
Expert Systems With Applications 131 (2019) 148–171

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

A reinforcement learning-based multi-agent framework applied for

solving routing and scheduling problems

Maria Amélia Lopes Silva

a , Sérgio Ricardo de Souza

a , ∗, Marcone Jamilson Freitas Souza

b ,
Ana Lúcia C. Bazzan

c

a Federal Center of Technological Education of Minas Gerais (CEFET-MG), Belo Horizonte ZIP Code: 30510-0 0 0, MG, Brazil
b Department of Computer Science, Federal University of Ouro Preto (UFOP), Ouro Preto ZIP Code: 3540 0-0 0 0, MG, Brazil
c Institute of Informatics, Federal University of Rio Grande of the Sul (UFRGS), Porto Alegre ZIP Code: 91501-970, RS, Brazil

a r t i c l e i n f o

Article history:

Received 6 February 2018

Revised 24 April 2019

Accepted 24 April 2019

Available online 24 April 2019

Keywords:

Multi-agent framework for optimization

Reinforcement learning

Metaheuristics

Multi-agent systems

Vehicle routing problem with time window

Unrelated parallel machine scheduling

problem

a b s t r a c t

This article presents a multi-agent framework for optimization using metaheuristics, called AMAM. In this

proposal, each agent acts independently in the search space of a combinatorial optimization problem.

Agents share information and collaborate with each other through the environment. The goal is to enable

the agent to modify their actions based on experiences gained in interacting with the other agents and

the environment using the concepts of Reinforcement Learning. For better introduction and validation

of the AMAM framework, this article uses the instantiation of the Vehicle Routing Problem with Time

Windows (VRPTW) and the Unrelated Parallel Machine Scheduling Problem with Sequence-Dependent

Setup Times (UPMSP-ST), i.e., two classic combinatorial optimization problems. The main objective of the

experiments is to evaluate the performance of the proposed adaptive agents. The experiments confirm

that the ability to learn attributed to the agent directly influences the quality of solutions, both from the

individual point of view and from the point of view of teamwork. In this way, the framework presented

here is a step forward in relation to the other frameworks of the literature regarding to the adaptation

to the particular aspects of the problems. Additionally, the cooperation between agents and their ability

to influence the quality of the solutions of the agents involved in the search of the solution is confirmed.

The results also strengthen the issue of the scalability of the framework, since, with the addition of new

agents, there is an improvement of the solutions obtained.

© 2019 Elsevier Ltd. All rights reserved.

c

M

T

c

t

I

f

2

b

o

t

a
1. Introduction

Metaheuristics have been consolidated as one of the main

methodologies for optimization problem solving of diverse classes.

This statement is justified in part by its versatility and its great

adaptability to solve problems, but, on the other hand, mainly

due to the possibility of obtaining, in limited computational time,

good quality solutions for large and complex optimization prob-

lems. Problems having these characteristics in many and impor-

tant cases do not have their solution known, in limited computa-

tional time, if only mathematical programming techniques are ap-

plied. This assertion is particularly true for the class of NP-Hard

problems, which involves problems of great theoretical and practi-
∗ Corresponding author.

E-mail addresses: mamelia@ufv.br (M.A. Lopes Silva), sergio@dppg.cefetmg.br

(S.R. de Souza), marcone@iceb.ufop.br (M.J. Freitas Souza), bazzan@inf.ufrgs.br

(A.L.C. Bazzan).

B

m

o

a

s

https://doi.org/10.1016/j.eswa.2019.04.056

0957-4174/© 2019 Elsevier Ltd. All rights reserved.
al relevance, such as the Vehicle Routing Problem or the Parallel

achine Scheduling Problem.

Blum and Roli (2003) , Blum, Puchinger, Raidl, and Roli (2011) ,

albi (2009) and Gendreau and Potvin (2010) present general and

onceptual formulations about metaheuristics as well as impor-

ant reviews regarding their use in solving optimization problems.

n recent years, the combination of two or more metaheuristics

or solving optimization problems has been growing (Blum et al.,

011; Cotta, Talbi, & Alba, 2005). The main objective of the hy-

ridization of metaheuristics is to apply together the best features

f each metaheuristic to solve a problem, allowing, besides get-

ing the best solution quality in a shorter time, to increase the

bility to tackle more complex problems. Cotta et al. (2005) and

lum et al. (2011) claim that hybridizations are responsible for

any of the best results found in the literature for various classes

f optimization problems, which justifies the rising interest for this

pproach.

The increase in the use of metaheuristics, whether or not by

pecialists in methods to solve optimization problems, has guided

https://doi.org/10.1016/j.eswa.2019.04.056
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2019.04.056&domain=pdf
mailto:mamelia@ufv.br
mailto:sergio@dppg.cefetmg.br
mailto:marcone@iceb.ufop.br
mailto:bazzan@inf.ufrgs.br
https://doi.org/10.1016/j.eswa.2019.04.056

M.A. Lopes Silva, S.R. de Souza and M.J. Freitas Souza et al. / Expert Systems With Applications 131 (2019) 148–171 149

r

l

a

p

n

c

t

t

a

l

f

i

p

i

w

v

s

e

C

b

d

i

a

f

d

C

c

t

w

c

m

i

n

2

p

t

t

t

g

p

s

t

o

t

q

v

(

A

t

i

m

t

fl

t

p

i

c

o

p

h

t

(

h

s

s

I

p

o

b

i

t

R

S

o

c

S

a

t

t

&

(

m

h

a

l

b

t

a

f

o

c

e

w

i

n

l

p

t

i

o

e

t

a

o

l

f

t

t

t

c

R

a

i

(

V

s

A

(

esearchers in the development of frameworks. These experts are

ooking for tools that can facilitate solving these problems, as well

s offering features that enhance the performance of the solution

rocess. At the same time, in the case of researchers, the search for

ew techniques to solve this class of problems is a fundamental

hallenge posed, but also is directed towards the development of

hese software tools.

Frameworks offer flexibility in incorporating new methods for

he solution, without requiring effort s to remake the application,

nd, therefore, allowing the determination of better solutions with

ow development costs. Frameworks provide a structure of generic

eatures for the solution of problems from a specific domain, mak-

ng the development of new applications in this domain much sim-

ler. A Metaheuristic Optimization Frameworks (MOF), as named

n Parejo, Ruiz-Cortés, Lozano, and Fernandez (2012) , is a soft-

are tool that provides implementations of a set of metaheuristics,

ia reusable codes, facilitating the development of applications for

olving optimization problems.

Several frameworks for metaheuristics can be found in the lit-

rature (Alba, Luque, Garcia-Nieto, Ordonez, & Leguizamon, 2007;

ahon, Melab, & Talbi, 2004; Coelho et al., 2011; Durillo & Ne-

ro, 2011; Fink & Voß, 2002; Gaspero & Schaerf, 2003; Taluk-

ar, Baerentzen, Gove, & Souza, 1998), most of them with sim-

lar characteristics and proposals. A bibliographical review and

 comparative study with major available frameworks can be

ound in Parejo et al. (2012) and Silva, de Souza, Souza, and

e França Filho (2018) . OptFrame is a framework proposed in

oelho et al. (2011) . Its main characteristic is an interface for

ommon elements of population-based metaheuristics and of

rajectory-based metaheuristics. jMetal is a object-oriented frame-

ork based on the Java language (Durillo & Nebro, 2011). It in-

ludes a significant number of classic and modern methods for

ulti-objective optimization problems and a wide range of issues

nstances. ParadisEO is a global framework composed by 4 con-

ected modules (Cahon et al., 2004; Liefooghe, Jourdan, & Talbi,

011; Melab, Luong, Boufaras, & Talbi, 2013). These modules treat

opulation and trajectory metaheuristics, multi-objective evolu-

ionary techniques as well as parallel and distributed implemen-

ations. Likewise, the demand for increasingly adaptive and in-

elligent software has led to the incorporation of new technolo-

ies in the treatment of several problems, such as, for exam-

le, technology based on autonomous agents through multi-agent

ystems. The agent-based approach is distinguished by its power

o model problems such as combinatorial optimization problems

f a distributed nature and to express through the system en-

ities the complexity of the relationships involved. As a conse-

uence, the multi-agent approach has been applied in the solution

ia metaheuristics of various combinatorial optimization problems

 Silva et al., 2018).

The current article presents a multi-agent framework called

MAM, i.e., “Arquitetura Multiagente para Metaheurística ”, in Por-

uguese, or Multi-agent Architecture for Metaheuristics, proposed

n Silva (2007) . This framework allows the easy hybridization of

etaheuristics for solving combinatorial optimization problems,

hrough a multi-agent structure. In this way, it is a generic and

exible structure, in which each metaheuristic is defined as an au-

onomous agent that interacts with its environment cooperatively.

Like other frameworks available in the literature, AMAM

resents common features such as: (i) metaheuristics are pre-

mplemented to test and reuse; (ii) support the evaluation and

omparison of different methods; (iii) ease in the development

f a particular metaheuristic and their suitability to the treated

roblem. In addition to these features, the framework presented

ere has the strength of hybridization of metaheuristics through

he parallel cooperative approach managed by Multi-Agent Systems

MAS). MAS are used here as a liaison between different meta-
euristics for solving optimization problems. Each agent is respon-

ible for performing its own task and, at same time, for using the

olutions provided by other agents to improve their own solutions.

n this approach, agents interact and work together to achieve a

re-defined objective. The interaction between the various agents

ccurs through a solution pool. The communication is governed

y the rules of access to the pool, both for writing and for read-

ng, aimed at ensuring diversity in the sharing of search informa-

ion. Several previous works (Fernandes, de Souza, Silva, Borges, &

ibeiro, 2009; Silva, de Souza, de Oliveira, & Souza, 2014; Silva, de

ouza, Souza, & de Oliveira, 2015) have presented different stages

f the development of this framework.

This article also proposes the improvement of the self-adaptive

apabilities of the framework agents, an issue discussed in

ilva et al. (2015) . The objective is to allow the agent to modify its

ctions based on the experiences acquired in the interaction with

he other agents and with the environment. This experience is ob-

ained using the concepts of Reinforcement Learning (RL) (Sutton

 Barto, 1998), more specifically, through the Q-Learning algorithm

 Watkins & Dayan, 1992). Therefore, here the concept of Reinforce-

ent Learning is used to define the application order of neighbor-

ood structures of local search. Since the neighborhood functions

re specific parameters of the problem, the use of reinforcement

earning in the selection of the most appropriate neighborhood to

e used enables the framework to adapt better to the characteris-

ics of the problem. The learning strategy is defined here for each

gent individually.

The main motivation of this article is to present the AMAM

ramework as a consolidate software tool for solving combinatorial

ptimization problems using metaheuristics, including important

haracteristics as the autonomy of the agents, without any kind of

xplicit coordination between them. At the same time, this frame-

ork introduces, to the best of our knowledge, the first use of re-

nforcement learning for frameworks specialized in solving combi-

atorial optimization problems. This built-in adaptive capacity al-

ows the agents to adjust to specific problems, providing the best

erformance of these in the framework.

In order to evaluate the learning performance, two computa-

ional experiments are conducted: (i) new tests using the learn-

ng proposal presented in Silva et al. (2015) and (ii) tests carried

ut with the learning structure proposed in this article. These two

xperiments are carried out under the same computational condi-

ions and with the same cooperation structure among the agents,

llowing a effective comparison between the found results. One

f the main objectives of this article is to evaluate if the form of

earning, embedded in the agent, has a direct influence on the per-

ormance of the framework with respect to the quality of the ob-

ained results, both in terms of the individual point of view and in

erms of the teamwork point of view.

For better introduction and validation of the AMAM framework,

his article uses the instantiation of two classic and well-known

ombinatorial optimization problems. The first one is the Vehicle

outing Problem with Time Window – VRPTW (Toth & Vigo, 2002)

nd the second one is the Unrelated Parallel Machine Schedul-

ng Problem with Sequence-Dependent Setup Times – UPMSP-ST

 Allahverdi, 2015; Allahverdi, Ng, Cheng, & Kovalyov, 2008). Both

RPTW and UPMSP-ST are NP-Hard problems and, in consequence,

uitable to be used here for demonstrating the potentialities of the

MAM framework.

In summary, the main contributions of this proposal are:

i) Improve the self-adaptive skills of the agent, using the con-

cepts of Reinforcement Learning, specifically the Q-Learning al-

gorithm, allowing the agent to better adapt to the specific pa-

rameters of the problem to be addressed by the framework;

150 M.A. Lopes Silva, S.R. de Souza and M.J. Freitas Souza et al. / Expert Systems With Applications 131 (2019) 148–171

(

(i

W

t

p

t

e

w

A

i

a

m

a

w

u

t

o

a

t

t

r

t

s

s

b

c

t

V

&

b

a

Q

m

(

S

a

P

p

m

t

s

g

v

S

T

a

c

s

A

t

t

h

o

i

a

p
ii) Improve cooperation among agents, through the inclusion of

criteria for insertion of new solutions into the cooperative

structure, seeking greater diversity of solutions;

ii) Demonstrate how the enhancement of individual agent skills

directly influences the cooperative performance of agents.

The remainder of this paper is organized as follows.

Section 2 presents a review about works on the use of learn-

ing in conjunction with metaheuristics within frameworks.

Section 3 briefly reviews the Vehicle Routing Problem with Time-

indows (VRPTW) and the Unrelated Parallel Machine Scheduling

Problem with Sequence-Dependent Setup Times (UPMSP-ST).

Section 4 describes the AMAM framework and its main com-

ponents. Section 5 shows the basic concepts of reinforcement

learning and describes the proposed adaptive agent. Section 6 re-

ports experiments carried out on the VRPTW instances and the

UPMSP-ST instances using the AMAM framework. Finally, the last

section present some conclusions and discusses future directions

of research.

2. Bibliographical review

The use of Reinforcement Learning in conjunction with meta-

heuristics has been a subject of strong interest in the search for

better and more efficient methods for solving optimization prob-

lems, as shown in, for example, Gambardella and Dorigo (1995) ,

Meignan, Créput, and Koukam (2008) , Barbucha, Czarnowski,

J ̧e drzejowicz, Ratajczak-Ropel, and Wierzbowska (2010) ,

Queiroz dos Santos, de Melo, Neto, and Aloise (2014) ,

Lotfi and Acan (2015) , Martin et al. (2016) , Samma, Lim, and

Saleh (2016) and Silva et al. (2015) . Some of these articles are

discussed in the following.

