08 1261 18 1261 1148.3 8.94 R09 1127 7 1134 996.9 12.09	0.00	* 1087 37	1050.0	1050 21	1051.6 1050	5
RO7 1063 29 1072 958.1 10.63 RO8 1117† 10 1126 1126.0 0.00 RO5 1021 9 1021 0.00 30 RO5 1217 37 1217 1054.5 13.35 RO6 1290 1155.5 10.43 RO7 1230 44 1230 1046.8 14.90 RO8 1261 18 1261 1148.3 8.94 RO9 1127 7 1134 996.9 12.09	0.00		1114.0	1114 20		4
R08 1117† 10 1126 1126.0 0.00 R09 1021 9 1021 0.00 30 R05 (f) 1217 37 1217 1054.5 13.35 R06 1290 10 1290 1155.5 10.43 R07 1230 44 1230 1046.8 14.90 R08 1261 18 1261 1148.3 8.94 R09 1127 7 1134 996.9 12.09	10.63		1063.0			4
R09 1021 9 1021 1021 0.00 2 R05 (f) 1217 37 1217 1054.5 13.35 R06 1290 10 1290 1155.5 10.43 R07 1230 44 1230 1046.8 14.90 R08 1261 18 1261 1148.3 8.94 R09 1127 7 1134 996.9 12.09	0.00	* 1142 36	1130.8		1136.3 1126	4
RO5 (f) 1217 37 1217 1054.5 13.35 RO6 1290 10 1290 1155.5 10.43 RO7 1230 44 1230 1046.8 14.90 RO8 1261 18 1261 1148.3 8.94 RO9 1127 7 1134 996.9 12.09		* 1046 36	1021.6	1021 21	1026.1 1021	S
R06 1290 10 1290 1155.5 10.43 R07 1230 44 1230 1046.8 14.90 R08 1261 18 1261 1148.3 8.94 R09 1127 7 1134 996.9 12.09	13.35	1223 42	1217.0	1217 10	1217.0 1217	2
R07 1230 44 1230 1046.8 14.90 R08 1261 18 1261 1148.3 8.94 R09 1127 7 1134 996.9 12.09	10.43	1290 41	1290.0	1290 10	1290.0 1290	2
R08 1261 18 1261 1148.3 8.94 R09 1127 7 1134 996.9 12.09	14.90	1230 41	1230.0	1230 10	1230.0 1230	2
R09 1127 7 1134 996.9 12.09	8.94		1261.0	1261 10		2
	_	1134 43	1134.0	1134 10	1134.0 1134	2
Average 960.6 25.9 963.0 934.0 2.44 3260	934.0	$\frac{23}{30}$ 976.0 33.9	963.7	963.2 8.8	965.2 962.7	7 2.5

© 2019 The Authors.

International Transactions in Operational Research © 2019 International Federation of Operational Research Societies

Table 4 Comparative analysis on larger-size instances of group ${\cal C}$

Instance		Iori and Riera-L (2015)	Iori and Riera-Ledesma (2015)	ILP for	ILP formulation	1			Silveira et al (2015)	ı et al.	Chagas et al. (2016)	et al. (2	3016)	VNS		
			t				t			t			t			t
ID R	\boldsymbol{L}	UB	(seconds)	UB	LB	Gap%	(seconds)	Opt	Best	(seconds)	Avg	Best	(seconds)	Avg	Best	(seconds)
031 R05	(g)	950	6	950	950.0	0.00	778	*	1083	31	952.5	950	19	964.8	950	16
032 R06		1012†	27	1024	1024.0	0.00	7224	*	1087	31	1038.8	1024	19	1035.6	1024	15
, ,		932	29	932	932.0	0.00	8592	*	1054	32	936.8	932	21	943.4	932	13
, ,		1011^{\ddagger}	50	1018	1018.0	0.00	3635	*	1128	31	1040.7	1031	20	1037.8	1024	16
035 R09		1606	48	919	919.0	0.00	2860	*	586	31	937.4	916	21	931.5	616	18
036 R05	(h)	1147	09	1147	1021.9	10.91	3 h		1198	41	1147.0	1147	33	1153.9	1147	~
		1165	∞	1177	1100.0	6.54	3 h		1190	42	1177.0	1177	33	1177.0	1177	10
		1123	32	1140	930.1	18.41	3 h		1136	41	1123.0	1123	33	1123.0	1123	7
		1184	40	1184	1096.7	7.37	3 h		1214	41	1184.0	1184	33	1188.6	1184	6
040 R09		1080	20	1097	954.0	13.03	3 h		11111	41	1081.4	1080	33	1080.6	1080	6
041 R05	(i)	1269	319	1291	999.4	22.59	3 h		1292	43	1272.0	1269	18	1274.6	1269	S
		1264	38	1275	1084.8	14.92	3 h		1282	43	1275.1	1275	18	1275.1	1275	9
		1261	193	1281	936.8	26.87	$3 \mathrm{h}$		1284	43	1261.0	1261	18	1273.7	1261	4
		1310	504	1312	1109.3	15.45	3 h		1338	44	1310.0	1310	18	1317.1	1310	9
		1157	62	1157	954.0	17.54	3 h		1196	44	1158.0	1157	18	1162.8	1157	9
	S	1012	115	1013	953.0	5.92	3 h		1126	34	1019.2	1012	9	1024.3	1012	21
047 R06		1018	24	1018	1018.0	0.00	1453	*	1177	33	1043.5	1018	9	1050.3	1018	21
		1047	290	1056	941.6	10.83	3 h		1162	34	1065.8	1054	9	1075.5	1047	18
		1040	751	1058	981.7	7.22	3 h		1221	10	1068.8	1050	∞	1073.4	1050	18
		656	55	973	930.4	4.38	3 h		1126	34	985.2	211	7	9.786	974	22
	(k)	1174	098	1231	981.0	20.31	3 h		1212	45	1180.4	1174	28	1180.4	1174	13
052 R06		1200	99	1234	1064.4	13.74	3 h		1253	4	1209.5	1200	27	1227.0	1200	11
053 R07		1243	1471	1375	942.6	31.45	3 h		1289	44	1247.4	1243	28	1258.0	1243	11
054 R08		1196	915	1266	1050.3	17.04	$3 \mathrm{h}$		1275	44	1210.9	1206	28	1211.3	1206	14
		1133	268	1178	959.2	18.57	3 h		1196	46	1151.0	1144	27	1154.4	114	12

