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ABSTRACT

This paper addresses the single machine scheduling problem

with distinct time windows, sequence-dependent setup times

(SMSPETP) which consists in minimizing the total weighted ear-

liness and tardiness of a set of jobs. We propose a time-indexed

mathematical formulation for representing the problem, new

valid constraints families for this formulation, as well as separa-

tion algorithms. Computational experiments show that the use

of these algorithms in a cutting-plane enable to significantly im-

prove the linear relaxation.

1 INTRODUCTION

This paper addresses the single machine scheduling problem

with distinct timewindows and sequence-dependent setup times.

Such problem consists of determining the time at which jobs

must be performed in order to minimize the weighted sum of

earliness and tardiness penalties, and is hereafter denoted by SM-

SPETP.

The SMSPETP is a difficult problem which has numerous ap-

plications, such as Just-in-Time manufacturing, chemical pro-

cessing, video on demand services, among others. As a conse-

quence, many resolution algorithms have been introduced to

solve this problem [3, 5]. Nevertheless, the job scheduling prob-

lem with the characteristics considered in this work has not re-

ceived the deserved attention. The SMSPETP has mainly been

treated by heuristic procedures that divide the problem into two

subproblems: (i) job sequencing, and (ii) determining the opti-

mal time for completion of each job in a given sequence. This

work tackles the SMSPETP from a perspective not yet consid-

ered in the literature i.e., with a cutting plane algorithm.

The SMSPETP has the following characteristics:

• A single machine must process a set I of n jobs;

• Themachine can perform only one job at a time and, once

the process is initiated, it cannot be interrupted;

• All jobs are available for processing starting from date 0;
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• Between two consecutive jobs x and y ∈ I , a setup time

of Sxy is required. It is assumed that the time for setting

up the machine in order to process the first job in the

sequence is equal to 0;

• Idle time between the execution of two consecutive jobs

is allowed.

• For each job x ∈ I , there is a processing time Px and a time

window [Ex ,Tx ] in which the job x should preferably be

completed. Ex indicates the earliest due date, and Tx is

the tardiest due date;

• If job x is completed before Ex , then there is a cost of αx
per unit of earliness time. In the case that the job is com-

pleted after Tx , there is a cost of βx per unit of tardiness

time. Jobs completed within their time windows do not

incur costs;

The objective of the problem is to determine the starting dates of

the jobs, so that theweighted sum of their earliness and tardiness

is minimized, i.e.,

min
∑
x ∈I

(αxex + βx tx ), (1)

where Cx represents the completion time of job x ∈ I and ex =

max(0, Ex−Cx ) and tx = max(0,Cx−Tx ) represent the earliness

and tardiness times of x , respectively.

In this paper, a time-indexed formulation for representing the

SMSPETP is presented. In addition, five families of valid con-

straints for time-indexed SMSPETP formulations are proposed

in order to obtain better lower bounds.

The rest of this article is organized as follows. The time-indexed

formulation for the SMSPETP is presented in Section 2, while

the five families of valid constraints for time-indexed SMSPETP

formulations are showed in Section 3. Section 4 proposes sep-

arations algorithms for these families of constraints. Section 5

presents and discusses the computational results. Finally, Sec-

tion 6 concludes this work.

2 THE PROPOSED TIME-INDEXED
FORMULATION

In [6, 7] were introduced time-indexed formulations of the sin-

gle machine scheduling problem with distinct deadlines and no
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setup times. We adapt these formulations and use the valid con-

straints of [1] in order to represent the SMSPETP.

Let Hx =
{
sLBx , s

LB
x + 1, . . . , s

UB
x

}
be the set of possible start-

ing dates of job x ∈ I . Let lxh be decision variables such that

∀ x ∈ I and ∀h ∈ Hx ,

lxh =

{
1, if job x begins at date h;

0, otherwise.

