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ABSTRACT

This paper addresses the single machine scheduling problem
with distinct time windows, sequence-dependent setup times
(SMSPETP) which consists in minimizing the total weighted ear-
liness and tardiness of a set of jobs. We propose a time-indexed
mathematical formulation for representing the problem, new
valid constraints families for this formulation, as well as separa-
tion algorithms. Computational experiments show that the use
of these algorithms in a cutting-plane enable to significantly im-
prove the linear relaxation.

1 INTRODUCTION

This paper addresses the single machine scheduling problem
with distinct time windows and sequence-dependent setup times.
Such problem consists of determining the time at which jobs
must be performed in order to minimize the weighted sum of
earliness and tardiness penalties, and is hereafter denoted by SM-
SPETP.

The SMSPETP is a difficult problem which has numerous ap-
plications, such as Just-in-Time manufacturing, chemical pro-
cessing, video on demand services, among others. As a conse-
quence, many resolution algorithms have been introduced to
solve this problem [3, 5]. Nevertheless, the job scheduling prob-
lem with the characteristics considered in this work has not re-
ceived the deserved attention. The SMSPETP has mainly been
treated by heuristic procedures that divide the problem into two
subproblems: (i) job sequencing, and (ii) determining the opti-
mal time for completion of each job in a given sequence. This
work tackles the SMSPETP from a perspective not yet consid-
ered in the literature i.e., with a cutting plane algorithm.

The SMSPETP has the following characteristics:

o A single machine must process a set I of n jobs;

o The machine can perform only one job at a time and, once
the process is initiated, it cannot be interrupted;

o All jobs are available for processing starting from date 0;

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the 9th
International Network Optimization Conference (INOC), June 12-14, 2019, ISBN
978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Philippe Yves Paul Michelon

University of Avignon
Avignon, France

philippe.michelon@univ-avignon.fr

e Between two consecutive jobs x and y € I, a setup time
of Sxy is required. It is assumed that the time for setting
up the machine in order to process the first job in the
sequence is equal to 0;

Idle time between the execution of two consecutive jobs
is allowed.

For each job x € I, there is a processing time Py and a time
window [Ex, Tx| in which the job x should preferably be
completed. Ex indicates the earliest due date, and Ty is
the tardiest due date;

If job x is completed before Ey, then there is a cost of ay
per unit of earliness time. In the case that the job is com-
pleted after Ty, there is a cost of fx per unit of tardiness
time. Jobs completed within their time windows do not
incur costs;

The objective of the problem is to determine the starting dates of
the jobs, so that the weighted sum of their earliness and tardiness
is minimized, i.e.,

min Z(axex + Bxtx), (1)

xel

where Cy represents the completion time of job x € I and ex =
max(0, Ex—Cx) and ty = max(0, Cx—Tx) represent the earliness
and tardiness times of x, respectively.

In this paper, a time-indexed formulation for representing the
SMSPETP is presented. In addition, five families of valid con-
straints for time-indexed SMSPETP formulations are proposed
in order to obtain better lower bounds.

The rest of this article is organized as follows. The time-indexed
formulation for the SMSPETP is presented in Section 2, while
the five families of valid constraints for time-indexed SMSPETP
formulations are showed in Section 3. Section 4 proposes sep-
arations algorithms for these families of constraints. Section 5
presents and discusses the computational results. Finally, Sec-
tion 6 concludes this work.

2 THE PROPOSED TIME-INDEXED
FORMULATION

In [6, 7] were introduced time-indexed formulations of the sin-
gle machine scheduling problem with distinct deadlines and no



setup times. We adapt these formulations and use the valid con-
straints of [1] in order to represent the SMSPETP.

Let Hy = {s)I;B, skBy, ... ,s,lC]B} be the set of possible start-
ing dates of job x € I. Let I, be decision variables such that
Vx€elandVhe Hy,

1,
Len = { 0,

In the rest of this work the following notations are used: |A]x =
max(s,IgB, A)and [A]x = min(/l,sgB), for all job x € I and for all

number A € R.