Table 4 Continued

		t	(seconds)	11	6	6	6	6	61	52	51	29	09	20	21	22	22	24	25	25	28	25	23	19.6
			Best	1293	1340	1373	1305	1258	1071	1093	1098	1133	1047	1262	1304	1338	1297	1240	1367	1448	1465	1444	1362	1187.5
	VNS		Avg	1293.0	1342.4	1380.0	1323.6	1262.3	1092.4	1120.1	11111.8	1159.0	1074.6	1275.7	1308.6	1347.3	1324.2	1242.5	1368.6	1454.4	1473.2	1446.0	1362.0	1198.7
	2016)	t	(seconds)	30	29	30	29	30	14	14	13	18	20	3	3	3	3	3	09	09	61	61	09	23.8
	et al. (2		Best	1293	1340	1373	1305	1258	1073	1093	1103	1133	1047	1262	1304	1333	1297	1243	1367	1448	1465	1444	1362	1188.0
	Chagas et al. (2016)		Avg	1294.6	1340.4	1373.0	1311.5	1259.2	1089.1	11111.1	1108.8	1156.6	1074.6	1276.2	1315.6	1345.5	1320.5	1264.5	1373.5	1448.2	1469.2	1448.8	1363.5	1196.0
7	et al.	t	(seconds)	49	49	49	49	49	35	35	35	34	34	47	48	46	47	47	53	53	48	52	52	41.3
	Silveira et al (2015)		Best	1347	1374	1418	1345	1310	1220	1324	1325	1300	1266	1387	1438	1429	1426	1346	1422	1516	1509	1488	1413	1271.5
	,, С		Opt																					9 6
		t	(seconds)	3 h	3 h	3 h	3 h	3 h	3 h	3 h	3 h	3 h	3 h	3 h	3 h	3 h	3 h	3 h	3 h	3 h	3 h	3 h	3 h	9905.4
			_	l																			9	S
	c		Gap%	25.96	22.18	34.91	21.98	28.90	13.56	10.62	25.69	23.46	24.79	35.03	34.44	40.73	31.56	48.19	41.19	43.27	47.50	37.29	41.46	20.35
	mulation		LB Gap%	961.1 25.96	1043.6 22.18	914.5 34.91	1049.4 21.98	896.6 28.90		976.9 10.62		941.5 23.46	863.4 24.79	914.2 35.03	1016.3 34.44		975.9 31.56	817.0 48.19	912.8 41.19	992.3 43.27	900.8 47.50	975.2 37.29	871.1 41.4	968.7 20.3
	ILP formulation													914.2		889.7							_	
-		t	TB	961.1	1341 1043.6	1405 914.5	1345 1049.4	9.968	924.0	1093 976.9	901.4	1230 941.5	863.4	1407 914.2	1016.3	1501 889.7	975.9	1577 817.0	912.8	992.3	8.006	975.2	871.1	1249.6 968.7
Iori and	Kiera-Ledesma (2015) ILP formulation	t	UB LB	1298 961.1	202 1341 1043.6	2843 1405 914.5	460 1345 1049.4	1261 896.6	1069 924.0	70 1093 976.9	263 1213 901.4	1149 1230 941.5	735 1148 863.4	1407 914.2	1 h 1550 1016.3	1 h 1501 889.7	1 h 1426 975.9	1 h 1577 817.0	912.8	1 h 1749 992.3	1 h 1716 900.8	1 h 1555 975.2	1 h 1488 871.1	968.7
Iori and	Ledesma	t	(seconds) UB LB	(<i>I</i>) 1293 1306 1298 961.1	202 1341 1043.6	2843 1405 914.5	460 1345 1049.4	1252 832 1261 896.6	(m) 1060 2326 1069 924.0	1093 70 1093 976.9	1096 263 1213 901.4	1120 1149 1230 941.5	1034 735 1148 863.4	(n) 1318 1 h 1407 914.2	1289 1 h 1550 1016.3	1350 1 h 1501 889.7	1297 1 h 1426 975.9	1239 1 h 1577 817.0	(o) 1518 1 h 1552 912.8	1449 1 h 1749 992.3	1677 1 h 1716 900.8	1 h 1555 975.2	1 h 1488 871.1	1249.6 968.7
Iori and	Ledesma	1	UB (seconds) UB LB	1293 1306 1298 961.1	1340 202 1341 1043.6	R07 1373 2843 1405 914.5	R08 1305 460 1345 1049.4	1252 832 1261 896.6	1060 2326 1069 924.0	R06 1093 70 1093 976.9	R07 1096 263 1213 901.4	R08 1120 1149 1230 941.5	R09 1034 735 1148 863.4	1318 1 h 1407 914.2	R06 1289 1 h 1550 1016.3	R07 1350 1 h 1501 889.7	R08 1297 1 h 1426 975.9	R09 1239 1 h 1577 817.0	R05 (o) 1518 1 h 1552 912.8	R06 1449 1 h 1749 992.3	1677 1 h 1716 900.8	R08 1463 1 h 1555 975.2	R09 1570 1 h 1488 871.1	1249.6 968.7

© 2019 The Authors.

