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ABSTRACT
This article addresses a short-termmining planning problem. There are four
objectives to be minimized: the deviations in grades and ore proportion in
particle size ranges of the plant goals, the deviation in the waste mass to
achieve the stripping rate, and the number of truck trips between mining
fronts and discharges. The problem was solved through the lexicograph-
ical goal programming (LGP) method, which generates solutions that can
guarantee a more comprehensive analysis of the decision-making process.
The LGPmethodwas tested by using several scenarios of a Brazilianmining
company. These scenarios differ in the number of excavators and the toler-
ances concerning meeting the plants’ ore grades. In the results, the impact
on the values of the other objectives is analysed of varying the number of
excavators and the tolerances in the plants’ grade targets.
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1. Introduction

The planning of mining activities is divided into three periods: long, medium and short term.
The primary purpose of long-term mining planning is to determine the geometry of the final

surface of a deposit to maximize the profit of the extracted blocks, a problem that is known as the
ultimate pit limit (UPL).

Historically, theUPLproblemhas been solved based onflowmaximization in graph theory (Lerchs
andGrossmann 1965). Other approaches have been applied to solve theUPL problem, such asmixed-
integer linear programming (MILP) (Ben-Awuah et al. 2016).

Techniques involving uncertainties in the values of the block grades and commodity prices
(Chatterjee, Sethi, and Asad 2016) have also been applied using stochastic optimization.

After solving theUPL problem, it is necessary to sequence the blocks’ extraction in periods defined
by the planner, usually annually, a problem known as open-pit mine production scheduling.

Medium-termmining planning aims to analyse themain actions necessary to guarantee themine’s
operation for a period of up to 10 years, such as determining which regions of the mine require a
license for expansion and purchase of equipment.

In turn, short-term mining planning (STMP) requires quick decisions to guarantee the fulfilment
of the ore supply negotiated in contracts with customers. For this purpose, it is necessary to achieve
objectives tomeet the tonnages and grades desired by the plants,mine thewaste, and reduce operating
costs. These problems can be treated in a single period to determine the short-term schedule (Blom,
Pearce, and Stuckey 2014; Upadhyay and Askari-Nasab 2015).
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Figure 1. Ore classification according to particle size.

The STMP problem can also involve multiple periods, such as weeks or months, to establish
the schedule, considering physical constraints in the sequence of block extraction (Eivazy and
Askari-Nasab 2012; L’Heureux, Gamache, and Soumis 2013; Blom, Pearce, and Stuckey 2016, 2017).
Additionally, these problems can address multiple sources and destinations of materials such as
blocks, fronts, stockpiles, waste piles and plants, which can be located in various pits at the same
mine.

Uncertainties caused by natural events or equipment breakdowns can bemodelled using a discrete
event simulator to validate the results of a short-term schedule provided by an optimizer (Fioroni et
al. 2008; Upadhyay and Askari-Nasab 2018).

In some iron ore mines, one more factor increases the extraction complexity: the generation of
products according to particle size. In this case, the ore plant concentrates the ore according to its
particle size range. Figure 1 illustrates this case. Accordingly, the ore is concentrated through a specific
method for each particle size range. For example, particles smaller than 0.15mm are concentrated
through the flotation process to generate pellet product feed. Therefore, it is necessary to control ore
grades by particle size to produce ore with market specifications.

As shown later in the literature review section, few studies consider meeting the ore proportion
in the particle size ranges required by plants. In plants in which mass and product quality depend on
the particle size range and grade of the ore fed, it can be impossible to meet the values desired for
these parameters. Therefore, it is essential to make a trade-off between mass production and prod-
uct quality, especially in scenarios with few excavators available. Moreover, concerning the solution
method, the most frequent approach is through a mixed-integer linear goal programming (MILGP)
formulation. However, choosing the weights in the MILGP formulation is a complex task. In con-
trast, the lexicographic goal programming (LGP) method is an alternative to overcome this difficulty,
as it generates solutions that can guarantee a more comprehensive analysis of the decision-making
process. The LGP method assigns priorities to the different goals, minimizing deviations from the
established goals in a lexicographic order (Romero 2001).

Therefore, the contributions of this work are as follows:

(1) the introduction of an LGP method to solve an STMP problem involving a work shift, multiple
plants, waste piles, a heterogeneous fleet of trucks and excavators, and multiple pits in the same
mine;

(2) an STMP with four goals to be minimized: (i) the deviations from the grade target of the chem-
ical elements in the ore particle size ranges required by the plants, (ii) the deviations from the
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ore proportion target in the particle size ranges required by the plants, (iii) the stripping ratio
deviation, and (iv) the number of truck trips made between fronts and discharges; and

(3) an analysis of the impact on the values of the other objectives of varying the number of excavators
and tolerances of the plants’ grade targets.

The analysis concerning the third contribution is particularly important in deposits with wide
variations in ore grades, since the greater the number of excavators, the greater the number of fronts
that can be mined for meeting the required blending quality.

The remainder of this article is organized as follows. Section 2 presents a literature review. Section 3
describes and introduces the mathematical formulation for the problem addressed. Section 4 deals
with the LGP method proposed for solving the STMP. In Section 5, the results of the LGP method in
various scenarios of an iron ore mine are analysed and discussed. Finally, Section 6 outlines the final
considerations.

2. Literature review

In the literature, STMP is treated through different approaches and can involve several goals and
constraints. Table 1 presents its typical features, goals and constraints, while Table 2 shows the
characteristics treated in STMP studies.

Pinto and Merschmann (2001) developed an MILP formulation that incorporates the capacity
constraints of trucks and excavators into the model proposed by Chanda and Dagdelen (1995).

Costa, Souza, and Pinto (2004) developed an MILGP formulation that incorporates the meeting
of the grade and production goals into the Pinto and Merschmann (2001) model. The authors also
treated the trucks’ haulage capacity depending on the cycle time and the payload.

Fioroni et al. (2008) incorporated into the model by Costa, Souza, and Pinto (2004) the objec-
tive of minimizing the movement of excavators between mining areas. The results of this model are
used to perform the excavators’ assignment and determine the number of trips each truckmust make
betweenmining fronts and discharge points. Based on the optimizer’s results, a discrete event simula-
tion model is then applied to treat stochastic occurrences that affect the efficiency of the equipment.
The MILP formulation proposed in the present work is based on that of Fioroni et al. (2008). The
differences between them are as follows:

Table 1. Typical features, goals and constraints treated in STMP problems.

Index Features, goals and constraints

1 Plants’ tonnage.
2 Plants’ ore grades.
3 Plants’ ore particle size range.
4 Compliance with stripping ratio.
5 Shovels’ moving time between fronts.
6 Costs of resources or activities.
7 Number of trucks or trips.
8 Extraction of blocks with higher economic return.
9 Shovels’ production
10 Long-term schedule compliance.
11 Equipment idle times.
12 Overall cost of mining operations.
13 Resource capacity.
14 Storage and reclaiming of ore stockpiles.
15 Precedence or other conditions for extracting blocks or fronts.
16 Restricting mining in specific regions.
17 Drilling and blasting of the blocks.
18 Multiperiod schedule.
19 Uncertainties in geological and/or operational data.
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Table 2. Main features (�), goals (G) and constraints (C) in STMP problems.

Index according to Table 1

Study 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Chanda and Dagdelen (1995) G G G
Pinto and Merschmann (2001) G C C C
Costa, Souza, and Pinto (2004) G G C G C
Fioroni et al. (2008) G G C G C �
Souza et al. (2010) G G G G C C
Eivazy and Askari-Nasab (2012) C C C C G C C C �
L’Heureux, Gamache, and Soumis (2013) C C C G G C C C C �
Upadhyay and Askari-Nasab (2015) G G C G G G C
Blom, Pearce, and Stuckey (2014) G G G C C C C
Blom, Pearce, and Stuckey (2016) G G G C C C C �
Matamoros and Dimitrakopoulos (2016) G G G G C G C G G � �
Blom, Pearce, and Stuckey (2017) C G G G G C G C G �
Upadhyay and Askari-Nasab (2018) G G C G G G C C C � �
Bakhtavar and Mahmoudi (2020) G C C G G G C �
Flores-Fonseca, Linfati, and Escobar (2021) C C G G C C C �
This study C G G G G C C C

(1) the LGP method to solve the mathematical model is applied and not the MILGP method;
(2) more than one type of ore from the mining fronts is included owing to the need to feed the dry

plant with rich ore;
(3) multiple plants and waste piles are considered;
(4) the plants’ mass targets are included as hard constraints and not as goals to be achieved;
(5) the minimization of the deviation of the ore proportion in the particle size range required by the

plants is included as an objective since many iron ore plants have more than one process route
depending on the required particle size range;

(6) the stripping ratio is included as an objective and not as a hard constraint to find feasible solutions
for low-resource scenarios;

(7) the movement of excavators between the mining fronts is not considered;
(8) the impact of varying the number of excavators and tolerances of the plants’ grade targets on the

values of the other objectives is analysed.

In Souza et al. (2010), the authors incorporate into the MILGP method from Costa, Souza, and
Pinto (2004) the minimization of the number of trucks needed for this process. They develop a
hybrid heuristic algorithm that combines the characteristics of two meta-heuristics, greedy random-
ized adaptive search procedures and general variable neighbourhood search. However, the developed
model only considers a single discharge.

Coelho et al. (2012) develop a multiobjective version of the problem addressed by Souza et al.
(2010). They apply three multiobjective heuristic algorithms based on two-phase Pareto local search
with variable neighbourhood search (2PPLS-VNS) (Lust, Teghem, andTuyttens 2011),multiobjective
VNS (MOVNS) (Geiger 2004; Duarte et al. 2015) and non-dominated sorting genetic algorithm II
(NSGA-II) (Deb et al. 2002). They show that MOVNS outperforms the other algorithms concerning
the hypervolume and spacing metrics.

Eivazy and Askari-Nasab (2012) apply an MILP formulation to obtain a multiperiod STMP. They
also consider multiple destinations, selection of ramps, three horizontal mining directions of blocks,
and routes to minimize the haulage costs.

L’Heureux, Gamache, and Soumis (2013) treat the STMP problem as multiperiod with physical
constraints to extract blocks. To solve it, they propose an MILP method. However, the developed
model cannot solve even an instance with ten periods, 30 faces, five shovels and 60 clusters of
blocks for drilling and blasting. Therefore, they propose several strategies to reduce computation
time.
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Upadhyay and Askari-Nasab (2015) propose anMILGPmodel to work with a short-term produc-
tion schedule, where faces are excavated within a given period of one month. Therefore, this model
includes shovel assignment on the available faces, linking the tactical and strategic plans.

Matamoros and Dimitrakopoulos (2016) approach the SMTP problem through stochastic inte-
ger programming, considering uncertainties in metal grade, ore quality and equipment performance
parameters.

Blom, Pearce, and Stuckey (2016) extend their previous work (Blom, Pearce, and Stuckey 2014),
addressing the multiple periods, multiple mine planning problem (MTP-MMPP) of scheduling the
production of multiple open-pit mines to supply ports with ore that can be blended to form products.
In the short-term MTP-MMPP considered, a 13-week horizon is split into weekly periods. As do
the present authors, these authors consider the particle size ranges of iron ore. However, unlike the
present article, they treat compliance with the particle size ranges as a hard constraint.

Upadhyay and Askari-Nasab (2018) extend their previous model (Upadhyay and Askari-
Nasab 2015) by including in its MILGP formulation an index to store the work shift (i.e. the period).
Work shift information is used to keep track of mined faces over multiple periods. Additionally, a
discrete event simulation model executes the optimizer results incorporating stochastic break events
that reduce resource performance to validate the optimizer model’s results. Therefore, the simulator
can capture the uncertainties so that the planner can generate more realistic scenarios.

Kozan and Liu (2018) develop an MILP formulation for solving the SMTP problem in which the
blocks must be drilled, blasted, and excavated up to the due date. There is a tardiness penalty in the
objective function for blocks mined after the due date. They do not consider compliance with grades
and particle size ranges.

Blom, Pearce, and Stuckey (2017) develop an LGP-based tool in which multiple, diverse, short-
term schedules are constructed, seeking to meet a set of common objectives without the need for
iterative parameter adjustment by the short-term planner. Multiple objectives are solved hierarchi-
cally, generating scenarios with different prioritizations of objectives. Unlike the present article, they
donot consider the particle size ranges required by plants or the influence of the number of excavators.

Bakhtavar andMahmoudi (2020) treat the STMPproblem to perform truck–shovel allocationwith
uncertainties in shovel outputs, crusher capacity and the number of trucks. The authors formulate the
truck–shovel allocation in two phases with concepts from a scenario-based robust model.

Flores-Fonseca, Linfati, and Escobar (2021) propose twoMILPmodels that link strategic and oper-
ational problems. Both determine the sequencing and destination of the blocks; the first maximizes
the net present value (NPV), and the secondmaximizes thework efficiency of the power shovels.With
these models, it is possible to support decision-making and determine the optimal block extraction
sequence in a given period with the maximum NPV of the project.

Unlike the proposal of this work, in none of the above references, except for Blom, Pearce, and
Stuckey (2014, 2016), do the authors consider the target for ore proportion in particle size ranges.
This information can be deduced from the survey carried out by Blom, Pearce, and Stuckey (2019),
which reviews studies considered state-of-the-art for the STMP problem. In addition, no work has
analysed the impact of the number of excavators on the results of other objectives and conducted
a sensitivity analysis of the effect of increasing the range of grades tolerable by plants. Finally, only
Blom, Pearce, and Stuckey (2017) treat the STMP through the LGPmethod, but not with the emphasis
given to achieving the target of the proportion of ore in the particle size ranges required by plants.

3. Problem statement

Figure 2 illustrates the STMP scenario treated here. It shows some resources, locations and front
materials involved in this problem. There is one excavator assigned to a front composed of four types
of material (low-grade, middle-grade and high-grade iron ore and waste) and two types of truck
(truck types 1 and 2) to transport thesematerials to two discharges—discharge 1 (plant) and discharge
5 (waste pile).
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Figure 2. Example of an SMTP scenario.

3.1. Notation and definitions

This section describes the sets, indices, parameters and decision variables of the MILP formulation
for the STMP problem.

3.1.1. Sets and indexes
T Set of truck types, indexed by t.
E Set of excavators, indexed by e.
D Set of discharges (plants or waste piles), indexed by k.
F Set of mining fronts, indexed by f.
M Set of material types by front, indexed bym.
S Set of particle size ranges, indexed by j.
G Set of chemical elements (Fe, Al2O3, Mn, etc.), indexed by i.

3.1.2. Parameters
DTk A binary parameter that assumes a value of one if discharge k ∈ D is a plant and zero if it is

a waste pile.
α Tolerance allowed to meet the production of plants with the available trucks in percent.
MMfm Mass of materialm ∈M to be extracted from each front f ∈ F in tonnes.
ERe Extraction rate of excavator e ∈ E in tonnes per hour.
SD Duration of the work shift, in hours (equal to 8 h in the present model).
MTfm A binary parameter that assumes a value of one if materialm ∈M of front f ∈ F is ore and

zero if it is waste.
TCt Transportation capacity of each truck type t ∈ T in tonnes.
CTkfmt Cycle time of truck type t ∈ T between front f ∈ F and discharge k ∈ D carrying material

m ∈M in minutes.
Nt Number of available trucks for each truck type t ∈ T .
DRk Production rate of ore discharge k ∈ D in tonnes per hour.
GTkji Grade target of element i ∈ G in particle size range j ∈ S required by ore discharge k ∈ D

in percent.
GMfmji Grade of element i ∈ G in particle size range j ∈ S of material m ∈M belonging to front

f ∈ F in percent.
SPfmj Percentage of particle size range j ∈ S of materialm ∈M belonging to front f ∈ F .
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ε Allowable tolerance from the grade target of element i ∈ G in particle size range j ∈ S
required by ore discharge k ∈ D in percent.

STkj Target for the proportion of ore in particle size range j ∈ S required by ore discharge k ∈ D
in percent.

WT Target for the stripping ratio.
NM Number of materials per front.

3.1.3. Decision variables
xfme Binary variable that assumes a value of one if excavator e ∈ E is assigned to front f ∈ F to

extract materialm ∈M and zero otherwise.
wkfmt Number of trips of truck type t ∈ T between front f ∈ F and discharge k ∈ D to transport

materialm ∈M.
gd+kji Positive deviation from the grade target of element i ∈ G in particle size range j ∈ S required

by ore discharge k ∈ D in tonnes.
gd−kji Negative deviation from the grade target of element i ∈ G in particle size range j ∈ S

required by ore discharge k ∈ D in tonnes.
sd+kj Positive deviation from themass target of particle size range j ∈ S required by ore discharge

k ∈ D in tonnes.
sd−kj Negative deviation from themass target of particle size range j ∈ S required by ore discharge

k ∈ D in tonnes.
srd Deviation of the waste mass from the required stripping ratioWT in tonnes.
unkfmt Fraction of the number of trucks of type t ∈ T used in each trip between front f ∈ F and

discharge k ∈ D to transport materialm ∈M.

3.2. Objective functions

The addressed problem has four objectives to be minimized.
The first objective, given by Equation (1), consists ofminimizing the grade deviation of element i ∈

G within the particle size range j ∈ S , in tonnes, from its grade target GTkji required by ore discharge
k ∈ D:

z1 =
∑

k∈D|DTk=1

∑
j∈S

∑
i∈G

(
gd+kji + gd−kji

)
. (1)

The second objective, given by Equation (2), minimizes the deviation of the particle size range j ∈ S ,
in tonnes, from its target STkj required by ore discharge k ∈ D:

z2 =
∑

k∈D|DTk=1

∑
j∈S

(
sd+kj + sd−kj

)
. (2)

The third objective, given by Equation (3), aims at minimizing the deviation of the waste tonnage
(srd) required to meet the stripping ratio target (WT). The variable srd and the parameter WT are
used in Equation (17):

z3 = srd. (3)

The last objective, given by Equation (4), aims to minimize the number of trips of trucks made
between the fronts and the discharges. This objective function prioritizes the use of trucks with larger
payloads:

z4 =
∑
k∈D

∑
f∈F

∑
m∈M

∑
t∈T

wkfmt. (4)
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3.3. Constraints

There are seven groups of constraints, which are described in Sections 3.3.1–3.3.7.

3.3.1. Excavator assignment
Constraints (5) prevent each material on a front from being extracted by more than one excavator. In
turn, Constraints (6) avoid the same excavator from extracting more than the number of materials
per front. Constraints (7) ensure that the same excavator extracts all materials on the same front.
Therefore, the value of variable xfme must be the same for all materialsm ∈M present in one front f,
thus requiring assigning the same excavator e ∈ E to the materials present in the same front f ∈ F .

∑
e∈E

xfme ≤ 1 ∀ f ∈ F , ∀m ∈M (5)

∑
f∈F

∑
m∈M

xfme ≤ NM ∀ e ∈ E (6)

xfme − xfte = 0 ∀ e ∈ E , ∀ f ∈ F , ∀m ∈M, ∀ t ∈M | t �= m. (7)

3.3.2. Mass extraction
Constraints (8) establish that themass extracted from eachmaterialm in front f to discharge k cannot
exceed the existing material mass, expressed by the input dataMMfm. Constraints (9) ensure that the
totalmass extracted from thematerials of each front cannot exceed the excavators’ extraction capacity
during the planning horizon. The extraction capacity of a material m ∈M of each excavator e ∈ E
assigned to front f is determined by the product between its productivity, in tonnes per hour (ERe),
and the duration of a work shift (SD):

∑
k∈D

∑
t∈T

TCt × wkfmt ≤ MMfm ×
∑
e∈E

xfme ∀ f ∈ F , ∀m ∈M (8)

∑
m∈M

∑
k∈D

∑
t∈T

TCt × wkfmt ≤ SD
NM
×

∑
m∈M

∑
e∈E

xfme × ERe ∀ f ∈ F . (9)

3.3.3. Number of trips between fronts and discharges
Constraints (10) ensure that the maximum number of trips (wkfmt) of the truck type t ∈ T between
each front f ∈ F and each discharge k ∈ D to carry material m ∈M depends on their cycle times
CTkfmt and the fraction unkfmt of the number of trucks of this type over the shift duration SD. Con-
straints (11) ensure that the number of trucks per trip (unkfmt) to carry materials m ∈M from all
fronts f ∈ F to all discharges k ∈ Dmust be less than themaximumnumber of trucks per fleet t ∈ T :

wkfmt ≤
∑
k∈D

((
60

CTkfmt

)
× unkfmt × SD

)
∀ k ∈ D, ∀ f ∈ F , ∀m ∈M, ∀ t ∈ T (10)

∑
f∈F

∑
m∈M

∑
k∈D

unkfmt ≤ Nt ∀ t ∈ T . (11)

3.3.4. Plants’ capacity
Constraints (12) and (13) guarantee that the ore demanded by each plant k in a work shift is attended
with α% tolerance from its capacity DRk. This tolerance is necessary to ensure that the mass of ore
sent by the trucks to the plants is a multiple of trucks’ capacities:

∑
f∈F

∑
m∈M

∑
t∈T

TCt × wkfmt ×MTfm ≥ (1− α)× DRk × SD ∀ k ∈ D |DTk = 1 (12)
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∑
f∈F

∑
m∈M

∑
t∈T

TCt × wkfmt ×MTfm ≤ (1+ α)× DRk × SD ∀ k ∈ D |DTk = 1. (13)

3.3.5. Grade
Constraints (14) allow for the mass of an element in a given particle size range extracted from the
materials of all fronts destined for each ore discharge to exceed ε%of the grade targetGTkji established
for this element in the respective plant. The tonnage of this element that exceeds this target is the value
of the positive deviation gd+kji, which should be minimized in the objective function (1). Similarly,
Constraints (15) allow for the mass of an element in a given particle size range to be less than ε% of
its grade target. The lacking mass of this element is the value of the negative deviation gd−kji, which
should be minimized in the objective function (1).

The purpose of these constraints is to set a lower and an upper bound to the grade of an element in
a given particle size range required by the plants. That is, Constraints (14) set an upper bound for the
grade in each particle size range, given by (1+ ε)× GTkji, while Constraints (15) set a lower bound,
given by (1− ε)× GTkji:∑
f∈F

∑
m∈M

∑
t∈T

GMfmji × TCt × wkfmt × SPfmj − gd+kji

≤ (1+ ε)× GTkji ×
∑
f∈F

∑
m∈M

∑
t∈T

TCt × wkfmt × SPfmj ∀ k ∈ D,DTk = 1, ∀ j ∈ S, ∀ i ∈ G.

(14)∑
f∈F

∑
m∈M

∑
t∈T

GMfmji × TCt × wkfmt × SPfmj + gd−kji

≥ (1− ε)× GTkji ×
∑
f∈F

∑
m∈M

∑
t∈T

TCt × wkfmt × SPfmj ∀ k ∈ D, DTk = 1, ∀ j ∈ S, ∀ i ∈ G.

(15)

3.3.6. Particle size range
Constraints (16) ensure compliancewith the proportion of ore in the particle size range j ∈ S required
by plant k ∈ D:∑

f∈F

∑
m∈M

∑
t∈T

SPfmj × TCt × wkfmt − sd+kj + sd−kj

= STkj ×
∑
f∈F

∑
m∈M

∑
t∈T

TCt × wkfmt ∀ k ∈ D, DTk = 1, ∀ j ∈ S. (16)

3.3.7. Stripping ratio
The waste tonnage required to meet the stripping ratioWT is forced by Constraint (17). A deviation
equal to srd is allowed; however, it should be minimized in the objective function (4):∑

f∈F

∑
m∈M

∑
k∈D

∑
t∈T

(
1−MTfm

)× TCt × wkfmt + srd

=WT ×
∑
k∈D

∑
f∈F

∑
m∈M

∑
t∈T

MTfm × TCt × wkfmt. (17)

4. LGPmethod

Now, the LGP method proposed for solving the STMP problem is described. The main objective is
to achieve the plants’ grades since the iron ore price is proportional to the required grade targets for
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the products of the plants. Therefore, the LGP method is appropriate for solving this problem, as it is
possible to choose the priority order of the objectives. Algorithm 1 shows its pseudo-code.

Algorithm 1: LGP
Input : Vector of objective functions Z = (

z1, z2, . . . , z|Z|
)
,

set TOL of tolerances ε to be used in Equations (14) and (15),
TL for solving each MILP model

Output: Set Sol of MILP solutions from TOL
i← 1 {Index for each tolerance value εi ∈ TOL}1

Sol← ∅ {Set of solutions returned by the LGP method}2

foreach εi ∈ TOL do3

l← 1 {Index for the objective functions}4

C← ∅ {Set containing the values returned by the MILP solver}5

while l ≤ |Z| do6

model←MILP model generated having zl as objective function (l ∈ {1, 2, . . . , |Z|}),7

ε = εi as the tolerance used in Equations (14) and (15), and constraints
zk ≤ ck∀k = 1, . . . , l− 1added to the model
cl ←MILP-Solver(model, TL) {Value of the lth objective function returned by the8

MILP solver after TL seconds at most}
C← C ∪ {cl} l← l+ 19

end10

s← solution returned by the MILP solver concerning the tolerance εi11

Sol← Sol ∪ {s}12

i← i+ 113

end14

Return Sol {Set of solutions for all tolerances εi ∈ TOL}15

According to Algorithm 1, initially, three entries are provided: vector Z containing the objective
functions (four in this study), set TOL with the admissible values for the tolerances ε adopted in
Equations (14) and (15) (in this study, TOL = {0, 0.01, 0.02, 0.03, 0.04, 0.05}), and run time TL for
solving each MILP model. The output is the set Sol of solutions generated by the MILP solver.

5. Computational experiments

The LGPmethod was implemented by using the Gurobi solver (Gurobi 2021), version 8.1.1, with the
standard configuration. The experiments were performed on a computer with an Intel� i7-8550U @
1.80GHz× 4, 16GB of RAM, and a Windows 10 operating system.

The LGPmodel and all data input and are available in theGitHub repository at https://github.com/
aldringm/Eng_Optim_2021.git.

Section 5.1 describes the characteristics of the scenarios used for testing the proposed model. In
Section 5.2, the LGP results are reported.

5.1. Characteristics of the scenarios

The LGP method was tested by using data from an iron ore mine belonging to a Brazilian mining
company. This mine consists of two pits, each with its own waste pile, two plants differentiated by
production, iron grade and particle size range targets, two truck types and five excavators. Figure 3
shows the mine layout.

https://github.com/aldringm/Eng_Optim_2021.git
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Figure 3. Layout of the mine.

Table 3. Description of particle size ranges.

Index j Particle size range (mm) Concentration process Product

1 [6.3, 50] Natural Granulated
2 [0.5, 6.3] Natural Sinter feed
3 [0, 0.5] Magnetic Pellet feed

Table 4. Classification of material types.

Material Iron grade (%)

Waste ≤ 42
Low-grade iron ore > 42 and ≤ 45
Middle-grade iron ore > 45 and ≤ 52
High-grade iron ore > 52

In Figure 3, the arrows indicate the possible destinations of the materials. Therefore, ore from two
pits can be destined for the two plants. In turn, each pit has its waste pile to receive the waste. Two
types of truck are used, and five excavators for loading these trucks are used.

Table 3 describes the particle size ranges considered, the concentration process and the type of
product generated.

Each front f has up to four types of material: waste (m = 1), low-grade iron ore (m = 2), middle-
grade iron ore (m = 3) and high-grade iron ore (m = 4). They are classified by iron grade ranges
according to Table 4.

Table 5 shows an example from a front. In this table, Column 1 shows the front index, Column 2
shows the type ofmaterial according to Table 4 and Column 3 shows the pit index. Column 4 presents
a binary value that assumes a value of one if the material is ore and zero if it is waste. Column 5 shows
the mass, in tonnes, of the corresponding material. Columns 6–8 show the ore proportion in the
particle size range j ∈ S of the material. Columns 9–11 present the iron grade in the particle size
range j ∈ S. The last column presents the average of all material grades.

Table 6 informs the main characteristics of the mine. The iron metal is analysed, i.e. i = 1 in the
parameters GTkji and GMfmji, variable gd+kji and in the set G.

In the mine studied, the cycle times of the trucks vary according to the origin (mining front),
destination (plant or waste pile), type of excavator, type of truck and type of material (waste or ore).
Thus, for the same origin and destination, the cycle time varies according to the type of material. This
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Table 5. Data from a front.

Size range (%) Iron grade (%)

Front (f ) Material (m) Pit Ore or waste (MTfm) Mass (tonnes) 1 2 3 1 2 3 g

1 High-grade 1 1 5400 15 25 60 61 60 57 58.4
1 Middle-grade 1 1 7230 30 12 58 55 50 47 49.8
1 Low-grade 1 1 0 0 0 0 0 0 0 0
1 Waste 1 0 1690 20 14 66 38 36 27 30.5

Table 6. Main characteristics of the mine.

Characteristic Value

Number of pits 2
Number of fronts 9 (1 to 6 at pit 1, and 7 to 9 at pit 2)
Number of truck fleets 2
Number of trucks per type 12 for fleet 1 and 15 for fleet 2
Truck capacity (tonnes) 135 for fleet 1 and 64 for fleet 2
Number of plants 2
Plants’ productivity (tonnes per hour) 2350 and 275, respectively
α 0.01
Number of waste dumps 2, being one for each pit
Maximum number of excavators 5
Excavator extraction rate (tonnes per hour) 1200, 1500, 1300, 1300, 450
Shift time (hours) 8
Target for the stripping rate 0.78
Targets for plant 1:
Ore proportion in the particle size range (%) ST11 = 23, ST12 = 26, ST13 = 50
Iron grade targets (%) GT111 = 59, GT121 = 62, GT131 = 46

Targets for plant 2:
Ore proportion in the particle size range (%) ST21 = 20, ST22 = 24, ST23 = 47
Iron grade targets (%) GT211 = 60, GT221 = 62, GT231 = 62

is justified because densermaterials (i.e. ores) require a longer cycle time owing to the greater effort of
the excavators to extract these materials and load them onto the trucks. This information is available
in the mine’s dispatch system.

Twenty-four scenarios concerning the mine described previously were analysed. Each sce-
nario differs concerning the number of excavators and the tolerable range for the plants’
grade target established for each particle size range. The characteristics of these scenarios
and the values of the grade targets for the plants are available in the GitHub repository at
https://github.com/aldringm/Eng_Optim_2021.git.

5.2. Computational results

Table 7 reports the results obtained by the LGP method in each scenario. A run time of one hour is
set for each model within the LGP method (i.e. TL = 3600 seconds). Thus, as there are four goals,
the method could consume up to four hours of processing.

In the scenarios that use the greatest number of resources (Scenarios 19–24), the number of vari-
ables is 1584 (225 binary, 504 integers and 856 continuous), while the number of constraints is
1643.

According to Table 7, all scenarios with two excavators (i.e. 1 to 6) had the highest values for the
stripping ratio deviation. This result shows that two excavators are not enough to meet the stripping
ratio target.

In almost all scenarios, the iron grade deviations were null. The exception is for those with
tolerance ε equal to zero and scenarios with two excavators.

https://github.com/aldringm/Eng_Optim_2021.git
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Table 7. Scenarios’ results. Optimal values are highlighted in bold.

Objective function value Trips (number) Plants’ hourly tonnage

Scenario
Excavators
(number) ε (%)

Run time
(s) z1 z2 z3 z4 Fleet 1 Fleet 2 Plant 1 Plant 2

1 2 0 2.33 258.8 835.1 16,219.3 265 54 211 2326.5 272.8
2 2 1 1.55 149.1 739.0 16,219.3 265 54 211 2326.5 272.8
3 2 2 1.35 94.7 796.1 16,219.3 265 54 211 2326.5 272.8
4 2 3 1.44 63.4 841.4 16,219.3 265 54 211 2326.5 272.8
5 2 4 1.70 24.9 648.8 15,416.3 201 123 78 2326.5 272.8
6 2 5 2.05 1.4 1184.0 16,219.3 265 54 211 2326.5 272.8