As introduced in [7], the cost incurred by the earliness or tar-
diness of a job x € I started at date h can be determined by the
function

gx(h) = ayx - max(Ex — h — Py, 0) + fx -max(h + Py — T, 0), YV h € Hy (2)

Therefore, a time-indexed formulation for the SMSPETP, de-
noted by TTF, is given by

if job x begins at date h;
otherwise.

(TF)  min )’ > ge(h) - Len

x€l heHx
st Z Ln=1 Vxel 3)
heHx
[hlx [hly
Ler + Z lyksl, Vx,yel,x#+y,

k=Lh-Px—Sxy+1lx k=lh—Py-Syx+1ly
Vhe HyUH, (4)

Lep €{0, 1}, Vx e ,Yh e Hy (5)

The objective function seeks to minimize the weighted sum of
the earliness and tardiness. Constraints (3) assure that each job
will be executed only once. Constraints (4) ensure that there is
sufficient time to execute a job and prepare the machine before
starting the next job. Note that Constraints (4) assume the validy
of the triangle inequality given by

Sxy <Sxz+Pz+Szy, VX, y,z€IL, x#y, x#zandy#z. (6)

3 NEW VALID CONSTRAINTS

This section introduces new families of valid constraints for time-
indexed formulations to the SMSPETP.

Before presenting the new valid constraints, it is observed
that the constraints given by Proposition 3.1 of [1] are also valid
for the time-indexed formulations of SMSPETP. These constraints
are used to prove the validity of the first family of valid con-
straints.

ProrosITION 3.1 ([1]). Given a subset1’ C I such that|I’| > 2,
forallh € \Jycp Hx, we have

[hlx

D > L < 1. )

xel k:Lh*Pxfye?}i\n{x}SxyHJx

Note that Constraints (4) are obtained from Constraints (7) by
considering only the subsets I’ C I such that |I’| = 2.

The first family of valid constraints is inspired by [6]. In this
work, the authors propose the set of Constraints (8) for time-
indexed formulations of scheduling problems without setup time
between jobs:

[h+A-1x [hly
Lt Y > <t vxel,
yel\{x}:Py>A k=|h-Py+Aly
Vhe ) Hy vAe{23,..
yel\{x}

k=Lh=Px+1]x

. P 8
S yt  (8)

Proposition 3.2 generalizes Constraints (8) to scheduling prob-
lems with setup times between jobs. The family of constraints
that satisfies Proposition 3.2 is named here “Family 1”.

ProPOSITION 3.2 (FAmILY 1). LetI’ C I be a subset of jobs such
that |I'| > 2. Given a jobx € I, for allh € Uyer (x) Hy and all
AN {2 — Py — minyel/\{x} Sxyy <., MaXyep (x} (Py + Syx)}y
we have

[hA—1]x Thly
L+ ) D lye <1, ©)
YEI™ o= h-Py-SIMiM4A]y

S —
€x €y

k=|h-Px -S4y
N

where:
o I'={yel'\ {x}|Py+Syx > A},
® STMM =minycp Sxy and
® 571 = min (Syx, A= 1+mingeps\(y) Syz) forally € I* (if I* = {y},
then S;’”" = Syx).

PROOF. As job x must be processed once, we have ¢, < 1.
Moreover, we have from Proposition 3.1 that
Zyer €y < 1. Suppose there is a feasible scheduling  of I in
which ex = 1and ¥, €y = 1 for a given h’ and a given A”.
Thus, there is a job y” € I* such that €,y = 1. Consequently, h" —
Py=Sxy+1 < sf < h'+A’~land ' =Py —Syx+A" < s;’, < K,
where s7 is the starting date of job x in scheduling 7, i.e., there
is overlap between jobs x and y” in scheduling 7. O

Note that Constraints (7) are contained in Family 1. In fact,
they are obtained by only setting A = 1 in Family 1.
The following lemma provides a new set of valid constraints.

