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ABSTRACT Feature selection is a widespread preprocessing step in the data mining field. One of its
purposes is to reduce the number of original dataset features to improve a predictive model’s performance.
Despite the benefits of feature selection for the classification task, to the best of our knowledge, few studies
in the literature address feature selection for the hierarchical classification context. This paper proposes a
novel feature selection method based on the general variable neighborhood search metaheuristic, combining
a filter and a wrapper step, wherein a global model hierarchical classifier evaluates feature subsets. We used
twelve datasets from the proteins and images domains to perform computational experiments to validate the
effect of the proposed algorithm on classification performance when using two global hierarchical classifiers
proposed in the literature. Statistical tests showed that using our method for feature selection led to predictive
performances that were consistently better than or equivalent to that obtained by using all features with
the benefit of reducing the number of features needed, which justifies its efficiency for the hierarchical
classification scenario.

INDEX TERMS Feature selection, hierarchical single-label classification, variable neighborhood search,
filter, wrapper.

l. INTRODUCTION

Data mining applications have become essential in recent
years due to the massive increase in the amount of data
generated and stored. The manipulation of data to transform
it into understandable and advantageous information creates
new research challenges.

the problem domain represented by its features. There are
different complexity levels of classification problems in the
literature. In traditional (flat) classification problems, one or
more class labels are assigned to each dataset instance, and
the classes are independent of each other. However, in many
real applications, more complex classification problems in
which classes that label instances are organized into a hierar-
chical structure [2]] represented by a tree or a directed acyclic
graph (DAG), so-called hierarchical classification problems,

Feature selection aims to identify as many relevant fea-
tures as possible and decrease the costs for processing data.

Typically, data mining tasks use feature selection as a pre-
processing step. In this paper, we will focus on feature
selection approaches for the classification task. Therefore, we
considered only datasets with labeled instances. Improving
classifiers’ predictive accuracy and reducing the execution
time of classification are some of the benefits of feature
selection [1].

Among data mining tasks, classification has received con-
siderable attention from the scientific community [1]. Clas-
sification predicts the class label(s) of examples based on
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exist.

Studies have proposed different methods to solve hierar-
chical classification problems. These methods are catego-
rized as local or global approaches according to how the
method handles the class hierarchy. In the local approach,
classification is conducted using a set of flat classifiers. In
contrast, the global approach uses a single classifier that
considers the class hierarchy as a whole. Hierarchical classifi-
cation methods may also be able to predict different numbers
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of paths of labels. A method can be restricted to predicting
only a single path of labels (single-label problem) or multiple
paths of labels (multilabel problem).

Despite the benefits of using feature selection methods as
a preprocessing step for the classification task, many of the
existing feature selection techniques in the literature cannot
be directly applied to a hierarchical classification scenario.
The initial efforts to solve feature selection for the hierar-
chical classification problem proposed applying conventional
feature selection techniques and constructing classifiers by
breaking down the hierarchical classification problem into
several flat classification problems. This type of approach
allowed researches to use feature selection techniques and
classification algorithms traditionally adopted in flat classifi-
cation [3[|-[5].

Few recent approaches that also use a set of flat classifiers
have proposed techniques based on recursive regularization
that consider the hierarchical information of classes (e.g.,
parent-child, sibling, and graph relations) [6], [[7]]. In addition
to structure information, another approach used a semantic
description of class labels to select different feature subsets
for each subclassifier [8]. It is worth mentioning that none of
them conducted experiments using global hierarchical classi-
fiers. Other ranked-based methods have proposed readjusting
some existing popular filter feature selection algorithms to
consider the hierarchical structure of classes [9], [10].

Unlike the previously mentioned studies, we propose a
feature selection approach designed specifically for global
model hierarchical classifiers that directly address class hi-
erarchy relations. In the literature, several works propose
modifications to existing flat classifiers to address the entire
class hierarchy in a single step [[11|-[18]]. Given the relevance
of global classifiers to the hierarchical classification scenario,
one can see the importance of developing preprocessing tech-
niques capable of handling the class hierarchy as a whole.

This paper presents a hybrid supervised feature selection
method, combining filter techniques to form the ranking of
features and metaheuristic techniques to search and evaluate
feature subsets to construct solutions capable of improving
the predictive performance of global hierarchical classifiers.
This paper is an extension of a previous work [19] in the
following aspects:

e We propose an algorithm that uses a variation of the
variable neighborhood search (VNS) [20] metaheuristic,
called general variable neighborhood search (GVNS)
[21]], that applies the basic variable neighborhood de-
scent (B-VND) [22] procedure as a local search method.

o We characterize and compare the running time behavior
of the GVNS algorithm to its previous version.

o We add experiments with a wrapper-based feature se-
lection method to compare the effectiveness of the pro-
posed algorithm.

« We include experiments with an additional hierarchical
classifier that uses induction of clustering trees for hier-
archical multi-label classification (CLUS-HMC).

« Finally, we conduct experiments considering a more ex-
tensive dataset collection that covers different domains.

To summarize, our major contributions in this work are as
follows:

o We propose another method that explores and takes
advantage of joint a filter-based approach adapted to
consider the hierarchical structure of classes and a
search-based metaheuristic technique to find the best
subset of features.

« We propose an efficient feature selection algorithm for
the supervised hierarchical single-label classification
task.

« We conduct extensive experiments on twelve real-world
hierarchical datasets from protein and image domains to
evaluate our approach’s efficacy.

o The proposed method is consistently better than or
equivalent to our previous algorithm [[19]].

e When we consider the running time behavior, the
proposed method performs better than our previous
method [[19] since it achieved the improvements first.

The remainder of this work is organized as follows. Sec-
tion[II] presents an overview of hierarchical classification and
feature selection. In Section [[II| we present the related work,
and in Section we describe the problem addressed in
this work. The proposed algorithm is detailed in Section [V}
Section [VI] presents the computational experiments and re-
ports the results of the comparative experiments. Finally,
conclusions and directions for future work are described in

Section

Il. BACKGROUND

Throughout Sections and we present an overview
of hierarchical classification and feature selection methods,
respectively.

A. HIERARCHICAL CLASSIFICATION

Most classification studies in the data mining field are related
to flat classification problems, in which the classes are inde-
pendent of each other. However, in many real applications,
the classes that label instances are organized into a hierarchi-
cal structure.

Different aspects can characterize hierarchical classifica-
tion methods [2]]. The first aspect is related to the type of
hierarchical structure that the method can process, tree, or
directed acyclic graph (DAG). Fig. [I| presents examples of
a tree and a DAG, where the nodes represent the classes,
and the edges indicate relationship between them. Basically,
in a tree structure (Fig. [Ta), each node (class) can possess
only one parent node, while in a DAG (Fig. [Ib)), a child node
(class) can have multiple parent nodes.

The second aspect is related to how deep in the class hierar-
chy the classification performs. A method can either perform
mandatory leaf node prediction (MLNP) or nonmandatory
leaf node predictions (NMLNP). In MLNP, the most specific
class assigned to an instance must be one of the classes at a
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(a) Tree class structure

(b) DAG class structure

FIGURE 1: Different types of hierarchical structure. In a tree structure (a), nodes have a single parent; in a DAG structure (b),

nodes can have multiple parents.

leaf node in the class hierarchy. In contrast, in NMLNP, any
class node in the hierarchy (internal or leaf) can be assigned
to an instance.

The third aspect refers to the number of different paths
of labels in the class hierarchy in which the method can
associate an instance. The methods may predict just a single
path of labels in the class hierarchy (single-label problem) or
be less restricted, predicting multiple paths of labels (multi-
label problem), for each instance.

Finally, the fourth aspect concerns how the classification
method handles the class hierarchy. Classification methods
can perform either flat or hierarchical classification (using
a local or global model approach). In flat classification, the
methods ignore the class hierarchy and make predictions
considering only the classes associated with leaf nodes. In
the local model approach, the class hierarchy is explored
through a local perspective using a combination of classifiers
that consider, in an isolated manner, different parts of the
hierarchy. According to Silla Junior and Freitas [2], we can
categorize local model approaches according to how they use
the local information of the hierarchical structure and how
they build their classifiers around it. There are three standard
ways of using local information: a local classifier per node,
a local classifier per parent node, and a local classifier per
hierarchical level. The global model approach uses only one
classifier, i.e., it builds a single model considering the class
hierarchy as a whole.

In the literature, several works proposing modifications to
existing flat classifiers to address the entire class hierarchy in
a single step are available. Some examples of modifications
of traditional flat classification algorithms are the following:
HC4.5 [11] and HLC [12], modified versions of C4.5; global
model naive bayes (GMNB) [13]], a modified version of the
naive bayes; CLUS-HMC [14], a method based on predictive
clustering trees; hant-miner [15]] and ~Amant-miner [[16], both
adaptations of the ant-miner algorithm; HMC-LMLP [[17]],
a neural network method based on multilayer perceptron;
and, more recently, the CSHCIC method [18], which inte-
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grates hierarchical classification and cost-sensitive learning
to reweight training data for the imbalanced class problem.

B. FEATURE SELECTION IN CLASSIFICATION

Feature selection has received increasing attention from re-
searchers in recent years due to the continued rapid growth
in the volume of data. Powerful as a preprocessing step,
it selects a subset of predictive features to improve the
performance of learning models. Data containing irrelevant
or redundant features can reduce the predictive capability
and increase the classification processing time of classifiers
[23]. Several research works have already shown that in
specific datasets some of the features can be removed from
the feature set without jeopardizing the predictive accuracy of
a classifier [24]. In practice, the use of feature selection in the
classification task can result in the following benefits [25]]:

(1) Improvement of the predictive capability of classi-
fiers.
(i) Reduction of the running time spent in the classifica-
tion learning process.
(i) Development of simplified classification models,
which allow for easier interpretation.

We can categorize feature selection methods according to
different aspects. The first aspect is related to the use of labels
(class value). Feature selection methods can process datasets
that have previously labeled, partially labeled, and nonla-
beled instances, leading to the development of supervised,
semisupervised, and unsupervised algorithms, respectively.
A supervised feature selection algorithm determines the rel-
evance of features by evaluating their existing correlation
with the class feature. In this paper, we considered datasets
with labeled instances. Therefore, we will focus on studies
that proposed feature selection approaches for the supervised
learning context, specifically feature selection approaches for
the classification task.

Another aspect is related to how the methods evaluate
the quality of the predictive features. In this sense, we can
consider different approaches that generally can be catego-
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rized into embedded, filter, wrapper, or hybrid (involving
possible combinations among embedded, filter, and wrapper)
methods [26]].

A method is categorized as a filter when it uses only
intrinsic properties of the data. However, when a method uses
a classifier to assess the quality of a given feature subset, it is
categorized as a wrapper. Filter methods have the advantage
of being independent of a classifier and are generally faster
than wrapper techniques. Nevertheless, the wrapper approach
usually has the advantage of achieving higher predictive
performance than filters.

When we use an embedded feature selection approach,
the classification model performs feature selection simultane-
ously with its creation. Typical examples of these techniques
are decision tree algorithms because they select features
placed into the nodes of the generated trees [|12]], [14]], [27].

As outlined above, filter approaches are independent of
the classification algorithm that will be applied. They use
the features’ intrinsic properties (i.e., the “relevance” of
the features) to evaluate the quality of features or subsets
of features. Typically, one can divide techniques based on
filter approaches into two groups: feature ranking-based ap-
proaches and search-based approaches.

Feature ranking-based approaches apply statistical metrics
to evaluate each feature individually, rank features accord-
ing to their relevance, and select the top k features from
the ranked list (where k is a predefined number). This
approach’s drawback is that it considers only one feature
per evaluation (univariate method), ignoring the correlations
between features. One feature that is irrelevant by itself
can be significantly informative when considered together
with other features [25]]. Examples of ranking-based methods
are information gain (IG) feature ranking [28]], symmetric
uncertainty [25]], gain ratio [25]], and chi-squared [28]].

Search-based approaches consider the relationship be-
tween features in a feature subset (as a multivariate method)
and search for the space of possible feature subsets. Each
feature subset considered by the search method represents
a candidate solution, which has its quality measured by an
evaluation function. Assuming that the evaluation function
penalizes redundant feature subsets, this approach has the
advantage of eliminating feature redundancy. However, these
approaches take more time to generate and measure each
feature subset’s quality, making them slower than univariate
approaches. Recall that if there are n possible features ini-
tially, then there are 2" possible subsets, which makes the
evaluation of every candidate feature subset prohibitive for
all but a small fraction of the total number of possible subsets.

In this sense, one can apply various heuristic search strate-
gies such as hill climbing and best first [25]] to search the
feature subset space in a reasonable time. Metaheuristic algo-
rithms such as simulated annealing (SA) [29], genetic algo-
rithm (GA) [30]], and particle swarm optimization (PSO) [31]]
have also been applied efficiently as search-based feature
selection approaches. Recently, researchers have explored
strategies that design parallel algorithms to improve the run-
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ning time of their feature selection approach, as proposed
by Huang et al. [32]] for internet text classification. Exam-
ples of search-based methods are correlation-based feature
selection (CFS) [23]], [33]], and consistency-based feature
selection [34].

In wrapper approaches, the same classifier used in the
classification step evaluates the quality of the feature subsets.
Therefore, the “usefulness” of a given subset of features
is measured by evaluating the trained classifier using only
the features included in that subset. As search-based filter
approaches, wrapper approaches need to promote searches
among possible subsets of features. Each feature subset is
then used to train a classification model evaluated according
to some performance measure [35]]. The search process pro-
ceeds until it finds the subset with the highest evaluation in
terms of the classifier’s predictive performance.

Methods that follow a wrapper approach generally produce
better predictive performance results than those based on a
filter approach since the classification algorithm itself drives
feature selection. However, in wrapper-based methods, the
classifier must be trained and evaluated multiple times dur-
ing the search process, which could cause very high com-
putational costs, making the method impractical for high-
dimensional datasets [36]. Therefore, in the last few years,
hybrid filter-wrapper techniques have become the focus of
many studies, as in this way, they aggregate the advantages
of filter and wrapper approaches. Examples of hybrid filter-
wrapper algorithms designed for flat classification problems
are HFS-C-P, a framework that integrates a correlation-
guided clustering technique and PSO [37]; BDE-X Rank, an
approach that combines a wrapper method based on a binary
differential evolution (BDE) algorithm with a ranking-based
filter method [38]); MIMAGA, an algorithm that combines the
mutual information maximization (MIM) and the adaptive
genetic algorithm (AGA) [39]], and HI-BQPSO, a method
that combines a filter technique with an improved quantum-
behavior PSO algorithm [40].

This paper designs a hybrid feature selection method
for the hierarchical classification context based on the
GVNS [21]] metaheuristic. It combines a filter step, wherein
a feature ranking is constructed based on the hierarchical
symmetrical uncertainty (SUy) measure [[10], with a wrap-
per step, wherein a global model classifier evaluates feature
subsets. We used two classifiers of this type, the GMNB [13]]
and the CLUS-HMC [[14]].

lll. RELATED WORK

Few studies in the literature discuss feature selection tech-
niques for the hierarchical classification scenario as previ-
ously defined.

In the work of Koller and Sahami [3]], document classi-
fication (whose classes represent a hierarchy of topics) was
addressed through the local model classification approach
combined with feature selection using probabilistic methods
for feature selection and classification. They construct a bi-
nary classifier for each node of the class hierarchy. A feature
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selection method is then applied to identify the most relevant
features for constructing each local classifier. The feature
selection method uses a measure of information theory pre-
viously proposed by Koller and Sahami [41]]. As a result of
this application, besides improving the predictive accuracy,
reducing the number of features allowed more robust and
simpler classifiers.

Secker et al. [4] solved the problem of predicting protein
functions by performing feature selection in conjunction with
a local hierarchical classification approach. They used a
top-down hierarchical classification strategy to select both
classifiers and features for each dataset and each node of
the hierarchy. Thus, in each node where a classifier has
been constructed, a feature selection step is performed to
reduce the dataset dimensionality of that particular node.
The proposed feature selection method uses the CFS and
the best first algorithm — both available in the WEKA data
mining toolkit [42]], [43]. They conducted experiments to
determine whether feature selection could improve computa-
tional efficiency without jeopardizing accuracy in predicting
protein functions. Their experiments showed that this top-
down system proposal significantly reduced the time required
to train and test the classification model while maintaining
the predictive accuracy.

Paes et al. [5]] explored the use of feature selection tech-
niques to improve the predictive performance of two different
hierarchical classification approaches, the local per parent
node and local per level approaches. They proposed a method
that produces a ranking of the features using the IG mea-
sure [44]. After forming the ranking, the p best features are
selected, where p is an input parameter of the method. They
used datasets from the bioinformatics area to conduct their
experiments and concluded that the classifiers’ best results
occurred when some feature selection strategy was adopted.

In all of the works mentioned above, the feature selec-
tion techniques and classifier construction were performed
by decomposing the hierarchical classification problem into
several flat ones, which allowed the researchers to use feature
selection techniques and classification algorithms tradition-
ally adopted in flat classification. Some recent approaches
that use local model classifiers have proposed techniques
based on recursive regularization that consider the hierarchi-
cal structure of classes to select different feature subsets for
each subclassifier [6]—[8]].

Zhao et al. [|6] first propose a hierarchical feature selection
technique based on recursive regularization using parent-
child and sibling relations in a tree for hierarchical regu-
larization. Experimental results showed that their algorithm
efficiently selects different feature subsets for each node in a
hierarchical tree structure. They achieved competitive results
in both classification accuracy and computational efficiency
compared with flat feature selection approaches.

Similarly, Tuo et al. [7] proposed a hierarchical feature se-
lection method with graph regularization. They sequentially
used each internal node as the root node and the correspond-
ing child nodes as leaf nodes, forming different subtrees.
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Then, they constructed parent-child relations as regulariza-
tion of any two subtrees in the hierarchical tree structure.
Their algorithm can also use the DAG label structure. They
compared their method with different feature selection meth-
ods on six image datasets. The experimental results validate
the efficiency and effectiveness of the proposed algorithm.

Huang and Liu [[8]] proposed the most recent study that uses
recursive regularization. This is the first attempt to explore a
method to take advantage of the semantic description and the
hierarchical structure of class labels in supervised feature se-
lection. First, they represent the label descriptions as seman-
tic regularization via a vector of real numbers using sentence
embedding techniques. Then, they propose a similarity score
based on the attention mechanism to calculate the relevance
between pairwise label vectors. Consequently, they explore
the semantic similarities of labels and use them to guide
feature selection. They also used parent-child and sibling
relations as structural regularization. Finally, they built a su-
pervised learning model and imposed semantic and structural
regularization terms on each subclassifier. Their proposed
framework outperformed the state-of-the-art feature selection
methods in the hierarchical classification domain.

Unlike those studies, our approach does not train one
classifier per tree node but works in association with a global
hierarchical classifier, directly addressing the hierarchical
structure of classes as a whole.

Other ranked-based methods propose to adapt some ex-
isting popular filter feature selection algorithms to handle
the hierarchical structure of classes [9]], [[10]. The work of
Slavkov et al. [9]] proposes a feature selection technique
capable of handling the hierarchy of classes as a whole
without the decomposition of the hierarchical problem in
several flat classification problems for hierarchical multilabel
classification problems. They developed an adaptation of the
ReliefF [45] algorithm to the hierarchical multilabel con-
text, called HMC-ReliefF. They employed forward feature
addition (FFA) curves, a stepwise filter-like procedure to
construct classifiers for different numbers of top-k ranked
features, to evaluate their method. By comparing the HMC-
ReliefF curve to an expected FFA curve obtained from a set
of random rankings of features, their experiments showed
that for various datasets, the HMC-ReliefF algorithm per-
formed well. Our approach is different because we address
the hierarchical single-label classification scenario.

Concerning hierarchical single-label classification, Dias
and Merschmann [[10] proposed an adaptation of the symmet-
rical uncertainty (SU) filter measure to consider the hierar-
chical structure of classes. Comparative analysis between the
ranking generated from the SUy and another ranking ran-
domly generated was performed. In the random ranking, the
most relevant features were dispersed throughout the ranking
positions. In this comparative evaluation, as expected, the
SUpg ranking resulted in higher predictive performances of
the GMNB classifier than random rankings. We use the SU g
filter measure to construct rankings and combine it with a
wrapper step in our approach.
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This work is an extension of a previous study [[19] in
which we proposed a hybrid algorithm based on the VNS
metaheuristic, named VNS-FSHC, using the SUy measure
in a filter step and the GMNB as the classifier of a wrapper
step. The present work builds on this preliminary effort by
providing a more efficient framework based on the VNS
metaheuristic. Furthermore, we include experiments using
two hierarchical classifiers (GMNB and CLUS-HMC) and
consider a more extensive dataset collection covering differ-
ent domains. We also add a wrapper hierarchical feature se-
lection method to compare the effectiveness of our approach.

It is worth mentioning that Cerri et al. [46|] proposed using
the CLUS-HMC decision tree induction classifier as a feature
selector and checked if the features selected to construct
its tree were sufficiently good to be used as input for two
hierarchical multilabel classifiers based on neural networks
and genetic algorithms. Their experimental results show that
using CLUS-HMC as a feature selector led to better results
than when using conventional flat multilabel methods, show-
ing the need to develop feature selection methods specifically
to consider hierarchical class relationships.

IV. PROBLEM STATEMENT

Let D = {dj,ds,...,d;} be a set of dataset instances. Let
A ={Ay, As,..., A, } be the set of predictive features of an
instance d; € D such that each A;, where 1 < ¢ < n, isaset
of continuous or categorical values. Let C' = {cy,..., ¢, } be
a set of classes that relate to each other through a hierarchical
structure, represented by a partial order <. Le., for all
c1,c0 € Cycqp <p co if and only if ¢; is a superclass of
¢o. Each instance d; € D is represented by the pair (Y7, ¢7),
where Y7 = {y{,43,...,y}} is a list of feature values with
y] € A;,and ¢ € C is the class of instance d;.

The feature selection for hierarchical classification
(FSHC) problem identifies relevant features for the hierar-
chical classification task. It attempts to remove features from
the dataset that do not increase or reduce the classification
model’s performance. Accordingly, a solution to the FSHC
problem is a subset X C A that can adequately classify new
instances.

To exemplify this, let D be a set of academic papers,
A = {word count, character count, verb count, noun count}
be the feature set and C = {computer science, software engi-
neering, artificial intelligence} be the categorization of aca-
demic papers into defined topics in which computer science
is the superclass of software engineering and artificial intelli-
gence. Let d; € D be a paper with feature values recorded as
Y7 = {500,2000, 100,200} and categorization software en-
gineering. Thus, the pair (Y7, ¢/) = ({500, 2000, 100, 200},
software engineering) represents this paper. The subset of
features X = {word count, verb count, noun count} is an
example of a solution to this problem.

The time needed to train and execute a classifier, its
complexity, the probability of overfitting, and dataset dimen-
sionality increase as the number of features increases. Thus,
removing irrelevant and redundant features from datasets can
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improve the accuracy of the predictive classifier, simplify
the generated classification model, and reduce the time spent
training a classifier. For this reason, feature selection is one of
the most popular data preprocessing tasks in the data mining
literature.

V. PROPOSAL

Next, we discuss our proposed hybrid feature selection
method, which uses the GVNS metaheuristic to solve the
FSHC problem. The representation of a solution and its
evaluation are presented in Section Sections and
[V-C describe how to build an initial solution and how to
apply the neighborhood structures to explore the solution
space of the problem, respectively. Finally, Section [V-D|
provides a detailed description of the proposed algorithm,
general variable neighborhood search for feature selection in
hierarchical classification (GVNS-FSHC).

A. SOLUTION REPRESENTATION AND EVALUATION
Our method’s first step is to generate an initial solution X C
A and then explore the problem’s solution space from this
starting point.

To evaluate each solution X’ = {2}, 25,..., 2. },m <n
that is generated, we used the 5-fold cross validation strategy
and the hierarchical F-measure (hF') [47] to evaluate the
performance of each global hierarchical classifier adopted.

The hF measure is an adaptation of the traditional F'-
measure, intensely used in flat classification problems, used
to consider the class hierarchy.

The quality of the solution X is calculated according to the
following equation:

_ 2x hP(X) x hR(X)
hE(X) = hP(X)+ hR(X)

where hP(X) and hR(X) represent the hierarchical preci-
sion and the hierarchical recall, respectively.

Considering P; as the set consisting of the most specific
class predicted for the test instance j and all its ancestor
classes and T; as the set consisting of the true most specific

class of this same test instance and all its ancestor classes,
hP(X) and hR(X) of solution X can be defined according

to () and (@):

ey

> 1PN Ty
WP(X) ==~ - 2
(X) s 17 2)
NP NT;

25110

B. BUILDING AN INITIAL SOLUTION

As in Costa et al. [19], we used the incremental wrapper
subset selection (IWSS) approach [48] to generate the initial
solution. IWSS has two steps:

(i) Filter: A filter-based measure evaluates each pre-
dictive feature independently regarding the dataset
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classes to create a ranking R. We used the SUy mea-
sure [[10] to consider the hierarchical context. Then,
the ranking R of all features is constructed using the
roulette wheel method as in the survival selection
phase in GA [49]. Thus, a feature’s selection prob-
ability is proportional to its SUpy value compared
to this metric value for all other predictive features.
That is, the best-evaluated features according to the
SUg metric are more likely to be selected in the first
rounds of the roulette wheel method, occupying the
initial ranking positions.

(ii)) Wrapper: The set initial solution X starts with the
best-rated feature in the ranking R. Then, we try to
insert the next feature A; € R into X iteratively by
evaluating the performance of that expanded subset
X' = X U{A;}. We evaluate the quality of each
candidate subset X ina wrapper way (using a global
model classifier). If X increases the classifier’s pre-
dictive performance, A; is added to X; otherwise, it
is discarded.

We used the same 5-fold cross-validation method in all
wrapper evaluations to ensure fair comparisons. Additionally,
we complement the IWSS method by adding a step that
verifies the feature redundancy. When analyzing the inclusion
of a feature A; in the initial solution, if its insertion in X does
not improve the classifier’s performance, we try to swap it
with each feature already inserted in X . Then, if one of these
temporary subsets increases the classifier’s performance con-
cerning X, the best-evaluated subset is maintained for the
next iteration.

For instance, let X = {A4;, Ay} and hF(X) = 0.70.
We inserted Ag in X, but it did not improve the classifier’s
performance. Therefore, we generated the temporary subsets
Y = {A3,A2} and 7 = {Al,Ag}, where hF(Y) = 0.75
and hF(Z) = 0.60. As hF(Y) is greater than hf(X), Y is
maintained for the next iteration, which would seek to include
Ay in Y. This procedure aims to revoke some previous
decisions by identifying selected features that may become
ineffective after the insertion of another feature. Thus, this
step follows the well-known proximate optimality principle
(POP) [50].

C. NEIGHBORHOOD STRUCTURES

We considered three types of neighborhoods for a solution X
to search the problem solution space:

(1) Neighborhood structure N7: It consists of removing
afeature X; € X from X, thatis, X = X \ {X,}.
(i1) Neighborhood structure No: It consists of inserting a
feature A; € (A\ X) into X, thatis, X = X U{A4;}.
(iii) Neighborhood structure Ns: It consists of swapping
a feature X; € X with a feature A; € (A \ X).

For the example described in Section[[V] given the solution
X = {word count, verb count, noun count}, a swap movement
consists of swapping a feature in X with another that is not
already inserted in X. Thus, X "= {word count, character
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count, noun count} is a neighbor of X considering the swap
movement. Likewise, X "= {word count, verb count, charac-
ter count, noun count} is a neighbor example considering the
insertion movement, and X " = {verb count, noun count} is a
neighbor of X produced by the removal movement.

D. GVNS APPROACH TO SOLVE FSHC

This section presents the GVNS-FSHC algorithm, an adap-
tation of the GVNS metaheuristic [22] to solve the FSHC
problem.

GVNS is a variation of the VNS metaheuristic, a frame-
work for building heuristics based on neighborhoods’ sys-
tematic changes. It is applied to find a local minimum in a
descent step and escape from the corresponding valley in a
perturbation step [21]. GVNS differs from VNS in the local
search method. While the local search is conventional in
VNS, in GVNS, the local search is performed by the variable
neighborhood descent (VND) [20] method.

In our GVNS-FSHC algorithm, we apply the basic sequen-
tial VND, named B-VND in Hansen et al. [21]. AlgorithmE]
presents the pseudocode of the proposed GVNS-FSHC.

In Algorithm D, C, and M are the training set, the hier-
archical classifier, and the SUp filter measure, respectively.
Furthermore, N1, N2, and N3 are the neighborhoods defined
in Section [V-C| The attemptyax, RDrate, and w inputs are
predefined parameters and will be explained below.

The attempt,ax parameter defines the maximum number
of attempts without improvement using the same level of
perturbations & in the Shake function. In a classical GVNS
algorithm, the level of perturbations is increased whenever
there is no improvement in the solution. Instead, in our
algorithm, we only increase the level of perturbations after
performing some local search attempts without improving the
current solution. This strategy follows the ideas introduced
by Reinsma et al. [S1] and used successfully in Santos et
al. [52].

RDrate is a percentage rate used in the B-VND improve-
ment procedure, described in Section Finally, w is
the number of folds in which the tested solution’s evaluation
(hF) must be greater than the current solution’s evaluation.
The Relevance function is described in Section [V-D1l

The algorithm generates an initial solution X (line [3)) by
applying the IWSS approach described in Section In
line [} the variable k, which defines the number of random
moves that will be applied in a given solution X to generate a
perturbed solution in the current neighborhood, is initialized.
In line E], the variable attempt, used to control the number
of iterations using the same level of perturbations k without
improvement in the current solution X, is started.
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Algorithm 1 GVNS-FSHC algorithm

Algorithm 2 Relevance function

1: in: l)7 C, M, Nl(.)7 NQ(.), Ng(.),
attemptmax, RDrate, w
2: out: X
3: X « InitialSolution(D, C, M);
4: k1,
5. attempt < 0;
6: repeat
7. attempt < attempt + 1;
8:  Randomly choose a neighborhood structure V;(.)
9: X'+ Shake(X, N;(.), k);
10 X"« B-VND(X'’, RDrate, D,C, M,w, N1(.),
Na(), Ns(.));
11:  if Relevance(X"”, X, w) then
12: X« X",

13: k <+ 1;

14: attempt < 0;

15:  else

16: if attempt > attempt .5 then
17: k—k+1;

18: attempt < 0;

19: end if

20:  end if

21: until ¢t < ¢4
22: return X;

A neighborhood structure is chosen randomly (line[8), and
then the perturbed solution X’ is generated by the shaking
procedure (line [9) that considers the neighborhood structure
Ni(.) to perform k& moves on the solution X. The solu-
tion X’ is subjected to the B-VND local search procedure,
generating the solution X”. Next, the Relevance function
verifies whether X" is better than the current solution X.
If an improvement is detected, X" is considered the best
solution found so far, and % is set to one. In lines [16] to
when no improvement is detected, if attempty,.x iterations
have already occurred, the variable k is increased by 1 and
attempt is restarted. GVNS-FSHC ends when the given total
running time ¢,,,x expires.

1) Relevance function

Algorithm 2| outlines the pseudocode of the Relevance func-
tion. It starts by measuring the average hF performance
achieved using the 5-fold cross-validation procedure for each
solution (lines3|and[4)). The solution X" is considered better
than X if the average hF'(X") is larger than hF'(X) (line[6)
and if w-fold measures of the five X" .hF are greater than or
equal to the corresponding measure of X.hF' (line . Thus,
if both conditions are true, X" is considered better than X.

2) Variable neighborhood descent

B-VND [21] is the local search used in the GVNS-FSHC
algorithm (line [TI0] of Algorithm [I)). Our B-VND approach
uses the following sequence of neighborhoods, in this order:
N1, No, and N3. We ordered these neighborhoods by their

8

ine X' X, w
: out: boolean .
s X".hF = (Y0, X".hFi])/5;
L X.hF = (Y0_, X.hE[i))/5;
. counter = 0;
if X”.hF > X.hF then

for i = 1&5 do .

if X"”.hF[i] > X.hF[i] then
counter = counter + 1;

10: end if
end for
12:  if counter > w then
13: return TRUFE;
14:  end if
15: end if
16: return FALSE;

—_
—_

size, which is a common strategy in VNS-based algorithms,
according to Hansen et al. [21].

Algorithm 3 B-VND algorithm
1. in: X, RDrate, D,C, M, w, N1(.), Na(.), N3(.)
2: out: X
31+ 1;
4: while! < 3 do
5. X'« X;
6:  RDmaz < RDrate percent of a predefined number
of iterations
7. iterRD < 1;
. while iterRD < RDmax do
: Randomly choose X" € N;(X')
10: if Relevance(X”, X', w) then

11: iterRD + 1;
12: X« X",
13: end if

14: iterRD = iterRD + 1;
15:  end while
16:  if Relevance(X', X, w) then

17: X« X/;
18: [+ 1,
19: else

20: =141,
21:  endif

22: end while
23: return X;

In Algorithm 3] X is the current solution subjected to the
B-VND local search procedure and RDrate is a percentage
used to calculate the maximum number of iterations without
improvement of the random descent improvement step. Fur-
thermore, inputs D, C', M, w, N1, No, and N3 are the same
as defined in Algorithm|[I]

In line |3} ! represents the current neighborhood structure
used by the B-VND procedure. Initially, the maximum num-
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ber of iterations without improvement (RDmax in line [6)),
used by the random descent improvement step (lines §]to[I3)),
is defined. Considering X' the current solution and A the set
of predictive features (Section[[V), we will denote | X’ | as the
number of elements of X', and RDmax = RDratex |X'|x
A\ X'|.

Our B-VND procedure has a random descent step (lines §]
to [I5) in the same neighborhood and a step to change
neighborhoods (lines [T6] to 21I). At the beginning of the
B-VND procedure, the algorithm makes a copy X' of the
current solution X (line [5). The random descent strategy
starts by analyzing a neighbor X" that belongs to the current
neighborhood N;(X’) (line [9) and accepts it as the new
current solution if it is strictly better than X’ (line [10). Oth-
erwise, X’ remains unchanged, and the algorithm generates
and analyzes another neighbor. The algorithm repeats this
random procedure until there are R Dmax iterations without
improvement in the same neighborhood (line [8)). Then, if the
improved solution X" is better than X, then X’ becomes the
new current solution, and the random descent search returns
to the first neighborhood (lines [T7] and [I8)); otherwise, the
search continues in the next neighborhood (line [20). The B-
VND ends when there is no improvement in neither of the
three neighborhoods.

It is worth mentioning that the SUy; filter measure gener-
ates a feature ranking, used to direct the selection of features
to swap, insert, or exclude features from a candidate solution.
To do this, we perform the roulette wheel method, as used in
the survival selection phase in GAs. Therefore, the probabil-
ity of inserting a feature in a candidate solution is higher if it
has higher ranking values. Similarly, features in a candidate
solution set with low ranking values have a higher probability
of being removed from the solution set.

VI. EXPERIMENTAL RESULTS
The GVNS-FSHC algorithm presented in Section [V-D| was
implemented in C++ using the compiler g++ version 4.8.5
for its execution. The experiments were performed on a
computer with an Intel Xeon(R) CPU E5620 @ 2.40 GHz x
16, 48 GB of RAM, and a CentOS Linux 7 operating system.
Although this computer processor has more than one core,
the algorithm was not optimized for multicore-processing.

GVNS-FSHC is a preprocessing step designed specifically
for global hierarchical classifiers. In this sense, computa-
tional experiments evaluate the efficacy of the proposed
algorithm for feature selection in the hierarchical single-label
classification context. We used the GMNB and CLUS-HMC
hierarchical classifiers to evaluate the quality of the selected
features. It is worth mentioning that the CLUS-HMC handles
hierarchical multilabel problems, but it can also be used in
the hierarchical single-label context. In the latter case, one
needs only to consider single-label datasets as a particular
case of multilabel classification in which the number of labels
is equal to one.

Based on the evaluation metrics, the hierarchical precision
and hierarchical recall, described in Section [V-A] we com-
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pared the proposed GVNS-FSHC algorithm to the following
feature selection strategies:

(i) ALL: We measured the performance of the classifier
without any feature selection preprocessing step, i.e.,
using all features from the dataset.

(i) VNS-FSHC: A previous version of this approach so-
called variable neighborhood search for feature selec-
tion in hierarchical classification (VNS-FSHC) [19].

(iii) BF: We implemented a bottom-up wrapper-based ap-
proach of the best first algorithm, a well-known heuris-
tic search method [25)]. We first ranked all the fea-
tures using the classifier performance evaluation in a
descending manner. Then, starting with a subset con-
taining only the first feature of the rank, the algorithm
returns the best feature subset found by the heuristic
search and measures the quality of each candidate
subset based on the classifier performance. Instead of
evaluating all the subsets of features generated in the
OPEN list, we chose a predefined number of back-
tracking steps to a candidate solution in the OPEN list
without improvements as the stopping criterion of the
algorithm.

Section presents the dataset description and prepro-
cessing steps. Section [VI-B| presents the parameter config-
uration. Section details the computational results of
the proposed method using the GMNB and CLUS-HMC
classifiers.

A. DATASET DESCRIPTION

The experiments use twelve public benchmark datasets with
classes hierarchically organized in a tree structure, covering
two domains, proteins and images. The protein domain is
represented by bioinformatic datasetsﬂ referring to the yeast
genome [11]].

The image datasetsE] were selected from the ImageCLEF
2007 competition for annotating medical X-ray images. Im-
ageCLEF aims to provide an evaluation forum for the cross-
language annotation of the medical radiological images [53].

These datasets were initially available as multilabel data.
Since our method focuses on addressing the single-label
scenario, we perform a preprocessing step to convert the
datasets into single-label data. Table [I] shows the general
characteristics of the datasets. For each dataset, the second
column corresponds to the dataset domain, and the third
column represents the total number of features. The fourth
column represents the number of instances, and the fifth
column represents the number of classes in each level of the
tree hierarchy.

Data preprocessing was conducted in four steps. In the
first step, we selected the most frequent class considering
the leaf nodes in the original dataset for each instance. In
the second step, each missing value was replaced using the
hierarchical supervised imputation method (HSIM) [54]. In

Thttp://dtai.cs kuleuven.be/clus/hmcdatasets/
Zhttp://kt.ijs.si/DragiKocev/PhD/resources/doku.php?id=hmc_classification/

9
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TABLE 1: General characteristics of the datasets

TABLE 4: hF results (using the GMNB classifier)

Dataset Domain # Features # Instances # Classes/Level
CellCycle protein 77 3723 15/14/14/8
Church protein 27 3720 15/14/14/7
Gasch2 protein 52 3742 15/14/14/8
SPO protein 80 3653 15/13/1477
Phenotype protein 67 1551 12/13/12/6
Eisen protein 79 2359 12/14/13/7
Derisi protein 63 3677 15/13/14/7
Gaschl protein 173 3727 15/14/14/8
Sequence protein 478 3874 15/14/14/8
Expression protein 551 3742 15/14/14/8
ImageCLEF07A image 80 11006 4/8/8
ImageCLEF07D image 80 11006 8/7/11

the third step, every class with fewer than ten instances was
merged with its parent class until all classes possessed at
least ten instances. Finally, in the fourth step, we applied
the unsupervised discretization equal frequency binning [|55]]
method with 20 partitions to convert all continuous features
into discrete values.

B. PARAMETER SETTINGS

Our experiments and comparisons use the same 5-fold cross-
validation setup for each dataset. The best feature subset
for both algorithms was selected using the 5-fold cross-
validation procedure within the training set.

The parameters of the VNS-FSHC are those used by
Costa et al. [19], which were fixed at the following values:
VNSmax = 0.1 x (number of features included in the initial
solution) x (number of features excluded from the same so-
Iution), and RDmax = 0.1 x (number of features included in
the current solution passed to the RandomDescent method)
X (number of features excluded from the same solution).

Regarding the BF algorithm, we performed preliminary
experiments varying the stopping criterion from {5, 10, 15}
in all the datasets. Since we did not significantly improve the
classifier’s performance using the value 15 compared to 10,
we fixed the stopping criterion as 10 in all datasets.

The parameter tuning of the GVNS-FSHC used the Irace
package [56], an automatic algorithm configuration method.
Table [2] shows the tuning setup, and we applied the 5-fold
cross-validation procedure to the training set of the SPO
dataset. Irace generated three configurations, presented in
Table [3] Configuration 1 (w = 2, attemptmax = 4, and
RDrate = 0.02) was chosen because it requires the lowest
computational costs.

TABLE 2: GVNS-FSHC tuning setup.

Parameter Range

w {2,3,4}

attemptmax {2,4,6,8,10}

RDrate {0.02,0.04,0.06,0.08,0.10,0.12,0.14,0.16,0.18,0.20}

TABLE 3: Irace best configurations.

Configuration w attemptmax RDrate
1 2 4 0.02
2 2 10 0.10
3 4 10 0.20

ALL BF VNS-FSHC  GVNS-FSHC

Dataset avg (sd) avg (sd) avg (sd) avg (sd)

CellCycle «2523(1.1) +2393(3.2) +24.34(3.5) | 25.27 (2.4)
Church 14.59 (3.5) 20.20 (4.3) +22.20 (4.4) 22.28 (4.5)
SPO 16.57 (1.2) +20.44 (0.3) +20.33 (0.6) 20.42 (0.8)
Gasch2 «19.68 (1.3) +17.89(1.4) 17.48 (1.7) 18.71 (1.3)
Phenotype 10.09 (1.9) 15.53 (1.4) +16.13 (1.3) 16.70 (1.9)
Eisen «23.78 (2.1) 19.98 (1.4) 19.39 (1.7) 21.84 (1.9)
Derisi 14.75 (1.4) «16.75 (0.7) +16.62 (0.9) 16.42 (1.1)
Gaschl 24.87 (1.7) +28.31(0.9) +28.01 (1.7) 28.04 (2.0)
Sequence «19.96 (0.7) +19.76 (1.2) - 18.81 (1.6) 19.46 (0.6)
Expression 36.24 (1.5) +46.33(2.2) +47.45(2.6) | 48.12(2.4)
ImageCLEFO7A | -80.37 (1.2) - 80.79 (0.9) +80.27 (0.8) 80.67 (0.8)
ImageCLEFO7D | 63.04 (0.9) +66.58 (1.0) + 66.65 (0.7) 66.78 (0.7)

C. COMPUTATIONAL RESULTS

Subsection [VI-CT] presents the computational results us-
ing the GMNB classifier, and Subsection shows the
CLUS-HMC results.

1) GVNS-FSHC results with the GMNB classifier
Considering the stochastic nature of the VNS-based algo-
rithms, each algorithm was applied 30 times to each dataset.
To compare the GMNB performance using both the VNS-
FSHC and the GVNS-FSHC algorithms, we first recorded
the running time spent by each execution of the VNS-FSHC.
Then, we executed the GVNS-FSHC with the same running
time for a fairer comparison, considering the same dataset
partition and seed for generating random numbers of those
metaheuristic algorithms. As the BF heuristic is determinis-
tic, it required only one execution for each dataset.

The results obtained in each dataset were compared by
using two one-way hypothesis tests with a significance level
of 0.05. To choose the most appropriate statistical test for
each dataset result, we first verified whether they were well
modeled by a normal distribution by applying the Shapiro-
Wilk test [[57]]. If samples came from populations with normal
distributions, we applied the ANOVA test [38]], a parametric
hypothesis test for two independent samples; otherwise, we
applied the Kruskal-Wallis test [59], a nonparametric analy-
sis of variance that can compare several independent samples.

Table [4] shows the hF measure results obtained by us-
ing all features, the GVNS-FSHC algorithm, and the two
comparison algorithms. The second to fifth column represent
the hF' values achieved by the GMNB classifier using all
the dataset features (second column) and feature selection
methods (other columns). In these columns, “avg” indicates
the average result, and the standard deviation (sd) is in
parentheses. Bold results show the best absolute value, and
a result preceded by - indicates no statistically significant
difference between the specific result and the GVNS-FSHC
result.

The experiments showed that the GVNS-FSHC algorithm
obtained the best absolute average for five datasets (CellCy-
cle, Church, Phenotype, Expression, and ImageCLEF07D).
Moreover, the GVNS-FSHC is better than at least one
comparison strategy with statistical significance for four of
these five datasets. For the remaining datasets (SPO, Gasch2,
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TABLE 5: Number of features (using the GMNB classifier)

BF VNS-FSHC GVNS-FSHC

Dataset All avg sd avg sd avg sd

CellCycle 77.0 14.6 7.4 13.1 5.8 18.8 32
Church 27.0 32 0.4 3.1 0.7 3.0 0.0
SPO 79.0 4.0 1.0 4.0 0.9 3.7 0.7
Gasch2 52.0 19.8 3.1 4.7 49 20.6 2.8
Phenotype 67.0 12.8 3.1 7.1 3.7 16.8 45
Eisen 79.0 1.6 0.5 1.6 0.5 27.0 1.8
Derisi 63.0 2.0 0.7 23 0.7 3.7 5.6
Gaschl 173.0 17.8 22 15.8 2.7 234 4.9
Sequence 478.0 42 2.3 7.0 6.3 37.1 6.4
Expression 551.0 25.4 34 19.9 3.1 24.0 35
ImageCLEFO7A 80.0 60.8 8.2 524 5.4 63.7 2.8
ImageCLEF07D 80.0 27.0 3.8 28.2 3.6 31.1 2.8

Eisen, Derisi, Gaschl, Sequence, and ImageCLEF07A), its
performance was equivalent to the best result found, i.e., the
difference was not statistically significant.

It is also important to mention that for the GMNB classi-
fier, using a feature selection method improved the model’s
performance for most of the datasets (Church, SPO, Pheno-
type, Derisi, Gaschl, Expression, and ImageCLEFO7D).

Table [5] shows the comparison results between the algo-
rithms concerning the number of features used by the GMNB
classifier. The second column presents the number of features
used without feature selection, and the remaining columns
represent both the averages (avg) and standard deviations (sd)
of the number of features used by the algorithms.

When we compare the results of Table [5| and Table 4]
we observed that when the GVNS-FSHC does not have the
best absolute hF' performance (SPO, Gasch2, Eisen, Derisi,
Gaschl, Sequence, and ImageCLEF07A), it selects fewer
features than the strategy with the best absolute performance
for four datasets. The only exceptions to this performance
occur on the Derisi, Gaschl, and ImageCLEF07A datasets
in which BF is the best strategy regarding the best absolute
performance and number of selected features.

Ultimately, these results show that the GVNS-FSHC algo-
rithm with the GMNB classifier is consistently better than or
equivalent to the other comparison strategies regarding the
hF measure.

Aiming to characterize and compare the running time be-
havior of the GVNS-FSHC algorithm to its previous version
(the VNS-FSHC algorithm), we used the multiple time-to-
target plot (mttt-plot) tool [|60]. The mttt-plot is an extension
of the time-to-target plot [61] to sets of multiple instances.

Runtime distributions (ttt-plots) display the probability
that an algorithm will find a solution at least as good as
a given target value for a given problem instance, on the
ordinate axis, within a given running time, shown on the
abscissa axis [60]]. To build a ttt-plot, the algorithm .4 is run
q times on the fixed instance Z and stops as soon as it finds
a solution whose objective function is at least as good as the
given target value look4. After concluding the ¢ independent
runs, a cumulative distribution function (CDF) represents the
solution times.

To build an mittt-plot, instead of one single instance and
target value, p instances Z; and their corresponding targets
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look4; are used, for j = 1,2,...,p. Leteach S; > O be a
continuous random variable representing the time taken by
algorithm A to find a solution as good as the target value
look4;, such as 7;; and Fs,(s) = P(S; < s) be the cumu-
lative distribution function of S;. The mttt-plot is defined by
a set of z points (ak,ﬁsl+,,,+sp(ak)), fork =1,2,...,2
and z > ¢, where each oy, is a sample of 57 + ...+ 5, and
F51+.,,+Sp is an estimator of Fg,y g, . To generate these
z points, we sample z occurrences of the sum of independent
variables S1+. . .+S5), using the algorithm proposed by Reyes
and Ribeiro [60].

We considered one partition of each dataset (5) as in-
stances. For each instance, two target values were considered
(a = mean of 30 runs of each dataset, and b = a — 0.01 x a),
making a total of p = 10 instance-target pairs. Each algo-
rithm was run ¢ = 20 times for each instance-target pair,
until a solution at least as good as the corresponding target
was found for each instance.

Fig.[2]shows the mttt-plot resulting from the 10 individuals
ttt-plots using z = 2 x 10*, for each algorithm. We observed
that the GVNS-FSHC performs better for this 10 instance-
target pairs set. The GVNS-FSHC finds a target solution
within 1074 milliseconds approximately 70% of the time.
In contrast, the VNS-FSHC finds a solution in more time
(within 107-% milliseconds), considering the same 70% of the
times it ran. Furthermore, when we set a processing time, the
GVNS-FSHC is more likely to reach the target value than the
VNS-FSHC. For example, at 107# milliseconds, the VNS-
FSHC reaches the target value in only approximately 15%
of the executions while the proposed algorithm reaches the
target value in approximately 75% of the executions.
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FIGURE 2: Combined mittt-plot for the VNS-FSHC x the
GVNS-FSHC

Fig. 3| shows the evolution of the objective function (hF
measure) over time considering the pair (partition, seed)
that generated the best result for the GVNS-FSHC in each
dataset. The figure shows that, on most datasets, the GVNS-
FSHC algorithm achieves improvements before the VNS-
FSHC algorithm.



IEEE Access

Lima et al.: A novel hybrid feature selection algorithm for hierarchical classification

hF

hF

hF

«<
0 . 27
R I .
o o * e
ER .. ®
© o <
g | @ 7
ol w
8§11 £
o
o o e o
87 =
s | f —— VNS-FSHC -
Sl e GUNS-FSHC 2 A
o | . =
i \ \ \ \
0 10000 20000 30000 40000
Time (s)
(a) Gasch2
o | * @
8 2
&
5 4
&
©
© -
~ o
w
. &
8
<
34 s
—+— VNS-FSHC
94
8 e GVNS-FSHC o
T T T T &
150 200 250 300
Time (s)
(d) Church
2 7
S ]—— VNS-FSHC
* GVNS-FSHC o
o &
2
5
. . .
.. ./ o
3
R4 w 8
0 2
8 &
o o
3 8
g &
0 500 1000 1500 2000 2500
Time (s)
(g) Derisi
o
7 . : E
i ®
8
o
7 @ ©
ot : 8
. "
: %
0 o p
g4 — 8
87
\ o
7 8
) —+— VNS-FSHC
37 - GVNS-FSHC o
. 3
8
0e+00 2e+05 4e+05 6e+05 8e+05 1e+06
Time (s)
(j) Expression

/
P —+— VNS-FSHC
i) e GUNS-FSHC
T : T T T T
0 2000 4000 6000 8000
Time (s)
(b) Pheno
| —— VNS-FSHC
e GUNS-FSHC
. . . . . .
1000 2000 3000 4000 5000 6000
Time (s)
(e) SPO
B JER :
b .
4
-
17
1
1° —— VNS-FSHC
i * GVNS-FSHC
T T T T T
0 20000 40000 60000 80000
Time (s)
(h) Gaschl
R
. —+— VNS-FSHC
i . GVNS-FSHC
0 50000 100000 150000 200000 250000 300000
Time (s)
(k) ImageCLEF07A

hF

hF

hF

n . .
8 M .
o “wet®
1 eee-o
© il
87
|
"
5] S
1 ./ —— VNS-FSHC
o | iF e GVNS-FSHC
ERE
T T T T T T
0 10000 20000 30000 40000 50000
Time (s)
(c) CellCycle
5
—+— VNS-FSHC
-3 GVNS-FSHC
9
<4
o4
N
8
=
]
ol .
g
T T T T T T
0 500 1000 1500 2000 2500
Time (s)
(f) Eisen
o . .
S
L .
2 .
B
<
=
d
n ° .
2 . .
& . ,~/
o K
g1 1 —
- / —— VNS-FSHC
o - GVNS-FSHC
K
T T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 1e+05
Time (s)
(i) Sequence
2 4
o ozt H
8 R
s
5
s
8

—+— VNS-FSHC
= GVNS-FSHC

50000 100000 150000 200000 250000 300000
Time (s)
(1) ImageCLEFO7D

FIGURE 3: Evolution of the objective function (hF) over time considering the pair (partition, seed) that generated the best result
for the GVNS-FSHC in each dataset

VOLUME XXX, 2021



Lima et al.: A novel hybrid feature selection algorithm for hierarchical classification

IEEE Access

TABLE 6: hF results (using the CLUS-HMC classifier)

ALL BF GVNS-FSHC

Dataset avg (sd) avg (sd) avg (sd)

CellCycle «22.39(6.2) «22.05(7.6) 22.37 (5.8)
Church 19.40 (7.6) «22.57(4.3) 22.74 (3.8)
SPO «21.79 (1.5) «21.65(1.9) 21.64 (1.3)
Gasch2 «17.47 (1.8) «16.67 (1.9) 16.65 (2.1)
Phenotype <1544 (1.1) «14.78 (1.2) 15.10 (0.7)
Eisen «22.77 (1.6) «21.82(2.1) 22.43(1.7)
Derisi «18.14 (1.2) «18.49 (0.8) 16.82 (1.1)
Gaschl «21.57(1.5) «22.04 (1.0) 21.69 (1.7)
Sequence «22.68 (0.9) «21.37(1.8) 22.95(1.5)
Expression «42.11 (1.0) «42.22(1.8) 42.33 (2.0)
ImageCLEF07A «64.92 (1.2) « 64.04 (1.0) 64.78 (0.8)
ImageCLEF07D «66.11 (0.8) «65.01 (0.5) 65.46 (1.0)

;IjAI)BLE 7: Number of features (using the CLUS-HMC classi-
er

BF GVNS-FSHC
Dataset All avg sd avg sd
CellCycle 77.0 14.4 4.6 22.9 5.9
Church 23.0 5.6 1.5 6.1 1.3
SPO 79.0 32 0.8 21.1 6.4
Gasch2 52.0 10.0 4.8 17.5 5.3
Phenotype 67.0 4.6 1.7 14.6 9.3
Eisen 79.0 1.6 0.5 27.0 6.6
Derisi 63.0 2.0 1.6 3.7 6.5
Gaschl 173.0 5.6 22 23.4 4.9
Sequence 478.0 9.6 23 37.1 6.4
Expression 551.0 7.6 2.1 24.0 35
ImageCLEF07A 80.0 60.8 83 63.7 2.8
ImageCLEF07D 80.0 27.0 3.8 31.1 2.8

2) GVNS-FSHC results with the CLUS-HMC classifier

To see if our approach improved the performance of a
classifier widely used in the literature, in this section, we
compare the CLUS-HMC [ 14] performance with and without
the feature selection generated by the GVNS-FSHC and the
BF algorithm using the same classifier. Worth emphasizing
that the CLUS-HMC is a classifier based on decision trees.
Specifically, it embeds feature selection to optimize the ob-
jective function or performance of the learning model.

Table [6] shows the results of the GVNS-FSHC using the
CLUS-HMC classifier and following the same notation as
Table[d] The results show that the feature selection step using
the GVNS-FSHC algorithm did not statistically significantly
improve the performance of the CLUS-HMC classifier (ex-
cept for the Church dataset), confirming the power of deci-
sion trees as natural feature selectors. However, the GVNS-
FSHC algorithm did not statistically significantly jeopardize
the performance of the CLUS-HMC classifier.

Considering the number of features used by the CLUS-
HMC classifier with and without the feature selection step,
Table [7] shows a significant reduction in the number of
features. Thus, this feature selection can still be compelling
since it can improve the model interpretability without losing
accuracy.

VIl. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel feature selection method
tailored for global model hierarchical classifiers. We devel-
oped a hybrid filter-wrapper approach based on the VNS
metaheuristic, the so-called GVNS-FSHC, which uses the
SUpr measure in a filter step and the GMNB or the CLUS-
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HMC as the classifier of a wrapper step. We compare the
GVNS-FSHC method with different feature selection strate-
gies on twelve datasets (from proteins and images contexts).

The experimental results showed that the method using the
GVNS-FSHC algorithm with the GMNB classifier achieved
predictive performance that was consistently better than or
equivalent to the other comparison strategies. Furthermore,
the GVNS-FSHC reduced the number of features in all
datasets without negatively impacting the classification ac-
curacy.

We also observed that the predictive performance of the
GVNS-FSHC is better than or equivalent to the VNS-FSHC
algorithm. Moreover, when we considered the running time
behavior, the GVNS-FSHC performed better than the VNS-
FSHC since it achieved the improvements first.

Concerning the CLUS-HMC classifier, the GVNS-FSHC
feature selection method did not improve the classification
performance, showing the power of decision trees as natural
feature selectors. However, the GVNS-FSHC was able to se-
lect fewer features with no statistically significant difference
in the performance results.

We intend to investigate and develop subset filter-based
measures adapted to treat the class hierarchy in future work.
The goal is to incorporate the measures in a hybrid approach
that runs the classifier less often in the wrapper phase of the
feature selection to reduce its computational costs.
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