
Intl. Trans. in Op. Res. 27 (2020) 112–137
DOI: 10.1111/itor.12623

INTERNATIONAL
TRANSACTIONS

IN OPERATIONAL
RESEARCH

A variable neighborhood search heuristic algorithm for the
double vehicle routing problem with multiple stacks

Jonatas B. C. Chagasa, Ulisses E. F. Silveirab, André G. Santosb and
Marcone J. F. Souzaa

aDepartamento de Computação, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
bDepartamento de Informática, Universidade Federal de Viçosa, Viçosa, Brazil

E-mail: jonatas.chagas@iceb.ufop.br [Chagas]; ulisses.silveira@ufv.br [Silveira]; andre@dpi.ufv.br [Santos];
marcone@iceb.ufop.br [Souza]

Received 9 February 2018; received in revised form 14 December 2018; accepted 14 December 2018

Abstract

This paper addresses the double vehicle routing problem with multiple stacks (DVRPMS) in which a fleet of
vehicles must collect items in a pickup region and then travel to a delivery region where all items are delivered.
The load compartment of all vehicles is divided into rows (horizontal stacks) of fixed profundity (horizontal
heights), and on each row, the unloading process must respect the last-in-first-out policy. The objective of
the DVRPMS is to find optimal routes visiting all pickup and delivery points while ensuring the feasibility
of the vehicle loading plans. We propose a new integer linear programming formulation, which was useful to
find inconsistencies in the results of exact algorithms proposed in the literature, and a variable neighborhood
search based algorithm that was able to find solutions with same or higher quality in shorter computational
time for most instances when compared to the methods already present in the literature.

Keywords: vehicle routing; pickup and delivery; loading constraints; mathematical formulation; variable neighborhood
search

1. Introduction

The double vehicle routing problem with multiple stacks (DVRPMS) arose in its simplest form as
the double traveling salesman problem with multiple stacks (DTSPMS), proposed by Petersen and
Madsen (2009), when a software company that set up routes in its intermodal traffic encountered
this problem with one of its customers.

In the DTSPMS, a single vehicle, which has its load compartment (container) divided into
rows (horizontal stacks) of fixed depth (horizontal heights), must collect all items spread in a
region known as pickup region and, henceforth, deliver all these collected items in another region,
denominated delivery region. All items have the same size and shape. The items are stored in the

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies
Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main St, Malden, MA02148,
USA.

J. B. C. Chagas et al. / Intl. Trans. in Op. Res. 27 (2020) 112–137 113

Fig. 1. DTSPMS example—adapted from Iori and Riera-Ledesma (2015).

stacks as they are collected. It is important to state that the items are not stored on top of each
other, they are arranged in the same plane (container base) according to rows (horizontal stacks)
and their depths (horizontal heights). The items’ positions cannot be changed when they are already
inside the container, that is, the items should be stationary until their unloading. The delivery must
then respect the last-in-first-out (LIFO) policy. Thus, the delivery route is limited by the stack
configurations set up by the pickup route.

The DTSPMS is a variation of the pickup and delivery traveling salesman problem (TSP) with
multiple stacks (Cordeau et al., 2010; Côté et al., 2012; Sampaio and Urrutia, 2016), where the
pickup and delivery operations must be completely separate. This is due to the fact that the DTSPMS
arises in the context where the pickup and delivery regions are widely separated. In this way,
all items in the pickup region must be gathered prior to any unloading in the delivery region.
The transportation cost between the two regions is fixed and it is not considered as part of the
optimization problem. The problem has applicability in deliveries where items are loaded and
unloaded from the rear of the vehicle and item reallocation is prohibited due to the fact that the
items are heavy and/or fragile or the handling of these items is dangerous.

The objective of the DTSPMS is to find two Hamiltonian cycles, one for the pickup region and
the other for the delivery region, so that the sum of the distances traveled in both regions is the
minimum possible, respecting the precedence constraints imposed by the vehicle’s stacks.

Figure 1 depicts a feasible solution for the DTSPMS in a case involving 16 items. Each item is
associated with a pickup client and a delivery client (item 1 is associated with pickup client 1 and
with delivery client 1, item 2 is associated with pickup client 2 and with delivery client 2, and so
on). The container of this vehicle is divided into two stacks of height 8, that is, the container has
dimensions (2 × 8). The vehicle always starts its route in the pickup region at the vertex 0 (depot)
and, in this example, the vehicle visits customer 15, collects and stores the item in the first stack,
then visits customer 7, storing the item in the second stack, then customer 1 is visited and has his
item stored on the first stack. The gathering continues as shown in the figure until all customers
have been served and their items stored in the vehicle container. At the end, the vehicle returns to
the depot from where the entire container is transported to the delivery region depot. In the delivery

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies

114 J. B. C. Chagas et al. / Intl. Trans. in Op. Res. 27 (2020) 112–137

region, the container is loaded into a vehicle that also always starts its route at the vertex 0 (depot)
and, in this example, from the depot, the vehicle has only two possible customers to visit, since only
items 6 and 16 are accessible from the top of the two stacks. As illustrated in the figure, the vehicle
initially satisfies customer 16, unloads its item from the second stack, and customer 12 becomes
available to be served. The process continues as illustrated, always satisfying a customer who has
its item on top of any of the stacks. At the end of delivering, the vehicle returns to the depot in its
respective region (in this case, the delivery region).

Petersen and Madsen (2009) proposed the DTSPMS, presented a mathematical formulation for
the problem, and also proposed four heuristic approaches to solve it. The four heuristic approaches
were based on the iterated local search (ILS), tabu search, simulated annealing (SA), and large
neighborhood search (LNS) metaheuristics. These heuristics were tested on a set of instances that
became the reference for future works. Among the proposed heuristics, the one based on LNS had
better overall performance.

Since it was presented, the DTSPMS aroused great interest in the academic community, with
several exact and heuristic approaches. Felipe et al. (2009) proposed a heuristic approach based
on the variable neighborhood search (VNS) metaheuristic in which six neighborhood structures
were used. Computational results showed that the VNS approach overcame the results presented
by Petersen and Madsen (2009).

Petersen et al. (2010) proposed different exact mathematical formulations for the DTSPMS,
including a branch-and-cut algorithm to solve the DTSPMS instances to optimality. Based on these
results, it was determined that the difficulty of a given instance depends not only on the number of
items, but also strongly depends on the height of the stacks.

Lusby et al. (2010) presented an exact method based on matching k-best tours for each of the
regions separately. This method consists of repeatedly finding solutions for the two separate TSP
(delivery region and pickup region) until a feasible loading plan is found. The results showed a
significant superiority of this method compared to the previous method proposed by Petersen et al.
(2010).

Carrabs et al. (2010) developed a branch-and-bound algorithm for the double traveling salesman
problem with two stacks (DTSP2S), a special case of the DTSPMS in which the vehicle has exactly
two stacks. The results showed that the branch-and-bound algorithm performed better than the
other exact approaches in the literature (Lusby et al., 2010; Petersen et al., 2010) in terms of
computational time and the number of global optima. According to Carrabs et al. (2010), for the
exact approaches proposed by Lusby et al. (2010) and Petersen et al. (2010), the difficulty of an
instance depends on the capacity of the stacks, consequently, it depends on the number of items and
on the number of stacks in the container. In this case, the performance of the algorithms improves
when the number of stacks increases. This is probably due to the fact that the construction of the
routes in the pickup region and delivery region becomes less restricted.

Casazza et al. (2012) studied the theoretical properties of the DTSPMS, analyzing the structure of
DTSPMS solutions in two separate components: routes and loading plan. It was shown that some
DTSPMS subproblems can be solved in polynomial time, considering specific cases of the problem.

Alba Martı́nez et al. (2013) proposed improvements to the branch-and-cut algorithm of Petersen
et al. (2010), adding new valid inequalities (cut planes) that allowed greater efficiency. The results
showed that the new algorithm overcame the exact methods that existed in the literature to that
date.

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies

J. B. C. Chagas et al. / Intl. Trans. in Op. Res. 27 (2020) 112–137 115

Fig. 2. DVRPMS example (completely filled containers)—adapted from Iori and Riera-Ledesma (2015).

Fig. 3. DVRPMS example (noncompletely filled containers)—adapted from Iori and Riera-Ledesma (2015).

More recently, the exact algorithm proposed by Barbato et al. (2016) was able to solve instances
involving containers of two stacks, which were not previously solved in the literature. To the best of
our knowledge, it is the last report on the DTSPMS.

Iori and Riera-Ledesma (2015) proposed the DVRPMS, a generalization of the DTSPMS. The
DVRPMS has the same characteristics and constraints as the DTSPMS, except that now there is
a fleet of vehicles available to meet the demand of the customers. According to the authors, the
DVRPMS was motivated by the fact that not always a single vehicle is enough to transport all items.
In addition, using multiple vehicles can be interesting even if all products could be transported
by a single vehicle, as the addition of more vehicles causes an increase in the flexibility of the
loading/unloading process and this can lead to a reduction in the operating costs of transport.

Figures 2 and 3 show two feasible solutions for the same instance involving 16 requests. Figure 2
represents a solution using three heterogeneous vehicles with containers of size (2 × 4), (1 × 4), and

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies

116 J. B. C. Chagas et al. / Intl. Trans. in Op. Res. 27 (2020) 112–137

(2 × 2), where all containers are completely filled. Figure 3 represents a solution using four vehicles
with containers of (2 × 4), (2 × 4), (2 × 2), and (2 × 2), but not all containers spaces are filled. In
both examples, for each vehicle are associated a route in the pickup region, a route in the delivery
region, and a loading plan of the container. The pickup and delivery route for each vehicle respects
the LIFO policy on the respective container.