LEmMA 3.3. For any subset I’ C I, we have

h i Py+S -1
[ +y€llj)l\n(x}( y+Syx)-1lx

Z Z Le| <1, Vhe UH"' (10)

xel’ k=|h]x xel’

€x

PROOF. As every job must be processed once, we have ex < 1,
Vx € I’ and Yh € U, cp Hyx. Suppose there is a feasible schedul-
ing 7 of I such that ), €x > 1for a given h’. Therefore, there
are two jobs x1,xz € I’ such that ey, = €x, = 1. Consequently,
h' < 5% S W 4Py, +Sxy x,—1and b’ < 5T < B +Py +Sx, x,— 1,
where s7 is the starting date of job x in scheduling 7, that is, the
machine performs jobs x; and x3 in scheduling 7 simultaneously.
This contradicts the fact that « is a feasible scheduling of I. O

Proposition 3.4 provides another family of valid constraints,
named “Family 2”. This family contains Constraints (10).

PROPOSITION 3.4 (FAMILY 2). LetI’ C I be a subset of jobs such
that |I’| > 2. Given a jobx € I, for allh € Uyer\ {x} Hy and

allA € {2 —minyeps (Py+Syx), - .., Px +maxycp\ (x} Sxy}, we
have:
[h+PSIMT 1], [h+PSPTn-Aly
Lo + Z Iy <1, (11)
k=lh-A+1]x yel*  k=[hly
— [ S —
Ex €y

where:
o I"={y eI'\ {x}|Px + Sxy 2 A},
e psmin = min, ¢ px (Py + Syx) and
. PS;"i" = Px + Sxy, if I" = {y}, orPSb',"i" =min (Pyx + Sxy, A—1+
min e\ (y) (Pz + Szy)) forally € I*, otherwise.



PRroOF. Since job x must be performed only once, we have
ex < 1. Besides it, from Constraints (10) we have % ¢« €y < 1.
Suppose there is a schedule 7 from I such that ex = 1 and
Yyer €y = 1 to agiven date h” and a given A”. Therefore, there
is y’ € I" such that ¢,y = 1. Consequently, i’ — A’ +1 < s} <
h' + Py + Syx —1and b’ < s7, < h’ + Px + Sxyy — A’, where
sZ is the starting date of job x in scheduling r, that is, the ma-
chine performs jobs x and y’ in schedule 7 simultaneously. This
contradicts the fact that x is a feasible schedule of I. O

Constraints (10) are obtained from Family 2 when considering
A = 1. Propositions 3.5, 3.6 and 3.7 provide three more families
of valid constraints, which will be named “Family 3”, “Family 4”
and “Family 5” respectively.

PROPOSITION 3.5 (FAMILY 3). For any subset I’ C I such that
|I’| = 2, we have:

(s§B+Py+Syx )—1]
X

Z Lee < 1. (12)

4 —sLB
xel k=sk

[ min
yel’\{x}

€x

PrRoOF. According to what has already been discussed, ex <
1,Vx € I’. Suppose there is a schedule 7 of I such that ), ¢ €x >
1. Therefore, there are two jobs x1,x2 € I’ such thatex, = €x, = 1.
Consequently, s£B < s7 < sLB + P, + Sy, —1and sEP <
s, < s,Ing + Py, + Sx;,x, — 1, where s is the starting date of job
x in scheduling 7, i.e., the machine performs jobs x; and x2 in
scheduling 7 simultaneously. This contradicts the fact that = is

a feasible scheduling of I. O

PROPOSITION 3.6 (FAMILY 4). Given a subset of jobs1’ C I such
that [I'] = 2, ifTPTrgirl denotes the lowest total time required to
process all jobs in I’ and s{‘,B = minyep s,I;B, then

JUB

Z Z Len > 1. (13)

xel’ I'\{x} . J
—| LB TPT
|;51'\(7€}Jr PTonin +yer}1\1r(1x}5 x

€

PRrROOF. Suppose there is a feasible scheduling 7 of I such that
€ isequal to 0. Let s¥ be the starting date of job x in scheduling 7
and x* € I’ be the last job processed in . Thus,

I’ ’ . .
sg < sIL,{;{x} + TPTmi\n{x by mingep\ ('} Syx’ and there is a

scheduling of I \ {x’} whose total processing time is lower than
TPT;}TEX } This contradicts the fact that TPTI{]i}l{x } is the low-
est total time required to process all jobsin I’ \ {x}. O