In the rest of this work the following notations are used: ⌊λ⌋x =

max(sLBx , λ) and ⌈λ⌉x = min(λ, sUB
x ), for all job x ∈ I and for all

number λ ∈ R.
As introduced in [7], the cost incurred by the earliness or tar-

diness of a job x ∈ I started at date h can be determined by the
function

дx (h) = αx ·max(Ex − h − Px , 0) + βx ·max(h + Px −Tx , 0), ∀ h ∈ Hx (2)

Therefore, a time-indexed formulation for the SMSPETP, de-

noted by TIF, is given by

(TIF) min
∑
x∈I

∑
h∈Hx

дx (h) · lxh

s.t.
∑
h∈Hx

lxh = 1, ∀x ∈ I (3)

⌈h⌉x∑
k=⌊h−Px −Sxy+1⌋x

lxk +

⌈h⌉y∑
k=⌊h−Py−Syx +1⌋y

lyk ≤ 1, ∀x, y ∈ I, x , y,

∀h ∈ Hx ∪ Hy (4)

lxh ∈ {0, 1}, ∀x ∈ I, ∀h ∈ Hx (5)

The objective function seeks tominimize the weighted sum of
the earliness and tardiness. Constraints (3) assure that each job
will be executed only once. Constraints (4) ensure that there is
sufficient time to execute a job and prepare the machine before
starting the next job. Note that Constraints (4) assume the validy
of the triangle inequality given by

Sxy ≤ Sxz + Pz + Szy , ∀ x, y, z ∈ I, x , y, x , z and y , z . (6)

3 NEW VALID CONSTRAINTS

This section introduces new families of valid constraints for time-

indexed formulations to the SMSPETP.

Before presenting the new valid constraints, it is observed

that the constraints given by Proposition 3.1 of [1] are also valid

for the time-indexed formulations of SMSPETP. These constraints

are used to prove the validity of the first family of valid con-

straints.

Proposition 3.1 ([1]). Given a subset I ′ ⊆ I such that |I ′| ≥ 2,
for all h ∈

⋃
x ∈I ′ Hx , we have

∑
x∈I ′

⌈h⌉x∑
k=

⌊
h−Px − min

y∈I ′\{x }
Sxy+1

⌋
x

lxk ≤ 1. (7)

Note that Constraints (4) are obtained from Constraints (7) by

considering only the subsets I ′ ⊂ I such that |I ′ | = 2.

The first family of valid constraints is inspired by [6]. In this

work, the authors propose the set of Constraints (8) for time-

indexed formulations of scheduling problemswithout setup time

between jobs:

⌈h+∆−1⌉x∑
k=⌊h−Px +1⌋x

lxk +
∑

y∈I \{x }:Py≥∆

⌈h⌉y∑
k=⌊h−Py+∆⌋y

lyk ≤ 1, ∀x ∈ I,

∀h ∈
⋃

y∈I \{x }

Hy, ∀∆ ∈ {2, 3, . . . , max
y∈I \{x }

Py } (8)

Proposition 3.2 generalizes Constraints (8) to scheduling prob-

lems with setup times between jobs. The family of constraints

that satisfies Proposition 3.2 is named here “Family 1”.

Proposition 3.2 (Family 1). Let I ′ ⊆ I be a subset of jobs such
that |I ′| ≥ 2. Given a job x ∈ I ′, for all h ∈

⋃
y∈I ′\{x } Hy and all

∆ ∈
{
2 − Px − miny∈I ′\{x } Sxy , . . . ,maxy∈I ′\{x }

(
Py + Syx

)}
,

we have

⌈h+∆−1⌉x∑
k=⌊h−Px −S

min
x +1⌋x

lxk

︸                         ︷︷                         ︸
εx

+

∑
y∈I ∗

⌈h⌉y∑
k=⌊h−Py−S

min
y +∆⌋y

lyk

︸                         ︷︷                         ︸
ϵy

≤ 1, (9)

where:

• I ∗ = {y ∈ I ′ \ {x } | Py + Syx ≥ ∆},

• Smin
x = miny∈I ∗ Sxy and

• Smin
y = min

(
Syx , ∆− 1+minz∈I ∗\{y} Syz

)
for all y ∈ I ∗

(
if I ∗ = {y },

then Smin
y = Syx

)
.

Proof. As job x must be processed once, we have εx ≤ 1.

Moreover, we have from Proposition 3.1 that∑
y∈I ∗ ϵy ≤ 1. Suppose there is a feasible scheduling π of I in

which εx = 1 and
∑
y∈I ∗ ϵy = 1 for a given h′ and a given ∆

′.