International Transactions in Operational Research © 2019 International Federation of Operational Research Societies

Table 5 Comparative analysis on instances of group $\neg C$

LB I <th>bec inc.</th> <th>[c.:]</th> <th>Loning</th> <th></th>	bec inc.	[c.:]	Loning													
f f f f 3.0 0.00 2607 * 938.9 921 34 942.8 921 8.0 0.00 2607 * 938.9 921 34 942.8 921 8.0 0.00 7141 * 1006.5 984 124 871.4 889 1.0 0.00 7141 * 988.5 909 96 975.7 989 2.0 0.00 714 * 988.5 909 96 975.7 989 4.0 0.00 2790 * 893.1 889 17 889 17 889 2.9 0.00 2790 * 893.1 889 17 889 101 960.4 942 889 1010 960.4 942 989 960.4 942 989 960.4 942 989 960.4 942 989 960.4 942 989 960.4 942 <	Iori and Riera-Ledesma Instance (2015) ILP for	id Ledesma	id Ledesma	esma	ILP for	-2	LP formulation				Chagas 6	st al. (20	16)	NS		
30 60m/s (seconds) Opt 4vg Best (seconds) 4vg Best Best 30 0.00 2607 * 938.9 921 34 942.8 921 80 0.00 71441 * 1006.5 989 53 999.2 989 10 0.00 1181 * 906.6 804 124 804 989 20 0.00 714 * 988.5 909 96 9			t	t					t				t			t
0.00 2607 * 938.9 921 34 942.8 921 0.00 7141 * 1006.5 989 53 999.2 989 0.00 7141 * 1006.5 989 53 999.2 989 0.00 714 * 988.5 909 96 975.7 934 0.00 714 * 988.5 909 96 96.2 98 0.00 2790 * 893.1 889 17 880.7 880 5.03 3h 1025.2 1010 9 96.4 942 96.4 11.2.7 3h 1013.4 998 9 1006.1 98 9 1006.1 98 23.40 3h 1013.4 103 5 1113.6 113 113 113.6 113 1147 5 1147 104 104 106 9 106.1 106.2 106.2 106.2 106.2<	$R ext{ } T ext{ } UB ext{ } (seconds) ext{ } UB$	UB (seconds)	(seconds)		UB		LB	Gap%	(seconds)	Opt	Avg	Best	(seconds)	Avg	Best	(secon
0.00 7141 * 1006.5 989 53 999.2 989 0.00 1181 * 900.6 804 124 871.4 804 0.00 714 * 988.5 909 96 975.7 934 0.00 714 * 988.5 909 96 975.7 934 0.00 2790 * 893.1 889.1 882.7 880 5.65 3h 1025.2 1010 9 1032.4 1010 112.7 3h 1012.4 98 9 960.4 942 23.40 3h 1013.4 98 9 1006.1 98 23.40 3h 1124.5 116 5 1114.6 113.9 15.78 3h 1061.3 91 5 104.6 104.7 17.99 3h 1061.3 94 5 104.6 104.7 17.44 3h 1006.3 <td< td=""><td>(p) $912\dagger$ 24</td><td>912† 24</td><td>24</td><td></td><td>913</td><td></td><td>913.0</td><td>0.00</td><td>2607</td><td>*</td><td>938.9</td><td>921</td><td>34</td><td>942.8</td><td>921</td><td>26</td></td<>	(p) $912\dagger$ 24	912† 24	24		913		913.0	0.00	2607	*	938.9	921	34	942.8	921	26
0.00 1181 * 900.6 804 124 871.4 804 0.00 714 * 988.5 909 96 975.7 934 0.00 714 * 988.5 909 96 975.7 934 0.00 2790 * 893.1 889.1 882.7 880 5.65 3h 1025.2 1010 9 1032.4 1010 12.27 3h 1013.4 998 9 1006.1 998 23.40 3h 1013.4 998 9 1006.1 998 23.40 3h 1124.5 1116 5 1116.6 1113 30.54 3h 1053.6 102 5 1113.7 1144 30.54 3h 1061.3 91 5 1144 1144 30.54 3h 1061.3 94 5 1045.0 1045 17.99 3h 1061.3 94	945† 138	138	138		948		948.0	0.00	7141	*	1006.5	686	53	999.2	686	24
0.00 714 * 988.5 909 96 975.7 934 0.00 2790 * 893.1 889 17 882.7 880 5.03 3h 995.0 965 9 960.4 942 5.65 3h 1025.2 1010 9 982.7 880 12.27 3h 1013.4 998 9 1006.1 998 2.44 3h 1013.4 998 9 1006.1 998 2.3.40 3h 1124.5 114 5 1113.6 113 15.78 3h 1167.4 1147 5 1147 1147 17.99 3h 1061.3 991 36 982.0 963 17.99 3h 1065.6 1065 963 156 1075.1 1075 17.44 3h 1062.2 1009 98 1062.1 963 2.11 3h 1066.9 96.3	793† 43	43	43		801		801.0	0.00	1181	*	9.006	804	124	871.4	804	4
0.00 2790 * 893.1 889 17 882.7 880 5.03 3h 995.0 965 9 960.4 942 5.65 3h 1025.2 1010 9 1032.4 1010 12.27 3h 1025.2 1010 9 1032.4 1010 3.07 3h 1013.4 998 9 1006.1 998 2.44 3h 1124.5 116 5 1116.6 1113 15.78 3h 1135.9 1125 5 1113.4 1121 18.91 3h 1167.4 1147 5 1147 1147 17.99 3h 1167.4 1147 5 1147 1147 17.99 3h 1001.3 991 36 980.0 963 2.11 3h 1006.9 963 156 1005.1 963 2.11 3h 1006.9 963 156 1006.1	902 5	5	5		905		902.0	0.00	714	*	988.5	606	96	975.7	934	59