ProposITION 3.7 (FAMILY 5). Given a pair of distinct jobs x and

yinl, forallh € {max (sLB, s{;B), ..., min (s¥B, s{;B + Py +
Syx — 1)} N Hy, we have
SéjB
lyk 2 lep. (14)
k=h+Px+Sxy
-

€

PRrROOF. Suppose there is a feasible scheduling 7 of I such that
€ < I, foragivenh(ie,suchthatl,, = 1ande = 0).So,s7 = h

and s{;B < sg < h+ Py +Sxy, where s¥ denotes the starting date

of job x in scheduling 7. Since st“B <h< s{;B + Py + Syx — 1,
it follows that s¥ + Px + Sxy > sg and s;’ + Py + Syx > s%,
contradicting the fact that r is a feasible scheduling of I. O

4 SEPARATION ALGORITHMS FOR THE
FAMILIES OF PROPOSED CONSTRAINTS

Except Family 5, all families of constraints proposed in Section 3
have an exponential number of constraints (2" or greater). This
fact makes it impossible to fully include these families in the
formulations. However, they can be used in cutting-plane algo-
rithms [8]. In short, cutting-plane algorithms are procedures that
start from the solution of the linear relaxation of a formulation
in which a limited number of constraints are considered and it-
eratively adds new valid constraints to the problem and solve it,
until one stopping criterion is satisfied.

Let PPM be the mathematical programming problem based
on time-indexed variables that is updated iteratively in a given
cutting-plane algorithm. Consider that [* represents an optimal
solution of the linear relaxation of the current PPM. Note that
I* consists of an array of values assigned to the variables [,
Vx € I and Vh € Hy. Due to the large number of constraints
in Families 1-4, the simple fact of checking which constraints
are violated by I* is still an impractical process. The problem of
finding, in a set of constraints, those that are violated by I* is
called a “separation problem”.

The separation problem associated with Family 5 is solved ex-
actly by checking all constraints, one by one. On the other hand,
the separation problems of Families 1-4 are solved heuristically.
Moreover, the separation algorithms seek only the constraint
which are the most violated by [*. Constraints whose violation
by I* is small are discarded. A constraint of type A X [ < b is
violated by I* for at least § > 0 units if Ax [* > b + 6.

The algorithms proposed to solve the separation problems as-
sociated with the families of constraints presented in Section 3
are described in the following subsections. Let § represents the
minimum violation accepted. Given a solution [* for the cur-
rent PPM, let K™ = min{h € H, : l;h > 0} and AY®* =

max{h € Hy : l;_‘h > 0}, Vx € I. Furthermore, for each job

x e Lletly = {y € I\ {x} : hJ™ + Py + Sy > R or
R 4+ Py + Syey > R,

4.1 Separation Heuristic for Family 1

The proposed separation heuristic algorithm for Family 1 is de-
scribed in Algorithm 1. In this algorithm, Q; represents the set
of constraints violated by I*. lhsy j, p A(I*) represents the nu-
merical value of the expression éx + Xy ¢ €y related to Propo-
sition 3.2 applied to I*, for the respective x, h, I’ and A.

The jobs are sorted in ascending order by the values of AT,
The maximum number of constraints returned by the separation
heuristic of Family 1 is given by ¥, ¢j(A22X — h0 4 1),

4.2 Separation Heuristic for Family 2

Let Q3 be a subset of Family 2 composed of constraints which are
violated by I*.If Ihs,. p, 1 A(I*) represents the numerical value
of the expression ex + X, ¢+ €y of Proposition 3.4 applied to I*,
then the proposed heuristic algorithm for the separation prob-
lem of Family 2 is analogous to Algorithm 1. The only differences
are the range of A and the function lhsy_p, . A(I*), which, in this
case, are based on Proposition 3.4.