Besides proposing the DVRPMS, Iori and Riera-Ledesma (2015) presented three exact algo-
rithms: branch-and-cut, branch-and-price, and branch-and-cut-and-price. As stated by the authors,
the three exact algorithms had different behavior and efficiency with respect to different instances,
created to evaluate the quality of their algorithms.

To the best of our knowledge, only two works have addressed the DVRPMS by heuristic algo-
rithms. Silveira et al. (2015) proposed three methods based on ILS, SA, and variable neighborhood
descent metaheuristics, while Chagas et al. (2016) proposed another method based on the SA meta-
heuristic, which outperformed all heuristic algorithms proposed by Silveira et al. (2015) and was
able to find several solutions with the same quality as those found by Iori and Riera-Ledesma
(2015).

Chagas and Santos (2016) introduced the double vehicle routing problem with multiple stacks
and heterogeneous demand (DVRPMSHD), a generalization of the DVRPMS, which occurs when
customers have heterogeneous demands and the demand of each customer cannot be divided among
two or more vehicles. The authors also proposed a simple branch-and-price algorithm that was able
to solve only instances of up to 15 customer requests. Posteriorly, a simple and effective heuristic
based on the SA metaheuristic was proposed by the same authors in (Chagas and Santos, 2017).
Their algorithm was able to overcome several results found by the branch-and-price algorithm.

In this paper, we address the DVRPMS, propose an integer linear programming (ILP) formulation
and a heuristic algorithm based on the VNS metaheuristic to solve it.

The remainder of the paper is organized as follows. Section 2 formally describes the DVRPMS
and presents our ILP formulation. In Section 3, the details of the proposed heuristic algorithm is
described. The computational experiments are reported in Section 4 in which we make a comparative
analysis between our methods here proposed and the ones already described in the literature. Finally,
in Section 5 we present our conclusions and emphasize the contributions of this paper.

2. Problem definition

As introduced in Iori and Riera-Ledesma (2015), the DVRPMS can be formally described as
follows. Let I = {1, 2, . . . , n} be the set of customer requests carried by the vehicles in the pickup
and delivery regions. Let also V P

c = {1P, 2P, . . . , nP} be the set of customers related to the pickup
regions and V D

c = {1D, 2D, . . . , nD} the corresponding customers in the delivery region. Following
the region dependencies, each request i ∈ I corresponds to its iT ∈ V T

c vertex, where T refers to any
of the two regions.

It is possible to represent the DVRPMS as a directed graph G = (V, E), where V is the set of
vertices given by V = V P ∪ V D, where V P = {0P} ∪ V P

c and V D = {0P} ∪ V D
c . The members 0P and

0D are the depots for the pickup and delivery regions and members V P
c and V D

c are, respectively,
the sets of vertices excluding the depots for the pickup and delivery regions. Likewise, the set of
arcs is given by E = EP ∪ ED, where EP = {(iP, jP) ∈ V P × V P | iP �= jP} and ED = {(iD, jD) ∈
C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies

J. B. C. Chagas et al. / Intl. Trans. in Op. Res. 27 (2020) 112–137 117

V D × V D | iD �= jD}. For each arc (i, j) ∈ EP and (i, j) ∈ ED, there is an associated routing cost of
cP

i j and cD
i j , respectively.

Let K be the set of vehicles available to meet the transportation requirements. The loading
compartment (container) of each vehicle k ∈ K is divided into Rk stacks, all with the same height
Lk. All vehicles in the K set must start and end their routes in the depots defined in each region.
The vehicles must collect all items from customers located in the pickup region, store those items in
their container, and then deliver the items to the respective customers located in the delivery region.

The routes of each vehicle must satisfy the LIFO policy in all its stacks, that is, if a client located
at vertex iP (pickup region) is visited before the client located at vertex jP (pickup region), and the
requested item j is stored in the same stack in which the i item was stored, then the request client j
must be visited (vertex jD) before the client of the requisition i (vertex iD) in the delivery region.

The objective of the DVRPMS is to serve all |I | requests, so that the total distance traveled by
the |K| vehicles is the smallest possible one.

The DVRPMS can be formally modeled as a binary ILP problem. In the rest of this section,
we describe an ILP formulation that was based on the mathematical formulation described by
Chagas and Santos (2016) for the DVRPMSHD, which in turn was based on the mathematical
formulation of the DTSPMS proposed by Petersen and Madsen (2009) and on the mathematical
formulation for the DVRPMS proposed by Iori and Riera-Ledesma (2015). The variables used in
the ILP formulation are described below:

� xkT
i j : binary variable that gets 1 if the vehicle k crosses the arc (i, j) in the region T , and 0

otherwise.
� y T

i j : binary variable that gets 1 if the vertex i is visited before the vertex j in region T , and 0
otherwise.

� wk
i : binary variable that gets 1 if the vehicle k carries out the requested item i, and 0 otherwise.

� zk
ir : binary variable that gets 1 if the item referring to the request i is stored in the rth stack of the

vehicle k, and 0 otherwise.

With these variables, we can describe the following ILP formulation for the DVRPMS:

min
∑

k∈K

∑

T∈{P,D}

∑

(i, j)∈ET

c T
i j · xkT

i j (1)

s.t.
∑

j∈V T

xkT
0 j = 1 k ∈ K, T ∈ {P, D} (2)

∑

i∈V T

xkT
i0 = 1 k ∈ K, T ∈ {P, D} (3)

∑

i∈V T \{ j}
xkT

i j = wk
j k ∈ K, T ∈ {P, D}, j ∈ V T

c (4)

∑

j∈V T \{i}
xkT

i j =
∑

j∈V T \{i}
xkT

ji k ∈ K, T ∈ {P, D}, i ∈ V T
c (5)

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies

118 J. B. C. Chagas et al. / Intl. Trans. in Op. Res. 27 (2020) 112–137

∑

k∈K

wk
i = 1 i ∈ I (6)

∑

i∈I

zk
ir ≤ Lk k ∈ K, r = 1..Rk (7)

Rk∑

r=1

zk
ir = wk

i k ∈ K, i ∈ I (8)

y T
i j + y T

ji = 1 T ∈ {P, D}, i ∈ V T
c , j ∈ V T

c \ {i} (9)

y T
il + y T

l j ≤ y T
i j + 1 T ∈ {P, D}, l ∈ V T

c , i ∈ V T
c \ {l}, j ∈ V T

c \ {i, l} (10)

xkT
i j ≤ y T

i j k ∈ K, T ∈ {P, D}, i ∈ V T , j ∈ V T \ {i} (11)

y P
i j + zk

ir + zk
jr ≤ 3 − y D

i j k ∈ K, i ∈ I, j ∈ I \ {i}, r = 1..Rk (12)
∑

j∈I

j · xkP
0 j ≤

∑

j∈I

j · xk′P
0 j k ∈ K, k′ ∈ K | k < k′, Rk = Rk′, Lk = Lk′ (13)

xkT
i j ∈ {0, 1} k ∈ K, T ∈ {P, D}, (i, j) ∈ ET (14)

y T
i j ∈ {0, 1} T ∈ {P, D}, i ∈ V T , j ∈ V T \ {i} (15)

zk
ir ∈ {0, 1} k ∈ K, i ∈ I, r = 1..Rk (16)

wk
i ∈ {0, 1} k ∈ K, i ∈ I . (17)

The objective function of the problem is defined by Equation (1), which minimizes the total
distance traveled by the vehicles. Constraints (2) and (3) ensure that each vehicle starts and ends its
route in the depot of each region. Note that for instances where the total capacity of the vehicles
is greater than the total customer demand, a vehicle k may not be used, in this case, the variable
xkT

00 gets 1 ∀ T ∈ {P, D}, indicating that the vehicle did not serve any customer request. Constraints
(4) ensure that each request j is served by a vehicle k only if the vehicle k reaches the vertex j.
Constraints (5) guarantee that the same vehicle must arrive and leave a vertex that represents the
location of a client. Constraints (6) ensure that each request is served by one and only one vehicle.
Constraints (7) ensure that the capacity of the stacks is not extrapolated. Constraints (8) ensure that
the item of a request served by a vehicle k must be stored in its container. Constraints (9) and (10)
establish a visitation order between all vertex pairs in both regions and ensure a transitivity in this
order, respectively. In other words, if i precedes l and l precedes j, then i precedes j. Constraints
(11) ensure that if an arc (i, j) is traversed by a vehicle, then i is strictly visited before j. Constraints
(12) indicate the restrictions regarding the LIFO policy applied in all stacks of all vehicles. If the
item related to the requests i and j are stored in the same stack r of vehicle k, being i visited before
j in the pickup region, then i cannot be visited before j in the delivery region. Constraints (13)
break the resulting symmetry from the formulation, imposing a lexicographic order on the routes of

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies

J. B. C. Chagas et al. / Intl. Trans. in Op. Res. 27 (2020) 112–137 119

Fig. 4. DVRPMS solution representation example (Chagas et al., 2016).

vehicles with the same container configuration. And, finally, constraints (14)–(17) define the scope
and domain of the decision variables.

Although this formulation does not use advanced optimization methods (e.g., branch-cut, branch-
and-price, among others), it may be used as an alternative to the exact methods proposed by Iori
and Riera-Ledesma (2015).