Thus, there is a job y′ ∈ I ∗ such that ϵy′ = 1. Consequently,h′ −

Px −Sxy′+1 ≤ sπx ≤ h′+∆′−1 andh′−Py′−Sy′x+∆
′ ≤ sπy′ ≤ h′,

where sπx is the starting date of job x in scheduling π , i.e., there

is overlap between jobs x and y′ in scheduling π . �

Note that Constraints (7) are contained in Family 1. In fact,

they are obtained by only setting ∆ = 1 in Family 1.

The following lemma provides a new set of valid constraints.

Lemma 3.3. For any subset I ′ ⊆ I , we have

∑
x∈I ′

©«

⌈h+ min
y∈I ′\{x }

(Py+Syx )−1⌉x∑
k=⌊h⌋x

lxk

ª®®®¬︸                                   ︷︷                                   ︸
ϵx

≤ 1, ∀h ∈
⋃
x∈I ′

Hx . (10)

Proof. As every job must be processed once, we have ϵx ≤ 1,

∀x ∈ I ′ and ∀h ∈
⋃
x ∈I ′ Hx . Suppose there is a feasible schedul-

ing π of I such that
∑
x ∈I ′ ϵx > 1 for a given h′. Therefore, there

are two jobs x1,x2 ∈ I ′ such that ϵx1 = ϵx2 = 1. Consequently,

h′ ≤ sπx1 ≤ h′+Px2+Sx2,x1−1 and h
′ ≤ sπx2 ≤ h′+Px1+Sx1,x2−1,

where sπx is the starting date of job x in scheduling π , that is, the

machine performs jobs x1 and x2 in scheduling π simultaneously.

This contradicts the fact that π is a feasible scheduling of I . �

Proposition 3.4 provides another family of valid constraints,

named “Family 2”. This family contains Constraints (10).

Proposition 3.4 (Family 2). Let I ′ ⊆ I be a subset of jobs such
that |I ′ | ≥ 2. Given a job x ∈ I ′, for all h ∈

⋃
y∈I ′\{x } Hy and

all ∆ ∈
{
2−miny∈I ∗

(
Py +Syx

)
, . . . , Px +maxy∈I ′\{x } Sxy

}
, we

have:
⌈h+PSmin

x −1⌉x∑
k=⌊h−∆+1⌋x

lxk

︸                  ︷︷                  ︸
εx

+

∑
y∈I ∗

⌈h+PSmin
y −∆⌉y∑

k=⌊h⌋y

lyk

︸                  ︷︷                  ︸
ϵy

≤ 1, (11)

where:

• I ∗ = {y ∈ I ′ \ {x } |Px + Sxy ≥ ∆},

• PSmin
x = miny∈I ∗

(
Py + Syx

)
and

• PSmin
y = Px + Sxy , if I

∗
= {y }, or PSmin

y = min
(
Px + Sxy , ∆ − 1 +

minz∈I ∗\{y}
(
Pz + Szy

) )
for all y ∈ I ∗ , otherwise.
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Proof. Since job x must be performed only once, we have

εx ≤ 1. Besides it, from Constraints (10) we have
∑
y∈I ∗ ϵy ≤ 1.

Suppose there is a schedule π from I such that εx = 1 and∑
y∈I ∗ ϵy = 1 to a given date h′ and a given ∆

′. Therefore, there

is y′ ∈ I ∗ such that ϵy′ = 1. Consequently, h′ − ∆
′
+ 1 ≤ sπx ≤

h′ + Py′ + Sy′x − 1 and h′ ≤ sπ
y′
≤ h′ + Px + Sxy′ − ∆

′, where

sπx is the starting date of job x in scheduling π , that is, the ma-

chine performs jobs x and y′ in schedule π simultaneously. This

contradicts the fact that π is a feasible schedule of I . �

Constraints (10) are obtained from Family 2when considering

∆ = 1. Propositions 3.5, 3.6 and 3.7 provide three more families

of valid constraints, which will be named “Family 3”, “Family 4”

and “Family 5” respectively.