5.03 3h 995.0 965.0 965.0 965.0 960.4 942 5.65 3h 1025.2 1010 9 1032.4 1010 12.27 3h 1013.4 998 9 1006.1 998 2.44 3h 1013.4 998 9 1006.1 998 23.40 3h 1124.5 1116 5 1116.6 1113 15.78 3h 1135.9 1125 5 1131.4 1121 15.78 3h 1167.4 1147 5 1113.1 1147 18.91 3h 1167.4 1147 5 1147 1147 17.99 3h 1065.5 1048 5 1046.0 1033 17.44 3h 1001.3 963 156 1005.3 963 2.11 3h 1006.9 963 156 1005.4 963 2.11 3h 1049.7 1000 12 <	R09 874 11 874	111	111		874		874.0	0.00	2790	*	893.1	688	17	882.7	880	22
5.65 3h 1025.2 1010 9 1032.4 1010 12.27 3h 93.1 93.1 93.8 9 1010.1 988 3.07 3h 1013.4 998 9 1006.1 998 2.44 3h 1124.5 1116 5 1116.6 1113 15.78 3h 1124.5 1125 5 1131.4 1121 18.91 3h 1167.4 1147 5 1147 1147 18.91 3h 1165.4 1147 5 1147 1147 17.99 3h 1061.3 991 36 989.0 960 0.00 4512 * 1001.3 991 36 1005 98 1.44 3h 1006.9 963 156 1005.3 963 2.11 3h 1028.2 1009 98 1009.4 963 2.11 3h 1049.7 1000 12	(q) 1031b 31 942	1031b 31 942	31 942	942			894.6	5.03	3 h		995.0	965	6	960.4	942	25
12.27 3h 933.1 931 9 938.9 938.9 938.9 938.9 938.9 938.9 938.9 938.9 938.9 938.9 938.9 938.0 948.0 <td>1061b 46 1010</td> <td>46 1010</td> <td>46 1010</td> <td>1010</td> <td></td> <td>01</td> <td>52.9</td> <td>5.65</td> <td>$3 \mathrm{h}$</td> <td></td> <td>1025.2</td> <td>1010</td> <td>6</td> <td>1032.4</td> <td>1010</td> <td>21</td>	1061b 46 1010	46 1010	46 1010	1010		01	52.9	5.65	$3 \mathrm{h}$		1025.2	1010	6	1032.4	1010	21
3.07 3h 1013.4 998 9 1006.1 998 2.44 3h 908.0 902 10 895.5 889 23.40 3h 1124.5 1116 5 1116.6 1113 15.78 3h 1135.9 1125 5 1131.4 1121 30.54 3h 1167.4 1147 5 1131.4 1147 17.99 3h 1167.4 1147 5 1147 1147 17.99 3h 106.3 5 1046.0 1033 3.74 3h 1001.3 991 36 989.0 950 7.44 3h 1006.9 963 156 1005.3 963 2.11 3h 1028.2 1009 98 1009.4 963 3.26 3h 1049.7 1000 12 1018.2 998 2.40 3h 1049.7 1000 12 1057.3 1017 <t< td=""><td>978b 40 931</td><td>40 931</td><td>40 931</td><td>931</td><td></td><td>∞</td><td>16.8</td><td>12.27</td><td>$3 \mathrm{h}$</td><td></td><td>933.1</td><td>931</td><td>6</td><td>938.9</td><td>931</td><td>17</td></t<>	978b 40 931	40 931	40 931	931		∞	16.8	12.27	$3 \mathrm{h}$		933.1	931	6	938.9	931	17
2.44 3h 908.0 902 10 895.5 889 23.40 3h 1124.5 1116 5 1116.6 1113 15.78 3h 1135.9 1125 5 1131.4 1121 30.54 3h 1167.4 1147 5 1131.4 1147 18.91 3h 1167.4 1147 5 1147 1147 17.99 3h 1065.6 1048 5 1046.0 1033 3.74 3h 1001.3 991 36 989.0 950 7.44 3h 1006.9 963 156 1005.3 963 2.11 3h 1028.2 1009 98 1009.4 963 3.26 3h 950.1 942 35 942.7 941 11.36 3h 1049.7 1000 12 1018.2 998 2.40 3h 1049.7 1000 12 1057.3 1077 2.41 3h 1028.3 1021 1050.5 1021	1060b 74 995	74 995	74 995	995		6	54.5	3.07	3 h		1013.4	866	6	1006.1	866	20
23.40 3h 1124.5 1116 5 1116.6 1116.6 1118.9 15.78 3h 1135.9 1125 5 1131.4 1121 30.54 3h 1103.4 1051 5 1131.4 1121 18.91 3h 1167.4 1147 5 1147 1147 17.99 3h 1055.6 1048 5 1046.0 1033 3.74 3h 1001.3 991 36 989.0 950 7.44 3h 1006.9 963 156 1005.3 963 2.11 3h 1028.2 1009 98 1009.4 963 3.26 3h 950.1 942 35 942.7 941 2.40 3h 1049.7 1000 12 1018.2 998 2.40 3h 1028.3 1021 1057.3 1017 2.41 3h 1028.3 1021 1050.5 1051	982b 36 889	36 889	36 889	688		98	7.3	2.44	3 h		0.806	902	10	895.5	886	21
15.78 3h 1135.9 1125 5 1131.4 1121 30.54 3h 1103.4 1051 5 1193.1 1042 18.91 3h 1167.4 1147 5 1177.2 1147 17.99 3h 1167.4 1147 5 1177.2 1147 17.99 3h 1055.6 1048 5 1046.0 1033 3.74 3h 1001.3 991 36 989.0 950 7.44 3h 1006.9 963 156 1005.3 963 2.11 3h 1028.2 1009 98 1009.4 963 3.26 3h 950.1 942 35 942.7 941 11.36 3h 1049.7 1000 12 1018.2 998 2.40 3h 1028.2 1021 1057.3 1017 2.41 3h 1028.3 1021 1050.5 1021 14.57 3h 972.9 970.6 953 10.05	(r) 1200b 2303 1159	1200b 2303 1159	2303 1159	1159		887	8.	23.40	3 h		1124.5	11116	S	1116.6	1113	12
30.54 3h 1103.4 1051 5 1093.1 1042 18.91 3h 1167.4 1147 5 1177.2 1147 17.99 3h 1055.6 1048 5 1046.0 1033 3.74 3h 1001.3 991 36 989.0 950 0.00 4512 * 1001.3 991 36 1005 960 7.44 3h 1006.9 963 156 1005.3 963 2.11 3h 1028.2 1009 98 1009.4 963 3.26 3h 950.1 942 35 942.7 941 11.36 3h 1049.7 1000 12 1018.2 998 2.40 3h 1026.0 1074 15 1057.3 1017 20.17 3h 1028.3 1021 1050.5 1021 14.57 3h 972.9 957 15 970.6 953	1191b 302 1121	302 1121	302 1121	1121		944	7.	15.78	3 h		1135.9	1125	5	1131.4	1121	6
