
Intl. Trans. in Op. Res. 00 (2020) 1–28
DOI: 10.1111/itor.12876

INTERNATIONAL
TRANSACTIONS

IN OPERATIONAL
RESEARCH

The double traveling salesman problem with partial
last-in-first-out loading constraints

Jonatas B. C. Chagasa,b,∗ , Túlio A. M. Toffoloa, Marcone J. F. Souzaa

and Manuel Ioric

aDepartamento de Computação, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro s/n,
Ouro Preto 35.400-000, Brazil

bDepartamento de Informática, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n - Campus Universitário,
Viçosa 36570-900, Brazil

cDISMI, Universitá degli studi di Modena e Reggio Emilia, Via Amendola 2, Pad. Morselli, Reggio Emilia 42122, Italy
E-mail: jonatas.chagas@iceb.ufop.br [Chagas]; tulio@toffolo.com.br [Toffolo]; marcone@iceb.ufop.br [Souza];

manuel.iori@unimore.it [Iori]

Received 6 December 2019; received in revised form 3 September 2020; accepted 4 September 2020

Abstract

In this paper, we introduce the double traveling salesman problem with partial last-in-first-out loading con-
straints (DTSPPL). It is a pickup-and-delivery single-vehicle routing problem, where all pickup operations
must be performed before any delivery operation because the pickup-and-delivery areas are geographically
separated. The vehicle collects items in the pickup area and loads them into its container, a horizontal stack.
After performing all pickup operations, the vehicle begins delivering the items in the delivery area. Loading
and unloading operations must obey a partial last-in-first-out (LIFO) policy, that is, a version of the LIFO
policy that may be violated within a given reloading depth. The objective of the DTSPPL is to minimize the
total cost, which involves the total distance traveled by the vehicle and the number of items that are unloaded
and then reloaded due to violations of the standard LIFO policy. We formally describe the DTSPPL through
two integer linear programming (ILP) formulations and propose a heuristic algorithm based on the biased
random-key genetic algorithm (BRKGA) to find high-quality solutions. The performance of the proposed so-
lution approaches is assessed over a broad set of instances. Computational results have shown that both ILP
formulations have been able to solve only the smaller instances, whereas the BRKGA obtained good-quality
solutions for almost all instances, requiring short computational times.

Keywords: pickup and delivery; loading constraints; partial reloading; mathematical models; genetic algorithm

1. Introduction

Routing problems have been widely studied due to their practical and theoretical relevance. Stud-
ies in recent years have shown that transportation logistics is not only an essential part of the

∗Corresponding author.

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies
Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main St, Malden, MA02148,
USA.

https://orcid.org/0000-0001-7965-8419


2 J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28

distribution of goods but also a vital field in the increasingly globalized world economy (Kherbash
and Mocan, 2015).

Among the routing problems, stands out the classical and well-known traveling salesman prob-
lem (TSP). This problem aims to find the shortest Hamiltonian cycle in a weighted graph, and it is
an NP-hard problem. Nevertheless, many studies devoted to its solution and advances in the com-
binatorial optimization area made it possible to solve large problem instances (Applegate et al.,
2006).

Many extensions and variations of the TSP have been introduced and solved by the scientific
community. Among these, we mention two classes of problems that are particularly interesting
for our work. In pickup-and-delivery problems, the vehicle(s) transport(s) demands that have given
origins and destinations (Battarra et al., 2014; Doerner and Salazar-González, 2014). In routing
problems with loading constraints, the route(s) performed by the vehicle(s) must be compatible with
some loading policy (Iori and Martello, 2010). These classes of problems have recently attracted
the interest of many researchers because they are often noted in the real world and also because of
their combinatorial complexity.

A problem that combines pickups, deliveries, and loading is the pickup-and-delivery traveling
salesman problem with last-in-first-out loading (PDTSPL). The PDTSPL arises in the context of a
single vehicle, with a single access point (usually in the rear) for loading and unloading the trans-
ported items that must serve a set of customers and in such a way that pickups and deliveries obey
the last-in-first-out (LIFO) policy.

More specifically, in the PDTSPL each customer has a pickup location where the items are loaded
into the loading compartment (a horizontal stack) of the vehicle, and a delivery location, where
the collected items are delivered. At a pickup location, items are loaded and stored on top of the
stack. At a delivery location, only the item located on top of the stack is available for unloading and
delivery. The PDTSPL aims to find the minimum cost tour to visit all pickup-and-delivery locations
while ensuring that the LIFO policy is obeyed.

The PDTSPL is applicable in situations where items are loaded and unloaded from the rear of the
vehicle and where rearrangements among items are forbidden, because, for example, the items may
be large, heavy, and/or fragile or dangerous to handle. By rearrangement, we mean the operation
of temporarily dropping an already loaded item from the vehicle, and then reload it back, possibly
in a different position.

According to Iori and Martello (2010), the first work related to the PDTSPL was carried out by
Ladany and Mehrez (1984). Posteriorly, the PDTSPL has also been studied by other researchers.
Carrabs et al. (2007a) and Cordeau et al. (2010) presented exact algorithms, while Carrabs et al.
(2007b) and Li et al. (2011) proposed heuristics.

Several other studies address pickup-and-delivery problems with LIFO loading constraints in
scenarios where rearrangement operations are not allowed. Among these, we cite the pickup-and-
delivery traveling salesman problem with multiple stacks (PDTSPMS) (Côté et al., 2009) and the
double traveling salesman problem with multiple stacks (DTSPMS) (Petersen and Madsen, 2009).

The PDTSPMS is a variant of the PDTSPL where the vehicle has its loading compartment di-
vided into multiple horizontal stacks. On each stack, the loading and unloading operations must
obey the LIFO principle. However, each stack is independent, so that there are no mutual con-
straints among the stacks. In this way, there is an increase in the flexibility of loading/unloading op-
erations, which can lead to a reduction in transportation costs. The PDTSPMS was mainly treated

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28 3

by exact algorithms that employ different branch-and-cut schemes (Côté et al., 2009; Sampaio and
Urrutia, 2017; Pereira and Urrutia, 2018).

Petersen and Madsen (2009) introduced the DTSPMS from a real-world case in which a software
company encountered with one of its customers. The DTSPMS is a particular case of the PDT-
SPMS in which the pickup-and-delivery operations are completely separate because the pickup-
and-delivery areas are geographically distant. Specifically, in the DTSPMS the vehicle starts its
route in a pickup depot, performs all pickup operations in its stacks according to the LIFO prin-
ciple, then returns to the pickup depot, from where the container is transferred by ship, airplane,
train, or by similar transport form to a delivery depot located in the delivery area. From there, all
delivery operations must be performed according to the LIFO principle. The objective of the DT-
SPMS is to find two routes, one in the pickup area and the other in the delivery area, so that the
sum of the distances traveled in both areas is the minimum possible, while ensuring the feasibility
of the vehicle loading plan. The transportation cost between the two regions is not considered as
part of the optimization problem.

Since Petersen and Madsen (2009) presented it, the DTSPMS has aroused great attention in the
academic community, with several exact and heuristic approaches developed for its solution. Fe-
lipe et al. (2009) proposed a heuristic approach based on the variable neighborhood search (VNS)
metaheuristic. Petersen et al. (2010) proposed different exact mathematical formulations, including
a branch-and-cut algorithm. Lusby et al. (2010) presented an exact method based on matching k-
best tours for each of the regions separately. Carrabs et al. (2010) developed a branch-and-bound
algorithm for the double traveling salesman problem with two stacks, a particular case of the DT-
SPMS in which the vehicle has exactly two stacks. Casazza et al. (2012) studied the theoretical
properties of the DTSPMS, analyzing the structure of DTSPMS solutions in two separate compo-
nents: routes and loading plan. Alba Martínez et al. (2013) proposed improvements to the branch-
and-cut algorithm developed by Petersen et al. (2010), adding new valid inequalities that increased
efficiency. Urrutia et al. (2015) proposed a two-stage heuristic that first uses a local search algorithm
to explore loading plan solutions, and then invokes a dynamic programming to construct optimal
tours for each loading plan. Barbato et al. (2016) developed an exact algorithm that was able to
solve instances involving containers of two stacks that were not previously solved in the literature.
We refer to Iori and Riera-Ledesma (2015), Silveira et al. (2015), and Chagas et al. (2016, 2020) for
details on the double vehicle routing problem with multiple stacks, a variant of the DTSPMS that
considers multiple vehicles.