Proposition 3.5 (Family 3). For any subset I ′ ⊆ I such that
|I ′ | ≥ 2, we have:

∑
x∈I ′

⌈
min

y∈I ′\{x }
(sLBy +Py+Syx )−1

⌉
x∑

k=sLBx

lxk

︸                                    ︷︷                                    ︸
ϵx

≤ 1. (12)

Proof. According to what has already been discussed, ϵx ≤

1,∀x ∈ I ′. Suppose there is a scheduleπ of I such that
∑
x ∈I ′ ϵx >

1. Therefore, there are two jobsx1,x2 ∈ I
′ such thatϵx1 = ϵx2 = 1.

Consequently, sLBx1 ≤ sπx1 ≤ sLBx2 + Px2 + Sx2,x1 − 1 and sLBx2 ≤

sπx2 ≤ sLBx1 + Px1 + Sx1,x2 − 1, where s
π
x is the starting date of job

x in scheduling π , i.e., the machine performs jobs x1 and x2 in

scheduling π simultaneously. This contradicts the fact that π is

a feasible scheduling of I . �

Proposition 3.6 (Family 4). Given a subset of jobs I ′ ⊆ I such

that |I ′| ≥ 2, if TPT I ′

min
denotes the lowest total time required to

process all jobs in I ′ and sLB
I ′
= minx ∈I ′ s

LB
x , then

∑
x∈I ′

sU B
x∑

h=

⌊
sLB
I ′\{x }

+T PT
I ′\{x }
min

+ min
y∈I \{x }

Syx

⌋
x

lxh

︸                                                       ︷︷                                                       ︸
ϵ

≥ 1. (13)

Proof. Suppose there is a feasible scheduling π of I such that

ϵ is equal to 0. Let sπx be the starting date of job x in scheduling π

and x ′ ∈ I ′ be the last job processed in π . Thus,

sπ
x ′
< sLB

I ′\{x }
+ TPT

I ′\{x ′}
min

+ miny∈I\{x ′ } Syx ′ and there is a

scheduling of I ′ \ {x ′} whose total processing time is lower than

TPT
I ′\{x ′}
min . This contradicts the fact that TPT

I ′\{x ′}
min

is the low-

est total time required to process all jobs in I ′ \ {x ′}. �

Proposition 3.7 (Family 5). Given a pair of distinct jobs x and

y in I , for all h ∈
{
max

(
sLBx , s

LB
y

)
, . . . ,min

(
sUB
x , s

LB
y + Py +

Syx − 1
)}
∩ Hx , we have

sUB
y∑

k=h+Px+Sxy

lyk

︸               ︷︷               ︸
ϵ

≥ lxh . (14)

Proof. Suppose there is a feasible scheduling π of I such that

ϵ < lxh for a given h (i.e., such that lxh = 1 and ϵ = 0). So, sπx = h

and sLBy ≤ sπy < h+Px +Sxy , where s
π
x denotes the starting date

of job x in scheduling π . Since sLBy ≤ h ≤ sLBy + Py + Syx − 1,

it follows that sπx + Px + Sxy > sπy and sπy + Py + Syx > sπx ,

contradicting the fact that π is a feasible scheduling of I . �

4 SEPARATION ALGORITHMS FOR THE
FAMILIES OF PROPOSED CONSTRAINTS

Except Family 5, all families of constraints proposed in Section 3

have an exponential number of constraints (2n or greater). This

fact makes it impossible to fully include these families in the

formulations. However, they can be used in cutting-plane algo-

rithms [8]. In short, cutting-plane algorithms are procedures that

start from the solution of the linear relaxation of a formulation

in which a limited number of constraints are considered and it-

eratively adds new valid constraints to the problem and solve it,

until one stopping criterion is satisfied.

Let PPM be the mathematical programming problem based

on time-indexed variables that is updated iteratively in a given

cutting-plane algorithm. Consider that l⋆ represents an optimal

solution of the linear relaxation of the current PPM . Note that

l⋆ consists of an array of values assigned to the variables lxh ,

∀x ∈ I and ∀h ∈ Hx . Due to the large number of constraints

in Families 1–4, the simple fact of checking which constraints

are violated by l⋆ is still an impractical process. The problem of

finding, in a set of constraints, those that are violated by l⋆ is

called a “separation problem”.

The separation problem associated with Family 5 is solved ex-

actly by checking all constraints, one by one. On the other hand,

the separation problems of Families 1–4 are solved heuristically.

Moreover, the separation algorithms seek only the constraint

which are the most violated by l⋆. Constraints whose violation

by l⋆ is small are discarded. A constraint of type A × l ≤ b is

violated by l⋆ for at least δ > 0 units if A × l⋆ ≥ b + δ .

The algorithms proposed to solve the separation problems as-

sociated with the families of constraints presented in Section 3

are described in the following subsections. Let δ represents the

minimum violation accepted. Given a solution l⋆ for the cur-

rent PPM , let hmin
x = min{h ∈ Hx : l⋆

xh
> 0} and hmax

x =

max{h ∈ Hx : l⋆
xh
> 0}, ∀x ∈ I . Furthermore, for each job

x ∈ I , let Ix =
{
y ∈ I \ {x} : hmax

y + Py + Syx > hmin
x or

hmax
x + Px + Sxy > hmin

y

}
.

4.1 Separation Heuristic for Family 1

The proposed separation heuristic algorithm for Family 1 is de-

scribed in Algorithm 1. In this algorithm, Ω1 represents the set

of constraints violated by l⋆. lhsx,h, I ′,∆(l
⋆) represents the nu-

merical value of the expression εx +
∑
y∈I ∗ ϵy related to Propo-

sition 3.2 applied to l⋆, for the respective x , h, I ′ and ∆.

The jobs are sorted in ascending order by the values of hmin
x .

Themaximum number of constraints returned by the separation

heuristic of Family 1 is given by
∑
x ∈I (h

max
x − hmin

x + 1).

4.2 Separation Heuristic for Family 2

Let Ω2 be a subset of Family 2 composed of constraints which are

violated by l⋆. If lhsx,h, I ′,∆(l
⋆) represents the numerical value

of the expression εx +
∑
y∈I ∗ ϵy of Proposition 3.4 applied to l⋆,

then the proposed heuristic algorithm for the separation prob-

lem of Family 2 is analogous to Algorithm1. The only differences

are the range of ∆ and the function lhsx,h, I ′,∆(l
⋆), which, in this

case, are based on Proposition 3.4.
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Input: I ; hmax
x , hmin

x , Ix , lhsx,h, I ′,∆(l
⋆) ∀x ∈ I ; l⋆; δ ∈ R.

Ω1 ← ∅;

for x ∈ I do

for h = hmax
x , hmax

x − 1, · · · , hmin
x do

I ′ ← {x};

lhs0← −∞;

Update← FALSE;

while I ′ , Ix ∪ {x} do
y∗ ← −1;

lhs∗← −∞;

for y ∈ Ix \ I
′ do

I ′ ← I ′ ∪ {y};

for ∆ = Py + Syx , Py + Syx − 1, · · · , 2 −

Px −minz∈I\{x } Sxz do

if lhsx,h, I ′,∆(l
⋆) ≥ 1 + δ then

Ω1 = Ω1 ∪ {lhsx,h, I ′,∆(l) ≤ 1};

Update← TRUE;

Exit the current loop;
if lhsx,h, I ′,∆(l

⋆) > lhs∗ then
lhs∗← lhsx,h, I ′,∆(l

⋆);

y∗ ← y;
if Update = TRUE then

Exit the current loop;

else
I ′ ← I ′ \ {y};

if Update = TRUE then
Exit the current loop;

if lhs∗ > lhs0 then
lhs0← lhs∗;

else
Exit the current loop;

I ′← I ′ ∪ {y∗};
Return Ω1;

Algorithm 1: Separation Heuristic for Family 1.

4.3 Separation Heuristic for Family 3

The proposed heuristic algorithm for the separation problem of

Family 3 is detailed in Algorithm 2. Ω3 represents the set of con-

straints violated by l⋆ found by this algorithm. Let lhsI ′(l
⋆) rep-

resents the numerical value of the expression
∑
x ∈I ′ ϵx of Propo-

sition 3.5 applied to l⋆, for the respective subset I ′ ⊆ I .

As in the separation heuristics of Families 1 and 2, the order of

investigation of the jobs x ∈ I is always given in the increasing

order of hmin
x . The maximum number of constraints returned by

the separation heuristic of Family 3 is equal to n.

4.4 Separation Heuristic for Family 4

Before presenting the proposed separation for Family 4, it is ob-

served Constraint (13) of Proposition 3.6 is equivalent to Con-

straint (15) for all subset I ′ ⊆ I .

∑
x∈I ′

⌈
sLB
I ′\{x }

+TPT
I ′\{x }
min

+ min
y∈I \{x }

Syx −1

⌉
x∑

h=sLBx

lxh

︸                                                      ︷︷                                                      ︸
ϵ ′
I ′

− |I ′ | ≤ −1. (15)

Let Ω4 be a subset of Family 4 composed of constraints that

are violated by l⋆. Let lhsI ′(l
⋆) be the numerical value of expres-

sion ϵ ′
I ′
− |I ′| of Constraint (15) applied to l⋆, for the respective

subset I ′ ⊆ I .

Input: I ; Ix , lhsI ′(l
⋆) ∀x ∈ I ; l⋆; δ ∈ R.

Ω3 ← ∅;

for x ∈ I do
I ′ ← {x};

lhs0 ← −∞;

Update← FALSE;

while I ′ , Ix ∪ {x} do
y∗ ← −1;

lhs∗← −∞;

for y ∈ Ix \ I
′ do

I ′ ← I ′ ∪ {y};

if lhsI ′(l
⋆) ≥ 1 + δ then

Ω3 = Ω3 ∪ {lhsI ′(l) ≤ 1};

Update← TRUE;

Exit the current loop;
if lhsI ′(l

⋆) > lhs∗ then
lhs∗← lhsI ′(l

⋆);

y∗ ← y;
I ′ ← I ′ \ {y};

if Update = TRUE then
Exit the current loop;

if lhs∗ > lhs0 then
lhs0← lhs∗;

else
Exit the current loop;

I ′← I ′ ∪ {y∗};
Return Ω3 ;

Algorithm 2: Separation Heuristic for Family 3.

The heuristic algorithm proposed for the separation problem

of Family 4 is similar to that of Family 3. The only difference is

in the function lhsI ′(l
⋆), which, in this case, is based on Con-

straint (15). In addition, instead of the exact value of TPT I ′

min, a

lower bound is used for that value. The lower bound used is pro-

vided by Corollary 4.1, which follows from the results proposed

in [4].

Corollary 4.1. For every subset I ′ ⊆ I , the shortest total time

required to perform all jobs of I ′, that is TPT I ′

min , is such that

T PT I ′

min ≥
∑
x∈I ′

Px +max

( ∑
x∈I ′

min
y∈I ′\{x }

Syx −max
x∈I ′

min
y∈I ′\{x }

Syx ,

∑
x∈I ′

min
y∈I ′\{x }

Sxy −max
x∈I ′

min
y∈I ′\{x }

Sxy

)
.

4.5 Separation Algorithm for Family 5

The separation of Family 5 is solved exactly.

The proposed algorithm for the separation problem of Family

5 is detailed in Algorithm 3. Ω5 represents the set of constraints

violated by l⋆ found by this algorithm.

5 COMPUTATIONAL RESULTS

This Section presents the computational results obtained with

the time-indexed formulation for the SMSPETP presented in Sec-

tion 2, as well as with the different families of constraints pro-

posed in Section 3. The separation algorithms described in Sec-

tion 4 are used in a cutting plane framework in order to experi-

ment how much they enable to improve the linear relaxation.

Themathematical formulationswere implemented and solved

through the C++ Concert Technology tool and the IBM ILOG

CPLEX Optimization Studio 12.6.2 solver. The separation heuris-

tics used for testing the proposed families of constraints were
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Input: I ; sLBx , sUB
x ∀x ∈ I ; l⋆; δ ∈ R.

Ω5 ← ∅;

for x ∈ I do

for y ∈ I \ {x} do

for h = max(sLBx , s
LB
y ), max(sLBx , s

LB
y ) +

1, · · · , min(sUB
x , s

LB
y + Py + Syx − 1) do

if
∑sUB

y

k=h+Px+Sxy
l⋆
yk
≤ l⋆

xh
− δ then

Ω5 = Ω5 ∪
{∑sUB

y

k=h+Px+Sxy
lyk ≥ lxh

}
;

Return Ω5;

Algorithm 3: Separation Algorithm for Family 5.

also implemented in C++ language. The experiments were re-

alized on a computer Intel® Xeon(R) CPU E5620 @ 2.40GHz ×

16, with 48 GB of RAM and CentOS Linux 7 operation system.

CPLEX was configured to use only one thread and the other pa-

rameters were not changed. In addition, the algorithms were not

optimized for multiprocessing.

A set of instances of [5], involving up to 20 jobs and satisfying

the triangle inequality, was used in order to test the proposed

formulations. This set contains 16 instances of each value of n.

For each job x ∈ I , the bounds sUB
x and sLBx used for determining

the parameter values of each mathematical formulation are the

same than in [4].

The cutting-plane algorithm described in Algorithm 4 was

used in order to obtain lower bounds to the SMSPETP. The strat-

egy that was used is based on the Variable Neighborhood De-

scent – VND [2] procedure. It uses a subsequencing ofm sepa-

ration algorithms proposed in Section 4, where 1 ≤ m ≤ 5,.

PPM ← PPM0;

l⋆ ← solution of PPM;

δ ← 0.8;

while δ ≥ 0.1 do
i ← 1;

while i ≤ m do
Solve the separation problem related to the i-th

family of constraints for l⋆ and δ ;

if there are constraints that are violated by l⋆

then
Add these constraints to the current PPM ;

l⋆← solution of the current PPM ;

Eliminate from the current PPM the

constraints satisfied by l⋆ with non-zero

slack;

i ← 1;
else

i ← i + 1;
δ ← δ ÷ 2;

Return l⋆;

Algorithm 4: Lower Bound obtained withm families of

constraints.

In Algorithm 4, the initial PPM is provided by the PPM0 for-
mulation, defined by Equations (16)–(18).

(PPM0) min
∑
x∈I

∑
h∈Hx

дx (h) · lxh (16)

s.t.
∑
h∈Hx

lxh = 1 ∀ x ∈ I (17)

lxh ∈ [0, 1] ∀x ∈ I and ∀h ∈ Hx (18)

Equation (16) represents the objective function of SMSPETP.

Constraints (17) ensure that each job must be executed once.
Given an instance of the problem, the gap of a given lower

bound LB with respect to a given integer solution value f ⋆ is
determined by Equation (19):

дap =
f ⋆ − LB

f ⋆
× 100. (19)

The lower the value of the gap, the better the lower bound LB

is. We consider the best integer solutions from [5] to compute

the gaps.

The results are reported in Table 1. In this table, the first col-

umn indicates the number of jobs of each set consisting of 16

instances. Columns “TIF” present the results using the linear

relaxation of the proposed time-indexed formulation. Columns

“Family 1”, “Family 2”, . . . , “Family 5” report the results by apply-

ing Algorithm 4 with the corresponding separation algorithm.

Columns “Family 1–5” show the results by applying the Algo-

rithm 4 with the five proposed separation algorithms in this or-

der: Families 1, 2, 4, 3 and 5. For each set of instances, columns

“gap” and “time” show, respectively, the average gap of the lower

bounds (in %) and the average time, in seconds, required for each

strategy over the 16 corresponding instances.

According to Table 1, the smallest average gaps obtained with

only one family of constraints are Family 1, followed by Families

2, 4, 3 and 5, in this order (this justifies the choice of this sequence

of separation algorithms when using all the constraint families).

The difference between the average gaps of the lower bounds ob-

tained with Family 1 and the average gaps obtained with Family

2 is relevant. The same happens with the difference between the

average gaps of the lower bounds constructed with Families 2

and 4. The larger average times were also observed when using

Family 1, followed by the average times required with Family 2.

The average times required by Families 3, 4 and 5 were less than

2 seconds. However, the average gaps of the lower bounds con-

structed with these families of constraints were greater than or

equal to 72.00 %.

Also according to Table 1, the average times required to ob-

tain the lower bounds with the Families 1–5 were always higher

than the average time required for solving the linear relaxation

of the TIF formulation. However, the average gaps of the lower

bounds resulting from the application of Algorithm 4 are sig-

nificantly lower than the average gaps obtained with linear re-

laxation. The lower gaps of the average gaps obtained with the

linear relaxations of the TIF formulation are greater than 37%,

while the average gaps obtained by Families 1–5 are less than

6%. The average gap of the lower bounds obtained with the fam-

ilies 1–5 for the instances with 6 jobs are null, that is, the Algo-

rithm 4 has found the optimal whole solutions of these problems.

Although it is not shown in Table 1, the Algorithm 4 has found

the optimal integer solutions of a total of 87 instances, among

them an instance with 20 jobs.

6 CONCLUSIONS

In this work a time-indexed formulation, named TIF, for solving

the Single Machine Scheduling Problem with distinct time win-

dows and sequence-dependent setup times (SMSPETP) is pro-

posed. Five new families of valid constraints for time-indexed

formulations as well as separation algorithms for these families

are also introduced.
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Table 1: Results obtained when applying the Algorithm 1 in the instances.

TIF Family 1 Family 2 Family 3 Family 4 Family 5 Families 1-5

n gap time gap time gap time gap time gap time gap time gap time

(%) (s) (%) (s) (%) (s) (%) (s) (%) (s) (%) (s) (%) (s)

06 37.85 0.25 0.06 0.68 1.59 1.49 84.90 0.06 72.00 0.08 87.83 0.08 0.00 0.65

07 49.03 0.47 0.17 2.95 4.26 5.31 83.77 0.10 74.81 0.10 87.87 0.09 0.02 2.79

08 55.46 0.67 0.44 7.08 8.26 7.86 83.07 0.11 73.74 0.09 86.03 0.12 0.24 7.15

09 56.69 1.01 1.58 14.70 13.01 11.51 89.06 0.13 80.10 0.13 91.92 0.14 1.29 14.88

10 58.47 1.82 0.87 25.63 9.34 27.92 90.86 0.20 82.12 0.18 92.29 0.20 0.46 26.66

11 64.28 2.17 2.60 47.07 14.72 39.07 92.97 0.25 85.59 0.25 94.44 0.27 1.90 50.40

12 68.74 2.83 3.26 77.21 18.58 55.36 89.98 0.39 81.83 0.36 92.37 0.38 2.21 89.28

13 63.79 3.66 3.25 83.64 22.02 54.27 88.43 0.50 83.52 0.44 90.95 0.48 2.80 94.84

14 64.79 6.12 2.16 153.44 17.84 94.49 91.16 0.58 85.64 0.56 92.87 0.57 1.71 171.17

15 70.10 7.35 4.20 195.47 24.44 127.44 91.35 0.81 87.23 0.82 93.87 0.84 3.18 231.52

16 71.55 8.41 5.42 362.04 25.90 187.69 90.84 0.71 87.15 0.74 92.87 0.82 4.94 372.63

17 73.08 11.43 5.24 415.57 26.62 253.60 90.91 0.97 86.98 1.06 92.56 1.07 4.88 470.41

18 69.07 15.26 4.22 516.20 24.91 279.38 92.66 1.26 88.95 1.33 93.84 1.44 3.92 578.00

19 71.70 16.32 4.23 726.58 25.83 397.62 92.51 1.61 89.85 1.63 94.06 1.70 3.79 829.96

20 74.54 23.81 6.34 887.28 26.65 558.24 93.51 1.79 90.08 1.86 94.87 1.99 5.89 1031.59

CPLEX solver was used to solve the linear relaxation of the

proposedmathematical formulation applied to instances with up

to 20 jobs.

The main contribution of this work is the proposition of five

families of valid constraints for SMSPETP formulations based

on time-indexed variables. The proposed separation heuristics

for these families were also used to obtain lower bounds for in-

stances with up to 20 jobs. The lower bounds obtainedwith these

heuristics are significantly better than those obtained with the

linear relaxation of the mathematical formulation presented in

this work. Although the times required to generate such lower

bounds are greater than those required by CPLEX to solve linear

relaxation, the lower bounds obtained are close, or even equal,

to the values of the optimal integer solutions.

It is important to note that the valid constraints proposed for

the time-indexed SMSPETP formulations can also be used in

many other types of scheduling problems involving sequence-

dependent setup times.
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