18.91 3h 1167.4 1147 5 1177.2 1147 17.99 3h 1055.6 1048 5 1046.0 1033 3.74 3h 1001.3 991 36 989.0 950 0.00 4512 * 1001.3 991 36 1005. 960 7.44 3h 1006.9 963 156 1005.3 963 2.11 3h 1028.2 1009 98 1009.4 963 3.26 3h 950.1 942 35 942.7 941 11.36 3h 1049.7 1000 12 1018.2 998 2.40 3h 1026.0 1074 15 1057.3 1017 20.17 3h 1028.3 1021 1050.5 1021 14.57 3h 972.9 957 15 970.6 953	1105b 191 1141	191 1141	191 1141	1141		792	S	30.54	3 h		1103.4	1051	5	1093.1	1042	∞
17.99 3h 1055.6 1048 5 1046.0 1033 3.74 3h 1001.3 991 36 989.0 950 0.00 4512 * 1021.2 1005 55 1021.5 1005 7.44 3h 1006.9 963 156 1005.3 963 2.11 3h 1028.2 1009 98 1009.4 963 3.26 3h 1049.7 1000 12 1018.2 941 11.36 3h 1105.0 1074 15 1018.2 998 2.40 3h 1028.3 1021 107 107 107 14.57 3h 1028.3 1021 1050.5 1021 10.03 3h 1051.7 107 1050.6 1025 10.03 3h 1051.7 107 1050.6 1025	1191b 776 1198	776 1198	776 1198	1198		97]	5.	18.91	$3 \mathrm{h}$		1167.4	1147	5	1177.2	1147	10
3.74 3h 1001.3 991 36 989.0 950 0.00 4512 * 1021.2 1005 55 1021.5 1005 7.44 3h 1006.9 963 156 1005.3 963 2.11 3h 1028.2 1009 98 1009.4 963 3.26 3h 950.1 942 35 942.7 941 11.36 3h 1049.7 1000 12 1018.2 998 2.40 3h 1105.0 1074 15 1057.3 1017 20.17 3h 1028.3 1021 1050.5 1051. 14.57 3h 972.9 957 15 970.6 953	1100b 2342 1050	2342 1050	2342 1050	1050		86	-:	17.99	3 h		1055.6	1048	S	1046.0	1033	10
0.00 4512 * 1021.2 1005 55 1021.5 1005 7.44 3h 1006.9 963 156 1005.3 963 2.11 3h 1028.2 1009 98 1009.4 963 3.26 3h 1049.7 1000 12 1018.2 942 11.36 3h 1105.0 1074 15 1057.3 1017 20.17 3h 1028.3 1021 12 1050.5 1021 14.57 3h 1051.7 1039 16 1050.5 1025 10.03 3h 972.9 957 15 970.6 953	4 950	947 4 950	4 950			91	4.5	3.74	3 h		1001.3	991	36	0.686	950	46
7.44 3h 1006.9 963 156 1005.3 963 2.11 3h 1028.2 1009 98 1009.4 963 3.26 3h 1049.7 1000 12 1018.2 942.7 941 11.36 3h 1105.0 1074 15 1018.2 998 20.17 3h 1105.0 1074 15 1057.3 1017 14.57 3h 1051.7 1039 16 1050.5 1021 10.03 3h 972.9 957 15 970.6 953	1010b 8 1005	1010b 8 1005	8 1005			100	5.0	0.00	4512	*	1021.2	1005	55	1021.5	1005	38
2.11 3h 1028.2 1009 98 1009.4 963 3.26 3h 950.1 942 35 942.7 941 11.36 3h 1049.7 1000 12 1018.2 998 2.40 3h 1105.0 1074 15 1057.3 1017 20.17 3h 1028.3 1021 12 1050.5 1021 14.57 3h 1051.7 1039 16 1050.6 1025 10.03 3h 972.9 953 953	939 8 952	8 952	8 952			88	31.2	7.44	3 h		1006.9	963	156	1005.3	696	42
3.26 3h 950.1 942 35 942.7 941 11.36 3h 1049.7 1000 12 1018.2 998 2.40 3h 1105.0 1074 15 1057.3 1017 20.17 3h 1028.3 1021 12 1050.5 1021 14.57 3h 1051.7 1039 16 1050.6 1025 10.03 3h 972.9 957 15 970.6 953	953 7 958	7 958	7 958			99	87.8	2.11	$3 \mathrm{h}$		1028.2	1009	86	1009.4	963	41
11.36 3h 1049.7 1000 12 1018.2 998 2.40 3h 1105.0 1074 15 1057.3 1017 20.17 3h 1028.3 1021 12 1050.5 1021 14.57 3h 1051.7 1039 16 1050.6 1025 10.03 3h 972.9 957 15 970.6 953	945b 5 940	5 940	5 940			90	9.3	3.26	3 h		950.1	942	35	942.7	941	35
2.40 3h 1105.0 1074 15 1057.3 1017 20.17 3h 1028.3 1021 12 1050.5 1021 14.57 3h 1051.7 1039 16 1050.6 1025 10.03 3h 972.9 957 15 970.6 953	(t) 1101b 298 1006	1101b 298 1006	298 1006	1006		8	91.8	11.36	3 h		1049.7	1000	12	1018.2	866	36
20.17 3h 1028.3 1021 12 1050.5 1021 14.57 3h 1051.7 1039 16 1050.6 1025 10.03 3h 972.9 957 15 970.6 953	1059b 17 1017	17 1017	17 1017	1017		66	9.7	2.40	3 h		1105.0	1074	15	1057.3	1017	28
14.57 3 h 1051.7 1039 16 1050.6 1025 10.03 3 h 972.9 957 15 970.6 953	1911 1053	1911 1053	1911 1053	1053		××	40.6	20.17	3 h		1028.3	1021	12	1050.5	1021	26
10.03 3 h 972.9 957 15 970.6 953	1115b 337 1061	337 1061	337 1061	1061		6	5.90	14.57	3 h		1051.7	1039	16	1050.6	1025	31
	1002b 15 957	15 957	15 957	957		86	91.0	10.03	3 h		972.9	957	15	9.076	953	33