Gambardella and Dorigo (1995) introduce the Ant-Q algo-

rithm, the first application of Q-learning algorithm for solving

combinatorial optimization problems, according to the authors

knowledge. The experiments performed use instances of the Trav-

eling Salesman Problem (TSP). As posed in Dorigo, Caro, and Gam-

bardella (1999) , Ant-Q is an algorithm that tries to merge Ant

System (AS) algorithm and Q-learning properties. In its turn, the

AS algorithm is the initial proposal of the Ant Colony Optimiza-

tion metaheuristic (Dorigo & Stützle, 2019). At Ant-Q algorithm,

an Ant-Q-value table (AQ (r, s) , where (r, s) is a pair of cities

of the TSP) is defined, associated with Q -values of Q-learning al-

gorithm. It indicates how useful it will be to move in the edge

(r, s) , this table being updated at run time. The objective is that

the agents of the Ant-Q algorithms cooperate to learn AQ-values,

thus seeking good solutions for the TSP. However, as indicated in

Dorigo et al. (1999) and Dorigo and Stützle (2019) , besides having

good performance, due to some aspects of Ant-Q, in particular the

pheromone update rule, could be strongly simplified without affect-

ing performance, Ant-Q was abandoned in favor of the simpler and

equally good ACS (Ant Colony System), introduced in Dorigo and

Gambardella (1997) .

Meignan et al. (2008) propose the Agent Metaheuristic Frame-

work (AMF). AMF is based on an organizational model that de-

scribes a metaheuristic in terms of roles. Roles represent the main

elements that compose metaheuristics, such as intensification, di-

versification, memory and adaptation or self-adaptation. Accord-

ing to the authors, “to obtain a metaheuristic from the AMF or-

ganizational model, it is necessary to refine the different roles and

determine the multiagent structure of the optimization system ”. A

metaheuristic called Coalition-Based Metaheuristic (CBM) and its

application to the Vehicle Routing Problem are presented for illus-

trating the use of the AMF model. CBM is a metaheuristic based on

the metaphor of coalitions. According to the authors, “the coalition

is composed of several agents which have the capacity to individually
reat the optimization problem but cooperate to coordinate and im-

rove the search ”. An adaptive strategy is used by the CBM agent,

hrough a learning mechanism, to select the most appropriate op-

rator, based on the context. The reward is given to the agent only

hen it finds better solutions than those already found previously.

ccording to the authors, the results show that the ability to learn

mproves the quality of solutions, especially when the number of

gents involved increases.

Barbucha et al. (2010) presented JADE-based A-Team environ-

ent (JABAT), a tool for building A-Teams (Talukdar & Souza, 1990)

rchitectures to solve different optimization problems. This frame-

ork produces solutions for combinatorial optimization problems

sing a set of optimization agents, each one implementing a solu-

ion algorithm. Barbucha et al. (2010) also proposed an extension

f this framework, named Cooperative JADE-based ATeam (Cooper-

tive JABAT), introducing a Reinforcement Learning mechanism. In

his case, the reward is assigned to the optimization agents each

ime is found a better solution than the one previously. A negative

eward can also be awarded if the agent fails to improve a solu-

ion. The weight of each agent in that context is considered when

olutions are requested in the common memory. Thus, the required

olutions are not sent immediately after the request of each agent,

ut only after all the agents perform these requests and, besides,

onsidering the weights associated to each of them.

Queiroz dos Santos et al. (2014) show an implementation

hat proposes a hybridization of the reactive search with the

ariable Neighborhood Search (VNS) metaheuristic (Mladenovi ́c

 Hansen, 1997). The selection of the local search heuristic to

e used at a certain point in the search is done in a self-

daptive learning through Reinforcement Learning. In this sense,

ueiroz dos Santos et al. (2014) use the algorithm of Reinforce-

ent Learning Q-Learning in two ways:

(i) Construction of the initial solution: instead of the construction

usually used in the VNS metaheuristic, the initial solution con-

struction uses the Q-learning algorithm, carried out from the

knowledge of the environment (solutions of the problem search

space);

ii) Selection of Local Search to be applied: in order to efficiently

explore the choice of which local search is best suited to a par-

ticular search point, the algorithm selects the next local search

to be used based on the Q-learning algorithm.

The algorithm presented by the authors was applied to the

ymmetric Traveling Salesman Problem (TSP), using the avail-

ble instances in the TSPLIB repository (http://ftp.zib.de/pub/

ackages/mp-testdata/tsp/tsplib/tsplib.html). Two comparisons are

resented: (i) their algorithm compared with a version of VNS

etaheuristics combined with the construction of initial solutions

hat use Q-learning, and (ii) their algorithm compared with the re-

ults already known in the literature. They conclude that their al-

orithm is competitive and that it performs better than the VNS

ersion with Q-learning.

Lotfi and Acan (2015) presented the Learning-Based Multi-Agent

ystem (LBMAS) for solving combinatorial optimization problems.

his system allows collaboration between metaheuristic agents in

 population of common solutions and in a two-stage file, also

ommon to the agents. In this way, different regions of the search

pace are exploited using the most effective agent at the moment.

t each iteration of the search, the metaheuristic to be used in

he next iteration is chosen. This selection is carried out using

he concepts of roulette, in which the evaluation values of meta-

euristics are obtained based on the improvement levels of the

bjective function of each of the metaheuristics. All metaheuristics

nitially have the same probability of being chosen and this prob-

bility changes (grows or decreases) according to the individual

erformance of the agents. The agents cooperate by sharing their

http://ftp.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html

M.A. Lopes Silva, S.R. de Souza and M.J. Freitas Souza et al. / Expert Systems With Applications 131 (2019) 148–171 151

i

a

e

c

i

a

M

L

p

w

w

&

c

c

p

t

c

b

s

c

o

t

b

i

a

l

m

e

T

e

t

R

l

t

S

o

S

a

n

w

s

i

c

R

t

m

R

t

L

t

j

p

(

(i

e

s

m

s

s

a

i

n

v

c

f

u

c

p

t

a

i

3

l

p

t

e

l

c

(

p

P

u

o

m

d

t

e

f

o

H

o

o

S

c

2

e

3

3

c

o

t

h

q

F

i

t

o

h

t

c

x

ndividual experiences through a two-stage external memory

rchive: the first stage stores promising solutions based on their

valuation value; and the second stage maintains the solutions ac-

ording to their spatial distribution, based on a defined dissimilar-

ty measure. In the proposal of Lotfi and Acan (2015) , the multi-

gent system is experimentally evaluated using instances of the

ultiprocessor Scheduling Problem. The results showed that the

BMAS is competitive in relation to the other algorithms already

roposed for the problem.

Martin et al. (2016) present a distributed agent-based frame-

ork called Multi-Agent Cooperative Search (MACS). This frame-

ork is implemented using the JADE platform (Bellifemine, Poggi,

 Rimassa, 2007). In this proposal, each agent performs a different

ombination of local search metaheuristics/heuristics and adapts

ontinuously throughout the search process using a cooperation

rotocol. This cooperation protocol allows communication between

he agents involved in the search for a solution. An iteration of the

ommunication protocol is called a conversation. Communication

etween agents takes place as follows: good patterns that improve

olutions are identified, according to the frequency that they oc-

ur in the conversation, and are then shared among the agents. In

rder to do this, each metaheuristic agent breaks the current solu-

ion into edge objects and sends them to the launcher agent, which

rings together all the edge objects and punctuates them accord-

ng to their frequency. These elements are shared with the other

gents and will be part of the next solutions. The implemented

earning mechanism allows each agent to maintain a short-term

emory of good edge objects, which are used at the beginning of

ach conversation to influence how new solutions are constructed.

he edges identified by the learning are used to reorder the lists of

lements to be inserted into the solutions. The constructive heuris-

ics RandNEH and RandCWS, proposed in Juan, Faulin, Grasman,

abe, and Figueira (2015) , are used for the construction of new so-

utions. Martin et al. (2016) show the evaluation of MACS through

wo different optimization problems: (i) Permutation Flow-shop

cheduling and (ii) Capacitated Vehicle Routing. Tests were carried

ut using 5 scenarios for each of the two problems mentioned: (i)

ingle agent; (ii) 4 agents; (iii) 8 agents; (iv) 12 agents; and (v) 16

gents. The results show that, with a confidence level of 95%, sce-

arios with eight or more agents perform better than the scenario

ith an isolated agent. In addition, the results also show that in

ome cases the performance is better when the number of agents

s doubled.

Samma et al. (2016) present a new algorithm based on Parti-

le Swarm Optimization (PSO) (Kennedy & Eberhart, 1995), called

einforcement Learning-based Memetic Particle Swarm Optimiza-

ion (RLMPSO). Motivated by the difficulty of integrating the PSO

ethod and local search heuristics, the authors propose the use of

einforcement Learning in the control of the operations applied to

he swarm particles. In the definition of RLMPSO, Reinforcement

earning is implemented using the Q-learning algorithm. Each par-

icle is subject to five operations: exploration, convergence, high-

ump, low-jump, and fine-tuning. Three steps, described below,

resent the control of Q-learning under the possible operations:

(i) Obtain the best operation to be performed for each current par-

ticle;

ii) Perform the selected operation and evaluate the value of the

fitness function obtained. The immediate reward will be calcu-

lated according to the evaluation of the fitness function; if a

better value is found, the reward is positive (1) and, otherwise,

a negative reward is assigned (−1);

ii) Update the Q-table for each current particle.

According to the authors, “the effectiveness of RLMPSO has been

valuated using four unimodal and multi-modal benchmark problems,

ix composite benchmark problems, five shifted and rotated bench-
ark problems, as well as two real-world design problems”. The re-

ults obtained in the experiments performed with these problems

how that the RLMPSO exceeds a significant number of PSO vari-

nts reported in the literature. Additionally, reinforcement learning

nvolving agents has become a relevant topic nowadays, and a large

umber of publications address this issue from different points of

iew. It is worth highlighting (Noel & Pandian, 2014; Radac & Pre-

up, 2018; Radac, Precup, & Roman, 2018), which deal with rein-

orcement learning involving artificial neural networks for contin-

ous models; (Kazemitabar, Taghizadeh, & Beigy, 2018), which dis-

uss about hierarchical reinforcement learning in large and com-

lex systems; and (Salgado & Clempner, 2018), which study the in-

eraction of agents through emotion and stimuli.

It should be emphasized that none of the proposals discussed

bove in this literature review uses reinforcement learning among

ts optimization problem solving structures.

. Case study

This section addresses the instantiation of AMAM for two prob-

ems of great importance in Combinatorial Optimization. The pur-

ose of this instantiation is to analyze this framework, evaluate

heir performance and show their potential. The problems consid-

red here for case study purposes are the Vehicle Routing Prob-

em with Time Windows (VRPTW) and the Unrelated Parallel Ma-

hine Scheduling Problem with Sequence-Dependent Setup Times

UPMSP-ST).

VRPTW is one of the most studied combinatorial optimization

roblems. It is a generalization of the classic Travelling Salesman

roblem (TSP) (Applegate, Bixby, Chvátal, & Cook, 2007), in which,

nlike this, there is a fleet of vehicles, a set of customers, ge-

graphically dispersed, to be satisfied, with their respective de-

ands and the horizons of time for the attendance. The full

escription of this problem is at Section 3.1 , under the terms of in-

erest of this current article. For further details regarding VRPTW,

xcellent reviews of the research involving this problem can be

ound in Toth and Vigo (2002) and Toth and Vigo (2014) .

UPMSP-ST also has strong economic relevance in several types

f industries. Like VRPTW, UPMSP-ST belongs to the class of NP-

ard problems, which justifies the use of metaheuristic meth-

ds in the solution of these problems. A detailed description

f the UPMSP-ST can be found in Rabadi, Moraga, and Al-

alem (2006) and Vallada and Ruiz (2011) , and good surveys con-

erning to this problem are (Allahverdi, 2015; Allahverdi et al.,

008). Section 3.2 presents this problem, in the terms that inter-

st this current article.

.1. Case 1: VRPTW

.1.1. VRPTW basic definitions

In this problem, a set K = { k : k = 1 , 2 , . . . , | K| } of vehicles is lo-

ated at a single depot and must serve a set C = { i : i = 1 , 2 , . . . , N }
f geographically spread customers. In the case considered here,

he fleet of vehicles is homogeneous, i.e, all vehicles are equal and

ave the same capacity Q . Each customer i has a given demand

 i and must be served within a specified time window [a i , b i] (see

ig. 1 (a)). A solution for the VRPTW is a set of routes (see Fig. 1 (b)),

n which each route is represented by an ordered list of customers

hat determine the sequence in which they are to be served by

ne vehicle. The arcs show the connection between customers and

ave an associated value c ij , which represents the travel cost be-

ween customer i and customer j . The solution x shown in Fig. 1 (b)

an be described as:

 = [0 , 2 , 1 , 12 , 0 , 3 , 4 , 5 , 6 , 0 , 10 , 7 , 8 , 9 , 11 , 0]

152 M.A. Lopes Silva, S.R. de Souza and M.J. Freitas Souza et al. / Expert Systems With Applications 131 (2019) 148–171

Fig. 1. A VRPTW solution.

Fig. 2. An application of the Intra-Route Swap neighborhood function on 2 routes of a solution.

Fig. 3. An application of the Inter-Route Swap neighborhood function in a solution.

v

o

3

s

s

b

l

t

b

V

n

l

t

where the index 0 indicates the depot and the three routes

of this solution are route 1 = [0 , 2 , 1 , 12 , 0] , route 2 = [0 , 3 , 4 , 5 , 6 , 0]

and route 3 = [0 , 10 , 7 , 8 , 9 , 11 , 0] . Thus, the solution x is also de-

scribed as x = [route 1 , route 2 , route 3] .

The objective of the VRPTW is to determine a set of routes in

order to minimize the involved total cost with this operation. Each

route is associated with a single vehicle. The routes must start and

end in the depot. In our case, the cost of a solution x is calculated

according to:

f (x) = ωK(x) +

∑

(i, j) ∈ E
c i j (1)

where:

• c ij : cost between customers (i, j), which can be related to the

distance between customers;
• E : set of arcs belonging to the solution x ;
• K (x) : number of vehicles in the solution x ;
•
 ω : an arbitrary large non-negative penalty factor.
In this function, the first priority is to minimize the number of

ehicles (or routes, in consequence). In case of a tie in the number

f vehicles, the total distance traveled should be minimized.

.1.2. VRPTW neighborhoods

A neighborhood is a function N (x) that describes a solution

ubset associated with the solution x belonging to the solution

pace of the problem. Each solution of this subset is called a neigh-

or. The function N (x) is defined as an operator that receives a so-

ution x 1 and transforms it into another solution x 2 , belonging to

he neighborhood of x 1 (Milano & Roli, 2004).