Input: I; BT, h‘xni“, L, Thsy pp A(F)V¥x e LI*; 6 € R
Ql — (Z);
for x € I do
for h = DX, pMax 1 ... pmin do
I’ — {x};
lhso «— —O09;
Update « FALSE;
while I’ # I, U {x} do
Yy~ -1
lhs™ —00;
fory e I\ I’ do
I' =« I'U{y};
for A = Py + Syx, Py +Syx — 1, -+, 2—
Px - minzel\{x} sz do
if lhsy p p A(I*) = 1+ 6 then
Q=Q1U {lhsx’h’p’A(l) < 1};
Update < TRUE;
Exit the current loop;
if lhsy ., A(I*) > Ihs* then
lhs* lhsx’h,p’A(l*);
v ey
if Update = TRUE then
| Exit the current loop;
else
| I"<T"\{y}
if Update = TRUE then
| Exit the current loop;
if [hs™ > lhsg then
| lhsy < lhs™;
else
| Exit the current loop;
I Uy

Return Qq;
Algorithm 1: Separation Heuristic for Family 1.

4.3 Separation Heuristic for Family 3

The proposed heuristic algorithm for the separation problem of
Family 3 is detailed in Algorithm 2. Q3 represents the set of con-
straints violated by I* found by this algorithm. Let lhsp(I*) rep-
resents the numerical value of the expression ) < €x of Propo-
sition 3.5 applied to I*, for the respective subset I’ C I.

As in the separation heuristics of Families 1 and 2, the order of
investigation of the jobs x € I is always given in the increasing
order of K™, The maximum number of constraints returned by
the separation heuristic of Family 3 is equal to n.

4.4 Separation Heuristic for Family 4

Before presenting the proposed separation for Family 4, it is ob-
served Constraint (13) of Proposition 3.6 is equivalent to Con-
straint (15) for all subset I’ C I.

LB I'\{x} e
[sh 7P *yg‘}‘{?xﬁy"’lw
Z Z Len— || < -1. (15)

4 _sLB
xel’ h=sk

’

€

Let Q4 be a subset of Family 4 composed of constraints that
are violated by I*. Let lhsp(I*) be the numerical value of expres-
sion €, — |I’| of Constraint (15) applied to *, for the respective
subset I’ C I.

Input: I; I, lhsp(I*) VxeI; I*; S€R
Qs < 0
for x € I do
I" —{x}
lhsy «— —o0;
Update « FALSE;
while I’ # I, U {x} do
Yy~ -1
lhs* — —O9;
fory e I\ I’ do
I' « 'V {y};
if lhsp(I*) > 1+ 6 then
Qs = Q3 U {lhsp(l) < 1};
Update < TRUE;
Exit the current loop;
if lhsp(I*) > lhs* then
Ihs* — Lhsp(I®);
I' =I'"\{y};
if Update = TRUE then
| Exit the current loop;
if lhs™ > lhsg then
| lhsg < lhs™;
else
| Exit the current loop;
I' «I'U{y*}
Return Qs;

Algorithm 2: Separation Heuristic for Family 3.

The heuristic algorithm proposed for the separation problem
of Family 4 is similar to that of Family 3. The only difference is
in the function Ihsp(I*), which, in this case, is based on Con-
straint (15). In addition, instead of the exact value of TPTIIHI i &
lower bound is used for that value. The lower bound used is pro-
vided by Corollary 4.1, which follows from the results proposed
in [4].

COROLLARY 4.1. For every subset I’ C I, the shortest total time
required to perform all jobs of I, that is TPTL . is such that

min’

TPTI’» > Z Py + max min

min = yEI,\(X}Syx —max min Sy,
xel’

7 7
Py xel’ yel’\{x}

Z min Sy, —max min Syy|.
oy yel’\{x} xel’ yel’\{x}

4.5 Separation Algorithm for Family 5

The separation of Family 5 is solved exactly.

The proposed algorithm for the separation problem of Family
5 is detailed in Algorithm 3. Qs represents the set of constraints
violated by I* found by this algorithm.