3. Heuristic approach

Since the DVRPMS is a complex combinatorial problem, for some large instance none of the
exact methods proposed by Iori and Riera-Ledesma (2015) and neither our ILP formulation could
solve the problem within an acceptable time. To work around this difficulty, implementing heuristic
algorithms to solve large-scale instances is inevitable. Considering that the VNS metaheuristic is
widely used in the literature to solve combinatorial problems (Hansen and Mladenović, 2001), we
also have been motivated to propose a method based on VNS to solve the DVRPMS. The remainder
of this section is intended to describe it in detail.

3.1. Solution representation

The solution representation defined by Chagas et al. (2016) was used in this paper, where a solution
for the DVRPMS is represented by the items of the |I | customer requests, which are distributed and
allocated in the containers of the |K| vehicles in the fleet. This representation defines the loading
plan of the items in each container and, consequently, defines the loading/unloading constraints
that must be obeyed in order to respect the LIFO policy.

Figure 4 shows an example of representation for a solution involving 16 transport requests and
3 vehicles with containers of dimensions (2 × 4), (1 × 4), and (2 × 2). As seen in the figure, the
representation of the solution only informs the designation of the requests and the container loading
plan for each vehicle. For each vehicle, the routes in the pickup and delivery regions are obtained
by the evaluation functions described in Section 3.2.

3.2. Evaluation function

As previously mentioned, the solution representation does not report the routes performed by
each vehicle. We assign this task to the evaluation function, which is responsible to evaluate

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies

120 J. B. C. Chagas et al. / Intl. Trans. in Op. Res. 27 (2020) 112–137

Fig. 5. Greedy phase of the evaluation heuristic.

and determine a route in the pickup region and another in the delivery region for each vehicle
from its container (solution representation) and thus to return the total distance traveled by the
vehicles.

Finding the shortest route in the pickup region (or the delivery region) with LIFO constraints
imposed by a known loading plan can be seen as the traveling salesman problem with precedence
constraints (TSPPC), proposed by Savelsbergh and Sol (1995), where the precedence constraints
are given by the loading plan. According to Moon et al. (2002), TSPPC belongs to the class of
problems NP-hard problems, therefore the optimal solution to the problem cannot be obtained
within a reasonable computational time when large instances are considered.

In this work, we developed two different evaluation functions. At first, we consider the evaluation
function, denoted as fopt(·), that consists in applying the dynamic programming algorithm described
by Casazza et al. (2012) in each container k ∈ K to determine the shortest pickup (delivery) route
that satisfies the LIFO constraints imposed by the loading plan.

From preliminary tests, we concluded that evaluating all solutions explored by the VNS algorithm
using the evaluation function fopt(·) is impracticable due to its exponential complexity, that is,
though the number of stacks is small, during the execution of the algorithm a countless number of
solutions are evaluated. Therefore, we proposed a simple heuristic evaluation, denoted as fheur(·),
in order to find good-quality routes in shorter computational time. This heuristic evaluation can be
divided into two phases that are subsequently performed: a greedy phase and a local search phase.

In the greedy phase, for each vehicle, a pickup route (respectively, a delivery route) is constructed
choosing at each time, among the items at the bottom (top) of each stack, the item that has the least
impact (least distance) on the pickup (delivery) route. In other words, at each moment an item is
chosen, the pickup route (delivery route) is constructed, so that the item collected (delivered) is the
closest item to the partially constructed route.

Figure 5 illustrates the greedy phase of the evaluation heuristic when applied to the pickup region
(a) and other in the delivery region (b), considering a vehicle with a container of dimensions (2 × 4).
The dashed positions in the container indicate that the items already have been inserted in the
routes by previous iterations. In the case shown in Fig. 5(a), the last vertex inserted in the pickup

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies

J. B. C. Chagas et al. / Intl. Trans. in Op. Res. 27 (2020) 112–137 121

Fig. 6. Representation of the routes through the operations carried out in the stacks.

route is vertex 9P, which refers to request 9. From this vertex, only vertices 3P and 10P, associated
with requests 3 and 10, respectively, are accessible in the pickup region, since the constraints of the
loading plan must be satisfied. Amid vertices 3P and 10P, vertex 3P will be chosen, since vertex 3P

is the closest to the vertex 9P. Similarly, in Fig. 5(b) the vertex 2D will be chosen, since, among the
candidates 1D and 2D, 2D is the closest to the last vertex (9D) inserted in the delivery route.

Note that the routes assigned to a vehicle can be represented by the order that the operations
are performed on the container stacks. Figure 6 illustrates this statement, where the stacks of a
container of size (2 × 4) were named s1 and s2 to facilitate the appropriate referencing of each
stack. The sequences SP and SD represent, respectively, the route assigned to the vehicle in the
pickup and delivery regions.

The second phase of the evaluation heuristic consists of applying a refinement algorithm to the
routes determined by the greedy phase. In this phase, a local search is applied separately in each one
of the sequences SP and SD in order to find better routes. The neighborhood structure defined to
perform this local search consists of exchanging two operations si and s j | i �= j of their positions.
Figure 7 shows a neighbor SP′

from SP, as well as the changes caused in the pickup route.
In the local search procedure, the inspection of neighbors is done casually (a neighbor is chosen

randomly from the neighbors of a neighborhood structure) and the neighborhood of the current
sequence is explored until a sequence that represents a shorter route is found than the route already
known, that is, we use a first improvement strategy.

In possession of a solution representation and a defined strategy to evaluate these solutions, the
next section defines and details the neighborhood structures to be applied to DVRPMS solutions.

3.3. Neighborhood structures

In order to explore the solution space of the DVRPMS, we define four neighborhood structures:
item swap (IS), item ejection chain (IC), stack permutation (SP), and stack swap (SS). All these
structures are used in our VNS algorithm and are described and detailed as follows.

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies

122 J. B. C. Chagas et al. / Intl. Trans. in Op. Res. 27 (2020) 112–137

Fig. 7. Local search phase of the evaluation heuristic.

Fig. 8. An item swap (IS) example (Chagas et al., 2016).

3.3.1. Item swap
The IS neighborhood of a solution of the DVRPMS, defined by Chagas et al. (2016), contains the
solutions that can be obtained by swapping two items of the containers. The items to be relocated
may belong to the same container or to different container, then the size of IS neighborhood is

O((
|I |
2

)) = O(|I |2). Figure 8 shows an example of a solution s and one of its neighbors s′.

3.3.2. Item ejection chain
The IC neighborhood of a solution of the DVRPMS contains the solutions that can be obtained by
exchanging three items of the containers by way of ejection chain, that is, the first item is relocated
in position of the second one, the second item is relocated in position of the third one, and the
third item is relocated in position of the first one. As in the neighborhood structure IS, the items
to be relocated may belong to the same container or to a different container, so the size of IC
neighborhood is O(|I |3). Figure 9 shows a solution s and one of its neighbors s′.

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies

J. B. C. Chagas et al. / Intl. Trans. in Op. Res. 27 (2020) 112–137 123

Fig. 9. An item ejection chain example.

Fig. 10. A stack permutation example.

Fig. 11. A stack swap example.

3.3.3. Stack permutation
The SP neighborhood of a solution of the DVRPMS contains the solutions that can be obtained
by rearranging items from the same row (horizontal stack) using a permutation of these items. As
the total number of stacks of a solution is

∑
k∈K Rk and each stack of size Lk has Lk! permutations,

the size of SP neighborhood is O(
∑

k∈K Lk! Rk). Figure 10 shows an example of a solution s and
one of its neighbors s′.

3.3.4. Stacks swap
The SS neighborhood of a solution of the DVRPMS contains the solutions that can be obtained
by swapping two stacks of the different containers. As the stacks to be relocated must belong to
different containers, the size of SS neighborhood is given by a combination of the total number
of stacks grouped in pairs, disregarding the pairs of stacks that belong to the same vehicle, that is,
O((

∑
k∈K Rk

2) − ∑
k∈K (

Rk
2)). Figure 11 shows an example of a solution s and one of its neighbors s′.

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies

124 J. B. C. Chagas et al. / Intl. Trans. in Op. Res. 27 (2020) 112–137

Fig. 12. A stack swap example, when the heights of the stacks are different.

For two stacks with different heights, the swap is made only between the items of the smallest
stack and the items loaded in the first (bottom-up) positions of the largest stack. Figure 12 shows
an example for this situation.

3.4. Initial solution

The initial solution of our VNS algorithm is created randomly. A random subset of customer
requests is assigned to each vehicle in such a way that the number of requests does not exceed the
capacity of each vehicle and that each request is to be served by a single vehicle.

3.5. Variable neighborhood search

The VNS metaheuristic, proposed by Mladenović and Hansen (1997) (for a recent description,
see, e.g., Hansen and Mladenović, 2014), is a higher level procedure widely used to solve a large
variety of practical and complex problems (Felipe et al., 2009; Tricoire et al., 2011; Wei et al., 2014,
2015; Pinto et al., 2020; Smiti et al., 2020). In its simplest form, known as basic VNS (Hansen and
Mladenović, 2001), the VNS requires a local search procedure and a set of neighborhood structures
Nk (k = 1, 2, . . . , kmax) which are used to perform shaking moves in order to escape from local
optima solutions found throughout the algorithm.