In order to explore the solution space, eight different neigh-

orhood functions are used in the AMAM instantiation for solving

RPTW. The knowledge of these neighborhood structures becomes

ecessary because they make up the set of states defined in the

earning model that will be described in Section 5 . These struc-

ures are presented below:

(i) Intra-Route Swap: neighborhood function that performs the ex-

change move of a customer with another customer of the same

M.A. Lopes Silva, S.R. de Souza and M.J. Freitas Souza et al. / Expert Systems With Applications 131 (2019) 148–171 153

Fig. 4. An application of the Intra-Route Shift neighborhood function in the route 2 of a solution.

Fig. 5. An application of the Inter-Route Shift neighborhood function in a solution.

Table 1

Processing time.

1 2 3 4 5 6 7 8

m 1 67 3 29 85 11 36 25 12

m 2 43 40 29 26 46 49 7 5

(

(i

(i

(

(v

(v

(vi

3

3

b

e

v

i

j

t

m

w

w

T

c

a

u

c

s

U
route. Fig. 2 illustrates this neighborhood function. In this ex-

ample, customers 4 and 6 of route 2 are swapped;

ii) Inter-Route Swap: neighborhood function that performs the ex-

change move of a customer of a route with a customer of an-

other route. Fig. 3 shows the Inter-Route Swap neighborhood

function. In this figure, customer 6 is removed from route 2

and inserted into route 3 in place of the customer 7, which is

consequently transferred to the route 2 in the place previously

occupied by customer 6;

ii) Intra-Route Shift: neighborhood function that performs the re-

location move of one customer to another position on the same

route. Fig. 4 shows the application of the Intra-Route Shift func-

tion, where the customer 6 of route 2 is removed from its po-

sition and inserted between customers 4 and 5;

v) Inter-Route Shift: neighborhood function that performs the re-

location of a customer from one route to another one. The

Inter-Route Shift neighborhood function is shown in Fig. 5 , in

which the customer 12 is taken from route 1 and then inserted

into route 3;

v) Two Intra-Route Swap: neighborhood function that consists of

the exchange of customers on the same route, as well as the

intra-route swap neighborhood function. However, in the Two

Intra-Route Swap function, two consecutive customers are ex-

changed with two other consecutive customers of the same

route;

i) Two Intra-Route Shift: neighborhood function that consists of

the relocation of customers on the same route, as well as the

intra-route shift neighborhood function. However, in the Two

Intra-Route Shift function, two consecutive customers are re-

moved from their positions and reinserted into another position

of the same route;
ii) Eliminates Smaller Route: neighborhood function that seeks to

eliminate the smallest route of the solution. The smallest route

is defined as the route that has the least number of customers.

To this end, the customers of the smallest route of the solution

are removed and inserted in others routes of the solution. The

route and position for insertion of each removed customer are

those that result in the best value of the objective function, re-

specting all constraints. A new solution is generated when all

customers of the smallest route are reinserted in other routes.

Fig. 6 shows an example of the Eliminates Smaller Route neigh-

borhood function. In this example, the smallest route (route

1) is deleted and its customers are inserted into other routes

(routes 2 and 3);

ii) Eliminates Random Route: The Eliminates Random Route neigh-

borhood function operates similar to the Eliminates Smaller

Route function, but the route to be deleted is chosen randomly

(see Fig. 7);

.2. Case 2: UPMSP-ST

.2.1. UPMSP-ST basic definitions

In this problem, a set N = { n : n = 1 , 2 , . . . , | N| } of jobs should

e allocated to a set M = { m : m = 1 , . . . , | M| } of machines, and

ach job j ∈ N must be allocated to a single machine i ∈ M . In the

ersion of UPMSP-ST considered here, we also define the process-

ng time p ij , which represents the time required to process the job

 ∈ N on a machine i ∈ M ; and the setup time S ijk , which represents

he time required to set up the job k ∈ N after the job j ∈ N on the

achine i ∈ M . Tables 1 and 2 present an example of this situation,

ith data referring to test instances for calibration experiments

ith 8 jobs and 2 machines, proposed by Vallada and Ruiz (2011) .

able 1 displays the processing times of each of the 8 jobs on ma-

hines m 1 and m 2 . Table 2 shows the setup times for machines m 1

nd m 2 . Since the problem is sequence-dependent, the matrix is

sed to indicate the setup time of job i after executing job j .

A solution to UPMSP-ST is a list of machines, where each ma-

hine is represented by an ordered list of jobs, which defines the

equence in which they will be performed. Fig. 8 illustrates a

PMSP-ST solution in which each job assigned to its machine has

154 M.A. Lopes Silva, S.R. de Souza and M.J. Freitas Souza et al. / Expert Systems With Applications 131 (2019) 148–171

Table 2

Setup time.

m 1 1 2 3 4 5 6 7 8 m 2 1 2 3 4 5 6 7 8

1 0 5 7 8 8 9 8 5 1 0 2 3 1 2 4 9 5

2 7 0 4 6 6 7 6 8 2 4 0 5 3 1 8 9 7

3 5 2 0 6 6 3 6 7 3 1 3 0 5 5 2 8 7

4 6 9 9 0 6 2 2 8 4 4 2 5 0 3 6 4 5

5 4 8 6 5 0 6 8 2 5 7 6 5 6 0 6 5 2

6 4 2 2 2 2 0 3 8 6 3 6 3 9 4 0 1 6

7 7 1 7 2 9 4 0 9 7 4 1 6 7 2 7 0 9

8 3 8 4 3 8 7 2 0 8 4 9 6 3 6 8 8 0

Fig. 6. An application of the neighborhood function Eliminates Smaller Route in a solution.

Fig. 7. An application of the neighborhood function Eliminates Random Route in a solution.

Fig. 8. A UPMSP-ST solution.

l

b

(

(i

its processing time represented in the timeline and the intervals

between the jobs represent the setup time. The values used in this

example are based on the instance of the Tables 1 and 2 .

The objective of UPMSP-ST is to allocate all n jobs on m ma-

chines to minimize the maximum completion time of the schedul-

ing, value known as makespan. In Fig. 8 , the makespan is defined

by the completion time of machine m 1 and is given by the value

167.

3.2.2. UPMSP-ST neighborhoods

Four neighborhood functions were used to explore the search

space of the UPMSP-ST in the framework instantiation. As in

VRPTW, these neighborhood structures make up the set of states

defined in agent learning. The learning model used in this prob-
em is presented in the Section 5 . These structures are presented

elow:

(i) Multiple Insertion in Different Machines: neighborhood func-

tion that performs the relocation of a job from one machine

to another one. Fig. 9 shows the application of this neighbor-

hood function in which the job 7 is removed from the ma-

chine m 1 and inserted into the machine m 2 . As can be seen,

the makespan of the initial solution of Fig. 9 (a) is obtained

by the machine m 1 , in the amount of 167; after application

of the neighborhood function, the new makespan (solution of

Fig. 9 (b)) is again obtained by machine m 1 , with a value of 134.

ii) Multiple Insertion in the Same Machines: neighborhood func-

tion that performs the relocation move of one job to another

position in the same machine. Fig. 10 shows the application of

this neighborhood function in which the job 8 is removed from

the last position of the machine m 1 and inserted in the sec-

ond position of this same machine. This modification reduces

the makespan. Indeed, before the move, the makespan was 167

(Fig. 10 (a)), and, after the move, the makespan reduced to 164

(Fig. 10 (b)).

ii) Swap between different machines: neighborhood function that

performs the exchange move of a job of a machine with a job

of another machine. These neighborhood functions are shown

in Fig. 11 , in which the job 1 of the machine m 1 is exchanged

with the job 6 of the machine m . In this case, the appli-
2

M.A. Lopes Silva, S.R. de Souza and M.J. Freitas Souza et al. / Expert Systems With Applications 131 (2019) 148–171 155

Fig. 9. Example: Multiple Insertion in Different Machines neighborhood.

Fig. 10. Example: Multiple Insertion in the Same Machines neighborhood.

Fig. 11. Example: Swap between different machines neighborhood.

(i

4

p

p

(

t

g

f

m

s

p

e

h

v

s

t

b

r

m

i

t
cation of the move leads to a significant reduction of the

makespan of the solution, since, in the initial solution shown

in Fig. 11 (a), the makespan value is 167, and, in the resulting

solution (Fig. 11 (b)), the value obtained is 131.

v) Swap between Same Machines: neighborhood function that

performs the exchange move of a job with another job of the

same machine. These neighborhood functions are shown in

Fig. 12 , in which the job 1 of the machine m 1 is exchanged with

the job 8 of this same machine. The initial solution is shown in

Fig. 12 (a), with makespan 167. The solution obtained by apply-

ing this move is shown in Fig. 12 (b), with resulting makespan

valued at 163.

. Multi-agent metaheuristic optimization framework

The adaptive agent proposed here is included as an integral

art of the AMAM framework. It arises from initial formulations

resented in Silva (2007) , Fernandes et al. (2009) and Silva et al.

2014 , 2015) . In this framework, each agent encapsulates a heuris-

ic/metaheuristic and has the function of seeking the solution for a

iven Combinatorial Optimization problem.

During the search process of the solution, the agents in the

ramework should go through the multi-agent system environ-

ent. In this case, the multi-agent environment is defined by the

earch space of the addressed problem. As shown in Fig. 13 , the
erception and action capabilities of the agent are defined in this

nvironment as:

• Perception of the environment: ability of the agents to access

information about the problem that are required to it;
• Positioning: ability of the agents to define their positions in the

environment, either by the construction of a new solution or by

the choice of solutions already available;
• Move: ability of the agent to move, from one solution to an-

other in the environment. The move here comprises all kinds

of solution modifications (neighborhood structures, operators)

that allow the agent to move from one solution to another;
• Cooperation: ability of the agent to share and provide solutions

for the other agents of the system.

The actions available to each agent define the vision that it will

ave of the environment. Therefore, its representation of the en-

ironment is partial. The goal is to apply, at the same time, the

trengths of each metaheuristic through the cooperative work of

he agents. The scalability of the AMAM architecture is guaranteed

y the ease of adding new agents, with minimal impact on the

est of the architecture. These agents interact with the environ-

ent and with others agents cooperatively, exchanging and sharing

nformation about their condition and about the environment.

The Object Oriented Programming paradigm is used to facilitate

he development of the framework, allowing to reduce the effort

156 M.A. Lopes Silva, S.R. de Souza and M.J. Freitas Souza et al. / Expert Systems With Applications 131 (2019) 148–171

Fig. 12. Example: Swap between Same Machines neighborhood.

Fig. 13. Agent interaction.

(

(i

i

n

l

S

c

c

t

s

t

p

t

a

i

i

p

t

t

t

f

s

i

g

w

t

i

o

φ

T

o

f

i

v

s

h

l

t

t

V

t

c

t

t
used in the implementation of methods and in the adaptation of

these to a specific problem. Therefore, a generic structure that en-

ables the definition of the problem characteristics is used.

The conceptual model of the AMAM framework was orig-

inally proposed in Silva (2007) . The development from the

conceptual model is presented in Fernandes et al. (2009) , and al-

lows the creation of an instance of the environment and multi-

ple agents to the search of the solution. Design patterns are used

to ensure that the AMAM architecture be flexible and extensi-

ble. In this initial conceptual model, six major elements make up

the proposed Multi-agent System: (i) Environment; (ii) Construc-

tor Agent; (iii) Local Search Agent; (iv) Metaheuristic Agent; (v)

Coordinator Agent; and (vi) Solution Analyzer Agent. The cooper-

ative structure of AMAM architecture is reviewed and improved in

Fernandes et al. (2009) and Silva et al. (2014) . An adaptive mem-

ory strategy called Pool of Solutions is used for sharing informa-

tion. The available solutions are stored in this Pool of Solutions,

located in the Multi-Agent System environment. In the latest pro-

posal, presented in Silva et al. (2014 , 2015) , the Coordinator and

Solution Analyzer agents were removed from the architecture, in

relation to the original proposal. The main objective of this change

in the structure is to meet the need to increase the autonomy of

the agent, preventing other agents interfere in its activities. The

new structure for AMAM framework is composed of three main

elements:

(i) Environment: defined mainly by the search space of the tackled

problem. Therefore, it provides all information that is needed

for solving the problem, i.e., in the case of VRPTW, the number

of customers to be attended, the distance between customers,

the number of vehicles, and so on;

ii) Pool of Solutions: responsible for maintaining the shared solu-

tions to all agents;

ii) Metaheuristic Agents: responsible for guiding the search for the

solution.

In Silva et al. (2015) , self-adaptive skills based on learning

are assigned to framework agents, using the principles defined
n Learning Automata (Narendra & Thathachar, 1974). Finally, a

ew adaptive agent, incorporating the reinforcement approach by

earning, is presented in the current proposal and is detailed in

ection 5 .

The strength of the proposed framework is the hybridization

apacity of metaheuristics through a multi-agent approach, using

oncepts of cooperation and parallelism. Additionally, AMAM offers

he possibility of parallel execution, in which each agent runs on a

eparate thread.

The cooperation between agents occurs, in the current release,

hrough the exchange of information in the search space of the

roblem. The available solutions are stored in a pool of solutions in

he environment and shared by the agents at the end of each iter-

tion. The purpose of this cooperative structure is to guide agents

n the solutions space toward the most promising areas, and thus,

mproves the final result and reduces the time needed to solve the

roblem.

The maximum size of the pool of solutions is predefined and

he insertion of new solutions is regulated by an evaluation func-

ion, as in Silva et al. (2015) . This evaluation function is based on

he niching techniques (Li, Epitropakis, Deb, & Engelbrecht, 2017)

or coordinating solution files. When a solution needs to be in-

erted into the pool and no space in this pool is available, the ex-

sting solutions are evaluated according to the function:

(φi) =

P ∑

j=1

φ(λi j) (2)

here P is the number of solutions in the pool and λij is the dis-

ance between the solutions i and j . The evaluation function g (φi)

s defined by the sum of the distances of a solution i to all the

ther pool solutions, where φ(λij) is defined as:

(λi j) =

{

1 − λi j

pr
, if λi j ≤ pr

0 , if λi j > pr
(3)

he factor pr is the pool radius, and controls the dispersion degree

f the solutions, being a parameter of the problem. For example,

or VRPTW, used as one of the case studies in the current article, it

s the minimum number of arcs for one solution to be considered

ery close to the other. Therefore, its value depends directly on the

ize of the instance to be solved of the problem addressed.

The function (2) estimates the solution density in the neighbor-

ood of the solution i by means of the distance between the so-

utions contained in the pool. The value λij measures how much

he solutions i and j are similar and depends fundamentally on

he problem being treated. As an example, considering the case of

RPTW described in Section 3.1 , the distance between two solu-

ions is calculated in relation to the number of arcs that are not

ommon to both solutions. Fig. 14 presents two examples of dis-

ance calculation between VRPTW solutions. For the first example,

he distance between the solution i , shown in Fig. 14 (a), and the

M.A. Lopes Silva, S.R. de Souza and M.J. Freitas Souza et al. / Expert Systems With Applications 131 (2019) 148–171 157

Fig. 14. Examples of calculating distance between solutions.

s

n

p

t

a

t

i

i

o

r

a

t

e

p

u

f

D

A

G

5

w

d

s

w

s

c

p

m

b

b

t

(

n

Q

a

c

a

t

5

n

i

t

t

g

fi

p

i

w

i

t

t

m

s

t

T

s

p

s

v

c

t

a

T

t

c

c
olution j , shown in Fig. 14 (b), is equal to λi j = 12 , i.e., there are 12

on-common arcs between these solutions. For the second exam-

le, the distance between the solution i , shown in Fig. 14 (c), and

he solution h , shown in Fig. 14 (d), is equal to λih = 6 , i.e., there

re 6 non-common arcs between these solutions.

As a consequence, after evaluating the value g (·) of each solu-

ion in the pool, the worst evaluated solution is excluded for the

nsertion of a new solution in the pool, if this new solution sat-

sfies two criteria: (i) it is not in the pool yet; (ii) it has better

bjective function value than the worst pool solution. These crite-

ia for the insertion of a new solution are proposed in the current

rticle and is an original contribution of the current article.

The main objective of this evaluation function is to maintain

he diversity of the pool, avoiding to keep very similar or even

qual solutions. At the same time, the best existing solution in the

ool is always stored in a specific attribute of the environment and

pdated at every insertion, thus preventing that this best solution

ound is eliminated.

The latest version of the AMAM framework, released in

ecember 2017, is available at https://github.com/mamelials/

MAM- Multiagente- Architecture- for- Metaheuristics , under the

NU LGPLv3 license.

. Adaptive agents

This section introduces the adaptive capabilities of the frame-

ork agents. It extends the learning characteristics initially ad-

ressed in Silva et al. (2015) for the same framework.

In Silva et al. (2015) , the order of the neighborhoods in local

earch is chosen by applying an operator similar to the “roulette

heel” selection operator from Genetic Algorithms. For each pos-

ible pair of neighborhood structures (m 1, m 2), a probability of

hoice is assigned. Initially, all pairs of sequences have the same

robability value. The probability of choice of the sequence (m 1,

 2) is updated by a reinforcement factor w if a move of the neigh-

orhood structure m 2 applied after another move of the neigh-

orhood structure m 1 improves the current solution. The concept

hat was used is very similar to that defined in Learning Automata

 Narendra & Thathachar, 1974).
In the current article, the choice of application order of the

eighborhood structures of the local search is improved using the

-Learning algorithm. The details concerning this implementation

re described in the following subsections. Initially, in Section 5.1 ,

oncepts related to Reinforcement Learning and the used algorithm

re introduced. Then, in Section 5.3 , the implementation details of

his proposal are presented.

.1. Reinforcement learning

Reinforcement Learning consists of learning what to do in a dy-

amic environment from trial-and-error-based interactions. These

nteractions are reinforced according to the effects they cause on

he environment. In the model defined by reinforcement learning

here are no input/output pairs and therefore the agent needs to

ather experiences to improve their performance.

According to Narendra and Thathachar (1974) , “learning is de-

ned as any relatively permanent change in behavior resulting from

ast experience, and a learning system is characterized by its abil-

ty to improve its behavior with time, in some sense tending to-

ards an ultimate goal”. In the reinforcement learning, the behav-

or is improved from rewards obtained during the interactions of

he agent with the environment. The learning takes place through

he perception (i) of the state of the individual in the environ-

ent; (ii) of the actions performed in this environment; (iii) of the

tate changes resulting from these actions; and (iv) of the reward

hat the environment returns in response to the performed action.

hrough learning, the agent uses the reinforcement value in the

ubsequent decision-making.

A Reinforcement Learning (RL) system includes three basic as-

ects: (i) perception; (ii) action; and (iii) goal. In this system, as

hown in Fig. 15 , the agent perceives (partially) the state of the en-

ironment and, based on the knowledge obtained through this per-

eption, selects an action to be performed. The action taken affects

he environment, changing the state in which the agent is. Every

gent within an RL system has a goal state that must be achieved.

he main objective is to take the agent to select a sequence of ac-

ions up to the goal state, which maximizes the reinforcement ac-

umulated over time. Thus, a control/decision policy is generated,

haracterized by the mapping of states and actions, representing

https://github.com/mamelials/AMAM-Multiagente-Architecture-for-Metaheuristics

158 M.A. Lopes Silva, S.R. de Souza and M.J. Freitas Souza et al. / Expert Systems With Applications 131 (2019) 148–171

Fig. 15. Interaction agent-environment in the reinforcement learning (Sutton &

Barto, 1998).

(

(i

(i

(

(v

(v

T

M

P

i

5

D

m

t

v

o

P

m

Q

a

A

α

r

l

d

e

i

t

5

t

S

s

c

l

p

b

p

b

i
the behavior that the RL system follows until it reaches the objec-

tive.

The main elements that compose the formulation of the Rein-

forcement Learning Problem are:

(i) Set of States: set of all possible states describing the environ-

ment;

ii) Set of Actions: set of all available actions;

ii) Environment: the environment in the RL problem is dynamic

and must be at least partially observable;

v) Control/Decision Policy: defines the behavior of the agent to

achieve the goal at any given time. A control policy maps states

s into actions a and is expressed by the function �(s, a). This

function defines the probability that an action a will be cho-

sen in a s state. These probabilities change as the agent accu-

mulates experiences as a consequence of interactions with the

environment. Thus, convergence to optimal policy �∗ expresses

the learning process in the RL problem;

v) Reinforcement/Reward: shows the feedback of the environment

in relation to the behavior of the agent. The goal is to maxi-

mize this feedback received from the environment. To achieve

this goal, the agent must consider the future behavior in the

decision making made at the present moment. There are sev-

eral models that define how the agent should accrue the re-

wards received. The most used is the finite-horizon discounted

model (Kaelbling, Littman, & Moore, 1996). In this model, the

RL system seeks to maximize the expected reward as a func-

tion of the sequence of received values until an instant of time

T , in the form:

R T = r t+1 + r t+2 + r t+3 + . . . + r T (4)

Considering the rewards received in the long term, a discount

factor γ is applied to the expression of reinforcement. As a con-

sequence:

R T = r t+1 + γ r t+2 + γ 2 r t+3 + . . . + r T =

∞ ∑

k =0

γ k r t+ k +1 (5)

where 0 ≤γ ≤ 1. Thus, if γ = 0 , immediate reinforcements are

maximized; if γ = 1 , the same importance is given to immedi-

ate and future earnings;

i) Reinforcement Function(Reward Function): reinforcement func-

tions are not always simple to define and vary according to the

problem addressed.

ii) Value Function: value obtained with the mapping of the state

or of the action-state pair, from the current and future rewards.

(a) Value-State Function: function that considers only the state

and is denoted by V �(s) . The value-state function depends

on the � policy and is defined by:

V

�(s) = E �{ R t | s t = s } = E �

{

∞ ∑

k =0

γ k r t+ k +1 | s t = s

}

(6)

(b) Value-Action Function: function which considers the state-

action pair and is denoted by Q

�(s, a) . As in the value-state
function, the value-action function depends on the � policy

and is defined by:

Q

�(s, a) = E �{ R t | s t = s, a t = a } = E �

{

∞ ∑

k =0

γ k r t+ k +1 | s t = s, a t = a

}

(7)

he value-state and value-action functions can be modeled by the

arkov Decision Process (MDP) (Bellman, 1957; Bertsekas, 1987;

uterman, 1994). A good literature review of Reinforcement Learn-

ng is conducted by Kaelbling et al. (1996) .

.2. Q-learning algorithm

The Q-Learning algorithm, introduced by Watkins and

ayan (1992) , stands out for being widely used, for being

odel-free and for dispensing knowledge of a policy. In this way,

he agent, through the Q-learning algorithm, updates its function

alue, while following any policy. This algorithm allows to find an

ptimum policy of actions selection for any finite Markov Decision

rocess (MDP). The objective is, at each step of an episode, to

aximize the value of the function Q (s, a), defined as:

(s, a) = Q(s, a) + α
[

r + γ max
α′ Q(s ′ , a ′) − Q(s, a)

]
(8)

s shown in the pseudo-code presented in the Algorithm 1 , where

lgorithm 1 Q-Learning algorithm.

1: procedure QLearning (r, α, ε, γ)

2: Initialize Q(s, a) arbitrarily;

3: repeat � for each episode

4: Initialize s ;

5: repeat � for each step of episode

6: Choose a from s using policy derived from Q (e.g., ε-

greedy);

7: Take action a ;

8: Observe the next state s ′ and the reward r;

9: Q(s, a) ← Q(s, a) + α
[

r + γ max
α′ Q(s ′ , a ′) − Q(s, a)

]
;

10: s ← s ′ ;
11: until s is terminal

12: until Reaches the number of episodes

13: end procedure

is the rate of learning; γ is the discount factor; s is the cur-

ent state; a is the action taken; and s ′ is the resulting state. The

earning rate and the discount factor are parameters that depend

irectly on the problem dealt with. The Q function estimates the

xpected utility of taking an action a in a given state s . An episode

s defined here as a sequence of states ranging from an initial state

o the final state.

.3. RL-based adaptive agent

This section shows the RL-based adaptive agent. The adap-

ive capacity is assigned to the agent through an Adaptive Local

earch (ALS-QLearning) based on the Variable Neighborhood De-

cent heuristic – VND (Mladenovi ́c & Hansen, 1997) and on the

oncepts of Reinforcement Learning.

VND is a heuristic of refinement that exploits the space of so-

utions by the systematic exchange of neighborhoods. Algorithm 2

resents the standard VND structure. As seen, for each neigh-

orhood N (k) selected by the standard VND, a local search is

erformed on the current solution in order to find its best neigh-

or. This method employs a deterministic neighborhood order-

ng, being this neighborhood ordering scheme a parameter to be

M.A. Lopes Silva, S.R. de Souza and M.J. Freitas Souza et al. / Expert Systems With Applications 131 (2019) 148–171 159

Fig. 16. A graph representing the relationship between states (neighborhood functions) and possible actions.

Algorithm 2 Variable Neighborhood Descent (VND).

1: procedure VND (x , k max) � k max is the number of different

neighborhood structures

2: k ← 1 ;

3: while k ≤ k max do

4: x ← bestNeighbor(x, N (k)) ;

5: if f (x ′) < f (x) then

6: x ← x ′ ;
7: k ← 1 ;

8: else

9: k ← k + 1 ;

10: end if

11: end while

12: end procedure

d

g

d

b

(

l

b

f

V

b

p

L

t

a

a

m

a

Algorithm 3 Next action choice function.

1: procedure chooseAnAction (state, type_function)

2: next _ state ← 0 ;

3: if t ype _ f unct ion = 1 then

4: next _ state ← ε-greedy(state) ;

5: else

6: if t ype _ f unct ion = 2 then

7: next _ state ← randomAction () ;

8: end if

9: end if

10: end procedure

p
etermined. In general, this scheme is based on the complexity

rowth order of these structures. (i.e., the application order is pre-

efined), but this order does not always produce the best solution

ecause the best order may be highly dependent on the instance

 Subramanian, Drummond, Bentes, Ochi, & Farias, 2010). If the so-

ution found is better than the current solution, the first neigh-

orhood function is used again; otherwise, the next neighborhood

unction is used until there are no more neighborhoods available.

ND returns a local optimum in relation to the all explored neigh-

orhoods.

In this proposal, the sequence in which neighborhoods are ap-

lied is defined through reinforcement learning, based on the Q-

earning algorithm. The main objective is to evaluate the gain ob-

ained with the application of a sequence of two neighborhoods,

nd, from there, to reward the best sequences and maximize the

ccumulated reward. Each neighborhood to be used by the search

ethod is considered, in this article, as a learning state.

The Markov Decision Process (MDP) for this proposal is defined

s follows:

• Set of States S : states are the neighborhood functions, available

for the problem to be handled by the framework. In the case of

the test problems used here, we have:

(a) For the VRPTW case study: the set of states is formed by

the 8 neighborhood functions listed at Section 3.1.2 :

S v rptw

= { Intra-Route Swap, Inter-Route Swap ,

Intra-Route Shift, Inter-Route Shift ,
Two Intra-Route Swap, Two Intra-Route Shift ,

Eliminates Smaller Route ,

Eliminates Random Route } (9)

(b) For the UPMSP-ST case study: the set of states is formed by

the 4 neighborhood functions listed at Section 3.2.2 :

S upmsp−st =

{
Multiple Insertion in the Different Machines,

Multiple Insertion in the Same Machines ,

Swap between Different Machines,

Swap between Same Machines
}

(10)

• Set of Actions A (s): an action is defined as the change from one

state to another (“go to ”). In this way, the set of actions can be

represented by a complete graph, in which each action is rep-

resented by an arc connecting two states (nodes of the graph).

An example of a graph representing the relationship between

states (neighborhood functions) and possible actions is shown

in Fig. 16 (a). In this example, only four neighborhood functions

of the VRPTW are used to facilitate visualization. The Q table,

referring to this example, is shown in Fig. 16 (b). The Q table has

dimensions given by M × M , in which M is the number of states,

that is, the number of neighborhood functions of the treated

problem.
• Reward R : based on the value of the fitness function of the

solution x obtained with the application of the current neigh-

borhood function N (x) . The way in which this transformation

takes place is presented below.

Since the neighborhood functions are specific parameters of the

roblem being solved, the purpose of using reinforcement learning

160 M.A. Lopes Silva, S.R. de Souza and M.J. Freitas Souza et al. / Expert Systems With Applications 131 (2019) 148–171

t

l

i

t

m

a

n

t

e

a

C

a

o

t

p

o

s

s

l

s

t

n

b

r

b

r

fi

A

A

a

a

t

–

w

o

p

a

t

h

a

e

s

6

i

w

E

w
is to allow the framework to better adapt to the own characteris-

tics of this problem.

The adaptive local search algorithm proposed in this article is

presented in Algorithm 4 . In this algorithm, firstly, the Q table is

Algorithm 4 Adaptive Local Search based on Q-learning.