 \odot 2019 The Authors. International Transactions in Operational Research \odot 2019 International Federation of Operational Research Societies

Fable 5 Continued

			Iori and	1											
Instance	ce		(2015)	(2015)	ILP forn	ILP formulation				Chagas e	Chagas et al. (2016)	(9	NNS		
				t				t				t			t
П	R	T	UB	(seconds)	UB	LB	Gap%	(seconds)	Opt	Avg	Best	(seconds)	Avg	Best	(seconds)
101	R05	(n)	1259	1 h	1268	870.6	31.34	3 h		1195.9	1159	9	1165.2	1149	15
102	R06		1225b	258	1197	977.3	18.36	3 h		1185.1	1179	9	1165.0	1161	14
103	R07		1325	1 h	1329	825.4	37.90	3 h		1241.2	1232	9	1235.2	1232	13
104	R08		1245	1 h	1336	951.0	28.82	3 h		1215.6	1207	9	1194.4	1181	14
105	R09		1169b	606	1200	863.0	28.08	3 h		1153.1	1136	9	1132.8	1118	15
106	R05	Š	1033	26	1079	904.8	16.15	3 h		1075.3	1062	112	1051.9	1033	93
107	R06		1051	34	1084	944.9	12.83	3 h		1085.3	1056	274	1074.4	1051	95
108	R07		1058	52	1106	861.5	22.11	3 h		1111.4	1095	75	1086.7	1080	93
109	R08		1076	26	1089	923.5	15.20	3 h		1093.4	1069	717	1102.9	1080	06
110	R09		1019	9	1030	863.9	16.13	3 h		1039.6	1023	420	1038.5	1022	95
111	R05	(\aleph)	1142b	2826	1289	844.7	34.47	3 h		1216.0	1194	14	1153.2	1073	59
112	R06		1188b	331	1271	948.1	25.40	3 h		1212.8	1204	16	1166.3	1093	65
113	R07		1186b	2603	1200	862.5	28.13	3 h		1210.1	1134	19	1189.4	1098	52
114	R08		1174b	999	1198	9.706	24.24	3 h		1249.8	1159	19	1209.0	1157	82
115	R09		1098b	2250	1283	814.0	36.56	3 h		1174.3	1087	24	1142.8	1058	64
116	R05	(x)	1333	1 h	1392	850.6	38.89	3 h		1348.9	1300	6	1293.3	1262	29
1117	R06		1377	1 h	1700	937.7	44.84	3 h		1359.7	1320	6	1310.7	1304	29
118	R07		1412	1 h	1596	858.8	46.19	3 h		1388.9	1338	6	1359.7	1338	22
119	R08		1367	1 h	1520	909.3	40.18	3 h		1399.9	1361	10	1357.5	1297	27
120	R09		1578	1 h	1448	831.9	42.55	3 h		1314.8	1252	6	1263.1	1240	32
Average	ge		1106.9	1061.3	1119.7	895.2	17.74	9781.1	<u>6</u>	1103.9	1075.0	58.0	1086.1	1058.2	36.6

© 2019 The Authors

informs the total processing time and column Opt indicates by an asterisk the instances solved to optimality. The next columns show the best results and the processing time (columns Best and t (seconds)) obtained by Silveira et al. (2015). The results obtained by Chagas et al. (2016) and the proposed VNS algorithm are presented in three columns, Avg, Best, and t (seconds) that inform, respectively, the average solution value, the best solution value, and the total processing time consumed by the 10 runs. Note that Silveira et al. (2015) did not consider instances of group $\neg C$ in their experiments, so Table 5 does not show these results. Although Chagas et al. (2016) do not show the results of instances of group $\neg C$, we executed their algorithm and reported the results in Table 5.