A variant of the DTSPMS was suggested in Petersen’s PhD thesis (Petersen, 2009, p. 68, Section
2.5.2.4), which we have named as the double traveling salesman problem with multiple stack and
partial last-in-first-out loading constraints (DTSPMSPL). The DTSPMSPL, like the DTSPMS,
arises in transportation companies responsible for transporting large and fragile items from a
pickup area to a delivery area, where these two areas are widely separated. However, the DTSPM-
SPL is more general as rearrangement operations are allowed as long as they obey a partial LIFO
policy, that is, a version of the LIFO policy that may be violated within a given reloading depth. As
stated by Petersen (2009), the reason for a reloading depth is that replacing all items stored in the
vehicle may be impractical due to the handling cost and the limited space available during reload-
ing, so only a certain number of items may be placed outside the vehicle at any time. Thus, only
the first L items from the top of each stack may be relocated at any time. Note that rearrangement
operations allow constructing shorter tours than those in which the classical LIFO policy must be

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



4 J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28

respected. Although the base operation cost of the DTSPMSPL is the total routing cost, an ad-
ditional handling cost should be paid for each item rearranged. Therefore, as stated by Petersen
(2009), partial LIFO constraints allow posing the question of what price transportation companies
would be willing to pay for the opportunity to move one item.

The objective of the DTSPMSPL is to find a route in each area in such a way that the total cost
is minimum, and there exists a feasible loading/unloading plan following the partial LIFO policy.
The total cost involves the routing cost, that is, the sum of traveled distances in both areas, and the
number of reloading operations performed in the loading/unloading plan, which have their cost is
given in terms of the routing cost.

To the best of our knowledge, no study to date investigates the DTSPMSPL. Thus, in this work,
we start this investigation, addressing a particular case of the DTSPMSPL, where the vehicle has
its loading compartment as a single horizontal stack. We have named this new transportation
problem as the double traveling salesman problem with partial last-in-first-out loading constraints
(DTSPPL).

In order to clarify the characteristics of the DTSPMSPL/DTSPPL, we depict in Fig. 1a solution
example of an instance with six customers, considering a reloading depth equal to 2, that is, L = 2.
The vehicle starts its pickup route from the pickup depot (gray vertex on the top left part of the
figure). It travels to the pickup position of customer 1, storing its item in the stack. Next, it visits the
pickup position of customer 5, storing its item on the top of the horizontal stack. Then, it travels
to pickup position customer 4. At this point, a rearrangement is performed: the item of customer 5
is removed from the stack, then the item of customer 4 is placed in the stack and finally the item of
customer 5 is replaced into the stack. The vehicle continues its pickup route as shown in the figure
until all items have been collected and stored in the stack, then the vehicle returns to the pickup
depot. Note that the reloading sequence may be in any order; thus, items do not need to remain in
the same relative positions before their rearrangements, as occurs when the vehicle visits the pickup
location of customer 6. Upon arrival at the pickup depot, the container is transferred to the depot
(gray vertex on the top right part of the figure) located in the delivery area, from where it is again
transferred to a vehicle that then executes the delivery operations. In our example, first, the vehicle
travels to the delivery position of customer 2 without the requirement of any rearrangement. Next,
it travels to the delivery position of customer 5, where items 6 and 3 need to be removed before
delivering item 5. The delivery operations continue, as shown in the figure, until all customers are
served. In the end, the vehicle returns to the delivery depot. Note that in this example, there were
three rearrangements in the pickup area (loading plan) and three rearrangements in the delivery
area (unloading plan), totaling six rearrangements.

Figure 2 illustrates in a practical way the loading and unloading plan of the solution described in
Fig. 1. Note that each column in Fig. 2 indicates the container configuration after each pickup or
delivery operation. Note also that it is possible to determine which items have been relocated (high-
lighted in gray) and how they have been reloaded by analyzing adjacent pairs of container configu-
rations.

No previous work has approached the DTSPMSPL/DTSPPL. Nonetheless, Ladany and Mehrez
(1984) addressed a similar problem in which the reshuffling of all goods inside a container is allowed
and causes costs and time losses. They investigated a real-world scenario in which identically sized
crates should be transported from metropolitan area A to metropolitan area B using a single ve-
hicle. The authors have solved small-sized instances exactly using an enumeration procedure. In

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28 5

Fig. 1. Solution of a DTSPPL instance involving six customers and reloading depth 2.

addition, Veenstra et al. (2017) also approached a similar problem, named pickup-and-delivery
traveling salesman problem with handling costs (PDTSPH). It is a variant of the PDTSPL where
rearrangement operations are allowed only at delivery locations, and, as in the problem studied
by Ladany and Mehrez (1984), there is no maximum depth for reloading, that is, at any delivery
location, all items stored in the container may be relocated. The authors proposed a binary integer
program for the PDTSPH, considering that the reloading sequence is the inverse of the unloading
sequence, that is, the items remain in the same relative positions before their rearrangements. They
have also developed a large neighborhood search heuristic, which considers the reloading policy
adopted in the binary integer program and another one where the reloaded items are positioned
in the sequence in which they will be delivered. Their results show that this last reloading policy
reduces the number of rearrangement operations.

It is important to stress that by allowing rearrangement operations in both regions, a smaller
reloading depth may be needed to rearrange items according to a given pair of tours πP and πD

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



6 J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28

Fig. 2. A practical representation of loading and unloading plans of the solution shown in Fig. 1.

Fig. 3. Scenarios that justify the importance of allowing rearrangement operations in both regions.

(pickup-and-delivery tours, respectively). To illustrate this, consider the two different pairs of tours
in Fig. 3. In the first pair (scenario #1), we exemplify what might happen when rearrangements
are allowed only in the pickup region. Note that the item of the nth customer is the last to be
collected and also the last to be delivered. Therefore, a reloading depth equal to n − 1 is needed
to allow unloading all n − 1 items before collecting the nth item in the pickup region, and then
store it in the first position of the container, thus preparing the container for all deliveries without
any rearrangement operation. In turn, if rearrangements are allowed only in the delivery region, a
reloading depth equal to n − 1 to construct feasible loading and unloading plans from πP and πD

is also needed in the second pair of tours (scenario #2). This reloading depth is needed since the
first item to be delivered is stored in the first position of the container during collection.

In both scenarios shown in Fig. 3, when rearrangement operations are allowed in the pickup-and-
delivery regions, a reloading depth equal to 1 is enough to construct feasible loading and unloading
plans. Therefore, in the context of the DTSPMSPL/DTSPPL, where rearrangement of many items
may be impractical due to the handling cost and the limited space available during reloading, it
is crucial to allow rearrangement operations in both regions. Note that this can be done with-
out any additional resources regarding those already available in the DTSPMS context. The same
equipment used to load/unload an item can be used to unload and reload other items at each
pickup-and-delivery point.

As is commonly addressed in the literature, we do not allow rearrangement operations at the
depot. However, we can formulate scenarios in which rearrangements are also allowed at the depot
by considering a fictitious item localized at the depot. In this case, if rearrangement operations
at the depot are interesting, the fictitious item will be used to do the rearrangements. It must be
emphasized that, in this approach, the reloading depth at the depot is limited to the same one used
on the routes.

In the remainder of this article, we present our contributions. In Section 2, we formally de-
scribe the DTSPPL via two integer linear programming (ILP) formulations. Section 3 describes
a heuristic algorithm based on the concept of the biased random-key genetic algorithm (BRKGA),
which is able to find high-quality solutions for the DTSPPL in shorter computational time.

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28 7

Section 4 reports the experiments and analyzes the performance of the proposed solution ap-
proaches. Finally, in Section 5, we present the conclusions and give suggestions for further
investigations.