1: procedure adaptiveLocalSearchQLearnig (x 0)

2: initialize(Q(state, action));

3: improv ed ← true ;

4: no _ improv ement ← 0 ;

5: x 	 ← x 0 ;

6: x ← x 0 ;

7: repeat � for each episode

8: reward ← 0 ;

9: stat es _ v isit ed _ count ← 0 ;

10: next _ state ← chooseAnAction (0 , 2) ; � 2: initial state

defined by random function

11: x ← bestNeighbor(next _ state, x) ;

12: if (x is better than x) then

13: x 	 ← x ;

14: reward ← x.get F it nessLearning() ;

15: else

16: stat es _ v isit ed _ count + + ;

17: while (not reached the state goal) do � state goal:

improving the solution

18: if (no _ improv ement = 0) then

19: state ← next _ state ;

20: next _ state = chooseAnAction (state, 1) ; � 1:

epsilon greedy function

21: else

22: next _ state = chooseAnAction (0 , 2) ; � if not

improved, the greedy function should not be used

23: end if

24: x = bestNeighbor(next _ state, x) ;

25: if (x is better than x ∗) then � reached the state

goal

26: x 	 ← x ;

27: improv ed ← true ;

28: no _ improv ement ← 0 ;

29: r eward ← r eward + x.get F it nessLearning() ;

30: calculat eQV alue (stat e, next _ stat e, reward) ;

31: else

32: no _ improv ement + + ;

33: if (the state has been visited) then

34: stat es _ v isit ed _ count + + ;

35: end if

36: if ((no_improvement >

max_iterations_without_improvement) and

(states_visited_count = q_size)) then

37: improv ed ← false ;

38: end if

39: end if

40: end while

41: ε ← ε ∗ decay _ rate ;

42: end if

43: until (not(improved))

44: return x ;

45: end procedure

initialized. This table is responsible for storing the values of the

state-action pairs in the course of the learning process. In this pro-

posal, each element of the Q table is initialized with a zero value,

so as the learning process is carried out non-biased.

Then, for each episode related to the Q-Learning algorithm,

the learning is associated with the search process of the solu-
ion. For this, in the first part, the initial state is randomly se-

ected. The chooseAnAction(state, type-function) function, presented

n Algorithm 3 , is used to determine both the initial state (where

ype-function = 2 as shown at line 6 of Algorithm 3) and to deter-

ine next states with specific functions (where type-function = 1

s shown at line 3 of Algorithm 3). In this way, this function allows

ew selection functions to be easily inserted. The initial state is

hen applied to the solution through the best improvement strat-

gy (bestNeighbor(next-state, x) – line 11 of Algorithm 4).

The reward used is based on the fitness function of the solution

nd its calculation depends on the type of problem being treated.

onsidering the treatment given to the Q matrix in the Q-Learning

lgorithm, the fitness value reward (x) of the solution x is evaluated

n the basis of the objective function f (x) of the problem. Then, in

he maximization problems, reward(x) = f (x) ; in the minimization

roblems, reward(x) = f (x 0) − f (x) , where x 0 is the initial solution

f the current local search.

As the objective is to define the gain obtained by applying a

equence of two neighborhoods, the reward is calculated from the

um of the values obtained by these neighborhoods, as shown at

ines 14 and 29 of the Algorithm 4 . In case of improvement of the

olution with the neighborhood application, the value to be added

o the reward is the fitness function of the current solution; if the

ew solution found is not better than the current one, the value to

e added is zero.

The second part of the episode is executed until the goal is

eached (lines 17–40 of the Algorithm 4). The objective is to find a

etter solution than the current one and, if achieved, ends the cur-

ent episode. The other states to be visited in the episode are de-

ned using the ε-greedy function (Watkins, 1989), presented in the

lgorithm 5 . The ε-greedy function selects a random action with

lgorithm 5 ε-greedy function.

1: function ε-greedy (current _ state, ε, q _ size)

2: p ← random () ;

3: if p ≤ ε then

4: action ← random (q _ size) ;

5: else

6: action ← maxAction (current _ state) ;

7: end if

8: ret urnact ion ;

9: end function

 probability ε or an action that returns the highest reward with

 probability 1 − ε. The next state is also applied to the solution

hrough the best improvement strategy (bestNeighbor(next-state, x)

line 24 of the Algorithm 4). When the solution improves, the re-

ard is assigned, its value in the Q matrix is calculated, the value

f ε decreases with the decay rate, and the episode ends.

Considering the specific characteristics of the optimization

roblems, a neighborhood needs to be applied to a solution, from

 Descent/Ascent local search heuristic, only once. In consequence,

he visited states (neighborhoods) are registered. When all states

ave been visited, the local search is finished. The same happens

fter a certain number of iterations without improvement. For the

valuation of the adaptive agent introduced here, the following

ection presents the experiments performed.

. Computational experiments

This section presents the computational experiments performed

n order to evaluate and test the AMAM framework. This frame-

ork is implemented in Java language with JDK 1.8, using the IDE

lipse neon 2. The experiments were executed using a computer

ith processor Intel i7 - 4500U, 1.8 GHz, 16 GB DDR3 RAM and

M.A. Lopes Silva, S.R. de Souza and M.J. Freitas Souza et al. / Expert Systems With Applications 131 (2019) 148–171 161

o

h

n

e

i

t

w

t

D

l

S

d

C

C

a

o

d

s

t

e

w

a

A

p

1

e

U

f

i

d

t

u

a

a

i

c

a

i

m

t

A

t

c

e

i

(

f

p

A

d

(

s

u

d

m

t

e

(

(

(i

(i

w

(

(

(i

(i

(

o

A

p

o

p

p

v

l

b

t

t

(

(

tions obtained by SC1 are better than those obtained by SC2.
perational system Windows 7 Home Premium. It is important to

ighlight that the tests presented here were executed in a common

otebook, with a single processor, showing the effectiveness of the

xposed framework.

In order to allow its evaluation, the proposed framework was

nstantiated for two classical problems of Combinatorial Optimiza-

ion. The first problem instantiated is the Vehicle Routing Problem

ith Time Window (VRPTW). The second problem instantiated is

he Unrelated Parallel Machine Scheduling Problem with Sequence-

ependent Setup Times (UPMSP-ST). A description of these prob-

ems is presented in Section 4 .

The 56 instances of VRPTW with 100 customers proposed by

olomon (1987) were used. These instances are formed by three

ifferent sets of customers (C-Cluster; R-Random; and RC-Random-

luster) in accordance with the geographic distribution considered.

ustomer geographical positions are randomly generated in the R1

nd R2 sets of problems. In C1 and C2 sets of problems, the ge-

graphical positions are clustered. In addition, a mixture of ran-

omized and clustered structures are used in RC1 and RC2 problem

ets. It is worthy mentioning that competing with the best litera-

ure results for these instances of VRPTW is out the scope of this

xperiment.

The set of instances used for computational tests associated

ith UPMSP-ST were proposed by Vallada and Ruiz (2011) and

re available at http://soa.iti.es/problem-instances . For evaluating

MAM, 24 instances from this data set were chosen. These test

roblems used involve combinations of 50 and 100 jobs, with 10,

5, 20 and 25 machines. As for VRPTW, the main objective of this

xperiment is not to overcome the best results in the literature for

PMSP-ST.

The experiments were conducted in order to analyze the per-

ormance of the adaptive agent proposed here. The main objective

s to evaluate if the form of learning, embedded in the agent, has a

irect influence on the performance of the framework with respect

o the quality of the obtained results, both in terms of the individ-

al point of view and in terms of the teamwork point of view.

For this evaluation, the tests were made with the adaptive

gent presented in the current proposal and with the adaptive

gent proposed in Silva et al. (2015) . The tests were carried out us-

ng the same test conditions for the two adaptive agent structures

onsidered here and, as a consequence, the tests with the adaptive

gent proposed in Silva et al. (2015) were executed again.

The agents used in this experiment implement, as performed

n Silva et al. (2015) , a variation of the Iterated Local Search (ILS)

etaheuristic (Lourenço, Martin, & Stützle, 2003), a well known

rajectory metaheuristic. This method is shown in Algorithm 6 . In

lgorithm 6 Iterated Local Search (Lourenço et al., 2003).

1: procedure ils

2: x o ← p f ihInitial Sol ution () ;

3: x ← l ocal Search (x o) ;

4: while (not reached the stopping condition) do

5: x ′ ← per tur bation (x, l e v el _ per tur bation) ;

6: x ′′ ← adapti v eLocalSearch (x ′) ;
7: if (acceptationC rit eria (x, x ′′)) then

8: x ← x ′′ ;
9: l e v el _ per tur bation ← 1 ;

10: else

11: l e v el _ per tur bation + + ;

12: end if

13: end while

14: end procedure

his algorithm, the perturbation of the solution, performed from

hanges in the current solution, is implemented at levels, i.e., at
ach iteration the perturbation function is changed if there is no

mprovement in the solution (line 11), and returns to its first level

line 9), if a better solution is found. The adaptiveLocalSearch (s ′)
unction implements the specific adaptive local search of each pro-

osal. The proposal described in Silva et al. (2015) is called here

LS-LA (Adaptive Local Search - Learning Automata); the proposal

escribed in the current article is referred here as ALS-QLearning

Adaptive Local Search - QLearning). For the computational tests

hown here, the values of the RL parameters (see Algorithm 1)

sed in the experiments are γ = 0 . 9 , α = 0 . 1 and ε = 0 . 05 , with

ecay rate given by 0.999.

The composition of the multi-agent system, used in the experi-

ents for each of the proposals, involved identical ILS agents and

he cooperation process described in Section 4 . Four scenarios for

ach one of the two proposals are used to evaluate the framework:

i) a single ILS agent;

ii) two identical ILS agents;

ii) four identical ILS agents;

v) eight identical ILS agents;

In this context, the proposals presented were analyzed in five

ays:

i) ALS-LA proposal performance: specific analysis of the results

obtained by the ALS-LA proposal, comparing the performance

of the scenario in which there is a single agent, which performs

the search in an isolated manner, with the performance of the

other scenarios (2 agents, 4 agents and 8 agents), in which a set

of agents cooperates in the search for the solution. This item

will allow us to evaluate the effectiveness of the cooperation

and the scalability of the framework using the ALS-LA proposal;

ii) ALS-QLearning proposal performance: specific analysis of the

results obtained by the ALS-QLearning proposal, with the same

purposes of the previous item;

ii) Comparison between the two proposals: comparison of the

means of solutions obtained by the two proposals (ALS-LA and

ALS-QLearning);

v) Performance of individual learning: comparison of the perfor-

mance of a single agent using each of the proposals (ALS-LA

and ALS-QLearning); and,

v) Team performance: the influence of individual learning on the

cooperative process, through the use of two or more agents co-

operating to solve the problem, also evaluated for each of the

proposals (ALS-LA and ALS-QLearning).

Once the used algorithms are of stochastic nature, each one

f the eight evaluated scenarios, being four scenarios about the

LS-LA proposal and four scenarios concerning the ALS-QLearning

roposal, were executed 30 times for each instance. The results

btained in each one of these scenarios were compared using a

arametric hypothesis test, with a confidence level of 95%. The

arametric test used was the ANOVA variance analysis. This test

erifies if there are differences between the averages of the popu-

ations of evaluated solutions. In this way, the hypotheses should

e formulated as follows. Considering two scenarios SC1 and SC2,

he following hypotheses are raised to compare the average solu-

ions obtained in each one:

i) Null hypothesis (H 0): the average of the solutions obtained in

scenarios SC1 and SC2 is equal. If the null hypothesis is not re-

jected, then there is no significant statistical difference between

the solutions obtained by the scenarios analyzed;

ii) Alternative hypothesis (H 1): the average of the solutions ob-

tained using SC1 is less than the average of the solutions ob-

tained by SC2. If the null hypothesis is rejected, then there is

statistical evidence (with 95% confidence level) that the solu-

http://soa.iti.es/problem-instances

162 M.A. Lopes Silva, S.R. de Souza and M.J. Freitas Souza et al. / Expert Systems With Applications 131 (2019) 148–171

Table 3

Number of times each scenario was better with ALS-LA VRPTW – values obtained from the

parametric test.

Set of instances Total instances per set Scenarios

1 agent 2 agents 4 agents 8 agents

C1 9 1 2 2 5

C2 8 0 0 4 5

R1 12 0 4 8 8

R2 11 1 3 4 9

RC1 8 0 2 2 7

RC2 8 0 0 6 4

Total 56 2 11 26 38

Table 4

Number of times each scenario was better with ALS-LA UPMSP-ST – values obtained from the

parametric test.

Set of instances Total instances per set Scenarios

1 agent 2 agents 4 agents 8 agents

50 jobs 16 0 1 3 16

100 jobs 8 0 0 1 8

Total 24 0 1 4 24

t

w

a

a

m

o

U

m

s

i

c

a

a

t

f

i

f

Q

I

s

6

o

e

p

t

6

E

r

s

h

e

t

T

p

t
6.1. ALS-LA proposal

The analysis will begin by addressing the results obtained in

the four scenarios of the ALS-LA proposal for the two problems in-

stantiated. Tables 3 and 4 show the number of times that each sce-

nario of the ALS-LA proposal was better, for the VRPTW instances

and UPMSP-ST instances, respectively, based on the results of the

parametric test used. The objective here is to evaluate the scalabil-

ity of the proposals, that is, if the increase in the number of agents

involved in the solution influences the performance of the multi-

agent system.

For the VRPTW instances, the obtained results showed that

there is statistical evidence that, at 89.28% of the instances, the

scenarios with 2 or more agents were better than the scenario

with 1 single agent. On the other hand, for the UPMSP-ST in-

stances, the obtained results showed that there is statistical evi-

dence that using 2 or more agents were better at 10 0.0 0% of the

instances. Tables 3 and 4 also show that when the number of

agents used to solve the two problems is increased, the evaluation

function of the two problems decreases.

Figs. 17 and 18 use boxplot graphics to illustrate, through the

results obtained in the 30 executions of the R201 and R203 in-

stances of VRPTW, respectively, the improvement in the quality of

the solution with the addition of more agents to the solution pro-

cess. The same result can be observed in the boxplot graphic pre-

sented in Fig. 19 , used to illustrate the results obtained for the 30

executions of the UPMSP-ST I_50_10_S_1-9_1 instance.

It is important to highlight that, in some cases, the scenarios

tied with the best results, i.e., there was no statistical difference

between the averages of the solutions. In these cases, all the sce-

narios that matched the best results were counted.

6.2. ALS-Q learning proposal

In this section, we focus on the results obtained by the ALS-

QLearning proposal, introduced in the current article, for the two

problems instantiated.

Regarding the VRPTW, from the 56 instances analyzed, in 12

of them (21.42%), the ALS-QLearning proposal obtained the best

solution of the literature in all scenarios (including the scenario

with a single agent). Therefore, in these instances, there was no

statistical difference for comparison and, as a consequence, they

were excluded from this analysis. For the remaining 44 instances,
here is statistical evidence that, at 90.90% of them, the scenarios

ith 2 or more agents were better than the scenario with 1 single

gent. Concerning the UPMSP-ST, there is statistical evidence that,

t 95.83% from the 24 instances analyzed, the scenarios with 2 or

ore agents were better than the scenario with 1 single agent.

Tables 5 and 6 show the number of times that each scenario

f the ALS-QLearning proposal was better, for the VRPTW and

PMSP-ST instances, respectively, based on the results of the para-

etric test used. As in Section 6.1 , the objective is to evaluate the

calability of the proposals. In a similar way to the results shown

n Tables 3 and 4 , by the Tables 5 and 6 , it is concluded that in-

reases the number of times that each scenario is better in so far

s the number of agents also grows.

Figs. 20 and 21 show examples of the effect of the addition of

gents in the solution process. This figure exhibits the solution due

o the instance R111, for VRPTW, and instance I_50_15_S_1-99_1,

or UPMSP-ST problems, respectively, and reveals its improvement

n so far as the number of agents grows.

As described in relation to the results of the ALS-LA proposal,

or the VRPTW, the results obtained in some scenarios of the ALS-

Learning proposal also tied with the best results in the literature.

n these cases, as in the analysis of the ALS-LA proposal, all the

cenarios that matched the best results were counted.

.3. ALS-LA × ALS-Q learning

This section presents the comparison between averages values

f the solutions found for the proposals ALS-LA and ALS-QLearning,

valuated in this experiment. This comparison addressed the two

roblems instantiated. Sections 6.3.1 and 6.3.2 show the analysis of

hese results.

.3.1. VRPTW

The cost of a solution for VRPTW is calculated according to

q. (1) . In this equation, the priority is to minimize the number of

outes of the solution, i.e., the number of vehicles that are used. In

ome cases, the solutions generated in the evaluated scenarios may

ave different number of routes. If the number of routes is differ-

nt, it is not possible to compare the cost of these solutions. In

hese cases, the comparison is made through the number of routes.

he instances that obtained the same number of routes were com-

ared in relation to the distance traveled. The same happens for

he instances that obtained different number of routes, but did not

M.A. Lopes Silva, S.R. de Souza and M.J. Freitas Souza et al. / Expert Systems With Applications 131 (2019) 148–171 163

Fig. 17. Comparison of the ALS-LA scenarios in relation to the distance traveled - R201 instance.

Fig. 18. Comparison of the ALS-LA scenarios in relation to the distance traveled - R203 instance.

Fig. 19. Comparison of the ALS-LA scenarios in relation to the makespan - UPMSP-ST - I_50_10_S_1-9_1 instance.

164 M.A. Lopes Silva, S.R. de Souza and M.J. Freitas Souza et al. / Expert Systems With Applications 131 (2019) 148–171

Table 5

Number of times each scenario was better with ALS-QLearning – values obtained from the

parametric test.

Set of instances Total instances per set Scenarios

1 agent 2 agents 4 agents 8 agents

C1 3 0 1 1 2

C2 2 0 1 1 2

R1 12 0 2 5 11

R2 11 0 4 4 9

RC1 8 1 3 6 8

RC2 8 0 2 4 6

Total 44 1 13 21 38

Table 6

Number of times each scenario was better with ALS-QLearning UPMSP-ST – values obtained

from the parametric test.

Set of instances Total instances per set Scenarios

1 agent 2 agents 4 agents 8 agents

50 jobs 16 0 0 2 14

100 jobs 8 0 1 1 8

Total 24 0 1 3 22

Fig. 20. Comparison of the ALS-QLearning scenarios in relation to the distance traveled - R111 instance.

Fig. 21. Comparison of the ALS-QLearning scenarios in relation to the makespan - I_50_15_S_1-99_1 instance.

M.A. Lopes Silva, S.R. de Souza and M.J. Freitas Souza et al. / Expert Systems With Applications 131 (2019) 148–171 165

Table 7

Number of instances where the ALS-QLearning proposal is better than the ALS-LA proposal, per scenario, considering the Number of Routes.

Set of instances Total instances per set Total instances per set with different routes number Scenarios

1 agent 2 agents 4 agents 8 agents

C1 9 5 5 4 2 4

C2 8 1 1 0 0 0

R1 12 12 8 10 9 11

R2 11 2 1 0 0 1

RC1 8 8 7 6 8 8

RC2 8 3 3 2 2 1

Total of instances 56 31 25 22 21 25

Table 8

Number of instances where the ALS-QLearning proposal is better than the ALS-LA proposal, per scenario, considering the total distance traveled.

Set of instances Total instances per set Total instances per set with equal routes number Scenarios

1 agent 2 agents 4 agents 8 agents

C1 9 4 4 4 4 4

C2 8 7 6 6 4 6

R1 12 0 0 0 0 0

R2 11 9 9 9 9 9

RC1 8 0 0 0 0 0

RC2 8 5 5 5 5 5

Total of instances 56 25 24 24 22 24

Fig. 22. Comparison between ALS-LA and ALS-QLearning proposals in relation to the number of routes – RC106 instance.

p

t

r

o

b

b

T

a

p

a

t

b

u

A

a

s

o

a

p

i

p

u

(

T

f

w

s

Q

a

t

a

Q

I

f

e

A

i

a
resent statistical difference in these values. In this case, the solu-

ions with number of routes that do not influence the result were

emoved and, therefore, the statistical analysis was done with the

ther solutions in relation to the distance traveled.

In relation to the statistical analysis and considering the num-

er of solutions routes, the ALS-QLearning proposal obtained the

est results in the majority of instances and scenarios for VRPTW.

his proposal found the best number of routes known in the liter-

ture in 60.71% of the evaluated instances, while the ALS-LA pro-

osal achieved the best number of routes known in the literature

t only 26.78% instances.

In this context, the number of times ALS-QLearning was bet-

er per scenario than ALS-LA was evaluated, considering the num-

er of routes of the analyzed solutions. Table 7 shows the val-

es concerning 31 instances. Regarding the 25 remain instances,

L S-QLearning and AL S-LA obtained the same number of routes

nd this situation is evaluated in Table 8 in the sequel. As can be

een, the ALS-QLearning proposal obtained better results in most

f the analyzed instances. The results for groups of instances R1

nd RC1 should be highlighted because the ALS-QLearning pro-

osal was able to improve the results found in the ALS-LA proposal

n all instances of these groups.
l
Fig. 22 illustrates the situation where the ALS-QLearning pro-

osal achieves better results than the ALS-LA proposal. In this fig-

re, the results for instance R106 show a reduction from 15 routes

obtained by ALS-LA) to 12 routes (obtained by ALS-QLearning).

The 25 instances not addressed in the situation dealt with in

able 7 , that is, the ones that obtained the same number of routes

or both the ALS-SA proposal and the ALS-QLearning proposal,

ere analyzed in Table 8 for the total distance traveled. This Table

hows the number of times there is statistical evidence that ALS-

Learning was better than ALS-LA, regarding the distance traveled

nd per scenario. A direct observation of Table 7 concludes that

he ALS-QLearning proposal obtained better results in most of the

nalyzed instances.

Fig. 23 shows a good example where the values of ALS-

Learning solutions are significantly better than ALS-LA solutions.

n this specific case, there is a reduction in the distance traveled

rom 1609.4, obtained by ALS-LA, to the value of 1249.4, which is

quivalent to the best known result of the literature, obtained by

LS-QLearning.

The performance of the individual learning and the team learn-

ng of the agents in the presented multi-agent environment were

lso evaluated. Table 9 presents this analysis. Regarding individual

earning, the number of times that a single agent using the ALS-

166 M.A. Lopes Silva, S.R. de Souza and M.J. Freitas Souza et al. / Expert Systems With Applications 131 (2019) 148–171

Fig. 23. Comparison between ALS-LA and ALS-QLearning proposals in relation to the distance traveled – R201 instance.

Table 9

Number of times ALS-QLearning is better than ALS-LA individually and as a team

VRPTW.

Set of instances Total of instances per set Scenarios

Individually In group

Value % Value %

C1 9 9 100.0 9 100.0

C2 8 7 87.5 7 87.5

R1 12 11 91.7 12 100.0

R2 11 10 90.9 10 90.9

RC1 8 7 87.5 8 100.0

RC2 8 8 100.0 8 100.0

Total 56 52.0 92.9 54 96.4

o

i

o

r

l

t

g

Q

t

m

e

A

i

a

J

t

b

a

s

t

c

A

t

i

t

t

L

u
QLearning proposal was better than a single agent using the ALS-

LA proposal was assessed (value presented in the third column and

the corresponding percentage value in the fourth column of the ta-

ble). Regarding the evaluation of the influence of learning in the

cooperative process, that is, in teamwork, the number of times the

ALS-QLearning proposal was better, in two or more scenarios, than

the ALS-LA proposal was also presented (value presented in the

fifth column and the corresponding percentage value in the fifth

column of the table).

At 92.9% of the instances, the parametric test used shows

that there is statistical evidence that ALS-Q Learning is better

than ALS-LA when using only one agent to solve the problem.

Regarding the use of two or more agents to solve the prob-

lem, at 96.4% of the used instances the parametric test shows

that there is statistical evidence that ALS-QLearning is better

than ALS-LA.

Fig. 24 presents an example of the distances traveled obtained

in the 30 runs of instance R203, for the four scenarios used in each

of the tested proposals (ALS-LA and ALS-Q Learning). It is impor-

tant to note how the values achieved by ALS-QLearning are better

than those found by ALS-LA, whether considering a single agent or

considering two or more agents. In addition, the values improve as

the number of agents involved in the search for the solution in-

creases.

6.3.2. UPMSP-ST

In relation to the statistical analysis and considering the

makespan value, the ALS-QLearning proposal obtained the best re-

sults in the majority of instances and scenarios for UPMSP-ST.

In this context, the number of times ALS-QLearning was better

per scenario than ALS-LA was evaluated, considering the makespan
f the analyzed solutions. Table 10 shows the values concern-

ng 24 instances. As can be seen, the ALS-QLearning proposal

btained better results in most of the analyzed instances. The

esults for groups of instances with 100 jobs should be high-

ighted because the ALS-QLearning proposal was able to improve

he results found in the ALS-LA proposal in all instances of these

roups.

Fig. 25 shows a good example where the values of ALS-

Learning solutions are significantly better than ALS-LA solu-

ions. In this specific case, there is a reduction in the average

akespan from 273.00, obtained by ALS-LA, to 221.00, which is

quivalent to the best known result of the literature, obtained by

LS-QLearning.

The performance of the individual learning and the team learn-

ng of the agents in the presented multi-agent environment were

lso evaluated for the UPMSP-ST. Table 11 presents this analysis.

ust like in VRPTW, regarding individual learning, the number of

imes that a single agent using the ALS-QLearning proposal was

etter than a single agent using the ALS-LA proposal was evalu-

ted. This value is presented in the third column and the corre-

ponding percentage value is showed in the fourth column of the

able. Concerning the evaluation of the influence of learning in the

ooperative process, that is, in teamwork, the number of times the

LS-QLearning proposal was better than the ALS-LA proposal in

wo or more scenarios was also presented. This value is presented

n the fifth column and the corresponding percentage value is in

he fifth column of the table.

For 83.33% of the instances, the parametric test used shows that

here is statistical evidence that ALS-Q Learning is better than ALS-

A when using only one agent to solve the problem. Regarding the

se of two or more agents to solve the problem, at 75.00% of the

M.A. Lopes Silva, S.R. de Souza and M.J. Freitas Souza et al. / Expert Systems With Applications 131 (2019) 148–171 167

Fig. 24. Comparison between ALS-LA and ALS-QLearning proposals in relation to the distance traveled – R203 instance.

Fig. 25. Comparison between ALS-LA and ALS-QLearning proposals in relation to the makespan value – I_100_10_S_1-124_1 instance.

Table 10

Number of instances where the ALS-QLearning proposal is better than the ALS-LA proposal, per

scenario, considering the total makespan UPMSP-ST.

Set of instances Total instances per set Scenarios

1 agent 2 agents 4 agents 8 agents

50 jobs 16 12 10 11 12

100 jobs 8 8 8 8 8

Total of instances 24 20 18 19 20

Table 11

Number of times ALS-QLearning is better than ALS-LA individually and as a team for

UPMSP-ST.

Set of instances Total of instances per set Scenarios

Individually In group

Value % Value %

50 jobs 16 12 75.00 10 62.50

100 jobs 8 8 100.0 8 100.0

Total 24 20 83.33 18 75.00

u

e

e

u

A

A

c

a

i
sed instances the parametric test shows that there is statistical

vidence that ALS-QLearning is better than ALS-LA.

Fig. 26 presents an example of the makespan obtained in the 30

xecutions of the instance I_100_10_S_1-9_1, for the four scenarios

sed in each of the tested proposals (ALS-LA and ALS-QLearning).
s in VRPTW, it is important to note how the values achieved by

LS-QLearning are better than those found by ALS-LA, whether

onsidering a single agent or considering two or more agents. In

ddition, the values improve as the number of agents involved

n the search for the solution increases. In this case, the ALS-

168 M.A. Lopes Silva, S.R. de Souza and M.J. Freitas Souza et al. / Expert Systems With Applications 131 (2019) 148–171

Fig. 26. Comparison between ALS-LA and ALS-QLearning proposals in relation to the makespan value – I_100_10_S_1-9_1 instance.

Table 12

Average costs of the ALS-AL proposal for VRPTW.

Class BKS ALS-AL

1 Agent 2 Agents 4 Agents 8 Agents

Cost NR Cost NR Cost NR Cost NR Cost NR

C1 7455.42 90.00 11468.59 95,00 11106,00 93.73 10867.57 92.5 10722.16 93.57

C2 4718.87 24.00 5963.84 25,00 5760.4 24.57 5462.43 24,00 5336.65 24,00

R1 14524.02 143.00 16372.98 162.6 16303.79 162.67 16448.36 158.6 16051.72 158.93

R2 10461.33 30.00 12729.07 35.1 12400.8 34.17 12310.51 34.37 120 0 0.78 34,00

RC1 11073.32 92.00 12565.04 107.47 12355.63 105.43 12325.24 106.33 12097.62 103.87

RC2 8953.92 26.00 11045.54 30.17 10931.74 29.47 10600.83 28.9 11220.26 28.47

TOTAL 57186.88 405.00 70145.06 455.34 68858.36 450.04 68014.94 4 4 4.40 67429.19 442.84

Table 13

Average costs of the ALS-QLearning proposal for VRPTW.

Class BKS ALS-QLearning

1 Agent 2 Agents 4 Agents 8 Agents

Cost NR Cost NR Cost NR Cost NR Cost NR

C1 7455.42 90.00 7489.31 90.00 7459.83 90.00 7466.76 90.00 7446.39 90.00

C2 4718.87 24.00 4811.19 24.00 4720.42 24.00 4743,31 24.00 4716.08 24.00

R1 14524.02 143.00 14743.21 153.53 14566.80 152,63 14611.01 151.37 14567.00 150.70

R2 10461.33 30.00 10787.21 34.00 10567.68 33,57 10562.31 33.87 10522.76 33.03

RC1 11073.32 92.00 11179.67 102.80 11186.01 100,93 11153.62 97.87 11161.14 97.53

RC2 8953.92 26.00 9531.43 27.00 9353.25 27.00 9295.74 27.00 9316.87 27.00

TOTAL 57186.88 405.00 58542.02 431.33 57853.99 428,13 57832.76 424.10 57730.25 422.27

T

c

c

n

o

t

b

t

t

c

o

t

s

r

V

s

t

m
QLearning proposal found the best known result of the literature

for all four scenarios.

6.4. Computational results for the average solution

For completeness, the computational results associated to the

average solutions are shown.

Table 12 presents the average costs distance traveled (DT) and

number of routes (NR) of the solutions obtained with the 30 ex-

ecutions of ALS-AL proposal. Table 13 , on the other hand, shows

the average costs of the solutions obtained with the 30 exe-

cutions of ALS-QLearning proposal. In addition, Table 14 shows

the average value of the makespan for the solutions obtained

with the 30 executions with the ALS-AL proposal. In its turn,

Table 15 includes the average value of the makespan for the so-

lutions obtained with the 30 executions with the ALS-QLearning

proposal.

From the analysis of these tables, some observations arose. The

first observation, valid for both problems and proposals, is the ef-

fect of increasing the number of agents in use in the framework.
here is a considerable improvement in the results obtained by in-

reasing the number of agents in action in the framework. In the

ase of VRPTW, this fact is valid both with respect to the total

umber of vehicles and the total distance traveled, and regardless

f the instance class evaluated. Clearly, therefore, there is an iden-

ification of a scalabilty effect on the number of agents. This effect,

y the way, is also reported in applications of the A-Teams archi-

ecture (Barbucha et al., 2010).

The second observation is about the comparison between the

wo learning techniques and their results. Independently of the

lass of the problem evaluated, the great superiority of the results

btained with the ALS-QLearning proposal in relation to those ob-

ained with the ALS-AL proposal, already previously proven in the

tatistical analysis, is also shown by the direct presentation of the

esults in these tables.

In addition, a noticeable issue is the results concerning the

RPTW instances from Table 13 are strongly competitive with re-

pect to the total distance traveled, even though this is not a ques-

ion put as a goal in the development of this framework at this

oment. The total distance traveled found with the application

M.A. Lopes Silva, S.R. de Souza and M.J. Freitas Souza et al. / Expert Systems With Applications 131 (2019) 148–171 169

Table 14

Average costs of the ALS-AL proposal for UPMSP-ST.

Instance BKS Scenarios

1 agent 2 agents 4 agents 8 agents

I_50_10_S_1-9_1 67.00 81.15 77.70 75.65 73.55

I_50_10_S_1-49_1 77.00 92.80 88.25 87.55 85.70

I_50_10_S_1-99_1 118.00 131.85 128.10 123.05 123.25

I_50_10_S_1-124_1 114.00 132.00 130.34 124.40 121.50

I_50_15_S_1-9_1 36.00 46.50 43.85 43.35 42.35

I_50_15_S_1-49_1 59.00 70.30 68.40 67.00 66.70

I_50_15_S_1-99_1 78.00 87.05 85.40 82.45 80.45

I_50_15_S_1-124_1 75.00 92.85 90.30 84.85 81.25

I_50_20_S_1-9_1 31.00 40.15 37.90 36.45 35.25

I_50_20_S_1-49_1 39.00 63.65 60.65 60.80 57.15

I_50_20_S_1-99_1 49.00 68.05 65.35 65.55 65.60

I_50_20_S_1-124_1 52.00 71.70 68.05 66.15 66.50

I_50_25_S_1-9_1 22.00 26.60 24.90 23.55 22.60

I_50_25_S_1-49_1 25.00 49.70 50.20 46.30 44.95

I_50_25_S_1-99_1 35.00 60.30 59.50 56.40 51.05

I_50_25_S_1-124_1 37.00 62.30 59.40 59.60 57.20

I_100_10_S_1-9_1 131.00 144.73 141.80 139.90 137.87

I_100_10_S_1-49_1 159.00 201.07 196.77 191.40 188.33

I_100_10_S_1-99_1 212.00 266.53 256.83 253.30 246.33

I_100_10_S_1-124_1 221.00 270.87 265.30 258.83 254.23

I_100_15_S_1-9_1 68.00 81.77 81.20 79.07 77.80

I_100_15_S_1-49_1 97.00 137.37 132.40 128.80 123.47

I_100_15_S_1-99_1 123.00 167.50 159.27 153.70 151.70

I_100_15_S_1-124_1 141.00 189.07 179.20 174.13 169.40

Table 15

Average costs of the ALS-QLearning proposal for UPMSP-ST.

Instance BKS Scenarios

1 agent 2 agents 4 agents 8 agents

I_50_10_S_1-9_1 67.00 72.03 71.10 69.37 68.20

I_50_10_S_1-49_1 77.00 83.50 81.60 79.70 78.90

I_50_10_S_1-99_1 118.00 121.30 118.20 116.67 115.13

I_50_10_S_1-124_1 114.00 119.30 118.34 118.00 116.66

I_50_15_S_1-9_1 36.00 45.37 44.17 42.57 41.30

I_50_15_S_1-49_1 59.00 66.63 66.83 66.60 66.17

I_50_15_S_1-99_1 78.00 78.70 74.23 72.77 70.27

I_50_15_S_1-124_1 75.00 80.60 77.80 76.13 75.17

I_50_20_S_1-9_1 31.00 41.10 38.40 37.07 35.43

I_50_20_S_1-49_1 39.00 61.43 60.50 58.67 56.37

I_50_20_S_1-99_1 49.00 65.37 65.50 65.53 64.63

I_50_20_S_1-124_1 52.00 66.23 65.90 66.13 65.53

I_50_25_S_1-9_1 22.00 27.87 25.87 23.57 22.67

I_50_25_S_1-49_1 25.00 50.43 48.23 44.27 42.20

I_50_25_S_1-99_1 35.00 59.37 56.10 54.30 50.17

I_50_25_S_1-124_1 37.00 60.93 60.27 56.53 54.83

I_100_10_S_1-9_1 131.00 131.60 131.13 130.90 130.93

I_100_10_S_1-49_1 159.00 179.83 175.53 172.27 170.63

I_100_10_S_1-99_1 212.00 239.37 230.30 227.30 224.80

I_100_10_S_1-124_1 221.00 243.07 236.00 231.77 229.13

I_100_15_S_1-9_1 68.00 75.43 75.57 73.37 72.43

I_100_15_S_1-49_1 97.00 116.27 115.50 112.47 108.63

I_100_15_S_1-99_1 123.00 146.60 141.50 136.33 134.77

I_100_15_S_1-124_1 141.00 163.93 158.37 156.70 150.97

o

f

t

t

l

7

o

f

a

t

l

i

a

T

b

i

A

d

a

a

t

T

Q

a

o

V

w

f

i

S

m

m

m

c

S

t

i

f

p

p

Q

h

T

fl

f

p

c

o

a

i

o

t

a

C

c

3

F

p

t

A

i

fl

m

C

F
f the ALS-QLearning proposal is only 0.95% above the best value

ound in the literature for the VRPTW solution using metaheuris-

ics. The total number of routes is 4.26% above (i.e., 17 routes) of

he total number of routes associated with the best results in the

iterature.

. Conclusions and future directions

This paper presented AMAM, a multi-agent framework for

ptimization using metaheuristics. Its main characteristic is to

acilitate the hybridization of metaheuristics through a multi-

gent structure. Each agent implements a heuristic / metaheuris-

ic and the environment in which the agents act and dia-
ogue is the search space of the combinatorial optimization be-

ng solved. Each agent act autonomously in this environment

nd interacts cooperatively with it and with the other agents.

he interaction between the agents allows the metaheuristic hy-

ridization. The latest version of the AMAM framework, released

n January 2018, is available at https://github.com/mamelials/

MAM- Multiagente- Architecture- for- Metaheuristics , licensed un-

er the GNU LGPLv3 license.

The main objective of this article was to propose new self-

daptive skills for the framework agents. Through these skills, the

gents modify their actions based on the experience acquired in

he interaction with the environment and with the other agents.

he concepts of reinforcement learning, more specifically using the

-Learning algorithm, are central in the definition of these new

daptive skills. The learning is used to select the application order

f the neighborhood structures of the local search based on the

ND heuristic.

In order to accomplish the validation of the AMAM framework

ith reinforcement learning, computational experiments were per-

ormed, using, as a case study for this purpose, the Vehicle Rout-

ng Problem with Time Window and Unrelated Parallel Machine

cheduling Problem with Sequence-Dependent Setup Times. The

ain objective of the experiments was to evaluate the perfor-

ance of the adaptive agent. For this evaluation, the tests were

ade with the adaptive agent presented in the current proposal,

alled ALS-QLearning, and with the adaptive agent proposed in

ilva et al. (2015) , called ALS-LA.

The results obtained show that there are statistical evidences

hat the ALS-QLearning proposal obtained the best results in most

nstances and scenarios. In this way, the direct influence of the

orm of learning embedded in the agent is confirmed by the ex-

eriments, both from the individual point of view, and from the

oint of view of teamwork.

Additionally, for the two evaluated proposals (ALS-LA and ALS-

Learning), the scenarios with 2 or more agents were significantly

igher in performance than the scenarios with 1 single agent.

hus, it is confirmed that the cooperation between the agents in-

uences the quality of the solutions and the scalability of the

ramework, since, with the addition of new agents, there is an im-

rovement in the results. The use of learning to assign adaptive

apabilities to agents places the AMAM framework a step ahead of

ther frameworks in the literature as an alternative to the need to

dapt the methods to specific aspects of the problem. In this way,

t also makes possible future researches, such as the introduction

f new forms of learning to improve adaptive capacities, as well as

he study of the insertion of reinforcement learning methodologies

mong the agents.

ompliance and ethical standards

This study was funding by Brazilian agencies National Coun-

il of Technological and Scientific Development - CNPq (Grant

07915/2016-6) and Minas Gerais State Research Foundation -

APEMIG (Grant PPM CEX 676/17). This study was financed in

art by the Coordination for the Improvement of Higher Educa-

ion Personnel (CAPES) - Brazil - Finance Code 001 . Authors Maria

mélia Lopes Silva, Sérgio Ricardo de Souza Marcone Jamilson Fre-

tas Souza and Ana Lúcia C. Bazzan declare that they have no con-

ict of interest. This article does not contain any studies with hu-

an participants or animals performed by any of the authors.

redit authorship contribution statement

Maria Amélia Lopes Silva: Conceptualization, Data curation,

ormal analysis, Investigation, Methodology, Software, Validation,

https://github.com/mamelials/AMAM-Multiagente-Architecture-for-Metaheuristics
https://doi.org/10.13039/501100003593
https://doi.org/10.13039/501100004901
https://doi.org/10.13039/501100002322

170 M.A. Lopes Silva, S.R. de Souza and M.J. Freitas Souza et al. / Expert Systems With Applications 131 (2019) 148–171

G

J

K

K

L

L

L

M

M

M

M

M

N

N

P

P

Q

R

S

S

S

S

Visualization, Writing - original draft, Writing - review & edit-

ing. Sérgio Ricardo de Souza: Conceptualization, Data curation,

Methodology, Supervision, Writing - original draft, Writing - re-

view & editing. Marcone Jamilson Freitas Souza: Conceptualiza-

tion, Data curation, Funding acquisition, Methodology, Supervision,

Writing - original draft, Writing - review & editing. Ana Lúcia C.

Bazzan: Conceptualization, Methodology, Writing - original draft,

Writing - review & editing.

Acknowledgments

The authors would also like to thank the Coordination for the

Improvement of Higher Education Personnel (CAPES), the Minas

Gerais State Research Foundation (FAPEMIG), the National Coun-

cil of Technological and Scientific Development (CNPq), the Fed-

eral Center of Technological Education of Minas Gerais (CEFET-MG),

the Federal University of Ouro Preto (UFOP), the Federal University

of Viçosa (UFV) and the Federal University of Rio Grande do Sul

(UFRGS) for supporting the development of the present study.

References

Alba, E. , Luque, G. , Garcia-Nieto, J. , Ordonez, G. , & Leguizamon, G. (2007). MALLBA: A
software library to design efficient optimisation algorithms. International Journal

of Innovative Computing and Applications, 1 (1), 74–85 .
Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with

setup times/costs. European Journal of Operational Research, 246 (2), 345–378.
doi: 10.1016/j.ejor.2015.04.004 .

Allahverdi, A., Ng, C., Cheng, T., & Kovalyov, M. Y. (2008). A survey of scheduling
problems with setup times or costs. European Journal of Operational Research,

187 (3), 985–1032. doi: 10.1016/j.ejor.2006.06.060 .

Applegate, D. , Bixby, R. , Chvátal, V. , & Cook, W. (2007). The traveling salesman prob-
lem: A Computational study. Princeton series in applied mathematics (2nd ed.).

Princeton University Press .
Barbucha, D. , Czarnowski, I. , J ̧e drzejowicz, P. , Ratajczak-Ropel, E. , &

Wierzbowska, I. (2010). JABAT middleware as a tool for solving optimization
problems. In N. T. Nguyen, & R. Kowalczyk (Eds.), Transactions on computational

collective intelligence ii . In Lecture Notes in Computer Science: 6450 (pp. 181–195).

Berlin, Heidelberg: Springer .
Bellifemine, F. , Poggi, A. , & Rimassa, G. (2007). Developing multi-agent systems with

JADE . John Wiley & Sons .
Bellman, R. (1957). Dynamic programming . Princeton, NJ, USA: Princeton University

Press .
Bertsekas, D. (1987). Dynamic programming: Deterministic and stochastic models . En-

glewood Cliffs, NJ: Prentice-Hall .

Blum, C. , Puchinger, J. , Raidl, G. R. , & Roli, A. (2011). Hybrid metaheuristics in com-
binatorial optimization: a survey. Applied Soft Computing, 11 (6), 4135–4151 .

Blum, C. , & Roli, A. (2003). Metaheuristics in combinatorial optimization: overview
and conceptual comparison. ACM Computing Surveys, 35 (3), 268–308 .

Cahon, S. , Melab, N. , & Talbi, E.-G. (2004). Paradiseo: A framework for the reusable
design of parallel and distributed metaheuristics. Journal of Heuristics, 10 (3),

357–380 .

Coelho, I. M. , Munhoz, P. L. A. , Haddad, M. N. , Coelho, V. N. , Silva, M. M. ,
Souza, M. J. F. , & Ochi, L. S. (2011). OptFrame: A computational framework for

combinatorial optimization problems. In Proc. of the VII alioeuro workshop on
applied combinatorial optimization (pp. 51–54). ALIO/EURO 2011 .

Cotta, C. , Talbi, E.-G. , & Alba, E. (2005). Parallel hybrid metaheuristics. In E. Alba
(Ed.), Parallel metaheuristics: a new class of algorithms (pp. 347–370). John Wiley

& Sons .

Dorigo, M., Caro, G. D., & Gambardella, L. M. (1999). Ant algorithms for discrete
optimization. Artificial Life, 5 (2), 137–172. doi: 10.1162/106454699568728 .

Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolutionary

Computation, 1 (1), 53–66. doi: 10.1109/4235.585892 .
Dorigo, M., & Stützle, T. (2019). Ant colony optimization: Overview and re-

cent advances. In M. Gendreau, & J.-Y. Potvin (Eds.), Handbook of meta-

heuristics (pp. 311–351)). Springer International Publishing. doi: 10.1007/
978- 3- 319- 91086- 4 _ 10 .

Durillo, J. J. , & Nebro, A. J. (2011). Jmetal: A java framework for multi-objective op-
timization. Advances in Engineering Software, 42 (10), 760–771 .

Fernandes, F. C., de Souza, S. R., Silva, M. A. L., Borges, H. E., & Ribeiro, F. F. (2009).
A multiagent architecture for solving combinatorial optimization problems

through metaheuristics. In Proceedings of the 2009 IEEE international conference
on systems, man and cybernetics (SMC 2009) (pp. 3071–3076). doi: 10.1109/ICSMC.

2009.5345934 .

Fink, A. , & Voß, S. (2002). Hotframe: A heuristic optimization framework. In S. Voß,
& D. L. Woodruff (Eds.), Optimization software class libraries . In Operations Re-

search/Computer Science Interfaces Series: 18 (pp. 81–154). Springer US .
Gambardella, L. M., & Dorigo, M. (1995). Ant-q: A reinforcement learning approach

to the traveling salesman problem. In Proceedings of the twelfth international
conference on international conference on machine learning . In ICML’95 (pp. 252–
260). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. . URL: http:

//dl.acm.org/citation.cfm?id=3091622.3091654 .
aspero, L. D. , & Schaerf, A. (2003). EASYLOCAL++: An object-oriented framework

for the flexible design of local-search algorithms. Software: Practice and Experi-
ence, 33 (8), 733–765 .

(2010). Handbook of metaheuristics. In M. Gendreau, & J.-Y. Potvin (Eds.). Interna-
tionalseries in operations research & management science : 146 (2nd ed.). Springer .

uan, A . A . , Faulin, J. , Grasman, S. E. , Rabe, M. , & Figueira, G. (2015). A review of

simheuristics: Extending metaheuristics to deal with stochastic combinatorial
optimization problems. Operations Research Perspectives, 2 , 62–72 .

aelbling, L. P. , Littman, M. L. , & Moore, A. W. (1996). Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4 , 237–285 .

Kazemitabar, S. J. , Taghizadeh, N. , & Beigy, H. (2018). A graph-theoretic approach
toward autonomous skill acquisition in reinforcement learning. Evolving Systems,

9 (3), 227–244 .

ennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of
ICNN’95 – international conference on neural networks: 4 (pp. 1942–1948). doi: 10.

1109/ICNN.1995.4 8896 8 .
i, X. , Epitropakis, M. G. , Deb, K. , & Engelbrecht, A. (2017). Seeking multiple solu-

tions: An updated survey on niching methods and their applications. IEEE Trans-
actions on Evolutionary Computation, 21 (4), 518–538 .

iefooghe, A. , Jourdan, L. , & Talbi, E. (2011). A software framework based on a con-

ceptual unified model for evolutionary multiobjective optimization: paradisEO–
MOEO. European Journal of Operational Research, 209 (2), 104–112 .

Lotfi, N., & Acan, A. (2015). Learning-based multi-agent system for solving com-
binatorial optimization problems: A new architecture. In E. Onieva, I. Santos,

E. Osaba, H. Quintián, & E. Corchado (Eds.), Hybrid artificial intelligent sys-
tems: Proceedings of the 10th international conference (HAIS 2015) . In Lecture

notes in computer science: 9121 (pp. 319–332). Springer International Publishing.

doi: 10.1007/978- 3- 319- 19644- 2 _ 27 .
ourenço, H. R. , Martin, O. C. , & Stützle, T. (2003). Iterated local search. In F. Glover,

& G. A. Kochenberger (Eds.), Handbook of metaheuristics . In International series in
operations research & management science: 57 (pp. 321–353). Kluwer Academic

Publishers .
artin, S. , Ouelhadj, D. , Beullens, P. , Ozcan, E. , Juan, A . A . , & Burke, E. K. (2016).

A multi-agent based cooperative approach to scheduling and routing. European

Journal of Operational Research, 254 (1), 169–178 .
eignan, D. , Créput, J.-C. , & Koukam, A. (2008). An organizational view of meta-

heuristics. In N. Jennings, A. Rogers, A. Petcu, & S. D. Ramchurn (Eds.), First inter-
national workshop on optimisation in multi-agent systems, AAMAS’08 (pp. 77–85) .

elab, N. , Luong, T. V. , Boufaras, K. , & Talbi, E. (2013). ParadisEO-MO-GPU: A frame-
work for parallel GPU-based local search metaheuristics. In Proceedings of the

15th annual conference on genetic and evolutionary computation (pp. 1189–1196).

ACM .
ilano, M. , & Roli, A. (2004). MAGMA: A multiagent architecture for metaheuris-

tics. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34 (2),
925–941 .

ladenovi ́c, N. , & Hansen, P. (1997). Variable neighbourhood search. Computers &
Operations Research, 24 (11), 1097–1100 .

arendra, K. S., & Thathachar, M. A. L. (1974). Learning automata – a survey. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-4 (4), 323–334. doi: 10.1109/

TSMC.1974.5408453 .

oel, M. M. , & Pandian, B. J. (2014). Control of a nonlinear liquid level system using
a new artificial neural network based reinforcement learning approach. Applied

Soft Computing, 23 , 444–451 .
arejo, J. A. , Ruiz-Cortés, A. , Lozano, S. , & Fernandez, P. (2012). Metaheuristic op-

timization frameworks: A survey and benchmarking. Soft Computing, 16 (3),
527–561 .

uterman, M. L. (1994). Markov decision processes: Discrete stochastic dynamic pro-

gramming . New York, NY: John Wiley & Sons .
ueiroz dos Santos, J. P. , de Melo, J. D. , Neto, A. D. D. , & Aloise, D. (2014). Reactive

search strategies using reinforcement learning, local search algorithms and vari-
able neighbourhood search. Expert Systems with Applications, 41 (10), 4 939–4 94 9 .

abadi, G. , Moraga, R. J. , & Al-Salem, A. (2006). Heuristics for the unrelated parallel
machine scheduling problem with setup times. Journal of Intelligent Manufactur-

ing, 17 (1), 85–97 .

Radac, M.-B. , & Precup, R.-E. (2018). Data-driven model-free slip control of anti-lock
braking systems using reinforcement q-learning. Neurocomputing, 275 , 317–329 .

Radac, M.-B. , Precup, R.-E. , & Roman, R.-C. (2018). Data-driven model reference con-
trol of mimo vertical tank systems with model-free vrft and q-learning. ISA

Transactions, 73 , 227–238 .
algado, M. , & Clempner, J. B. (2018). Measuring the emotional state among interact-

ing agents: A game theory approach using reinforcement learning. Expert Sys-

tems with Applications, 97 , 266–275 .
amma, H. , Lim, C. P. , & Saleh, J. M. (2016). A new reinforcement learning-based

memetic particle swarm optimizer. Applied Soft Computing, 43 , 276–297 .
ilva, M. A. L. (2007). Modelagem de uma arquitetura multiagente para a solução, via

metaheurísticas, de problemas de otimização combinatória (in portuguese) . Belo
Horizonte, Brazil: Federal Center of Technological Education of Minas Gerais

(CEFET-MG) Master’s thesis .

ilva, M. A. L. , de Souza, S. R. , de Oliveira, S. M. , & Souza, M. J. F. (2014). An agen-
t-based metaheuristic approach applied to the vehicle routing problem with

time-windows. In Proceedings of the 2014 brazilian conference on intelligent sys-
tems - enc. nac. de inteligência artificial e computacional (BRACIS-ENIAC 2014) . São

Carlos, SP, Brazil.

http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0001
https://doi.org/10.1016/j.ejor.2015.04.004
https://doi.org/10.1016/j.ejor.2006.06.060
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0013
https://doi.org/10.1162/106454699568728
https://doi.org/10.1109/4235.585892
https://doi.org/10.1007/978-3-319-91086-4_10
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0017
https://doi.org/10.1109/ICSMC.2009.5345934
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0019
http://dl.acm.org/citation.cfm?id=3091622.3091654
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0025
https://doi.org/10.1109/ICNN.1995.488968
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0028
https://doi.org/10.1007/978-3-319-19644-2_27
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0035
https://doi.org/10.1109/TSMC.1974.5408453
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0037
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0037
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0037
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0037
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0038
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0038
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0038
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0038
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0038
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0038
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0039
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0039
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0040
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0040
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0040
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0040
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0040
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0040
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0041
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0041
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0041
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0041
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0041
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0042
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0042
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0042
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0042
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0043
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0043
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0043
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0043
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0043
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0044
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0044
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0044
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0044
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0045
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0045
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0045
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0045
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0045
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0046
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0046
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0047
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0047
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0047
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0047
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0047
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0047
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0047

M.A. Lopes Silva, S.R. de Souza and M.J. Freitas Souza et al. / Expert Systems With Applications 131 (2019) 148–171 171

S

S

S

S

S

T

T

T

T

T

V

W

W
ilva, M. A. L., de Souza, S. R., Souza, M. J. F., & de Oliveira, S. M. (2015). A multi-
agent metaheuristic optimization framework with cooperation. In 2015 brazil-

ian conference on intelligent systems (BRACIS) (pp. 104–109). doi: 10.1109/BRACIS.
2015.64 . Natal, Brazil.

ilva, M. A. L., de Souza, S. R., Souza, M. J. F., & de França Filho, M. F. (2018). Hybrid
metaheuristics and multi-agent systems for solving optimization problems: A

review of frameworks and a comparative analysis. Applied Soft Computing, 71 ,
433–459. doi: 10.1016/j.asoc.2018.06.050 .

olomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems

with time window constraints. Operations Research, 2 (35), 254–264 .
ubramanian, A. , Drummond, L. M. , Bentes, C. , Ochi, L. S. , & Farias, R. (2010). A par-

allel heuristic for the vehicle routing problem with simultaneous pickup and
delivery. Computer & Operations Research, 37 (11), 1899–1911 .

utton, R. S. , & Barto, A. G. (1998). Reinforcement learning: An introduction (1st).
Cambridge, MA, USA: MIT Press .

albi, E.-G. (2009). Metaheuristics: From design to implementation (1st). John Wiley &

Sons .
alukdar, S. , Baerentzen, L. , Gove, A. , & Souza, P. D. (1998). Asynchronous teams: Co-
operation schemes for autonomous agents. Journal of Heuristics, 4 (4), 295–321 .

alukdar, S. , & Souza, P. S. (1990). Asynchronous teams. In Proceedings of the second
SIAM conference on linear algebra: Signals, system and control . San Francisco, USA.

oth, P. , & Vigo, D. (2002). The vehicle routing problem . Philadelphia, USA: SIAM -
Society for Industrial and Applied Mathematics .

oth, P. , & Vigo, D. (2014). Vehicle routing: Problems, methods, and applications (2nd
ed.). Philadelphia, PA, USA: SIAM - Society for Industrial and Applied Mathe-

matics .

allada, E., & Ruiz, R. (2011). A genetic algorithm for the unrelated parallel machine
scheduling problem with sequence dependent setup times. European Journal of

Operational Research, 211 (3), 612–622. doi: 10.1016/j.ejor.2011.01.011 .
atkins, C. J. C. H. (1989). Learning from delayed rewards . Cambridge, England: Uni-

versity of Cambridge Ph.D. thesis .
atkins, C. J. C. H. , & Dayan, P. (1992). Q-learning. Machine Learning, 8 (3), 279–292 .

https://doi.org/10.1109/BRACIS.2015.64
https://doi.org/10.1016/j.asoc.2018.06.050
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0050
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0050
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0051
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0051
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0051
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0051
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0051
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0051
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0051
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0052
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0052
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0052
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0052
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0053
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0053
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0054
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0054
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0054
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0054
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0054
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0054
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0055
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0055
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0055
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0055
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0055
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0056
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0056
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0056
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0056
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0057
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0057
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0057
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0057
https://doi.org/10.1016/j.ejor.2011.01.011
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0059
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0059
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0060
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0060
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0060
http://refhub.elsevier.com/S0957-4174(19)30286-6/sbref0060

	A reinforcement learning-based multi-agent framework applied for solving routing and scheduling problems
	1 Introduction
	2 Bibliographical review
	3 Case study
	3.1 Case 1: VRPTW
	3.1.1 VRPTW basic definitions
	3.1.2 VRPTW neighborhoods

	3.2 Case 2: UPMSP-ST
	3.2.1 UPMSP-ST basic definitions
	3.2.2 UPMSP-ST neighborhoods

	4 Multi-agent metaheuristic optimization framework
	5 Adaptive agents
	5.1 Reinforcement learning
	5.2 Q-learning algorithm
	5.3 RL-based adaptive agent

	6 Computational experiments
	6.1 ALS-LA proposal
	6.2 ALS-Q learning proposal
	6.3 ALS-LA × ALS-Q learning
	6.3.1 VRPTW
	6.3.2 UPMSP-ST

	6.4 Computational results for the average solution

	7 Conclusions and future directions
	Compliance and ethical standards
	Credit authorship contribution statement
	Acknowledgments
	References