Tables 3 and 4 show the superiority of the results reported by Iori and Riera-Ledesma (2015) when compared to the results reached by the ILP formulation, since for every instance of group C the algorithms developed by Iori and Riera-Ledesma (2015) run faster than our ILP formulation and find better solutions for most instances. However, although the ILP formulation is not as efficient as the exact methods of Iori and Riera-Ledesma (2015), as it was solved with no tentative of strengthening or specialized techniques, it is of fundamental importance for this paper and for future works that will address the DVRPMS, since through the results of our ILP formulation, it was possible to note inconsistencies in the results published by Iori and Riera-Ledesma (2015).

All results proven to be inconsistent are highlighted in Tables 3 and 4 by the character \dagger , which is inserted in column UB that relates to the results of Iori and Riera-Ledesma (2015). Those results were considered inconsistencies due to the lower bound (column LB) of the ILP formulation being larger than the upper bound (column UB) reported by Iori and Riera-Ledesma (2015). After noticing these inconsistencies, in June 2016 the authors were notified and after a careful examination of the details of the solution, we noticed that for some instances the solutions reported by their algorithms were unfeasible (the routes did not respect the stacks' LIFO policy). The authors shared with us their code, but we could not find the reason of the inconsistencies.

Since the results of Iori and Riera-Ledesma (2015) have not been corrected yet, we will focus on the comparative analysis of results of group C considering only the other methods of resolution. In addition, in order to highlight the solution quality of each method, best results reached for each instance are shown in bold.

For the small instances of group C, the ILP formulation was able to find the optimal solution for 23 of 30 instances, whereas for the 45 large instances, only six of them were proved to have found the optimal solution. The high relative gap values (column Gap%) indicate the difficulty of the ILP formulation on finding optimal solutions, mainly, for the larger instances.

It is possible to note that the VNS algorithm overcomes all results obtained by Silveira et al. (2015), finding solutions of the same or higher quality with less computational time. The VNS was also efficient in comparison to the ILP formulation, because for only three instances (ID 034, 050, and 061) the ILP formulation obtained better solutions.

We also noticed that the average solution (column Avg) obtained by the algorithm proposed by Chagas et al. (2016) presents slightly better results than the VNS for most instances of group C. However, considering the best solutions obtained by each method (column Best), it is possible to note that in nine instances (ID 016, 019, 020, 034, 048, 050, 061, 063, and 070) the VNS algorithm was able to find solutions of higher quality than those found by the algorithm proposed by Chagas

et al. (2016). In the other 65 instances, both methods found the same solution and only in one instance (ID 068) the VNS was worse.

Regarding the computation time, the VNS was more efficient than the algorithm proposed by Chagas et al. (2016) for most instances. On average (last row of the tables), the VNS was 3.5 times faster than their algorithm in the smaller instances of group C and 1.2 faster for the larger instances also of group C.

Again, for instances of group $\neg C$, some results (instances with ID 076, 077, and 078) obtained by Iori and Riera-Ledesma (2015) were also found to be unfeasible. In addition, we noted that several results that are stated by Iori and Riera-Ledesma (2015) as optimal results are overcome by the ILP formulation and/or by our VNS and/or by the method proposed by Chagas et al. (2016). These results are highlighted by the character \triangleright , which was inserted in column *UB* that relates to the results of Iori and Riera-Ledesma (2015).

For most instances of group $\neg C$, when comparing the best solution values, the method based on VNS outperformed the method described in Chagas et al. (2016), with two exceptions (ID 079 and 109). Regarding computational time, comparing the average execution time of all methods (last row of Table 5), the heuristic based on the VNS metaheuristic was faster, proving to be a reliable heuristic.

In the electronic supplementary material, which can be found at http://www.goal.ufop.br/software/dvrpms, we present the best solutions (routes and loading plan for each vehicle) found so far for the DVRPMS.

5. Conclusions

In this paper, we addressed the DVRPMS. For solving it, initially, we introduced a new ILP formulation. As the DVRPMS is a complex combinatorial problem, and finding an exact solution is time consuming, a VNS-based algorithm was also proposed to solve it.

In order to evaluate the quality of our solution approaches, we have performed tests with two sets of instances used in previous works that address the DVRPMS. The first set (denoted by C) contains instances in which the total capacity of the vehicles is equal to the total number of customer requests, while the second set (denoted by $\neg C$) contains instances in which the total number of customer requests is less than the total capacity of the vehicles.

Although the ILP formulation did not solve most larger instances of group C and most instances of group $\neg C$, this exact method was of fundamental importance for the DVRPMS because it highlighted inconsistencies in the values encountered in the literature.

Since these inconsistencies were raised in this work and our ILP formulation did not solve most instances to the optimality, it is hard to do a statistical analysis with all solutions. Though when considering the average values of the best solutions, the VNS algorithm outperformed all methods and spent less computational time, especially instances of the group $\neg C$.

As a future work, complex methods such as branch-and-price and branch-and-cut-and-price could be applied to our new ILP formulation. So, they can perform better for larger instances, consequently, find the global optima values for those instances in which the first ILP formulation was not able to solve. Developing new neighborhood structures can also vary the results and thus the VNS algorithm could even obtain better values.

Acknowledgments

The authors would like to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal de Viçosa (UFV), and Universidade Federal de Ouro Preto (UFOP) for supporting this research.