5 COMPUTATIONAL RESULTS

This Section presents the computational results obtained with
the time-indexed formulation for the SMSPETP presented in Sec-
tion 2, as well as with the different families of constraints pro-
posed in Section 3. The separation algorithms described in Sec-
tion 4 are used in a cutting plane framework in order to experi-
ment how much they enable to improve the linear relaxation.
The mathematical formulations were implemented and solved
through the C++ Concert Technology tool and the IBM ILOG
CPLEX Optimization Studio 12.6.2 solver. The separation heuris-
tics used for testing the proposed families of constraints were



Input: I s,IgB, sf{]B Vxel, I*; §eR
Qs « 0;
for x € I do

fory eI\ {x}do

LB (LB

for h = max(s,IgB, sé‘B), max(sy”, sy )+

1, -, min(s,lC]B, sé‘B + Py + Syx — 1) do
UB

* *

lyk < lxh 6 then

SUB
— y .
5 = Qs U {Zk=h+Px+Sxy lyk = Len}s

S
: y
if Zk:h+Px+Sxy

Return Qs;
Algorithm 3: Separation Algorithm for Family 5.

also implemented in C++ language. The experiments were re-
alized on a computer Intel® Xeon(R) CPU E5620 @ 2.40GHz x
16, with 48 GB of RAM and CentOS Linux 7 operation system.
CPLEX was configured to use only one thread and the other pa-
rameters were not changed. In addition, the algorithms were not
optimized for multiprocessing.

A set of instances of [5], involving up to 20 jobs and satisfying
the triangle inequality, was used in order to test the proposed
formulations. This set contains 16 instances of each value of n.
For each job x € I, the bounds sV B and sLB used for determining
the parameter values of each mathematical formulation are the
same than in [4].

The cutting-plane algorithm described in Algorithm 4 was
used in order to obtain lower bounds to the SMSPETP. The strat-
egy that was used is based on the Variable Neighborhood De-
scent — VND [2] procedure. It uses a subsequencing of m sepa-
ration algorithms proposed in Section 4, where 1 < m < 5,.

PPM < PPMy;

I* « solution of PPM;

6« 0.8;

while § > 0.1do

i—1;

while i < mdo

Solve the separation problem related to the i-th
family of constraints for [* and §;

if there are constraints that are violated by I*

then
Add these constraints to the current PPM;
I* « solution of the current PPM;
Eliminate from the current PPM the
constraints satisfied by I* with non-zero
slack;
i—1;
else
| Pe—i+1;
S —06+2;
Return I*;
Algorithm 4: Lower Bound obtained with m families of
constraints.

In Algorithm 4, the initial PPM is provided by the PPM, for-
mulation, defined by Equations (16)-(18).

(PPMo) min " " gue(h) - Len (16)
x€l heHy
st Z L,= 1 Vxel (17)
heHx

Iyn € [0,1] Vx elandVh € Hy (18)

Equation (16) represents the objective function of SMSPETP.
Constraints (17) ensure that each job must be executed once.
Given an instance of the problem, the gap of a given lower
bound LB with respect to a given integer solution value f* is
determined by Equation (19):

* _
gap = f f*LB % 100. (19)

The lower the value of the gap, the better the lower bound LB
is. We consider the best integer solutions from [5] to compute
the gaps.

The results are reported in Table 1. In this table, the first col-
umn indicates the number of jobs of each set consisting of 16
instances. Columns “TIF” present the results using the linear
relaxation of the proposed time-indexed formulation. Columns
“Family 17, “Family 2”, ..., “Family 5” report the results by apply-
ing Algorithm 4 with the corresponding separation algorithm.
Columns “Family 1-5” show the results by applying the Algo-
rithm 4 with the five proposed separation algorithms in this or-
der: Families 1, 2, 4, 3 and 5. For each set of instances, columns
“gap” and “time” show, respectively, the average gap of the lower
bounds (in %) and the average time, in seconds, required for each
strategy over the 16 corresponding instances.

According to Table 1, the smallest average gaps obtained with
only one family of constraints are Family 1, followed by Families
2,4,3 and 5, in this order (this justifies the choice of this sequence
of separation algorithms when using all the constraint families).
The difference between the average gaps of the lower bounds ob-
tained with Family 1 and the average gaps obtained with Family
2 is relevant. The same happens with the difference between the
average gaps of the lower bounds constructed with Families 2
and 4. The larger average times were also observed when using
Family 1, followed by the average times required with Family 2.
The average times required by Families 3, 4 and 5 were less than
2 seconds. However, the average gaps of the lower bounds con-
structed with these families of constraints were greater than or
equal to 72.00 %.