Algorithm 1 describes our proposed VNS, where fheur(·) and fopt(·) are the functions that run
the evaluation heuristics described in Section 3.2 for each container and return the total distance
traveled by the vehicles. Initially, we define the setN that consists of the four neighborhood structures
previously described. These neighborhood structures are arranged hierarchically according to their
perturbation strength, that is, the first neighborhood structure is the IS, followed by the IC, SP,
and SS. The algorithm’s initial solution (line 3) is generated randomly according to Section 3.4.
While the number of iterations without improvement has not reached the established maximum
(iter max), the algorithm chooses a random neighbor s′ using the kth neighborhood structure
(initially k = 1) from the current solution s and then applies a local search in s′, which produces a
new solution s′′. The local search (see Algorithm 2) consists of applying a descent method using the
IS neighborhood structure with a first improvement strategy. If the solution s′′ is better than s, s′′

becomes the current solution and the procedure is repeated using the first neighborhood structure
(k is reset to 1), otherwise the procedure is repeated using the next neighborhood structure (k + 1).
The method stops when the current number of iterations reaches the stopping criteria, noted by

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies

J. B. C. Chagas et al. / Intl. Trans. in Op. Res. 27 (2020) 112–137 125

iter max. Then, the best solution found is evaluated by the function fopt(·) and then returned. Note
that during the internal part of the algorithm (lines 5–19), all the solutions are evaluated by function
fheur(·). This means that throughout the algorithm, each solution is evaluated heuristically, favoring
efficiency, while the last solution is evaluated optimally, favoring quality, so that the functioning of
the algorithm does not become costly (time-consuming).

Algorithm 1. Variable neighborhood search

1: Let N = {N1,N2,N3,N4} = {IS, IC, SP, SS} be the set of neighborhood structures
2: kmax ← |N |
3: s ← generate a random solution
4: iter ← 0
5: while iter < iter max do
6: k ← 1
7: repeat
8: s′ ← pick a random neighbor in the k-th neighborhood structure of s (s′ ∈ Nk(s))
9: s′′ ← apply local search in s′ using the IS neighborhood structure � Algorithm 2
10: if fheur(s

′′) < fheur(s) then
11: s ← s′′

12: k ← 1
13: iter ← 0
14: else
15: k ← k + 1
16: iter ← iter + 1
17: end if
18: until k > kmax
19: end while
20: fopt (s)
21: return s

Algorithm 2. Local search

1: Let s be the solution in which the local search will be applied
2: Let IS(s) be the set of solutions in the item swap (IS) neighborhood of solution s
3: improv ← true
4: while improv = true do
5: improv ← false
6: neighbors ← IS(s)
7: while neighbors �= { } and improv = false do
8: s′ ← pick a random neighbor s′ ∈ neighbors
9: if fheur(s

′) < fheur(s) then
10: s ← s′

11: improv ← true
12: else
13: neighbors ← neighbors \ {s′}
14: end if
15: end while
16: end while
17: return s

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies

126 J. B. C. Chagas et al. / Intl. Trans. in Op. Res. 27 (2020) 112–137

4. Computational results

The VNS algorithm was implemented in C++ and was sequentially (nonparallel) performed on
a computer with the same settings as those used in the experiments reported by Chagas et al.
(2016), that is, on an Intel Core i5-3570 @ 3.40 GHz × 4 computer with 16 GB RAM running
the operating system Ubuntu 14.04 LTS 64 bits. Since for some instances, the ILP formulation
requires a large amount of memory, we ran it on an Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20 GHz
× 40 computer with 384 GB of RAM, running the operating system CentOS Release 6.8 (Final)
Kernel Linux 2.6.32-642.1.1.el6.x86_64. Our ILP formulation was implemented in C++ using the
Concert Technology Library of CPLEX 12.5 under an academic license, with all CPLEX default
settings, except for the runtime that was limited to three hours. It is worth mentioning that unlike the
VNS algorithm, the ILP formulation was executed on multiple threads, as defined by the CPLEX
default settings.

4.1. Benchmark instances

The set of benchmark instances used to validate the proposed approaches to solve the DVRPMS
was the one described by Iori and Riera-Ledesma (2015). The authors defined 24 different types
of instances, where each type contains the number of customer requests, the number of vehicles
available, and the configurations of the vehicle’s loading compartments. These 24 types of instances
are divided into two sets. The first one, denoted by C, contains 15 types of instances for which the
total capacity of the vehicles is equal to the total number of customer requests (number of items),
that is, for all these types of instances the containers must be fully loaded in order to serve all
customers. The second set, denoted by ¬C, contains nine types of instances for which the total
number of customer requests (number of items) is less than the total capacity of the vehicles, so
the containers do not need to be completely filled in order to serve customers. Tables 1 and 2
show, respectively, the specifications of sets C and ¬C. Each type is described by the number of
customer requests |I |, the number of vehicles |K|, and the configuration of the containers of the
vehicle fleet (column (R × L)′s). The last column of each table shows the total capacity of each type
of fleet.

Regarding customer locations, for each type of instances previously defined, Iori and Riera-
Ledesma (2015) used the data from five DTSPMS benchmark instances (R05, R06, R07, R08,
and R09), giving in total 120 instances. Each of these instances reports the customers’ locations in
the pickup region and in the delivery region. These locations were chosen at random within two
different regions of dimensions 100 × 100, and the depot of each region was fixed in coordinates
(50, 50). The distance between any two points of the same region was calculated using the rounded
Euclidean distance.

4.2. Parameter tuning

The proposed VNS algorithm has only one parameter (number of iterations without improvement)
that is referenced as iter max and it is responsible for stopping the execution of the algorithm

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies

J. B. C. Chagas et al. / Intl. Trans. in Op. Res. 27 (2020) 112–137 127

Table 1
Instance specifications of group C

T |I | |K| (R × L)′s
∑

k∈K RkLk

(a) 12 2 (2 × 3) (2 × 3) 12
(b) 12 2 (2 × 2) (2 × 4) 12
(c) 12 3 (2 × 2) (2 × 2) (2 × 2) 12

(d) 16 2 (2 × 4) (2 × 4) 16
(e) 16 3 (2 × 2) (2 × 3) (2 × 3) 16
(f) 16 4 (2 × 2) (2 × 2) (2 × 2) (2 × 2) 16

(g) 18 2 (2 × 3) (3 × 4) 18
(h) 18 3 (2 × 3) (2 × 3) (2 × 3) 18
(i) 18 4 (2 × 2) (2 × 2) (2 × 2) (2 × 3) 18

(j) 20 2 (2 × 4) (3 × 4) 20
(k) 20 3 (2 × 3) (2 × 3) (2 × 4) 20
(l) 20 4 (2 × 3) (2 × 3) (2 × 2) (2 × 2) 20

(m) 24 2 (3 × 4) (3 × 4) 24
(n) 24 3 (2 × 4) (2 × 4) (2 × 4) 24
(o) 24 4 (2 × 3) (2 × 3) (2 × 3) (2 × 3) 24

Table 2
Instance specifications of group ¬C

T |I | |K| (R × L)′s
∑

k∈K RkLk

(p) 18 2 (4 × 4) (4 × 4) 32
(q) 18 3 (3 × 4) (3 × 4) (3 × 4) 36
(r) 18 4 (2 × 4) (2 × 4) (2 × 4) (2 × 4) 32

(s) 20 2 (4 × 4) (4 × 4) 32
(t) 20 3 (3 × 4) (3 × 4) (3 × 4) 36
(u) 20 4 (2 × 4) (2 × 4) (2 × 4) (2 × 4) 32

(v) 24 2 (4 × 4) (4 × 4) 32
(w) 24 3 (3 × 4) (3 × 4) (3 × 4) 36
(x) 24 4 (2 × 4) (2 × 4) (2 × 4) (2 × 4) 32

(stopping criteria). Naturally, the higher the iter max value, the wider the search and, consequently,
the algorithm finds better solutions but spends more time. In order to balance the quality of the
solutions and the execution time, for each instance, we ran 30 times the VNS algorithm with different
values of iter max and constructed the chart shown in Fig. 13. The values tested for iter max are
arranged on the horizontal axis of the chart, such values have been defined in function of the number
of customer requests |I |. For each iter max value, we plot the average value of the objective function
and also the average execution time.

After analyzing the chart, it is inferred that from item max = 7 |I |, the improvement is small in
relation to the processing time. Therefore, the final experiments were performed with item max =
7 |I |.

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies

128 J. B. C. Chagas et al. / Intl. Trans. in Op. Res. 27 (2020) 112–137

Fig. 13. Analysis of the stopping criteria of the VNS algorithm.

4.3. Results on test instances

The results obtained by our approaches to solve the DVPRMS is reported in this section. As pointed
before, the execution time of the ILP formulation was limited to three hours. All exact algorithms
proposed by Iori and Riera-Ledesma (2015) were limited to one hour. Our VNS algorithm was ran
10 independent times and the average and best value of the objective function obtained in these 10
runs were used in our analysis.

Tables 3 and 4 report the results on instances of group C, that is, those in which the total
capacity of the fleet of vehicles and the number of customer requests are exactly the same. Thus, the
containers must be completely filled so that all customers are served. Table 3 shows the results for
the 30 instances (ID 001–ID 030), considered by Iori and Riera-Ledesma (2015) as small instances,
and Table 4 shows the results for the 45 large instances (ID 031–ID 075). Table 5 reports the results
for the 45 instances of group ¬C (ID 076–ID 120), that is, those in which the total fleet capacity of
vehicles is larger than the number of customers and, therefore, the containers will not necessarily
be completely filled.