References

- Alba Martínez, M.A., Cordeau, J.F., Dell'Amico, M., Iori, M., 2013. A branch-and-cut algorithm for the double traveling salesman problem with multiple stacks. *INFORMS Journal on Computing* 25, 1, 41–55.
- Barbato, M., Grappe, R., Lacroix, M., Calvo, R.W., 2016. Polyhedral results and a branch-and-cut algorithm for the double traveling salesman problem with multiple stacks. *Discrete Optimization* 21, 25–41.
- Carrabs, F., Cerulli, R., Speranza, M.G., 2010. A branch-and-bound algorithm for the double TSP with two stacks. Technical Report, Dipartimento di Matematica e Informatica, Università di Salerno, Fisciano, Italy.
- Casazza, M., Ceselli, A., Nunkesser, M., 2012. Efficient algorithms for the double traveling salesman problem with multiple stacks. *Computers & Operations Research* 39, 5, 1044–1053.
- Chagas, J.B.C., Santos, A.G., 2016. A branch-and-price algorithm for the double vehicle routing problem with multiple stacks and heterogeneous demand. 16th International Conference on Intelligent Systems Design and Applications (ISDA), Springer, Porto, Portugal, pp. 921–934.
- Chagas, J.B.C., Santos, A.G., 2017. An effective heuristic algorithm for the double vehicle routing problem with multiple stack and heterogeneous demand. 17th International Conference on Intelligent Systems Design and Applications (ISDA), Springer, Delhi, India, pp. 785–796.
- Chagas, J.B.C., Silveira, U.E.F., Benedito, M.P.L., Santos, A.G., 2016. Simulated annealing metaheuristic for the double vehicle routing problem with multiple stacks. 19th International Conference on Intelligent Transportation Systems (ITSC), IEEE, Rio de Janeiro, Brazil, pp. 1311–1316.
- Cordeau, J.F., Iori, M., Laporte, G., Salazar González, J.J., 2010. A branch-and-cut algorithm for the pickup and delivery traveling salesman problem with LIFO loading. *Networks* 55, 1, 46–59.
- Côté, J.F., Archetti, C., Speranza, M.G., Gendreau, M., Potvin, J.Y., 2012. A branch-and-cut algorithm for the pickup and delivery traveling salesman problem with multiple stacks. *Networks* 60, 4, 212–226.
- Felipe, Á., Ortuño, M.T., Tirado, G., 2009. The double traveling salesman problem with multiple stacks: a variable neighborhood search approach. *Computers & Operations Research* 36, 11, 2983–2993.
- Hansen, P., Mladenović, N., 2001. Variable neighborhood search: principles and applications. *European Journal of Operational Research* 130, 3, 449–467.
- Hansen, P., Mladenović, N., 2014. Variable neighborhood search. In Burke, E.K. (ed.), *Search Methodologies*. Springer, New York, pp. 313–337.
- Iori, M., Riera-Ledesma, J., 2015. Exact algorithms for the double vehicle routing problem with multiple stacks. *Computers & Operations Research* 63, 83–101.
- Lusby, R.M., Larsen, J., Ehrgott, M., Ryan, D., 2010. An exact method for the double TSP with multiple stacks. *International Transactions in Operational Research* 17, 5, 637–652.
- Mladenović, N., Hansen, P., 1997. Variable neighborhood search. Computers & Operations Research 24, 11, 1097–1100.
- Moon, C., Kim, J., Choi, G., Seo, Y., 2002. An efficient genetic algorithm for the traveling salesman problem with precedence constraints. *European Journal of Operational Research* 140, 3, 606–617.
- Petersen, H.L., Archetti, C., Speranza, M.G., 2010. Exact solutions to the double travelling salesman problem with multiple stacks. *Networks* 56, 4, 229–243.
- Petersen, H.L., Madsen, O.B., 2009. The double travelling salesman problem with multiple stacks—formulation and heuristic solution approaches. *European Journal of Operational Research* 198, 1, 139–147.
- Pinto, T., Alves, C., Valério de Carvalho, J., 2020. Variable neighborhood search algorithms for the vehicle routing problem with two-dimensional loading constraints and mixed linehauls and backhauls. *International Transactions in Operational Research* 27, 1, 549–572.

© 2019 The Authors.

International Transactions in Operational Research © 2019 International Federation of Operational Research Societies

- Sampaio, A.H., Urrutia, S., 2016. New formulation and branch-and-cut algorithm for the pickup and delivery traveling salesman problem with multiple stacks. *International Transactions in Operational Research* 24, 77–98.
- Savelsbergh, M.W., Sol, M., 1995. The general pickup and delivery problem. Transportation Science 29, 1, 17–29.
- Silveira, U.E.F., Benedito, M.P.L., Santos, A.G., 2015. Heuristic approaches to double vehicle routing problem with multiple stacks. 15th International Conference on Intelligent Systems Design and Applications (ISDA), IEEE, Marrakesh, Marocco, pp. 231–236.
- Smiti, N., Dhiaf, M.M., Jarboui, B., Hanafi, S., 2020. Skewed general variable neighborhood search for the cumulative capacitated vehicle routing problem. *International Transactions in Operational Research* 27, 1, 651–664.
- Tricoire, F., Doerner, K.F., Hartl, R.F., Iori, M., 2011. Heuristic and exact algorithms for the multi-pile vehicle routing problem. *OR Spectrum* 33, 4, 931–959.
- Wei, L., Zhang, Z., Lim, A., 2014. An adaptive variable neighborhood search for a heterogeneous fleet vehicle routing problem with three-dimensional loading constraints. *IEEE Computational Intelligence Magazine* 9, 4, 18–30.
- Wei, L., Zhang, Z., Zhang, D., Lim, A., 2015. A variable neighborhood search for the capacitated vehicle routing problem with two-dimensional loading constraints. *European Journal of Operational Research* 243, 3, 798–814.