2. Problem description and mathematical formulations

In this section, we present the necessary notation to mathematically describe the DTSPPL and then
propose two compact ILP formulations. Our mathematical formulations differ from each other in
the way that route constraints are imposed. In both formulations, it is needed to provide for the
other constraints of the models the visiting order of the customers in order to construct the loading
and unloading plans.

An alternative formulation to those described as follows in this section could be designed based
on infeasible path constraints. In this formulation, the problem should be decomposed into its rout-
ing and loading/unloading components. The routing component goal would be to construct a tour
for each region, while loading/unloading component would aim at solving a packing problem from
the fixed pair of tours found by the routing component. The packing goal would be to construct
a complete feasible solution for the problem or identify cuts that eliminate tours that do not allow
construction feasible loading and unloading plans. This strategy was used, for example, for solving
the DTSPMS in a branch-and-cut algorithm proposed by Alba Martínez et al. (2013). As stated
by Alba Martínez et al. (2013), in the DTSPMS context, from a given pair of tours, it is possible
to construct a precedence graph, and then from it determining whether the tours are compatible
with the LIFO constraints. Their separation algorithms have been developed from this property
in order to find cuts for their branch-and-cut method. Note that our packing problem is much
more complex. Due to partial LIFO constraints, we may not construct a precedence graph and
work on it once items may be rearranged. Therefore, we cannot efficiently solve the DTSPPL using
this strategy.

2.1. Problem description

The DTSPPL can be formally described as follows. Let C = {1, 2, . . . , n} be the set of n customer
requests, V P

c = {1P, 2P, . . . , nP} the set of pickup locations, and V D
c = {1D, 2D, . . . , nD} the set of

delivery locations. For each customer request i ∈ C, an item has to be transported from the pickup
location iP to the delivery location iD.

The DTSPPL is defined on two complete directed graphs, GP = (V P, AP) and GD = (V D, AD),
which represent the pickup-and-delivery areas, respectively. The sets V P = {0P} ∪ V P

c and
V D = {0D} ∪ V D

c represent the vertices in each area, with 0P and 0D denoting the depots
of the pickup-and-delivery areas, respectively. The sets of arcs in the pickup-and-delivery ar-
eas are defined by AP = {(iP, jP, cP

i j ) ∀iP ∈ V P, ∀ jP ∈ V P | jP �= iP} and AD = {(iD, jD, cD
i j ) ∀iD ∈

V D, ∀ jD ∈ V D | jD �= iD}, where cP
i j and cD

i j correspond to the travel distances associated with arcs
(iP, jP) and (iD, jD), respectively. For convenience of notation, when no confusion arises we also
refer to sets V P

c and V D
c as the set of requests C, and we use i to denote both iP and iD and (i, j) to

denote both (iP, jP) and (iD, jD).

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



8 J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28

A feasible solution s for the DTSPPL consists of a Hamiltonian cycle on a graph GP that starts at
the pickup depot 0P, another Hamiltonian cycle on graph GD that begins at the delivery depot 0D,
and a loading/unloading plan. Besides, the two Hamiltonian cycles and the loading and unloading
plan must obey the partial LIFO policy, which is defined by the maximum reloading depth L.

Let us denote by F the set of all feasible solutions for a DTSPPL instance. Each solution s ∈
F has a cost cs that involves the travel distance on the two Hamiltonian cycles and the number
of rearrangements performed on the loading and unloading plan, with a cost h associated with
a single-item rearrangement. The objective of the DTSPPL is to find a solution s∗ ∈ F , so that
cs∗ = mins∈F cs.

2.2. Integer linear programming formulation 1

To better explain the first proposed ILP formulation (ILP1) for the DTSPPL, we categorize the
constraints under three groups: (i) routes structuring constraints, (ii) loading/unloading plan and
partial LIFO constraints, and (iii) reloading control constraints. After describing all constraints,
we present the objective function of the DTSPPL.

Throughout mathematical modeling, we also use the notation [a, b] to denote the set {a, a +
1, . . . , b − 1, b}. Note that for any a > b, [a, b] is an empty set.

2.2.1. Route structuring constraints
In order to characterize the pickup-and-delivery routes, we define constraints (1)–(7), which use
binary decision variables xkr

i j , ∀r ∈ {P, D}, k ∈ [1, n + 1], (i, j) ∈ Ar, that assume value 1 if arc (i, j)
is the kth traveled arc by the vehicle in the area r, and value 0 otherwise:

∑
j : (0, j) ∈ Ar

x1r
0 j = 1 r ∈ {P, D} (1)

∑
i : (i, 0) ∈ Ar

xn+1,r
i0 = 1 r ∈ {P, D} (2)

∑
(i, j) ∈ Ar

xkr
i j = 1 r ∈ {P, D}, k ∈ [2, n] (3)

∑
k ∈ [1, n]

∑
i : (i, j) ∈ Ar

xkr
i j = 1 r ∈ {P, D}, j ∈ V r

c (4)

xkr
i j ≤

∑
i′ : (i′, i) ∈ Ar

xk−1,r
i′i r ∈ {P, D}, k ∈ [2, n + 1], (i, j) ∈ Ar (5)

xkr
i j ∈ {0, 1} r ∈ {P, D}, k ∈ [1, n + 1], (i, j) ∈ Ar. (6)

Constraints (1) and (2) force the vehicle to leave from the depot and return to it using, respec-
tively, the first and the last arc in each area. Constraints (3) guarantee that only a single arc may
be the kth one of each route. Constraints (4) guarantee that every customer is served. Constraints
(5) establish the flow conservation for each vertex, and constraints (6) define the domain of the
decision variables used to represent the routes.

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28 9

Fig. 4. Graphical representation of constraints (9) and (10).

2.2.2. Loading/unloading plan and partial LIFO constraints
For the purpose of representing the loading plan, we define binary decision variables ykP

j� , ∀k ∈
[1, n], � ∈ [1, k], j ∈ C, that assume value 1 if the item referring to the customer request j is stored
in position l on the kth container configuration in the pickup area, and value 0 otherwise. We also
define other binary decision variables ykD

j� , ∀k ∈ [1, n], � ∈ [1, n − k + 1], j ∈ C to represent the un-
loading plan, which has the same meaning as the previous variable but considers the delivery area.
With these variables, we can ensure the feasibility of the loading and unloading plans throughout
constraints (7)–(15), which are next explained in detail:

∑
j ∈ C

ykP
j� = 1 k ∈ [1, n], � ∈ [1, k] (7)

∑
j ∈ C

ykD
j� = 1 k ∈ [1, n], � ∈ [1, n − k + 1] (8)

∑
l ∈ [1, k]

ykP
j� =

∑
k′ ∈ [1, k]

∑
i : (i, j) ∈ AP

xk′P
i j k ∈ [1, n], j ∈ C (9)

∑
l ∈ [1, n−k+1]

ykD
j� =

∑
k′ ∈ [k, n]

∑
i : (i, j) ∈ AD

xk′D
i j k ∈ [1, n], j ∈ C. (10)

Constraints (7) and (8) ensure that only one item must occupy each container position in each of
its configurations. Constraints (9) establish that in the pickup area the kth container configuration
has to contain all items collected at the vertices vi, ∀i ≤ k. In turn, constraints (10) guarantee that
in the delivery area the kth container configuration has to contain all items that have not yet been
delivered at the vertices vi, ∀i ≥ k. Figure 4 depicts the operation of constraints (9) and (10) for an
instance with six customer requests. Dashed arrows indicate which items must be in each container

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



10 J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28

Fig. 5. Graphical representation of constraints (11)–(13).

configuration according to the pickup-and-delivery tours, which are represented by the continuous
lines that connect the vertices.