Also according to Table 1, the average times required to ob-
tain the lower bounds with the Families 1-5 were always higher
than the average time required for solving the linear relaxation
of the TIF formulation. However, the average gaps of the lower
bounds resulting from the application of Algorithm 4 are sig-
nificantly lower than the average gaps obtained with linear re-
laxation. The lower gaps of the average gaps obtained with the
linear relaxations of the TIF formulation are greater than 37%,
while the average gaps obtained by Families 1-5 are less than
6%. The average gap of the lower bounds obtained with the fam-
ilies 1-5 for the instances with 6 jobs are null, that is, the Algo-
rithm 4 has found the optimal whole solutions of these problems.
Although it is not shown in Table 1, the Algorithm 4 has found
the optimal integer solutions of a total of 87 instances, among
them an instance with 20 jobs.

6 CONCLUSIONS

In this work a time-indexed formulation, named TIF, for solving
the Single Machine Scheduling Problem with distinct time win-
dows and sequence-dependent setup times (SMSPETP) is pro-
posed. Five new families of valid constraints for time-indexed
formulations as well as separation algorithms for these families
are also introduced.



Table 1: Results obtained when applying the Algorithm 1 in the instances.

TIF Family 1 Family 2

Family 3

Family 4 Family 5 Families 1-5

n gap time gap time gap time gap

# 6 ® 6 % ) (%)

time gap time gap time gap time

G @ & & ) (@ G

06 37.85 0.25 0.06 0.68 1.59 1.49  84.90
07 49.03 047 0.17 295 4.26 5.31 83.77
08 5546 0.67 044 7.08 8.26 7.86  83.07
09 56.69 1.01 158 1470 13.01 11.51 89.06
10 58.47 1.82 0.87 25.63 9.34  27.92 90.86
11 6428 217 2.60 47.07 1472 39.07 92.97
12 6874 283 326 77.21 1858 5536 89.98
13 63.79 3.66 3.25 83.64 22.02 54.27 88.43
153.44 17.84 9449 91.16
15 70.10 7.35 4.20 19547 2444 12744 91.35
362.04 2590 187.69 90.84
17 73.08 1143 5.24 41557 26.62 253.60 90.91

14 6479 6.12 2.16

16 7155 8.41 542

18 69.07 15.26 4.22 516.20 2491 279.38 92.66
19 71.70 1632 4.23 726.58 25.83 397.62 92.51
20 7454 2381 634 887.28 26.65 55824 93.51

0.06 72.00 0.08 87833 0.08 0.00 0.65
0.10 7481 0.10 87.87 0.09 0.02 2.79
0.11 7374 0.09 86.03 0.12 0.24 7.15
0.13 80.10 0.13 9192 0.14 129 14.88
0.20 82.12 0.18 9229 0.20 046  26.66
0.25 8559 025 9444 027 190 50.40
039 8183 036 9237 038 221 89.28
0.50 8352 044 9095 048 280 94.84
0.58 85.64 056 9287 057 171 171.17

0.81 87.23 082 9387 084 3.18 231.52
0.71 87.15 0.74 9287 082 494 372.63
097 8698 1.06 9256 1.07 488 47041
126 8895 133 9384 144 392 578.00
1.61 8985 1.63 9406 170 3.79 829.96
1.79 90.08 186 9487 199 5389 1031.59

CPLEX solver was used to solve the linear relaxation of the
proposed mathematical formulation applied to instances with up
to 20 jobs.

The main contribution of this work is the proposition of five
families of valid constraints for SMSPETP formulations based
on time-indexed variables. The proposed separation heuristics
for these families were also used to obtain lower bounds for in-
stances with up to 20 jobs. The lower bounds obtained with these
heuristics are significantly better than those obtained with the
linear relaxation of the mathematical formulation presented in
this work. Although the times required to generate such lower
bounds are greater than those required by CPLEX to solve linear
relaxation, the lower bounds obtained are close, or even equal,
to the values of the optimal integer solutions.

It is important to note that the valid constraints proposed for
the time-indexed SMSPETP formulations can also be used in
many other types of scheduling problems involving sequence-
dependent setup times.
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