Avg. 2.53 98.7 840.7 16085.4 253.8 65.5 188.8 2326.5 272.8

7 3 0 3.28 37.6 5020.1 5019.3 369 118 251 2326.5 272.8
8 3 1 1.48 0.0 4395.7 5082.2 381 107 274 2326.5 276.3
9 3 2 10.62 0.0 1548.8 5056.5 314 164 154 2326.5 276.3
10 3 3 595.51 0.0 196.4 5114.9 301 178 123 2326.5 272.8
11 3 4 814.12 0.0 196.4 5024.1 339 145 194 2326.6 272.8
12 3 5 7200.00 0.0 196.4 5016.1 348 137 211 2326.6 272.8

Avg. 1437.51 6.2 1925.6 5532.6 341.9 135.5 206.6 2326.6 273.9

13 4 0 14.23 12.9 5427.9 419.3 432 126 306 2326.5 272.8
14 4 1 11.73 0.0 3474.7 430.3 393 161 232 2326.5 272.8
15 4 2 7200.00 0.0 875.5 434.4 423 134 289 2327.0 272.8
16 4 3 1619.20 0.0 196.4 0.0 310 244 66 2333.5 272.8
17 4 4 3604.36 0.0 196.4 0.0 309 245 64 2331.8 272.8
18 4 5 328.94 0.0 196.4 0.0 298 254 44 2326.5 272.8

Avg. 2129.74 2.1 1727.9 214.0 360.8 194 166.8 2329.6 272.8

19 5 0 1.99 12.9 5427.9 0.0 386 175 211 2326.5 272.8
20 5 1 2.95 0.0 3451.9 0.0 326 228 98 2327.5 272.8
21 5 2 1.89 0.0 875.6 0.0 325 229 96 2326.6 272.8
22 5 3 640.48 0.0 196.4 0.0 301 253 48 2338.8 272.8
23 5 4 3839.08 0.0 196.4 0.0 296 257 39 2334.2 272.8
24 5 5 3645.50 0.0 196.4 0.0 294 258 36 2327.1 272.8

Avg. 1355.31 2.1 1724.2 0.0 321.3 233.3 88 2330.1 272.8

In scenarios with three excavators (i.e. 7 to 12), the stripping ratio target deviations were approx-
imately one-third of those with two excavators, indicating that it was possible to mine a part of the
waste necessary with the addition of one excavator to fulfil the stripping ratio target.

The smallest deviations of the ore proportion in the particle size ranges occurred in scenarios with
tolerance ε greater than or equal to 3%, except for those with two excavators.

The scenarios with four (i.e. 16 to 18) or five excavators (i.e. 22 to 24) and tolerance ε greater than
or equal to 3% had the shortest values concerning the grade, ore proportion in particle size range and
waste deviations.

Regarding the number of trips, it is only possible to compare the scenarios that obtained null
deviations for the stripping ratio target or identical results for the total hauled masses. Therefore,
when analysing Scenarios 16 to 24, it is noticed that the number of trips reduces as the tolerance ε

increases. This occurs owing to the increase in the number of trips by the higher-capacity trucks (fleet
1), as shown in columns 9–10 of Table 7.

Regarding the computational time required by the LGP method, in all scenarios with two excava-
tors or scenarios with a tolerance ε less than or equal to 2% (except the scenario with four excavators),
the LGPmethod required less than 15 seconds to find the optimal solution for each objective. In Sce-
narios 12, 15, 17, 23 and 24, the LGPmethoddid not find the optimal solution for the last two objective
functions. As a result, the method required a computational time greater than 3600 seconds in these
scenarios.

The analysis of all scenarios took approximately 8.2 hours, which indicates that the decision-maker
should analyse all these scenarios at the start of the previous work shift. If a faster response is needed,
then he/she should reduce the time limit imposed to run each model.
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The graphical analysis of the iron grades for each particle size range, the ore proportion for each
particle size range, and the stripping ratio are available in the GitHub repository of this work.

6. Conclusions

The complexity of mine operation depends on the number of resources available, the number of
plants, their targets for the ore grade and proportion in the particle size range, waste piles, andmainly
the daily volatility ofmineral commodities’ prices. Therefore, in times of crisis, or lowmarket demand,
reducing operating costs must be prioritized with minimal reduction in the ore’s quality.

Usually, decision-makers at each stage of the mining companies’ production chain are only inter-
ested in improving a particular stage’s performance without analysing the impacts on the others.
Therefore, this study showed the importance of making the plant’s target grade more flexible and
analysing the impact of small increments in the tolerance to these targets on the results of other
objectives, especially in scenarios with a lower availability of excavators. As shown in the results,
as the tolerance to the grade target increases, there is a reduction in deviations from the ore propor-
tion targets in the particle size ranges. Therefore, making plant grade targets more flexible is essential,
especially in plants that split the ore concentration according to the particle size range. This strategy
is crucial, especially in situations with few excavators available.

In future work, it is intended to incorporate this proposal into a discrete event simulator to analyse
the impact of these flexibilities on the production and quality of the products generated by the plant.
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