Constraints (11) certify that the first container configuration in the delivery area must be the
same as the last container configuration in the pickup area. In other words, these constraints ensure
that there is no rearrangement of items between the transfer from the pickup depot to the delivery
depot:

y1D
j� = ynP

j� � ∈ [1, n], j ∈ C. (11)

Figure 5 illustrates the operation of constraints (11) for an instance with six customer requests.
It also illustrates the operation of constraints (12) and (13) that ensure the loading plan obeys
the partial LIFO policy, taking as example L = 2. Note that constraints (12) and (13) establish
which items (represented by different geometric shapes) have to remain in their previous container
positions in order not to violate the partial LIFO policy:

ykP
j� = ynP

j� k ∈ [1, n − 1], � ∈ [1, k − L], j ∈ C (12)

ykD
j� = y1D

j� k ∈ [2, n], � ∈ [1, n − k − L + 1], j ∈ C. (13)

Finally, constraints (14) and (15) define the domain of the decision variables used to represent
the loading and unloading plan:

ykP
j� ∈ {0, 1} k ∈ [1, n], � ∈ [1, k], j ∈ C (14)

ykD
j� ∈ {0, 1} k ∈ [1, n], � ∈ [1, n − k + 1], j ∈ C. (15)

2.2.3. Reloading control constraints
To determine how many rearrangements are performed from the loading and unloading plans, we
define decision variables zkr, ∀r ∈ {P, D}, k ∈ [1, n − 1], which indicate the number of rearrange-
ments made in the kth container configuration in area r. We also define constraints (16) and (17),
which are responsible for determining the number of rearrangements in the loading and unload-
ing plans, respectively. Constraints (16) analyze every pair of adjacent container configurations
(k and k+1th) of the loading plan to determine the number of rearrangements made in the kth

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28 11

Fig. 6. Graphical representation of constraints (16).

container configuration according to the k+1th configuration. Figure 6 illustrates the operation of
constraints (16) by exemplifying the calculation of the number of rearrangements made in the third
container configuration. In this example, the first (� = 1) item is not rearranged, as shown in the
fourth container configuration; while the second (� = 2) and third (� = 3) items are. Note that the
number of rearrangements is given from the deeper change in the kth container configuration. Con-
straints (17) are similar to constraints (16), but they count the rearrangements made in the delivery
area. Finally, constraints (18) define the domain of these decision variables:

zkP ≥
(

ykP
j� − yk+1,P

j�

)
· ( k − � + 1 ) k ∈ [1, n − 1], � ∈ [1, k − 1], j ∈ C (16)

zkD ≥
(

yk+1,D
j� − ykD

j�

)
· ( n − k − � + 1 ) k ∈ [1, n − 1], � ∈ [1, n − k], j ∈ C (17)

zkr ∈ Z
+ r ∈ {P, D}, k ∈ [1, n − 1]. (18)

2.2.4. Objective function
Constraints (1)–(18) are enough to represent all feasible solutions of the DTSPPL. Therefore, to
complete the first mathematical model, we define the objective function (19), which minimizes the
total cost. It involves the distance traveled in both areas, as well as the cost of all rearrangements
performed:

min
∑

r ∈ {P, D}

∑
(i, j) ∈ Ar

c r
i j ·

∑
k ∈ [1, n+1]

xkr
i j + h ·

∑
r ∈ {P, D}

∑
k ∈ [1, n−1]

zkr. (19)

2.3. Integer linear programming formulation 2

Our second ILP formulation (ILP2) uses binary decision variables χ r
i j, ∀r ∈ {P, D}, (i, j) ∈ Ar, to

describe the vehicle route in each area. More specifically, each variable χ r
i j assumes value 1 if arc

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



12 J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28

(i, j) is traveled by the vehicle in area r, and value 0 otherwise. Moreover, we use an integer variable
ur

j, ∀r ∈ {P, D}, j ∈ [0, n], which gives the position of vertex j in the route of area r. With these new
decision variables, we can use constraints (20)–(25), instead of (1)–(6) adopted for ILP1, to define
the routes of the vehicle:∑

j : (i, j) ∈ Ar

χ r
i j = 1 r ∈ {P, D}, i ∈ V r (20)

∑
i : (i, j) ∈ Ar

χ r
i j = 1 r ∈ {P, D}, j ∈ V r (21)

ur
j ≥ ur

i + 1 − n ·
(

1 − χ r
i j

)
r ∈ {P, D}, (i, j) ∈ Ar : j �= 0 (22)

χ r
i j ∈ {0, 1} r ∈ {P, D}, (i, j) ∈ Ar (23)

ur
0 = 0 r ∈ {P, D} (24)

ur
j ∈ {a ∈ Z

+ : a ≤ n} r ∈ {P, D}, j ∈ C. (25)

Constraints (20), (21), and (23) ensure that each pickup-and-delivery location is visited exactly
once, while constraints (22), (24), and (25) impose the subcycle elimination.

To complete ILP2, we define constraints (26) and (27), and the objective function (28). Moreover,
we also include constraints (7), (8), and (11)–(18), which have been previously defined for ILP1:

1 ≥
∑

l ∈ [1, k]

ykP
j� ≥ k − uP

j + 1

k
k ∈ [1, n], j ∈ C (26)

1 ≥
∑

l ∈ [1, n−k+1]

ykD
j� ≥ uD

j − k + 1

n − k + 1
k ∈ [1, n], j ∈ C. (27)

Note that constraints (26) and (27) have the same aim as constraints (9) and (10), which ensure
the correct assignment of items to the loading compartment throughout the pickup-and-delivery
routes. Note also that Equation (28), similarly to (19), describes the total DTSPPL cost to be min-
imized:

min
∑

r ∈ {P, D}

∑
(i, j) ∈ Ar

c r
i j · χ r

i j + h ·
∑

r ∈ {P, D}

∑
k ∈ [1, n−1]

zkr. (28)

2.4. Providing the ILP models with a feasible initial solution

We have solved models ILP1 and ILP2 using Gurobi Optimizer, which is currently one of the best
ILP optimization solvers. However, we have noted that, even for small instances, Gurobi had diffi-
culties in solving both models within a reasonable time. Therefore, in order to help the optimization
process, we compute a feasible DTSPPL solution and initialize both models with it. For the initial

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28 13

solution, we consider the case where rearrangements are not allowed (i.e., L = 0). Thus, as ev-
ery loading/unloading operation must verify the classic LIFO principle, the pickup-and-delivery
routes must be exactly opposite each other since the vehicle has its loading compartment as a single
stack. Therefore, we can solve the initial solution by solving a TSP instance on a graph where each
arc (i, j) is associated a cost ci j = c P

i j + c D
ji . This strategy was also used by Felipe et al. (2009) to

compute an initial solution for the DTSPMS. In this work, we solve a TSP instance via the classical
two-index model for the TSP (see, e.g., Gutin and Punnen, 2006) by adding subtour elimination
constraints iteratively until the incumbent solution does not contain subtours.

3. A biased random-key genetic algorithm

In this section, we describe a heuristic algorithm based on the BRKGA (Gonçalves and Resende,
2011). Although metaheuristic algorithms based on local search such as tabu search, VNS, and
iterated local search, among others (see, e.g., Talbi, 2009) are more often applied to address vehicle
routing problems, we have chosen an evolutionary algorithm that works with an indirect represen-
tation of its individuals (where each individual represents a problem solution). The justification for
this choice is that the DTSPPL has a high dependency on routes and loading/unloading plans. So,
working with direct solutions may not be practicable, since defining efficient moves that can navi-
gate between feasible solutions, and, especially, escape from infeasible solution space is extremely
hard. In turn, an indirect representation of DTSPPL solutions allows us to navigate in the feasi-
ble solution space through simple genetic operators, quickly producing a high number of feasible
solutions. This representation strategy has been successfully applied to several complex optimiza-
tion problems in recent years (Gonçalves and Resende, 2012, 2013, 2015; Resende, 2012; Lalla-Ruiz
et al., 2014; Santos and Chagas, 2018).

In the remainder of this section, we present the main components of the proposed BRKGA
(Sections 3.1–3.6) and then describe how these components are combined together (Section 3.7).

3.1. Encoding structure

BRKGAs, as well as classic genetic algorithms (GAs) (see Mitchell, 1998, for a reference), are evolu-
tionary metaheuristics that mimic the processes of Darwinian evolution. Basically, a GA maintains
a population of individuals, each encoding a solution to the problem at hand. Through the use of
stochastic evolutionary processes (selection, recombination, and diversification) over the popula-
tion, individuals with higher fitness tend to survive, thus guiding the algorithm to explore more
promising regions of the solutions space.

Each individual in BRKGAs is represented by a vector of random keys, that is, a vector of real
numbers that assume values in the continuous interval [0, 1]. This representation is generic because
it is independent of the problem addressed. Therefore, a deterministic procedure (to be presented
later) is necessary to decode each individual (a vector of random keys) to a feasible solution of the
problem at hand (the DTSPPL in our case).

In Fig. 7, we show the structure defined to represent each BRKGA individual for the DTSPPL.
We divide this structure into three partitions: pickup route, loading plan, and unloading plan and

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



14 J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28

Fig. 7. Chromosome structure.

delivery route. The first partition consists of n random keys, which are responsible for determining
the pickup route. The next

∑n
k=1 min(k, L + 1) random keys determine the loading plan carried

out along the pickup route. Finally, the last
∑n

k=1 min(n − k + 1, L + 1) random keys define the
entire unloading plan and also the delivery route.

3.2. Decoding procedure

As stated before, each individual p ∈ P has a generic representation in a BRKGA. Therefore, to
determine the fitness of p, we developed a procedure that generates a feasible solution s from p.
The fitness of p is then defined proportionally to the quality of s.

Our decoding procedure consists of three stages, which must be sequentially performed due to
the dependency among them. Figure 8 depicts how these stages are performed in order to decode
the solution shown in Fig. 1 from a vector of random keys. Initially, the n pickup locations are
mapped on the first n random keys. Then, we sort the pickup locations according to the values of
the mapped random keys. The sorted pickup locations define the pickup route πP performed by the
vehicle. In Fig. 1, the first n random keys produce the pickup route πP = 〈0, 1, 5, 4, 2, 3, 6, 0〉.

We characterize the loading plan from πP and the next
∑n

k=1 min(k, L + 1) random keys. The
loading plan is created iteratively in n steps, where each of them depends on the previous one.
Iteratively, for each k ∈ {1, 2, . . . , n}, we map the min(k, L + 1) items that may be relocated without
violating the partial LIFO constraints to min(k, L + 1) random keys. Next, we sort the items in
nondecreasing order according to the values of the mapped random keys to define the kth container
configuration in the pickup area. For the sake of clarity, consider the steps shown in Fig. 8. At first,
the container is empty, so we just store in it the item (highlighted in gray) of the first customer visited
according to πP. Note that, though unnecessary, we kept a random key (0.48 in this example) to
decode the first operation of the loading plan. We have decided to keep it for simplicity, to follow the
same pattern used for the other loading operations. To define the second container configuration,
we map item 1 (it may be relocated from the previous container configuration) to the random
key 0.59 and item 5 (the second customer visited according to πP) to the random key 0.61. After
sorting these items according to the values of the mapped random keys, items 1 and 5 are stored
in the container following the sorted order. The decoding process continues by mapping the items
that may be relocated at each time to the random keys, and then sort them to define each remaining
pickup container configuration.

Finally, the unloading plan and the delivery route are defined from the loading plan and the last
random keys. Similarly as before, it is created iteratively in n steps, where each of one is dependent
on the previous one. For each k ∈ {1, 2, . . . , n}, we map the min(n − k + 1, L + 1) items that may

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28 15

Fig. 8. Decoding of the vector of random keys 〈 0.04, 0.57, 0.78, 0.33, 0.27, 0.98, 0.48, 0.59, 0.61, 0.12, 0.43, 0.29, 0.54,
0.84, 0.87, 0.10, 0.81, 0.99, 0.94, 0.78, 0.57, 0.68, 0.94, 0.78, 0.57, 0.68, 0.94, 0.78, 0.57, 0.68, 0.94, 0.95, 0.82, 0.01, 0.14,

0.07, 0.35, 0.47, 0.53, 0.85, 0.95, 0.80, 0.47, 0.96 〉 to the solution shown in Fig. 1.

be delivered without violating the partial LIFO constraints to min(n − k + 1, L + 1) random keys.
Then, we sort the items in nondecreasing order according to the values of the mapped random keys.
The min(n − k + 1, L + 1) − 1 first items in the order to define the kth container configuration in
the delivery area and the last item is then delivered, iteratively making up the delivery route. In
Fig. 8, take, for example, the first step (k = 1), where we map items 6, 3, and 2 (only these items may
be relocated because in this case, the reloading depth is 2) to the random keys 0.68, 0.94, and 0.95,
respectively. After sorting these random keys, item 2 (highlighted in gray), which is mapped to the
greatest random key (0.95 in this example) is delivered. The other items are stored in the container
following the order of their random keys. This process is repeated until the whole unloading plan
has been completed.

3.3. Initial population

Our BRKGA maintains a population P of N individuals throughout the evolutionary process.
To make the initial population, we create N − 1 random individuals, where each random key of
each individual is generated independently at random in the real interval [0, 1]. Furthermore, to

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



16 J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28

introduce an orientation (hopefully a good one) to the search procedure of the BRKGA, we create
and insert into the initial population an individual that represents the initial solution computed to
initialize the mathematical models, that is, the optimal DTSPPL solution in which no rearrange-
ments of items are performed. This last individual is created following the reverse process of the
decoding procedure previously described.

3.4. Biased crossover

In order to combine the genetic information from the parents and generate new offsprings, a
BRKGA uses a biased crossover operator. This crossover always involves two parents, where one
is randomly selected from the elite group Pe, and the other is randomly chosen from the nonelite
group Pē. The groups Pe and Pē are formed at each generation of the algorithm after all individu-
als of population P have been decoded. Group Pe is formed by the individuals with greater fitness,
while Pē is formed by the other individuals, that is, Pē = P \ Pe. Moreover, the biased crossover
operator has a parameter ρe that defines the probability of each random key of the elite parent to
be inherited by the offspring individual. More precisely, from an elite parent a and a nonelite parent
b, we can generate an offspring c according to the biased crossover as follows:

ci ←
{

ai if random (0, 1) ≤ ρe
bi otherwise

∀i ∈ {1, 2, . . . , M},

where M is the number of random keys of the individuals and ai, bi, and ci are, respectively, the ith
random key of individuals a, b, and c.

3.5. Mutant individuals

Unlike most GAs, BRKGAs do not contain mutation operators. Instead, to maintain population
diversity, they use mutant individuals, which are merely new individuals generated by choosing for
each random key a real number between 0 and 1.

3.6. Next generation

In the BRKGA scheme, from any generation k, a new population is formed based on the current
population P . First, all elite individuals of generation k in Pe are copied into the new population
(generation k + 1) without any modification. Next, some mutant individuals are added to the new
population to maintain high population diversity. Finally, to complete the new population, new
individuals are added using the biased crossover operator.

3.7. Overall BRKGA

The previous components are organized as described in Algorithm 1. Initially (line 1), the best
solution found by the algorithm is initialized as an empty solution. Then, at line 2, the initial

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28 17

Algorithm 1. Biased random-key genetic algorithm (BRKGA)

1 sbest ← ∅
2 P ← initial population with N individuals
3 repeat
4 foreach p ∈ P do
5 s ← individual p decoded
6 if s is better than sbest then sbest ← s end
7 end
8 Pe ← set of the Ne best individuals (elite) from P
9 Pm ← set of Nm mutant individuals

10 Po ← set of N −Ne −Nm offspring individuals
11 P ← Pe ∪ Pm ∪ Po
12 until time limit is reached
13 return sbest

population is generated. While the stopping criterion is not achieved, the algorithm performs its
evolutionary cycle (lines 3 to 12). At lines 4–7, all individuals in the current population are decoded
and the best solution found is possibly updated. After selecting the individual elites (line 8) and
generating the mutant individuals (line 9) as well as the offspring individuals (line 10), the algorithm
updates the population of individuals (line 11). At the end of the algorithm (line 13), the best
solution found is returned.

4. Computational experiments

In this section, we present the computational experiments performed to study the performance of
the proposed solution approaches. As there is no previous work on the DTSPPL, we compare the
proposed approaches. Here, we graphically present the results obtained, whereas all numerical re-
sults for each instance can be found at http://www.goal.ufop.br/dtsppl, where is also available our
code, as well as all best solutions (tours and loading/unloading plans) found by each solution ap-
proach.

Our solution approaches have been coded in C/C++ language. Mathematical models have been
solved using Gurobi solver version 9.0.1. The proposed BRKGA has been coded from the frame-
work developed by Toso and Resende (2015). All experiments have been sequentially (nonparallel)
performed on an Intel(R) Xeon(R) E5-2660 (2.20 GHz), running under CentOS Linux 7 (Core).

4.1. Benchmarking instances

To assess the quality of the proposed solution methods, we have defined a comprehensive set of
1080 DTSPPL instances. The instances are divided into 216 different types in order to analyze the
solution methods on different instance characteristics. Each type is described by the number of cus-
tomers n, the reloading depth L, and the cost of each rearrangement h. The number of customers

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies

http://www.goal.ufop.br/dtsppl


18 J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28

Table 1
BRKGA parameters

Parameter Description Tested values

N Population size 1M, 2M, 5M, 10M, 20M, 50M, 100M, 200M, 500M
Ne Elite population size 0.05N, 0.10N, 0.15N, 0.20N, 0.25N, 0.30N
Nm Mutant population size 0.05N, 0.10N, 0.15N, 0.20N, 0.25N, 0.30N
ρe Elite allele inheritance probability 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90

Note. M is the number of random keys of each individual.

n varies in {6, 8, 10, 12, 15, 20}, while the reloading depth L and the cost h vary in {1, 2, 3, 4, 5,
n} and {0, 1, 2, 5, 10, 20}, respectively. Note that for h = 0, we allow rearrangements according
to the reloading depth L without any reloading cost. In turn, for L = n, we allow any rearrange-
ment of the items, regardless of the number of items introduced in the container. Although this
last configuration seems very unpractical in real-world applications, we have considered it in our
computational experiments to have an interesting comparison term. For each type of instances, we
have used the areas R05, R06, R07, R08, and R09 defined by Petersen and Madsen (2009) for the
DTSPMS. Each of these areas consists of two sets, where one defines the pickup locations (pickup
region), and the other defines the delivery locations (delivery region). The locations of each region
have been generated randomly in a 100 × 100 square. The distance between any two points of each
region is the Euclidean distance rounded to the nearest integer, following the conventions from the
TSPLIB. The first point of each region, which is fixed in coordinates (50, 50), corresponds to the
depot, while the next n points define the n customer locations.

4.2. Parameter settings

Our mathematical models ILP1 and ILP2 have been solved using Gurobi solver with all its default
settings. The exceptions are the runtime, which has been limited to one hour, and the optimization
process, which has been limited to use only a single processor core. Regarding the parameters of
the BRKGA, we have used as stopping criterion the same execution time that both mathematical
models have been limited, that is, one hour. For the other BRKGA parameters, we have used the
automatic configuration method I/F-Race (Birattari et al., 2010) to find the most suitable configu-
ration. We have used the implementation of I/F-Race provided by the Irace package (López-Ibáñez
et al., 2016b), which is implemented in the R language and is based on the iterated racing proce-
dure. In our tuning experiments, we have used all Irace default settings, except for the parameter
maxExperiments, which has been set to 5000. This parameter defines the stopping criterion of the
tuning process. We refer the readers to López-Ibáñez et al. (2016a) for a complete user guide of the
Irace package.

In Table 1, we describe the BRKGA parameters as well as the tested values for them. Note that
the population size N is given in terms of the size of each individual. Moreover, the elite population
size Ne and mutant population size Nm are granted in terms of N. After a vast experiment that
used a sample of 10% of all 1080 instances, Irace pointed out the parameters highlighted in bold in
Table 1 as the best ones.

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28 19

Fig. 9. Instances solved to proven optimality.

4.3. ILP1 versus ILP2

Our first analysis of results contrasts the mathematical models ILP1 and ILP2. We begin by com-
paring the performance of each model regarding the optimal solutions found. The results that
we obtained are shown in Fig. 9, where each cell represents a single test instance (horizontal axis
informs L and h, and vertical axis informs area and n). We indicate with markers which of the
instances have been solved to proven optimality by each model. Empty cells indicate for those in-
stances that no model has been able to prove optimality within one hour of processing time, while
markers 
 and ◦ evince those solved by models ILP1 and ILP2, respectively. We point out with �

when both models have been solved to proven optimality.
It can be noted from Fig. 9 that the proposed mathematical models have been able to solve

all instances with six customers, and almost all instances with eight customers. Both models have
presented difficulties in solving instances with 10 or more customers, especially with the increase in
the reloading depth (L) and the cost of each rearrangement (h). However, we can observe that for
instances when there are no rearrangement costs, that is, h = 0, both models perform better with
the increase in the reloading depth. Indeed, note that the optimal solutions for instances with h = 0
tend to approximate the solution formed by the pickup-and-delivery optimal tours as the reloading
depth increases. This trend results in an easier combinatorial problem, which has been verified in
the performance of our models.

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



20 J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28

Fig. 10. Percentage variation between the lower bounds ILP1_LB and ILP2_LB.

To better investigate the behavior of the mathematical models ILP1 and ILP2, we measure the
percentage variation of their lower bounds (ILP1_LB and ILP2_LB, respectively) reached at the end
of computation by calculating (ILP1_LB - ILP2_LB) / max(ILP1_LB, ILP2_LB) x 100%. The
percentage variations obtained between the lower bounds are graphically shown in Fig. 10, where
we have used a heatmap visualization to emphasize larger variations. Note that positive variation
values (highlighted in shades of red) indicate that model ILP1 has reached higher lower bounds
than those reached by the model ILP2. In contrast, negative variation values (highlighted in shades
of blue) indicate the opposite behavior. Besides, the higher the absolute value (more intense color),
the higher the difference between the lower bounds.

From the results reported in Fig. 10, we can observe that model ILP2 is more effective than ILP1
for most of the instances regarding the lower bounds achieved. It must be stressed that the most
instances where the model ILP1 has found tighter lower bounds are those in which have been solved
to proven optimality only by that model, as shown previously in Fig. 9. Besides, we can see that the
absolute value of the negative variation is higher than the positive variation, thus indicating, in
general, a better performance of model ILP2 concerning the lower bounds. Interestingly, we have
noted in our experiments that for many larger instances even the linear relaxation of model ILP2 is
tighter than the lower bound reached at the end of one hour of processing time of the model ILP1.
We recall the readers interested in the detailed numerical results that we made them available at
http://www.goal.ufop.br/dtsppl along with our code and solutions.

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies

http://www.goal.ufop.br/dtsppl


J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28 21

Fig. 11. Percentage variation between the upper bounds ILP1_UB and ILP2_UB.

We compare now the models ILP1 and ILP2 regarding their upper bounds (ILP1_UB and
ILP2_UB, respectively) reached at the end of computing. Figure 11 reports a similar heatmap vi-
sualization to the one shown in Fig. 10. However, each cell now represents the calculated value as
(ILP2_UB - ILP1_UB) / min(ILP1_UB, ILP2_UB) × 100%. Note that cells with more intense
colors indicate a higher difference between the upper bounds. While positive values (highlighted in
shades of red) indicate that model ILP2 has found better solutions than those found by the model
ILP1, negative values (highlighted in shades of blue) indicate the opposite behavior.

Although the models have shown substantial differences concerning their lower bounds, the re-
sults reported in Fig. 11 show that both models have obtained solutions with the same and similar
quality (white and light blue/red cells), that is, same and similar upper bounds, for several instances.
Disregarding the smaller instances where both models have found optimal solutions, this fact has
befallen on many instances that involve large rearrangement costs because the models have not
even been able to improve their initial incumbent solution (which we recall is the optimal solu-
tion obtained when reloading operations are not allowed). It indicates that in these instances the
customers are located in such a way that no rearrangement is attractive or that both models have
difficulty finding a way to accomplish them.

For the cases where the models showed significant differences between their upper bounds, we
can observe that model ILP1 has performed better for those instances with smaller rearrangement
depth. On the other hand, model ILP2 has achieved better solutions for more cases. Furthermore,
it has also reached higher absolute differences between the upper bounds found by the model ILP1.