The first three columns of each table describe the instances, being that each instance is iden-
tified by a number (column ID), a name indicating the pickup and delivery regions (column R),
and a type of instance (column T). The best results obtained by Iori and Riera-Ledesma (2015)
are presented in the columns UB and t (seconds) that indicate, respectively, the upper bound
and the execution time in seconds. The results obtained by our ILP formulation are described in
columns LB, UB, Gap%, t (seconds), and Opt. Columns LB and UB, respectively, indicate the lower
bound and upper bound obtained at the end of the execution. Column Gap% shows the relative
gap between UB and LB, which can be calculated as 100 × (UB − LB)/UB. Column t (seconds)

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies

J. B. C. Chagas et al. / Intl. Trans. in Op. Res. 27 (2020) 112–137 129

T
ab

le
3

C
om

pa
ra

ti
ve

an
al

ys
is

on
sm

al
le

r-
si

ze
in

st
an

ce
s

of
gr

ou
p

C

In
st

an
ce

Io
ri

an
d

R
ie

ra
-L

ed
es

m
a

(2
01

5)
IL

P
fo

rm
ul

at
io

n
Si

lv
ei

ra
et

al
.

(2
01

5)
C

ha
ga

s
et

al
.(

20
16

)
V

N
S

ID
R

T
U

B
t (s

ec
on

ds
)

U
B

L
B

G
ap

%
t (s

ec
on

ds
)

O
pt

B
es

t
t (s

ec
on

ds
)

A
vg

B
es

t
t (s

ec
on

ds
)

A
vg

B
es

t
t (s

ec
on

ds
)

00
1

R
05

(a
)

73
8

2
73

8
73

8.
0

0.
00

46
*

74
6

31
73

8.
0

73
8

13
73

8.
0

73
8

2
00

2
R

06
89

5
0

89
5

89
5.

0
0.

00
18

*
89

7
30

89
5.

0
89

5
13

89
5.

0
89

5
2

00
3

R
07

76
1

5
76

1
76

1.
0

0.
00

48
6

*
76

1
31

76
1.

0
76

1
13

76
1.

0
76

1
2

00
4

R
08

84
8†

0
85

1
85

1.
0

0.
00

27
*

85
1

31
85

1.
0

85
1

13
85

1.
0

85
1

2
00

5
R

09
77

1†
0

77
6

77
6.

0
0.

00
20

*
78

1
31

77
6.

0
77

6
14

77
6.

0
77

6
2

00
6

R
05

(b
)

71
6

1
71

6
71

6.
0

0.
00

23
*

72
8

31
71

6.
9

71
6

3
71

6.
0

71
6

1
00

7
R

06
85

9†
2

86
6

86
6.

0
0.

00
18

*
87

3
31

86
6.

0
86

6
3

87
7.

4
86

6
1

00
8

R
07

73
3

3
73

3
73

3.
0

0.
00

95
*

73
3

31
73

3.
0

73
3

3
73

3.
0

73
3

1
00

9
R

08
85

8
3

85
8

85
8.

0
0.

00
31

*
87

5
31

85
8.

0
85

8
3

86
5.

5
85

8
1

01
0

R
09

73
8†

1
74

1
74

1.
0

0.
00

16
*

76
0

31
74

1.
5

74
1

3
75

2.
8

74
1

1

01
1

R
05

(c
)

85
5

0
85

5
85

5.
0

0.
00

72
*

85
9

35
85

5.
0

85
5

5
85

5.
0

85
5

1
01

2
R

06
10

11
0

10
11

10
11

.0
0.

00
78

*
10

11
35

10
11

.0
10

11
5

10
11

.0
10

11
1

01
3

R
07

89
4

1
89

4
89

4.
0

0.
00

36
7

*
89

4
35

89
4.

0
89

4
5

89
4.

0
89

4
1

01
4

R
08

99
0

1
99

0
99

0.
0

0.
00

14
6

*
99

0
35

99
0.

0
99

0
5

99
0.

0
99

0
1

01
5

R
09

85
2

0
85

2
85

2.
0

0.
00

54
*

85
3

35
85

2.
0

85
2

5
85

2.
0

85
2

1

01
6

R
05

(d
)

94
7

32
9

94
7

91
9.

0
2.

96
3

h
97

6
32

94
8.

1
94

8
1

95
0.

2
94

7
5

01
7

R
06

10
36

43
10

36
10

36
.0

0.
00

16
25

*
10

93
32

10
40

.2
10

36
1

10
45

.1
10

36
6

01
8

R
07

92
5

46
92

5
92

5.
0

0.
00

33
03

*
97

1
32

92
5.

0
92

5
1

92
6.

6
92

5
4

01
9

R
08

10
06
†

52
10

10
10

10
.0

0.
00

16
32

*
10

60
33

10
21

.5
10

20
1

10
14

.6
10

10
6

02
0

R
09

90
7†

97
92

1
92

1.
0

0.
00

31
95

*
31

95
10

92
5.

1
92

5
1

92
4.

1
92

1
5

02
1

R
05

(e
)

10
50

21
10

50
10

50
.0

0.
00

42
25

*
10

87
37

10
50

.0
10

50
21

10
51

.6
10

50
5

02
2

R
06

11
02
†

6
11

14
11

14
.0

0.
00

17
78

*
11

14
37

11
14

.0
11

14
20

11
14

.0
11

14
4

02
3

R
07

10
63

29
10

72
95

8.
1

10
.6

3
3

h
10

89
37

10
63

.0
10

63
20

10
66

.9
10

63
4

02
4

R
08

11
17
†

10
11

26
11

26
.0

0.
00

27
85

*
11

42
36

11
30

.8
11

26
21

11
36

.3
11

26
4

02
5

R
09

10
21

9
10

21
10

21
.0

0.
00

21
87

*
10

46
36

10
21

.6
10

21
21

10
26

.1
10

21
5

02
6

R
05

(f
)

12
17

37
12

17
10

54
.5

13
.3

5
3

h
12

23
42

12
17

.0
12

17
10

12
17

.0
12

17
2

02
7

R
06

12
90

10
12

90
11

55
.5

10
.4

3
3

h
12

90
41

12
90

.0
12

90
10

12
90

.0
12

90
2

02
8

R
07

12
30

44
12

30
10

46
.8

14
.9

0
3

h
12

30
41

12
30

.0
12

30
10

12
30

.0
12

30
2

02
9

R
08

12
61

18
12

61
11

48
.3

8.
94

3
h

12
62

44
12

61
.0

12
61

10
12

61
.0

12
61

2
03

0
R

09
11

27
7

11
34

99
6.

9
12

.0
9

3
h

11
34

43
11

34
.0

11
34

10
11

34
.0

11
34

2

A
ve

ra
ge

96
0.

6
25

.9
96

3.
0

93
4.

0
2.

44
32

60
.9

23 30
97

6.
0

33
.9

96
3.

7
96

3.
2

8.
8

96
5.

2
96

2.
7

2.
5

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies

130 J. B. C. Chagas et al. / Intl. Trans. in Op. Res. 27 (2020) 112–137

T
ab

le
4

C
om

pa
ra

ti
ve

an
al

ys
is

on
la

rg
er

-s
iz

e
in

st
an

ce
s

of
gr

ou
p

C

In
st

an
ce

Io
ri

an
d

R
ie

ra
-L

ed
es

m
a

(2
01

5)
IL

P
fo

rm
ul

at
io

n
Si

lv
ei

ra
et

al
.

(2
01

5)
C

ha
ga

s
et

al
.(

20
16

)
V

N
S

ID
R

T
U

B
t (s

ec
on

ds
)

U
B

L
B

G
ap

%
t (s

ec
on

ds
)

O
pt

B
es

t
t (s

ec
on

ds
)

A
vg

B
es

t
t (s

ec
on

ds
)

A
vg

B
es

t
t (s

ec
on

ds
)

03
1

R
05

(g
)

95
0

9
95

0
95

0.
0

0.
00

77
8

*
10

83
31

95
2.

5
95

0
19

96
4.

8
95

0
16

03
2

R
06

10
12
†

27
10

24
10

24
.0

0.
00

72
24

*
10

87
31

10
38

.8
10

24
19

10
35

.6
10

24
15

03
3

R
07

93
2

67
93

2
93

2.
0

0.
00

85
92

*
10

54
32

93
6.

8
93

2
21

94
3.

4
93

2
13

03
4

R
08

10
11
†

50
10

18
10

18
.0

0.
00

36
35

*
11

28
31

10
40

.7
10

31
20

10
37

.8
10

24
16

03
5

R
09

90
9†

48
91

9
91

9.
0

0.
00

28
60

*
98

5
31

93
7.

4
91

9
21

93
1.

5
91

9
18

03
6

R
05

(h
)

11
47

60
11

47
10

21
.9

10
.9

1
3

h
11

98
41

11
47

.0
11

47
33

11
53

.9
11

47
8

03
7

R
06

11
65

8
11

77
11

00
.0

6.
54

3
h

11
90

42
11

77
.0

11
77

33
11

77
.0

11
77

10
03

8
R

07
11

23
32

11
40

93
0.

1
18

.4
1

3
h

11
36

41
11

23
.0

11
23

33
11

23
.0

11
23

7
03

9
R

08
11

84
40

11
84

10
96

.7
7.

37
3

h
12

14
41

11
84

.0
11

84
33

11
88

.6
11

84
9

04
0

R
09

10
80

50
10

97
95

4.
0

13
.0

3
3

h
11

11
41

10
81

.4
10

80
33

10
80

.6
10

80
9

04
1

R
05

(i
)

12
69

31
9

12
91

99
9.

4
22

.5
9

3
h

12
92

43
12

72
.0

12
69

18
12

74
.6

12
69

5
04

2
R

06
12

64
38

12
75

10
84

.8
14

.9
2

3
h

12
82

43
12

75
.1

12
75

18
12

75
.1

12
75

6
04

3
R

07
12

61
19

3
12

81
93

6.
8

26
.8

7
3

h
12

84
43

12
61

.0
12

61
18

12
73

.7
12

61
4

04
4

R
08

13
10

50
4

13
12

11
09

.3
15

.4
5

3
h

13
38

44
13

10
.0

13
10

18
13

17
.1

13
10

6
04

5
R

09
11

57
62

11
57

95
4.

0
17

.5
4

3
h

11
96

44
11

58
.0

11
57

18
11

62
.8

11
57

6

04
6

R
05

(j
)

10
12

11
5

10
13

95
3.

0
5.

92
3

h
11

26
34

10
19

.2
10

12
6

10
24

.3
10

12
21

04
7

R
06

10
18

24
10

18
10

18
.0

0.
00

14
53

*
11

77
33

10
43

.5
10

18
6

10
50

.3
10

18
21

04
8

R
07

10
47

29
0

10
56

94
1.

6
10

.8
3

3
h

11
62

34
10

65
.8

10
54

6
10

75
.5

10
47

18
04

9
R

08
10

40
75

1
10

58
98

1.
7

7.
22

3
h

12
21

10
10

68
.8

10
50

8
10

73
.4

10
50

18
05

0
R

09
95

9
55

97
3

93
0.

4
4.

38
3

h
11

26
34

98
5.

2
97

7
7

98
7.

6
97

4
22

05
1

R
05

(k
)

11
74

86
0

12
31

98
1.

0
20

.3
1

3
h

12
12

45
11

80
.4

11
74

28
11

80
.4

11
74

13
05

2
R

06
12

00
66

12
34

10
64

.4
13

.7
4

3
h

12
53

44
12

09
.5

12
00

27
12

27
.0

12
00

11
05

3
R

07
12

43
14

71
13

75
94

2.
6

31
.4

5
3

h
12

89
44

12
47

.4
12

43
28

12
58

.0
12

43
11

05
4

R
08

11
96

91
5

12
66

10
50

.3
17

.0
4

3
h

12
75

44
12

10
.9

12
06

28
12

11
.3

12
06

14
05

5
R

09
11

33
26

8
11

78
95

9.
2

18
.5

7
3

h
11

96
46

11
51

.0
11

44
27

11
54

.4
11

44
12 C

on
ti

nu
ed

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies

J. B. C. Chagas et al. / Intl. Trans. in Op. Res. 27 (2020) 112–137 131

T
ab

le
4

C
on

ti
nu

ed

In
st

an
ce

Io
ri

an
d

R
ie

ra
-L

ed
es

m
a

(2
01

5)
IL

P
fo

rm
ul

at
io

n
Si

lv
ei

ra
et

al
.

(2
01

5)
C

ha
ga

s
et

al
.(

20
16

)
V

N
S

ID
R

T
U

B
t (s

ec
on

ds
)

U
B

L
B

G
ap

%
t (s

ec
on

ds
)

O
pt

B
es

t
t (s

ec
on

ds
)

A
vg

B
es

t
t (s

ec
on

ds
)

A
vg

B
es

t
t (s

ec
on

ds
)

05
6

R
05

(l
)

12
93

13
06

12
98

96
1.

1
25

.9
6

3
h

13
47

49
12

94
.6

12
93

30
12

93
.0

12
93

11
05

7
R

06
13

40
20

2
13

41
10

43
.6

22
.1

8
3

h
13

74
49

13
40

.4
13

40
29

13
42

.4
13

40
9

05
8

R
07

13
73

28
43

14
05

91
4.

5
34

.9
1

3
h

14
18

49
13

73
.0

13
73

30
13

80
.0

13
73

9
05

9
R

08
13

05
46

0
13

45
10

49
.4

21
.9

8
3

h
13

45
49

13
11

.5
13

05
29

13
23

.6
13

05
9

06
0

R
09

12
52

83
2

12
61

89
6.

6
28

.9
0

3
h

13
10

49
12

59
.2

12
58

30
12

62
.3

12
58

9

06
1

R
05

(m
)

10
60

23
26

10
69

92
4.

0
13

.5
6

3
h

12
20

35
10

89
.1

10
73

14
10

92
.4

10
71

61
06

2
R

06
10

93
70

10
93

97
6.

9
10

.6
2

3
h

13
24

35
11

11
.1

10
93

14
11

20
.1

10
93

52
06

3
R

07
10

96
26

3
12

13
90

1.
4

25
.6

9
3

h
13

25
35

11
08

.8
11

03
13

11
11

.8
10

98
51

06
4

R
08

11
20

11
49

12
30

94
1.

5
23

.4
6

3
h

13
00

34
11

56
.6

11
33

18
11

59
.0

11
33

67
06

5
R

09
10

34
73

5
11

48
86

3.
4

24
.7

9
3

h
12

66
34

10
74

.6
10

47
20

10
74

.6
10

47
60

06
6

R
05

(n
)

13
18

1
h

14
07

91
4.

2
35

.0
3

3
h

13
87

47
12

76
.2

12
62

3
12

75
.7

12
62

20
06

7
R

06
12

89
1

h
15

50
10

16
.3

34
.4

4
3

h
14

38
48

13
15

.6
13

04
3

13
08

.6
13

04
21

06
8

R
07

13
50

1
h

15
01

88
9.

7
40

.7
3

3
h

14
29

46
13

45
.5

13
33

3
13

47
.3

13
38

22
06

9
R

08
12

97
1

h
14

26
97

5.
9

31
.5

6
3

h
14

26
47

13
20

.5
12

97
3

13
24

.2
12

97
22

07
0

R
09

12
39

1
h

15
77

81
7.

0
48

.1
9

3
h

13
46

47
12

64
.5

12
43

3
12

42
.5

12
40

24

07
1

R
05

(o
)

15
18

1
h

15
52

91
2.

8
41

.1
9

3
h

14
22

53
13

73
.5

13
67

60
13

68
.6

13
67

25
07

2
R

06
14

49
1

h
17

49
99

2.
3

43
.2

7
3

h
15

16
53

14
48

.2
14

48
60

14
54

.4
14

48
25

07
3

R
07

16
77

1
h

17
16

90
0.

8
47

.5
0

3
h

15
09

48
14

69
.2

14
65

61
14

73
.2

14
65

28
07

4
R

08
14

63
1

h
15

55
97

5.
2

37
.2

9
3

h
14

88
52

14
48

.8
14

44
61

14
46

.0
14

44
25

07
5

R
09

15
70

1
h

14
88

87
1.

1
41

.4
6

3
h

14
13

52
13

63
.5

13
62

60
13

62
.0

13
62

23

A
ve

ra
ge

11
98

.5
11

66
.8

12
49

.6
96

8.
7

20
.3

5
99

05
.4

6 45
12

71
.5

41
.3

11
96

.0
11

88
.0

23
.8

11
98

.7
11

87
.5

19
.6

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies

132 J. B. C. Chagas et al. / Intl. Trans. in Op. Res. 27 (2020) 112–137

T
ab

le
5

C
om

pa
ra

ti
ve

an
al

ys
is

on
in

st
an

ce
s

of
gr

ou
p

¬C

In
st

an
ce

Io
ri

an
d

R
ie

ra
-L

ed
es

m
a

(2
01

5)
IL

P
fo

rm
ul

at
io

n
C

ha
ga

s
et

al
.(

20
16

)
V

N
S

ID
R

T
U

B
t (s

ec
on

ds
)

U
B

L
B

G
ap

%
t (s

ec
on

ds
)

O
pt

A
vg

B
es

t
t (s

ec
on

ds
)

A
vg

B
es

t
t (s

ec
on

ds
)

07
6

R
05

(p
)

91
2†

24
91

3
91

3.
0

0.
00

26
07

*
93

8.
9

92
1

34
94

2.
8

92
1

26
07

7
R

06
94

5†
13

8
94

8
94

8.
0

0.
00

71
41

*
10

06
.5

98
9

53
99

9.
2

98
9

24
07

8
R

07
79

3†
43

80
1

80
1.

0
0.

00
11

81
*

90
0.

6
80

4
12

4
87

1.
4

80
4

44
07

9
R

08
90

2
5

90
2

90
2.

0
0.

00
71

4
*

98
8.

5
90

9
96

97
5.

7
93

4
29

08
0

R
09

87
4

11
87

4
87

4.
0

0.
00

27
90

*
89

3.
1

88
9

17
88

2.
7

88
0

22

08
1

R
05

(q
)

10
31

�
31

94
2

89
4.

6
5.

03
3

h
99

5.
0

96
5

9
96

0.
4

94
2

25
08

2
R

06
10

61
�

46
10

10
95

2.
9

5.
65

3
h

10
25

.2
10

10
9

10
32

.4
10

10
21

08
3

R
07

97
8�

40
93

1
81

6.
8

12
.2

7
3

h
93

3.
1

93
1

9
93

8.
9

93
1

17
08

4
R

08
10

60
�

74
99

5
96

4.
5

3.
07

3
h

10
13

.4
99

8
9

10
06

.1
99

8
20

08
5

R
09

98
2�

36
88

9
86

7.
3

2.
44

3
h

90
8.

0
90

2
10

89
5.

5
88

9
21

08
6

R
05

(r
)

12
00

�
23

03
11

59
88

7.
8

23
.4

0
3

h
11

24
.5

11
16

5
11

16
.6

11
13

12
08

7
R

06
11

91
�

30
2

11
21

94
4.

2
15

.7
8

3
h

11
35

.9
11

25
5

11
31

.4
11

21
9

08
8

R
07

11
05

�
19

1
11

41
79

2.
5

30
.5

4
3

h
11

03
.4

10
51

5
10

93
.1

10
42

8
08

9
R

08
11

91
�

77
6

11
98

97
1.

5
18

.9
1

3
h

11
67

.4
11

47
5

11
77

.2
11

47
10

09
0

R
09

11
00

�
23

42
10

50
86

1.
1

17
.9

9
3

h
10

55
.6

10
48

5
10

46
.0

10
33

10

09
1

R
05

(s
)

94
7

4
95

0
91

4.
5

3.
74

3
h

10
01

.3
99

1
36

98
9.

0
95

0
46

09
2

R
06

10
10

�
8

10
05

10
05

.0
0.

00
45

12
*

10
21

.2
10

05
55

10
21

.5
10

05
38

09
3

R
07

93
9

8
95

2
88

1.
2

7.
44

3
h

10
06

.9
96

3
15

6
10

05
.3

96
3

42
09

4
R

08
95

3
7

95
8

93
7.

8
2.

11
3

h
10

28
.2

10
09

98
10

09
.4

96
3

41
09

5
R

09
94

5�
5

94
0

90
9.

3
3.

26
3

h
95

0.
1

94
2

35
94

2.
7

94
1

35

09
6

R
05

(t
)

11
01

�
29

8
10

06
89

1.
8

11
.3

6
3

h
10

49
.7

10
00

12
10

18
.2

99
8

36
09

7
R

06
10

59
�

17
10

17
99

2.
6

2.
40

3
h

11
05

.0
10

74
15

10
57

.3
10

17
28

09
8

R
07

11
01

�
19

11
10

53
84

0.
6

20
.1

7
3

h
10

28
.3

10
21

12
10

50
.5

10
21

26
09

9
R

08
11

15
�

33
7

10
61

90
6.

5
14

.5
7

3
h

10
51

.7
10

39
16

10
50

.6
10

25
31

10
0

R
09

10
02

�
15

95
7

86
1.

0
10

.0
3

3
h

97
2.

9
95

7
15

97
0.

6
95

3
33 C

on
ti

nu
ed

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies

J. B. C. Chagas et al. / Intl. Trans. in Op. Res. 27 (2020) 112–137 133

T
ab

le
5

C
on

ti
nu

ed

In
st

an
ce

Io
ri

an
d

R
ie

ra
-L

ed
es

m
a

(2
01

5)
IL

P
fo

rm
ul

at
io

n
C

ha
ga

s
et

al
.(

20
16

)
V

N
S

ID
R

T
U

B
t (s

ec
on

ds
)

U
B

L
B

G
ap

%
t (s

ec
on

ds
)

O
pt

A
vg

B
es

t
t (s

ec
on

ds
)

A
vg

B
es

t
t (s

ec
on

ds
)

10
1

R
05

(u
)

12
59

1
h

12
68

87
0.

6
31

.3
4

3
h

11
95

.9
11

59
6

11
65

.2
11

49
15

10
2

R
06

12
25

�
25

8
11

97
97

7.
3

18
.3

6
3

h
11

85
.1

11
79

6
11

65
.0

11
61

14
10

3
R

07
13

25
1

h
13

29
82

5.
4

37
.9

0
3

h
12

41
.2

12
32

6
12

35
.2

12
32

13
10

4
R

08
12

45
1

h
13

36
95

1.
0

28
.8

2
3

h
12

15
.6

12
07

6
11

94
.4

11
81

14
10

5
R

09
11

69
�

90
9

12
00

86
3.

0
28

.0
8

3
h

11
53

.1
11

36
6

11
32

.8
11

18
15

10
6

R
05

(v
)

10
33

26
10

79
90

4.
8

16
.1

5
3

h
10

75
.3

10
62

11
2

10
51

.9
10

33
93

10
7

R
06

10
51

34
10

84
94

4.
9

12
.8

3
3

h
10

85
.3

10
56

27
4

10
74

.4
10

51
95

10
8

R
07

10
58

52
11

06
86

1.
5

22
.1

1
3

h
11

11
.4

10
95

75
10

86
.7

10
80

93
10

9
R

08
10

76
26

10
89

92
3.

5
15

.2
0

3
h

10
93

.4
10

69
71

7
11

02
.9

10
80

90
11

0
R

09
10

19
6

10
30

86
3.

9
16

.1
3

3
h

10
39

.6
10

23
42

0
10

38
.5

10
22

95

11
1

R
05

(w
)

11
42

�
28

26
12

89
84

4.
7

34
.4

7
3

h
12

16
.0

11
94

14
11

53
.2

10
73

59
11

2
R

06
11

88
�

33
1

12
71

94
8.

1
25

.4
0

3
h

12
12

.8
12

04
16

11
66

.3
10

93
65

11
3

R
07

11
86

�
26

03
12

00
86

2.
5

28
.1

3
3

h
12

10
.1

11
34

19
11

89
.4

10
98

52
11

4
R

08
11

74
�

66
6

11
98

90
7.

6
24

.2
4

3
h

12
49

.8
11

59
19

12
09

.0
11

57
82

11
5

R
09

10
98

�
22

50
12

83
81

4.
0

36
.5

6
3

h
11

74
.3

10
87

24
11

42
.8

10
58

64

11
6

R
05

(x
)

13
33

1
h

13
92

85
0.

6
38

.8
9

3
h

13
48

.9
13

00
9

12
93

.3
12

62
29

11
7

R
06

13
77

1
h

17
00

93
7.

7
44

.8
4

3
h

13
59

.7
13

20
9

13
10

.7
13

04
29

11
8

R
07

14
12

1
h

15
96

85
8.

8
46

.1
9

3
h

13
88

.9
13

38
9

13
59

.7
13

38
22

11
9

R
08

13
67

1
h

15
20

90
9.

3
40

.1
8

3
h

13
99

.9
13

61
10

13
57

.5
12

97
27

12
0

R
09

15
78

1
h

14
48

83
1.

9
42

.5
5

3
h

13
14

.8
12

52
9

12
63

.1
12

40
32

A
ve

ra
ge

11
06

.9
10

61
.3

11
19

.7
89

5.
2

17
.7

4
97

81
.1

6 45
11

03
.9

10
75

.0
58

.0
10

86
.1

10
58

.2
36

.6

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies

134 J. B. C. Chagas et al. / Intl. Trans. in Op. Res. 27 (2020) 112–137

informs the total processing time and column Opt indicates by an asterisk the instances solved to
optimality. The next columns show the best results and the processing time (columns Best and t
(seconds)) obtained by Silveira et al. (2015). The results obtained by Chagas et al. (2016) and the
proposed VNS algorithm are presented in three columns, Avg, Best, and t (seconds) that inform,
respectively, the average solution value, the best solution value, and the total processing time con-
sumed by the 10 runs. Note that Silveira et al. (2015) did not consider instances of group ¬C in
their experiments, so Table 5 does not show these results. Although Chagas et al. (2016) do not
show the results of instances of group ¬C, we executed their algorithm and reported the results in
Table 5.

Tables 3 and 4 show the superiority of the results reported by Iori and Riera-Ledesma (2015)
when compared to the results reached by the ILP formulation, since for every instance of group
C the algorithms developed by Iori and Riera-Ledesma (2015) run faster than our ILP formula-
tion and find better solutions for most instances. However, although the ILP formulation is not
as efficient as the exact methods of Iori and Riera-Ledesma (2015), as it was solved with no ten-
tative of strengthening or specialized techniques, it is of fundamental importance for this paper
and for future works that will address the DVRPMS, since through the results of our ILP formu-
lation, it was possible to note inconsistencies in the results published by Iori and Riera-Ledesma
(2015).

All results proven to be inconsistent are highlighted in Tables 3 and 4 by the character †, which
is inserted in column UB that relates to the results of Iori and Riera-Ledesma (2015). Those
results were considered inconsistencies due to the lower bound (column LB) of the ILP for-
mulation being larger than the upper bound (column UB) reported by Iori and Riera-Ledesma
(2015). After noticing these inconsistencies, in June 2016 the authors were notified and after
a careful examination of the details of the solution, we noticed that for some instances the
solutions reported by their algorithms were unfeasible (the routes did not respect the stacks’
LIFO policy). The authors shared with us their code, but we could not find the reason of
the inconsistencies.

Since the results of Iori and Riera-Ledesma (2015) have not been corrected yet, we will focus on
the comparative analysis of results of group C considering only the other methods of resolution.
In addition, in order to highlight the solution quality of each method, best results reached for each
instance are shown in bold.

For the small instances of group C, the ILP formulation was able to find the optimal solution for
23 of 30 instances, whereas for the 45 large instances, only six of them were proved to have found
the optimal solution. The high relative gap values (column Gap%) indicate the difficulty of the ILP
formulation on finding optimal solutions, mainly, for the larger instances.

It is possible to note that the VNS algorithm overcomes all results obtained by Silveira et al.
(2015), finding solutions of the same or higher quality with less computational time. The VNS was
also efficient in comparison to the ILP formulation, because for only three instances (ID 034, 050,
and 061) the ILP formulation obtained better solutions.

We also noticed that the average solution (column Avg) obtained by the algorithm proposed by
Chagas et al. (2016) presents slightly better results than the VNS for most instances of group C.
However, considering the best solutions obtained by each method (column Best), it is possible to
note that in nine instances (ID 016, 019, 020, 034, 048, 050, 061, 063, and 070) the VNS algorithm
was able to find solutions of higher quality than those found by the algorithm proposed by Chagas

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies

J. B. C. Chagas et al. / Intl. Trans. in Op. Res. 27 (2020) 112–137 135

et al. (2016). In the other 65 instances, both methods found the same solution and only in one
instance (ID 068) the VNS was worse.

Regarding the computation time, the VNS was more efficient than the algorithm proposed by
Chagas et al. (2016) for most instances. On average (last row of the tables), the VNS was 3.5 times
faster than their algorithm in the smaller instances of group C and 1.2 faster for the larger instances
also of group C.

Again, for instances of group ¬C, some results (instances with ID 076, 077, and 078) obtained by
Iori and Riera-Ledesma (2015) were also found to be unfeasible. In addition, we noted that several
results that are stated by Iori and Riera-Ledesma (2015) as optimal results are overcome by the ILP
formulation and/or by our VNS and/or by the method proposed by Chagas et al. (2016). These
results are highlighted by the character �, which was inserted in column UB that relates to the results
of Iori and Riera-Ledesma (2015).

For most instances of group ¬C, when comparing the best solution values, the method based
on VNS outperformed the method described in Chagas et al. (2016), with two exceptions (ID 079
and 109). Regarding computational time, comparing the average execution time of all methods
(last row of Table 5), the heuristic based on the VNS metaheuristic was faster, proving to be a
reliable heuristic.

In the electronic supplementary material, which can be found at http://www.goal.ufop.br/
software/dvrpms, we present the best solutions (routes and loading plan for each vehicle) found so
far for the DVRPMS.

5. Conclusions

In this paper, we addressed the DVRPMS. For solving it, initially, we introduced a new ILP
formulation. As the DVRPMS is a complex combinatorial problem, and finding an exact solution
is time consuming, a VNS-based algorithm was also proposed to solve it.

In order to evaluate the quality of our solution approaches, we have performed tests with two sets
of instances used in previous works that address the DVRPMS. The first set (denoted by C) contains
instances in which the total capacity of the vehicles is equal to the total number of customer requests,
while the second set (denoted by ¬C) contains instances in which the total number of customer
requests is less than the total capacity of the vehicles.

Although the ILP formulation did not solve most larger instances of group C and most instances
of group ¬C, this exact method was of fundamental importance for the DVRPMS because it
highlighted inconsistencies in the values encountered in the literature.

Since these inconsistencies were raised in this work and our ILP formulation did not solve most
instances to the optimality, it is hard to do a statistical analysis with all solutions. Though when
considering the average values of the best solutions, the VNS algorithm outperformed all methods
and spent less computational time, especially instances of the group ¬C.

As a future work, complex methods such as branch-and-price and branch-and-cut-and-price
could be applied to our new ILP formulation. So, they can perform better for larger instances,
consequently, find the global optima values for those instances in which the first ILP formulation
was not able to solve. Developing new neighborhood structures can also vary the results and thus
the VNS algorithm could even obtain better values.

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies

136 J. B. C. Chagas et al. / Intl. Trans. in Op. Res. 27 (2020) 112–137

Acknowledgments

The authors would like to thank Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior
(CAPES), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho
Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq), Universidade Federal de Viçosa
(UFV), and Universidade Federal de Ouro Preto (UFOP) for supporting this research.

References

Alba Martı́nez, M.A., Cordeau, J.F., Dell’Amico, M., Iori, M., 2013. A branch-and-cut algorithm for the double traveling
salesman problem with multiple stacks. INFORMS Journal on Computing 25, 1, 41–55.

Barbato, M., Grappe, R., Lacroix, M., Calvo, R.W., 2016. Polyhedral results and a branch-and-cut algorithm for the
double traveling salesman problem with multiple stacks. Discrete Optimization 21, 25–41.

Carrabs, F., Cerulli, R., Speranza, M.G., 2010. A branch-and-bound algorithm for the double TSP with two stacks.
Technical Report, Dipartimento di Matematica e Informatica, Università di Salerno, Fisciano, Italy.

Casazza, M., Ceselli, A., Nunkesser, M., 2012. Efficient algorithms for the double traveling salesman problem with
multiple stacks. Computers & Operations Research 39, 5, 1044–1053.

Chagas, J.B.C., Santos, A.G., 2016. A branch-and-price algorithm for the double vehicle routing problem with multiple
stacks and heterogeneous demand. 16th International Conference on Intelligent Systems Design and Applications
(ISDA), Springer, Porto, Portugal, pp. 921–934.

Chagas, J.B.C., Santos, A.G., 2017. An effective heuristic algorithm for the double vehicle routing problem with multiple
stack and heterogeneous demand. 17th International Conference on Intelligent Systems Design and Applications
(ISDA), Springer, Delhi, India, pp. 785–796.

Chagas, J.B.C., Silveira, U.E.F., Benedito, M.P.L., Santos, A.G., 2016. Simulated annealing metaheuristic for the double
vehicle routing problem with multiple stacks. 19th International Conference on Intelligent Transportation Systems
(ITSC), IEEE, Rio de Janeiro, Brazil, pp. 1311–1316.

Cordeau, J.F., Iori, M., Laporte, G., Salazar González, J.J., 2010. A branch-and-cut algorithm for the pickup and delivery
traveling salesman problem with LIFO loading. Networks 55, 1, 46–59.

Côté, J.F., Archetti, C., Speranza, M.G., Gendreau, M., Potvin, J.Y., 2012. A branch-and-cut algorithm for the pickup
and delivery traveling salesman problem with multiple stacks. Networks 60, 4, 212–226.

Felipe, Á., Ortuño, M.T., Tirado, G., 2009. The double traveling salesman problem with multiple stacks: a variable
neighborhood search approach. Computers & Operations Research 36, 11, 2983–2993.

Hansen, P., Mladenović, N., 2001. Variable neighborhood search: principles and applications. European Journal of
Operational Research 130, 3, 449–467.

Hansen, P., Mladenović, N., 2014. Variable neighborhood search. In Burke, E.K. (ed.), Search Methodologies. Springer,
New York, pp. 313–337.

Iori, M., Riera-Ledesma, J., 2015. Exact algorithms for the double vehicle routing problem with multiple stacks. Computers
& Operations Research 63, 83–101.

Lusby, R.M., Larsen, J., Ehrgott, M., Ryan, D., 2010. An exact method for the double TSP with multiple stacks.
International Transactions in Operational Research 17, 5, 637–652.

Mladenović, N., Hansen, P., 1997. Variable neighborhood search. Computers & Operations Research 24, 11, 1097–1100.
Moon, C., Kim, J., Choi, G., Seo, Y., 2002. An efficient genetic algorithm for the traveling salesman problem with

precedence constraints. European Journal of Operational Research 140, 3, 606–617.
Petersen, H.L., Archetti, C., Speranza, M.G., 2010. Exact solutions to the double travelling salesman problem with

multiple stacks. Networks 56, 4, 229–243.
Petersen, H.L., Madsen, O.B., 2009. The double travelling salesman problem with multiple stacks—formulation and

heuristic solution approaches. European Journal of Operational Research 198, 1, 139–147.
Pinto, T., Alves, C., Valério de Carvalho, J., 2020. Variable neighborhood search algorithms for the vehicle routing

problem with two-dimensional loading constraints and mixed linehauls and backhauls. International Transactions in
Operational Research 27, 1, 549–572.

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies

J. B. C. Chagas et al. / Intl. Trans. in Op. Res. 27 (2020) 112–137 137

Sampaio, A.H., Urrutia, S., 2016. New formulation and branch-and-cut algorithm for the pickup and delivery traveling
salesman problem with multiple stacks. International Transactions in Operational Research 24, 77–98.

Savelsbergh, M.W., Sol, M., 1995. The general pickup and delivery problem. Transportation Science 29, 1, 17–29.
Silveira, U.E.F., Benedito, M.P.L., Santos, A.G., 2015. Heuristic approaches to double vehicle routing problem with

multiple stacks. 15th International Conference on Intelligent Systems Design and Applications (ISDA), IEEE,
Marrakesh, Marocco, pp. 231–236.

Smiti, N., Dhiaf, M.M., Jarboui, B., Hanafi, S., 2020. Skewed general variable neighborhood search for the cumulative
capacitated vehicle routing problem. International Transactions in Operational Research 27, 1, 651–664.

Tricoire, F., Doerner, K.F., Hartl, R.F., Iori, M., 2011. Heuristic and exact algorithms for the multi-pile vehicle routing
problem. OR Spectrum 33, 4, 931–959.

Wei, L., Zhang, Z., Lim, A., 2014. An adaptive variable neighborhood search for a heterogeneous fleet vehicle routing
problem with three-dimensional loading constraints. IEEE Computational Intelligence Magazine 9, 4, 18–30.

Wei, L., Zhang, Z., Zhang, D., Lim, A., 2015. A variable neighborhood search for the capacitated vehicle routing problem
with two-dimensional loading constraints. European Journal of Operational Research 243, 3, 798–814.

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies