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



22 J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28

Fig. 12. Relative gap between the best lower and upper bounds.

We conclude the analysis of our models by examining the gap, which is computed as (UB -
LB) / UB × 100%, between the best lower and upper bounds (LB and UB, respectively) reached
by both models. To be clear, the LB and UB values are calculated as max(ILP1_LB, ILP2_LB) and
min(ILP1_UB, ILP2_UB), respectively. In Fig. 12, we compare these values for all types of in-
stances, except for those types that involve six customers. For these cases, both models have been
able to solve all instances to proven optimality, and, consequently, gap values are zeros. The results
reported in the figure consist of the average for all five instances of each type, that is, average over
five instances (R05, R06, … , R09). better analyze the results, we plot them into six different lines,
wherein each of them contains all instances with the same rearrangement cost.

As can be seen from the gaps reported in Fig. 12, the models’ performance is strongly influenced
by the rearrangement cost. Note that the higher the rearrangement cost, the larger the gap is, with
few exceptions. For larger instances, the gap exceeds the value of 30%, thus indicating the models’
difficulty to solve these instances. A closer look reveals, in general, that for rearrangement cost
up to 5, that gap decreases as the reloading depth increases. This befalls because rearrangement
operations are more attractive in these cases to minimize the total operation costs, reducing the
difference between lower and upper bounds.

4.4. ILPs versus BRKGA

We focus now on the computational analysis of the proposed heuristic algorithm. For this pur-
pose, we have run our BRKGA 10 independent times on each instance, and then used the average
value (BRKGAavg) of the objective function in these runs in our analysis. To assess the quality of our

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28 23

Fig. 13. Percentage variation between BRKGAavg and UB.

BRKGA, we compare the BRKGAavg values with the best upper bound (UB) found by the mathemat-
ical models by means of a heatmap schema to emphasize the difference between the quality of the
solutions obtained.

In Fig. 10, a heatmap is reported, where each one of its cells reports the percentage difference be-
tween BRKGAavg and UB of a specific instance, which is identified as in the heatmaps previously pre-
sented. The value of each cell is calculated as (BRKGAavg - UB) / min(BRKGAavg, UB) × 100%.
Now, cells with negative values (highlighted in shades of blue) indicate that BRKGA has found,
on average, better solutions than those found by mathematical models. In turn, cells with positive
values (highlighted in shades of red) indicate a better performance of the models. The higher the
absolute value (more intense color) the higher the difference between the quality of the solutions.

It can be noted from Fig. 13 that our BRKGA has been able to find better solutions than those
found by the mathematical models for almost all types of instances that involve reloading depth
up to 3. On the other hand, the BRKGA has difficulty dealing with larger reloading depths. For
these cases, the models have performed significantly better than our proposed heuristic, although
there are some exceptions (see, e.g., instances with L = 5, h = {2, 5, 10}, and n = 20). Note that
the models have performed better for those instances with no limited reloading depth (L = n) and
smallest rearrangement costs (h = {0, 1, 2}). As stated before, for these instances, we have an easier
combinatorial problem. Our models, especially the ILP2, take advantage of this behavior, while the
BRKGA does not.

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



24 J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28

Fig. 14. Computational time to reach BRKGAavg and UB for their solution approaches.

Now, we compare the quality of solutions reported in Fig. 13 according to the time spent from
reaching them. To this end, Fig. 14 shows the average time spent over the five instances of each
type. To better analyze, we plot these results into six separate charts, wherein each of them contains
all instances with the same reloading depth.

From Fig. 14, we can note that BRKGA has had a faster convergence for most of the instances
when compared with the models, which has had a positive behavior for instances with reloading
depth up to 3 where it has been able to find several better solutions. In general, we can affirm that
all our solution approaches have faster convergence behavior as the rearrangement cost increases,
which was expected as few or no rearrangements would be interesting for these cases.

Finally, we analyze the percentage improvement of the best solution achieved concerning the
optimal solution that does not perform any rearrangement, that is, when the classic LIFO policy
is met. In Fig. 15, we show for each type of instance (a combination of L, n, and h) the percent-
age improvement in terms of costs obtained by allowing items to be rearranged within a reloading
depth L and paying a cost h for each item rearranged. Note that all types of instances with the

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28 25

Fig. 15. Percentage improvement with partial LIFO loading.

same rearrangement cost are described together in a single line (same color). For example, note
that for the type of instance with L = 2, n = 8, and h = 5, we have obtained around 10% of im-
provement concerning the optimal solution without rearrangements. As expected, the lower the
cost of rearrangement, the higher the percentage of improvement is. Besides, a closer look at the
improvement rates shows that when rearrangements are less costly, a deeper reloading limit also
implies more significant gains since a higher number of items may be rearranged. Note also that,
even when rearrangements are more expensive, some improvements have been reached, especially
for smaller instances where our approaches have been able to find solutions with better-proven
quality.

5. Conclusions and open perspectives

We have approached the DTSPPL, a pickup-and-delivery single-vehicle routing problem. In this
problem, the vehicle has its loading compartment as a single stack, and all pickup-and-delivery
operations must obey a version of the LIFO policy that may be violated within a given reloading
depth. We have presented two ILP formulations, and we have developed a heuristic algorithm based
on the BRKGA metaheuristic.

The performance of the ILP formulations and the BRKGA has been studied on a comprehen-
sive set of instances built from the DTSPMS benchmark instances. Both ILP formulations have
been able to solve to proven optimality only the smaller instances within one hour of processing

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



26 J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28

time. One of them has had tighter lower bounds for almost all instances, although both formu-
lations have shown similar performance concerning their upper bounds found at the end of the
computation. The BRKGA found good-quality solutions for all instances, requiring on average
short computing times.

There are many possibilities for extending this work. Maybe the most relevant one would be to
model and solve the DTSPMSPL, the version of the DTSPPL where the loading compartment of
the vehicle is divided into multiple stacks instead of a single one. Because of the increased compu-
tational complexity, we expect metaheuristic techniques to be the best option to find good solutions
for moderate-sized instances. It would also be interesting to study the impact of forcing the LIFO
policy to be fully respected but allowing at the same time multiple visits to the customers. In such
type of problems, iterative aggregate/disaggregate formulations, as in Bruck and Iori (2017), proved
to be quite effective. Another important extension of the DTSPPL/DTSPMSPL would be to con-
sider a fleet of vehicles to serve the customers. A larger number of vehicles would cause an increase
in the flexibility of the loading/unloading operations, which could lead to a reduction in operating
costs. In order to formulate more general problems, would also be interesting to consider partial
LIFO loading in situations where backhaul deliveries are dropped, that is, situations when deliver-
ies are allow without the need to perform all pickup operations before, as in Côté et al. (2009) and
Cordeau et al. (2010). Finally, as multiobjective formulations provide a more powerful optimiza-
tion tools for decision making, it would be opportune to formulate pickup-and-delivery problems
with partial LIFO as biobjective problems by minimizing the total routing cost and the number of
rearrangement operations.

Acknowledgments

The authors would like to thank the anonymous reviewers for their useful comments which have
greatly enhanced this manuscript. The authors thank Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior (CAPES)—Finance code 001. The authors would also like to thank Fundação
de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, grant CEX-PPM-00676-17), Con-
selho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant 303266/2019-8), Uni-
versidade Federal de Ouro Preto (UFOP), Universidade Federal de Viçosa (UFV), and University
of Modena and Reggio Emilia (under grant FAR 2018) for supporting this research.

References

Alba Martínez, M.A., Cordeau, J.F., Dell’Amico, M., Iori, M., 2013. A branch-and-cut algorithm for the double traveling
salesman problem with multiple stacks. INFORMS Journal on Computing 25, 1, 41–55.

Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J., 2006. The Traveling Salesman Problem: A Computational Study.
Princeton University Press, Princeton, NJ.

Barbato, M., Grappe, R., Lacroix, M., Calvo, R.W., 2016. Polyhedral results and a branch-and-cut algorithm for the
double traveling salesman problem with multiple stacks. Discrete Optimization 21, 25–41.

Battarra, M., Cordeau, J.F., Iori, M., 2014. Pickup and delivery problems for goods transportation. In Toth, P., Vigo, D.
(eds) Vehicle Routing: Problems, Methods, and Applications. MOS-SIAM Series on Optimization (2nd edn). SIAM,
Philadelpia, PA, pp. 161–192.

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28 27

Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T., 2010. F-race and iterated F-race: an overview. In Bartz-Beielstein, T.,
Chiarandini, M., Paquete, L., Preuss, M. (eds) Experimental Methods for the Analysis of Optimization Algorithms.
Springer, Berlin, pp. 311–336.

Bruck, B., Iori, M., 2017. Non-elementary formulations for single vehicle routing problems with pickups and deliveries.
Operations Research 65, 1597–1614.

Carrabs, F., Cerulli, R., Cordeau, J.F., 2007a. An additive branch-and-bound algorithm for the pickup and delivery
traveling salesman problem with LIFO or FIFO loading. INFOR: Information Systems and Operational Research
45, 4, 223–238.

Carrabs, F., Cerulli, R., Speranza, M.G., 2010. A branch-and-bound algorithm for the double TSP with two stacks.
Networks 61, 1, 58–75.

Carrabs, F., Cordeau, J.F., Laporte, G., 2007b. Variable neighborhood search for the pickup and delivery traveling sales-
man problem with LIFO loading. INFORMS Journal on Computing 19, 4, 618–632.

Casazza, M., Ceselli, A., Nunkesser, M., 2012. Efficient algorithms for the double traveling salesman problem with
multiple stacks. Computers & Operations Research 39, 5, 1044–1053.

Chagas, J.B.C., Silveira, U.E.F., Benedito, M.P.L., Santos, A.G., 2016. Simulated annealing metaheuristic for the double
vehicle routing problem with multiple stacks. 19th International Conference on Intelligent Transportation Systems
(ITSC). IEEE, Rio de Janeiro, pp. 1311–1316.

Chagas, J.B.C., Silveira, U.E.F., Santos, A.G., Souza, M.J.F., 2020. A variable neighborhood search heuristic algorithm
for the double vehicle routing problem with multiple stacks. International Transactions in Operational Research 27,
1, 112–137.

Cordeau, J.F., Iori, M., Laporte, G., Salazar González, J.J., 2010. A branch-and-cut algorithm for the pickup and delivery
traveling salesman problem with LIFO loading. Networks 55, 1, 46–59.

Côté, J.F., Archetti, C., Speranza, M.G., Gendreau, M., Potvin, J.Y., 2009. A branch-and-cut algorithm for the pickup
and delivery traveling salesman problem with multiple stacks. Networks 60, 4, 212–226.

Doerner, K., Salazar-González, J.J., 2014. Pickup and delivery routing problems for people transportation. In Toth, P.,
Vigo, D. (eds) Vehicle Routing: Problems, Methods, and Applications (2nd edn). MOS-SIAM Series on Optimization.
SIAM, Philadelpia, PA, pp. 193–212.

Felipe, Á., Ortuño, M.T., Tirado, G., 2009. The double traveling salesman problem with multiple stacks: a variable
neighborhood search approach. Computers & Operations Research 36, 11, 2983–2993.

Gonçalves, J.F., Resende, M.G., 2011. Biased random-key genetic algorithms for combinatorial optimization. Journal of
Heuristics 17, 5, 487–525.

Gonçalves, J.F., Resende, M.G., 2012. A parallel multi-population biased random-key genetic algorithm for a container
loading problem. Computers & Operations Research 39, 2, 179–190.

Gonçalves, J.F., Resende, M.G., 2013. A biased random key genetic algorithm for 2D and 3D bin packing problems.
International Journal of Production Economics 145, 2, 500–510.

Gonçalves, J.F., Resende, M.G., 2015. A biased random-key genetic algorithm for the unequal area facility layout prob-
lem. European Journal of Operational Research 246, 1, 86–107.

Gutin, G., Punnen, A.P., 2006. The Traveling Salesman Problem and Its Variations, Vol. 12. Springer Science & Business
Media, Berlin.

Iori, M., Martello, S., 2010. Routing problems with loading constraints. TOP 18, 1, 4–27.
Iori, M., Riera-Ledesma, J., 2015. Exact algorithms for the double vehicle routing problem with multiple stacks. Com-

puters & Operations Research 63, 83–101.
Kherbash, O., Mocan, M.L., 2015. A review of logistics and transport sector as a factor of globalization. Procedia

Economics and Finance 27, 42–47.
Ladany, S.P., Mehrez, A., 1984. Optimal routing of a single vehicle with loading and unloading constraints. Transporta-

tion Planning and Technology 8, 4, 301–306.
Lalla-Ruiz, E., González-Velarde, J.L., Melián-Batista, B., Moreno-Vega, J.M., 2014. Biased random key genetic algo-

rithm for the tactical berth allocation problem. Applied Soft Computing 22, 60–76.
Li, Y., Lim, A., Oon, W.C., Qin, H., Tu, D., 2011. The tree representation for the pickup and delivery traveling salesman

problem with LIFO loading. European Journal of Operational Research 212, 3, 482–496.
López-Ibáñez, M., Cáceres, L.P., Dubois-Lacoste, J., Stützle, T., Birattari, M., 2016a. The Irace Package: User Guide.

IRIDIA, Université Libre de Bruxelles, Belgium,

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



28 J.B.C. Chagas et al. / Intl. Trans. in Op. Res. 00 (2020) 1–28

López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T., 2016b. The Irace package: iterated racing
for automatic algorithm configuration. Operations Research Perspectives 3, 43–58.

Lusby, R.M., Larsen, J., Ehrgott, M., Ryan, D., 2010. An exact method for the double TSP with multiple stacks. Inter-
national Transactions in Operational Research 17, 5, 637–652.

Mitchell, M., 1998. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA.
Pereira, A.H., Urrutia, S., 2018. Formulations and algorithms for the pickup and delivery traveling salesman problem

with multiple stacks. Computers & Operations Research 93, 1–14.
Petersen, H.L., 2009. Decision support for planning of multimodal transportation with multiple objectives. Ph.D. thesis,

Technical University of Denmark (DTU), Lyngby.
Petersen, H.L., Archetti, C., Speranza, M.G., 2010. Exact solutions to the double travelling salesman problem with

multiple stacks. Networks 56, 4, 229–243.
Petersen, H.L., Madsen, O.B., 2009. The double travelling salesman problem with multiple stacks—formulation and

heuristic solution approaches. European Journal of Operational Research 198, 1, 139–147.
Resende, M.G., 2012. Biased random-key genetic algorithms with applications in telecommunications. TOP 20, 1, 130–

153.
Sampaio, A.H., Urrutia, S., 2017. New formulation and branch-and-cut algorithm for the pickup and delivery traveling

salesman problem with multiple stacks. International Transactions in Operational Research 24, 1–2, 77–98.
Santos, A.G., Chagas, J.B.C., 2018. The thief orienteering problem: formulation and heuristic approaches. 2018 IEEE

Congress on Evolutionary Computation (CEC), IEEE, Rio de Janeiro, pp. 1191–1199.
Silveira, U.E.F., Benedito, M.P.L., Santos, A.G., 2015. Heuristic approaches to double vehicle routing problem with

multiple stacks. 15th International Conference on Intelligent Systems Design and Applications (ISDA), IEEE, Mar-
rakesh, Morocco, pp. 231–236.

Talbi, E.G., 2009. Metaheuristics: From Design to Implementation, Vol. 74. John Wiley & Sons, Hoboken, NJ.
Toso, R.F., Resende, M.G., 2015. A C++ application programming interface for biased random-key genetic algorithms.

Optimization Methods and Software 30, 1, 81–93.
Urrutia, S., Milanés, A., Løkketangen, A., 2015. A dynamic programming based local search approach for the double

traveling salesman problem with multiple stacks. International Transactions in Operational Research 22, 1, 61–75.
Veenstra, M., Roodbergen, K.J., Vis, I.F., Coelho, L.C., 2017. The pickup and delivery traveling salesman problem with

handling costs. European Journal of Operational Research 257, 1, 118–132.

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies


