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ABSTRACT

This article presents a multi-agent framework for optimization using metaheuristics, called AMAM. In this
proposal, each agent acts independently in the search space of a combinatorial optimization problem.
Agents share information and collaborate with each other through the environment. The goal is to enable
the agent to modify their actions based on experiences gained in interacting with the other agents and
the environment using the concepts of Reinforcement Learning. For better introduction and validation
of the AMAM framework, this article uses the instantiation of the Vehicle Routing Problem with Time
Windows (VRPTW) and the Unrelated Parallel Machine Scheduling Problem with Sequence-Dependent
Setup Times (UPMSP-ST), i.e., two classic combinatorial optimization problems. The main objective of the
experiments is to evaluate the performance of the proposed adaptive agents. The experiments confirm
that the ability to learn attributed to the agent directly influences the quality of solutions, both from the
individual point of view and from the point of view of teamwork. In this way, the framework presented
here is a step forward in relation to the other frameworks of the literature regarding to the adaptation
to the particular aspects of the problems. Additionally, the cooperation between agents and their ability
to influence the quality of the solutions of the agents involved in the search of the solution is confirmed.
The results also strengthen the issue of the scalability of the framework, since, with the addition of new
agents, there is an improvement of the solutions obtained.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Metaheuristics have been consolidated as one of the main
methodologies for optimization problem solving of diverse classes.
This statement is justified in part by its versatility and its great
adaptability to solve problems, but, on the other hand, mainly
due to the possibility of obtaining, in limited computational time,
good quality solutions for large and complex optimization prob-
lems. Problems having these characteristics in many and impor-
tant cases do not have their solution known, in limited computa-
tional time, if only mathematical programming techniques are ap-
plied. This assertion is particularly true for the class of NP-Hard
problems, which involves problems of great theoretical and practi-
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cal relevance, such as the Vehicle Routing Problem or the Parallel
Machine Scheduling Problem.

Blum and Roli (2003), Blum, Puchinger, Raidl, and Roli (2011),
Talbi (2009) and Gendreau and Potvin (2010) present general and
conceptual formulations about metaheuristics as well as impor-
tant reviews regarding their use in solving optimization problems.
In recent years, the combination of two or more metaheuristics
for solving optimization problems has been growing (Blum et al.,
2011; Cotta, Talbi, & Alba, 2005). The main objective of the hy-
bridization of metaheuristics is to apply together the best features
of each metaheuristic to solve a problem, allowing, besides get-
ting the best solution quality in a shorter time, to increase the
ability to tackle more complex problems. Cotta et al. (2005) and
Blum et al. (2011) claim that hybridizations are responsible for
many of the best results found in the literature for various classes
of optimization problems, which justifies the rising interest for this
approach.

The increase in the use of metaheuristics, whether or not by
specialists in methods to solve optimization problems, has guided
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researchers in the development of frameworks. These experts are
looking for tools that can facilitate solving these problems, as well
as offering features that enhance the performance of the solution
process. At the same time, in the case of researchers, the search for
new techniques to solve this class of problems is a fundamental
challenge posed, but also is directed towards the development of
these software tools.

Frameworks offer flexibility in incorporating new methods for
the solution, without requiring efforts to remake the application,
and, therefore, allowing the determination of better solutions with
low development costs. Frameworks provide a structure of generic
features for the solution of problems from a specific domain, mak-
ing the development of new applications in this domain much sim-
pler. A Metaheuristic Optimization Frameworks (MOF), as named
in Parejo, Ruiz-Cortés, Lozano, and Fernandez (2012), is a soft-
ware tool that provides implementations of a set of metaheuristics,
via reusable codes, facilitating the development of applications for
solving optimization problems.

Several frameworks for metaheuristics can be found in the lit-
erature (Alba, Luque, Garcia-Nieto, Ordonez, & Leguizamon, 2007;
Cahon, Melab, & Talbi, 2004; Coelho et al., 2011; Durillo & Ne-
bro, 2011; Fink & VoR, 2002; Gaspero & Schaerf, 2003; Taluk-
dar, Baerentzen, Gove, & Souza, 1998), most of them with sim-
ilar characteristics and proposals. A bibliographical review and
a comparative study with major available frameworks can be
found in Parejo et al. (2012) and Silva, de Souza, Souza, and
de Franca Filho (2018). OptFrame is a framework proposed in
Coelho et al. (2011). Its main characteristic is an interface for
common elements of population-based metaheuristics and of
trajectory-based metaheuristics. jMetal is a object-oriented frame-
work based on the Java language (Durillo & Nebro, 2011). It in-
cludes a significant number of classic and modern methods for
multi-objective optimization problems and a wide range of issues
instances. ParadisEO is a global framework composed by 4 con-
nected modules (Cahon et al., 2004; Liefooghe, Jourdan, & Talbi,
2011; Melab, Luong, Boufaras, & Talbi, 2013). These modules treat
population and trajectory metaheuristics, multi-objective evolu-
tionary techniques as well as parallel and distributed implemen-
tations. Likewise, the demand for increasingly adaptive and in-
telligent software has led to the incorporation of new technolo-
gies in the treatment of several problems, such as, for exam-
ple, technology based on autonomous agents through multi-agent
systems. The agent-based approach is distinguished by its power
to model problems such as combinatorial optimization problems
of a distributed nature and to express through the system en-
tities the complexity of the relationships involved. As a conse-
quence, the multi-agent approach has been applied in the solution
via metaheuristics of various combinatorial optimization problems
(Silva et al., 2018).

The current article presents a multi-agent framework called
AMAM, i.e., “Arquitetura Multiagente para Metaheuristica”, in Por-
tuguese, or Multi-agent Architecture for Metaheuristics, proposed
in Silva (2007). This framework allows the easy hybridization of
metaheuristics for solving combinatorial optimization problems,
through a multi-agent structure. In this way, it is a generic and
flexible structure, in which each metaheuristic is defined as an au-
tonomous agent that interacts with its environment cooperatively.

Like other frameworks available in the literature, AMAM
presents common features such as: (i) metaheuristics are pre-
implemented to test and reuse; (ii) support the evaluation and
comparison of different methods; (iii) ease in the development
of a particular metaheuristic and their suitability to the treated
problem. In addition to these features, the framework presented
here has the strength of hybridization of metaheuristics through
the parallel cooperative approach managed by Multi-Agent Systems
(MAS). MAS are used here as a liaison between different meta-

heuristics for solving optimization problems. Each agent is respon-
sible for performing its own task and, at same time, for using the
solutions provided by other agents to improve their own solutions.
In this approach, agents interact and work together to achieve a
pre-defined objective. The interaction between the various agents
occurs through a solution pool. The communication is governed
by the rules of access to the pool, both for writing and for read-
ing, aimed at ensuring diversity in the sharing of search informa-
tion. Several previous works (Fernandes, de Souza, Silva, Borges, &
Ribeiro, 2009; Silva, de Souza, de Oliveira, & Souza, 2014; Silva, de
Souza, Souza, & de Oliveira, 2015) have presented different stages
of the development of this framework.

This article also proposes the improvement of the self-adaptive
capabilities of the framework agents, an issue discussed in
Silva et al. (2015). The objective is to allow the agent to modify its
actions based on the experiences acquired in the interaction with
the other agents and with the environment. This experience is ob-
tained using the concepts of Reinforcement Learning (RL) (Sutton
& Barto, 1998), more specifically, through the Q-Learning algorithm
(Watkins & Dayan, 1992). Therefore, here the concept of Reinforce-
ment Learning is used to define the application order of neighbor-
hood structures of local search. Since the neighborhood functions
are specific parameters of the problem, the use of reinforcement
learning in the selection of the most appropriate neighborhood to
be used enables the framework to adapt better to the characteris-
tics of the problem. The learning strategy is defined here for each
agent individually.

The main motivation of this article is to present the AMAM
framework as a consolidate software tool for solving combinatorial
optimization problems using metaheuristics, including important
characteristics as the autonomy of the agents, without any kind of
explicit coordination between them. At the same time, this frame-
work introduces, to the best of our knowledge, the first use of re-
inforcement learning for frameworks specialized in solving combi-
natorial optimization problems. This built-in adaptive capacity al-
lows the agents to adjust to specific problems, providing the best
performance of these in the framework.

In order to evaluate the learning performance, two computa-
tional experiments are conducted: (i) new tests using the learn-
ing proposal presented in Silva et al. (2015) and (ii) tests carried
out with the learning structure proposed in this article. These two
experiments are carried out under the same computational condi-
tions and with the same cooperation structure among the agents,
allowing a effective comparison between the found results. One
of the main objectives of this article is to evaluate if the form of
learning, embedded in the agent, has a direct influence on the per-
formance of the framework with respect to the quality of the ob-
tained results, both in terms of the individual point of view and in
terms of the teamwork point of view.

For better introduction and validation of the AMAM framework,
this article uses the instantiation of two classic and well-known
combinatorial optimization problems. The first one is the Vehicle
Routing Problem with Time Window - VRPTW (Toth & Vigo, 2002)
and the second one is the Unrelated Parallel Machine Schedul-
ing Problem with Sequence-Dependent Setup Times - UPMSP-ST
(Allahverdi, 2015; Allahverdi, Ng, Cheng, & Kovalyov, 2008). Both
VRPTW and UPMSP-ST are NP-Hard problems and, in consequence,
suitable to be used here for demonstrating the potentialities of the
AMAM framework.

In summary, the main contributions of this proposal are:

(i) Improve the self-adaptive skills of the agent, using the con-
cepts of Reinforcement Learning, specifically the Q-Learning al-
gorithm, allowing the agent to better adapt to the specific pa-
rameters of the problem to be addressed by the framework;
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(ii) Improve cooperation among agents, through the inclusion of
criteria for insertion of new solutions into the cooperative
structure, seeking greater diversity of solutions;

(iii) Demonstrate how the enhancement of individual agent skills
directly influences the cooperative performance of agents.

The remainder of this paper is organized as follows.
Section 2 presents a review about works on the use of learn-
ing in conjunction with metaheuristics within frameworks.
Section 3 briefly reviews the Vehicle Routing Problem with Time-
Windows (VRPTW) and the Unrelated Parallel Machine Scheduling
Problem with Sequence-Dependent Setup Times (UPMSP-ST).
Section 4 describes the AMAM framework and its main com-
ponents. Section 5 shows the basic concepts of reinforcement
learning and describes the proposed adaptive agent. Section 6 re-
ports experiments carried out on the VRPTW instances and the
UPMSP-ST instances using the AMAM framework. Finally, the last
section present some conclusions and discusses future directions
of research.

2. Bibliographical review

The use of Reinforcement Learning in conjunction with meta-
heuristics has been a subject of strong interest in the search for
better and more efficient methods for solving optimization prob-
lems, as shown in, for example, Gambardella and Dorigo (1995),
Meignan, Créput, and Koukam (2008), Barbucha, Czarnowski,
Jedrzejowicz,  Ratajczak-Ropel, and  Wierzbowska (2010),
Queiroz dos Santos, de Melo, Neto, and Aloise (2014),
Lotfi and Acan (2015), Martin et al. (2016), Samma, Lim, and
Saleh (2016) and Silva et al. (2015). Some of these articles are
discussed in the following.

Gambardella and Dorigo (1995) introduce the Ant-Q algo-
rithm, the first application of Q-learning algorithm for solving
combinatorial optimization problems, according to the authors
knowledge. The experiments performed use instances of the Trav-
eling Salesman Problem (TSP). As posed in Dorigo, Caro, and Gam-
bardella (1999), Ant-Q is an algorithm that tries to merge Ant
System (AS) algorithm and Q-learning properties. In its turn, the
AS algorithm is the initial proposal of the Ant Colony Optimiza-
tion metaheuristic (Dorigo & Stiitzle, 2019). At Ant-Q algorithm,
an Ant-Q-value table (AQ (7, s), where (7, s) is a pair of cities
of the TSP) is defined, associated with Q-values of Q-learning al-
gorithm. It indicates how useful it will be to move in the edge
(1, s), this table being updated at run time. The objective is that
the agents of the Ant-Q algorithms cooperate to learn AQ-values,
thus seeking good solutions for the TSP. However, as indicated in
Dorigo et al. (1999) and Dorigo and Stiitzle (2019), besides having
good performance, due to some aspects of Ant-Q, in particular the
pheromone update rule, could be strongly simplified without affect-
ing performance, Ant-Q was abandoned in favor of the simpler and
equally good ACS (Ant Colony System), introduced in Dorigo and
Gambardella (1997).

Meignan et al. (2008) propose the Agent Metaheuristic Frame-
work (AMF). AMF is based on an organizational model that de-
scribes a metaheuristic in terms of roles. Roles represent the main
elements that compose metaheuristics, such as intensification, di-
versification, memory and adaptation or self-adaptation. Accord-
ing to the authors, “to obtain a metaheuristic from the AMF or-
ganizational model, it is necessary to refine the different roles and
determine the multiagent structure of the optimization system”. A
metaheuristic called Coalition-Based Metaheuristic (CBM) and its
application to the Vehicle Routing Problem are presented for illus-
trating the use of the AMF model. CBM is a metaheuristic based on
the metaphor of coalitions. According to the authors, “the coalition
is composed of several agents which have the capacity to individually

treat the optimization problem but cooperate to coordinate and im-
prove the search”. An adaptive strategy is used by the CBM agent,
through a learning mechanism, to select the most appropriate op-
erator, based on the context. The reward is given to the agent only
when it finds better solutions than those already found previously.
According to the authors, the results show that the ability to learn
improves the quality of solutions, especially when the number of
agents involved increases.

Barbucha et al. (2010) presented JADE-based A-Team environ-
ment (JABAT), a tool for building A-Teams (Talukdar & Souza, 1990)
architectures to solve different optimization problems. This frame-
work produces solutions for combinatorial optimization problems
using a set of optimization agents, each one implementing a solu-
tion algorithm. Barbucha et al. (2010) also proposed an extension
of this framework, named Cooperative JADE-based ATeam (Cooper-
ative JABAT), introducing a Reinforcement Learning mechanism. In
this case, the reward is assigned to the optimization agents each
time is found a better solution than the one previously. A negative
reward can also be awarded if the agent fails to improve a solu-
tion. The weight of each agent in that context is considered when
solutions are requested in the common memory. Thus, the required
solutions are not sent immediately after the request of each agent,
but only after all the agents perform these requests and, besides,
considering the weights associated to each of them.

Queiroz dos Santos et al. (2014) show an implementation
that proposes a hybridization of the reactive search with the
Variable Neighborhood Search (VNS) metaheuristic (Mladenovic
& Hansen, 1997). The selection of the local search heuristic to
be used at a certain point in the search is done in a self-
adaptive learning through Reinforcement Learning. In this sense,
Queiroz dos Santos et al. (2014) use the algorithm of Reinforce-
ment Learning Q-Learning in two ways:

(i) Construction of the initial solution: instead of the construction
usually used in the VNS metaheuristic, the initial solution con-
struction uses the Q-learning algorithm, carried out from the
knowledge of the environment (solutions of the problem search
space);

(ii) Selection of Local Search to be applied: in order to efficiently
explore the choice of which local search is best suited to a par-
ticular search point, the algorithm selects the next local search
to be used based on the Q-learning algorithm.

The algorithm presented by the authors was applied to the
Symmetric Traveling Salesman Problem (TSP), using the avail-
able instances in the TSPLIB repository (http://ftp.zib.de/pub/
Packages/mp-testdata/tsp/tsplib/tsplib.html). Two comparisons are
presented: (i) their algorithm compared with a version of VNS
metaheuristics combined with the construction of initial solutions
that use Q-learning, and (ii) their algorithm compared with the re-
sults already known in the literature. They conclude that their al-
gorithm is competitive and that it performs better than the VNS
version with Q-learning.

Lotfi and Acan (2015) presented the Learning-Based Multi-Agent
System (LBMAS) for solving combinatorial optimization problems.
This system allows collaboration between metaheuristic agents in
a population of common solutions and in a two-stage file, also
common to the agents. In this way, different regions of the search
space are exploited using the most effective agent at the moment.
At each iteration of the search, the metaheuristic to be used in
the next iteration is chosen. This selection is carried out using
the concepts of roulette, in which the evaluation values of meta-
heuristics are obtained based on the improvement levels of the
objective function of each of the metaheuristics. All metaheuristics
initially have the same probability of being chosen and this prob-
ability changes (grows or decreases) according to the individual
performance of the agents. The agents cooperate by sharing their
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individual experiences through a two-stage external memory
archive: the first stage stores promising solutions based on their
evaluation value; and the second stage maintains the solutions ac-
cording to their spatial distribution, based on a defined dissimilar-
ity measure. In the proposal of Lotfi and Acan (2015), the multi-
agent system is experimentally evaluated using instances of the
Multiprocessor Scheduling Problem. The results showed that the
LBMAS is competitive in relation to the other algorithms already
proposed for the problem.

Martin et al. (2016) present a distributed agent-based frame-
work called Multi-Agent Cooperative Search (MACS). This frame-
work is implemented using the JADE platform (Bellifemine, Poggi,
& Rimassa, 2007). In this proposal, each agent performs a different
combination of local search metaheuristics/heuristics and adapts
continuously throughout the search process using a cooperation
protocol. This cooperation protocol allows communication between
the agents involved in the search for a solution. An iteration of the
communication protocol is called a conversation. Communication
between agents takes place as follows: good patterns that improve
solutions are identified, according to the frequency that they oc-
cur in the conversation, and are then shared among the agents. In
order to do this, each metaheuristic agent breaks the current solu-
tion into edge objects and sends them to the launcher agent, which
brings together all the edge objects and punctuates them accord-
ing to their frequency. These elements are shared with the other
agents and will be part of the next solutions. The implemented
learning mechanism allows each agent to maintain a short-term
memory of good edge objects, which are used at the beginning of
each conversation to influence how new solutions are constructed.
The edges identified by the learning are used to reorder the lists of
elements to be inserted into the solutions. The constructive heuris-
tics RandNEH and RandCWS, proposed in Juan, Faulin, Grasman,
Rabe, and Figueira (2015), are used for the construction of new so-
lutions. Martin et al. (2016) show the evaluation of MACS through
two different optimization problems: (i) Permutation Flow-shop
Scheduling and (ii) Capacitated Vehicle Routing. Tests were carried
out using 5 scenarios for each of the two problems mentioned: (i)
Single agent; (ii) 4 agents; (iii) 8 agents; (iv) 12 agents; and (v) 16
agents. The results show that, with a confidence level of 95%, sce-
narios with eight or more agents perform better than the scenario
with an isolated agent. In addition, the results also show that in
some cases the performance is better when the number of agents
is doubled.

Samma et al. (2016) present a new algorithm based on Parti-
cle Swarm Optimization (PSO) (Kennedy & Eberhart, 1995), called
Reinforcement Learning-based Memetic Particle Swarm Optimiza-
tion (RLMPSO). Motivated by the difficulty of integrating the PSO
method and local search heuristics, the authors propose the use of
Reinforcement Learning in the control of the operations applied to
the swarm particles. In the definition of RLMPSO, Reinforcement
Learning is implemented using the Q-learning algorithm. Each par-
ticle is subject to five operations: exploration, convergence, high-
jump, low-jump, and fine-tuning. Three steps, described below,
present the control of Q-learning under the possible operations:

(i) Obtain the best operation to be performed for each current par-
ticle;

(ii) Perform the selected operation and evaluate the value of the
fitness function obtained. The immediate reward will be calcu-
lated according to the evaluation of the fitness function; if a
better value is found, the reward is positive (1) and, otherwise,
a negative reward is assigned (—1);

(iii) Update the Q-table for each current particle.

According to the authors, “the effectiveness of RLMPSO has been
evaluated using four unimodal and multi-modal benchmark problems,
six composite benchmark problems, five shifted and rotated bench-

mark problems, as well as two real-world design problems”. The re-
sults obtained in the experiments performed with these problems
show that the RLMPSO exceeds a significant number of PSO vari-
ants reported in the literature. Additionally, reinforcement learning
involving agents has become a relevant topic nowadays, and a large
number of publications address this issue from different points of
view. It is worth highlighting (Noel & Pandian, 2014; Radac & Pre-
cup, 2018; Radac, Precup, & Roman, 2018), which deal with rein-
forcement learning involving artificial neural networks for contin-
uous models; (Kazemitabar, Taghizadeh, & Beigy, 2018), which dis-
cuss about hierarchical reinforcement learning in large and com-
plex systems; and (Salgado & Clempner, 2018), which study the in-
teraction of agents through emotion and stimuli.

It should be emphasized that none of the proposals discussed
above in this literature review uses reinforcement learning among
its optimization problem solving structures.

3. Case study

This section addresses the instantiation of AMAM for two prob-
lems of great importance in Combinatorial Optimization. The pur-
pose of this instantiation is to analyze this framework, evaluate
their performance and show their potential. The problems consid-
ered here for case study purposes are the Vehicle Routing Prob-
lem with Time Windows (VRPTW) and the Unrelated Parallel Ma-
chine Scheduling Problem with Sequence-Dependent Setup Times
(UPMSP-ST).

VRPTW is one of the most studied combinatorial optimization
problems. It is a generalization of the classic Travelling Salesman
Problem (TSP) (Applegate, Bixby, Chvatal, & Cook, 2007), in which,
unlike this, there is a fleet of vehicles, a set of customers, ge-
ographically dispersed, to be satisfied, with their respective de-
mands and the horizons of time for the attendance. The full
description of this problem is at Section 3.1, under the terms of in-
terest of this current article. For further details regarding VRPTW,
excellent reviews of the research involving this problem can be
found in Toth and Vigo (2002) and Toth and Vigo (2014).

UPMSP-ST also has strong economic relevance in several types
of industries. Like VRPTW, UPMSP-ST belongs to the class of NP-
Hard problems, which justifies the use of metaheuristic meth-
ods in the solution of these problems. A detailed description
of the UPMSP-ST can be found in Rabadi, Moraga, and Al-
Salem (2006) and Vallada and Ruiz (2011), and good surveys con-
cerning to this problem are (Allahverdi, 2015; Allahverdi et al.,
2008). Section 3.2 presents this problem, in the terms that inter-
est this current article.

3.1. Case 1: VRPTW

3.1.1. VRPTW basic definitions

In this problem, a set K= {k: k=1,2,..., |K|} of vehicles is lo-
cated at a single depot and must serve asetC={i:i=1,2,..., N}
of geographically spread customers. In the case considered here,
the fleet of vehicles is homogeneous, i.e, all vehicles are equal and
have the same capacity Q. Each customer i has a given demand
g; and must be served within a specified time window [aq;, b;] (see
Fig. 1(a)). A solution for the VRPTW is a set of routes (see Fig. 1(b)),
in which each route is represented by an ordered list of customers
that determine the sequence in which they are to be served by
one vehicle. The arcs show the connection between customers and
have an associated value c;, which represents the travel cost be-
tween customer i and customer j. The solution x shown in Fig. 1(b)
can be described as:

x=1[0,2,1,12,0,3,4,5,6,0,10,7,8,9, 11, 0]
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Fig. 3. An application of the Inter-Route Swap neighborhood function in a solution.

where the index 0 indicates the depot and the three routes
of this solution are route; = [0, 2, 1,12, 0], route, =0, 3,4, 5,6, 0]
and routez = [0, 10, 7,8,9, 11, 0]. Thus, the solution x is also de-
scribed as x = [routeq, route,, routes].

The objective of the VRPTW is to determine a set of routes in
order to minimize the involved total cost with this operation. Each
route is associated with a single vehicle. The routes must start and
end in the depot. In our case, the cost of a solution x is calculated
according to:

f) =K@ + ) ¢ (1)

(i.j)eE

where:

* ¢jj : cost between customers (i, j), which can be related to the
distance between customers;

o E : set of arcs belonging to the solution x;

e K(x) : number of vehicles in the solution x;

e  : an arbitrary large non-negative penalty factor.

In this function, the first priority is to minimize the number of
vehicles (or routes, in consequence). In case of a tie in the number
of vehicles, the total distance traveled should be minimized.

3.1.2. VRPTW neighborhoods

A neighborhood is a function A/(x) that describes a solution
subset associated with the solution x belonging to the solution
space of the problem. Each solution of this subset is called a neigh-
bor. The function N (x) is defined as an operator that receives a so-
lution x! and transforms it into another solution x2, belonging to
the neighborhood of x! (Milano & Roli, 2004).

In order to explore the solution space, eight different neigh-
borhood functions are used in the AMAM instantiation for solving
VRPTW. The knowledge of these neighborhood structures becomes
necessary because they make up the set of states defined in the
learning model that will be described in Section 5. These struc-
tures are presented below:

(i) Intra-Route Swap: neighborhood function that performs the ex-
change move of a customer with another customer of the same
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Fig. 4. An application of the Intra-Route Shift neighborhood function in the route 2 of a solution.
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Fig. 5. An application of the Inter-Route Shift neighborhood function in a solution.

Table 1
Processing time.

1 2 3 4 5 6 7 8

my 67 3 29 8 11 36 25 12
my, 43 40 29 26 46 49 7 5

route. Fig. 2 illustrates this neighborhood function. In this ex-

ample, customers 4 and 6 of route 2 are swapped;

Inter-Route Swap: neighborhood function that performs the ex-

change move of a customer of a route with a customer of an-

other route. Fig. 3 shows the Inter-Route Swap neighborhood

function. In this figure, customer 6 is removed from route 2

and inserted into route 3 in place of the customer 7, which is

consequently transferred to the route 2 in the place previously

occupied by customer 6;

Intra-Route Shift: neighborhood function that performs the re-

location move of one customer to another position on the same

route. Fig. 4 shows the application of the Intra-Route Shift func-
tion, where the customer 6 of route 2 is removed from its po-

sition and inserted between customers 4 and 5;

Inter-Route Shift: neighborhood function that performs the re-

location of a customer from one route to another one. The

Inter-Route Shift neighborhood function is shown in Fig. 5, in

which the customer 12 is taken from route 1 and then inserted

into route 3;

(v) Two Intra-Route Swap: neighborhood function that consists of
the exchange of customers on the same route, as well as the
intra-route swap neighborhood function. However, in the Two
Intra-Route Swap function, two consecutive customers are ex-
changed with two other consecutive customers of the same
route;

(vi) Two Intra-Route Shift: neighborhood function that consists of
the relocation of customers on the same route, as well as the
intra-route shift neighborhood function. However, in the Two
Intra-Route Shift function, two consecutive customers are re-
moved from their positions and reinserted into another position
of the same route;

(i

=

(iii

=

(iv

=

(vii) Eliminates Smaller Route: neighborhood function that seeks to
eliminate the smallest route of the solution. The smallest route
is defined as the route that has the least number of customers.
To this end, the customers of the smallest route of the solution
are removed and inserted in others routes of the solution. The
route and position for insertion of each removed customer are
those that result in the best value of the objective function, re-
specting all constraints. A new solution is generated when all
customers of the smallest route are reinserted in other routes.
Fig. 6 shows an example of the Eliminates Smaller Route neigh-
borhood function. In this example, the smallest route (route
1) is deleted and its customers are inserted into other routes
(routes 2 and 3);

(viii) Eliminates Random Route: The Eliminates Random Route neigh-

borhood function operates similar to the Eliminates Smaller
Route function, but the route to be deleted is chosen randomly
(see Fig. 7);

3.2. Case 2: UPMSP-ST

3.2.1. UPMSP-ST basic definitions

In this problem, a set N={n:n=1,2,...,|N|} of jobs should
be allocated to a set M={m: m=1,...,|M|} of machines, and
each job je N must be allocated to a single machine ie M. In the
version of UPMSP-ST considered here, we also define the process-
ing time pj;, which represents the time required to process the job
JjeN on a machine ieM; and the setup time S;;, which represents
the time required to set up the job ke N after the job jeN on the
machine i e M. Tables 1 and 2 present an example of this situation,
with data referring to test instances for calibration experiments
with 8 jobs and 2 machines, proposed by Vallada and Ruiz (2011).
Table 1 displays the processing times of each of the 8 jobs on ma-
chines m; and my. Table 2 shows the setup times for machines m;
and m,. Since the problem is sequence-dependent, the matrix is
used to indicate the setup time of job i after executing job j.

A solution to UPMSP-ST is a list of machines, where each ma-
chine is represented by an ordered list of jobs, which defines the
sequence in which they will be performed. Fig. 8 illustrates a
UPMSP-ST solution in which each job assigned to its machine has
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Table 2

Setup time.
m 1 2 3 4 5 6 7 8 m 1 2 3 4 5 6 7 8
1 o 5 7 8 8 9 8 5 1 o 2 3 1 2 4 9 5
2 7 0 4 6 6 7 6 8 2 4 0 5 3 1 8§ 9 7
3 5 2 0 6 6 3 6 7 3 1 3 0 5 5 2 8 7
4 6 9 9 0 6 2 2 8 4 4 2 5 0 3 6 4 5
5 4 8 6 5 0 6 8 2 5 7 6 5 6 0 6 5 2
6 4 2 2 2 2 0 3 8 6 3 6 3 9 4 0 1 6
7 7 1.7 2 9 4 0 9 7 4 1 6 7 2 7 0 9
8 3 8 4 3 8 7 2 0 8 4 9 6 3 6 8 8 0
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Fig. 6. An application of the neighborhood function Eliminates Smaller Route in a solution.
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Fig. 7. An application of the neighborhood function Eliminates Random Route in a solution.
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Fig. 8. A UPMSP-ST solution.

its processing time represented in the timeline and the intervals
between the jobs represent the setup time. The values used in this
example are based on the instance of the Tables 1 and 2.

The objective of UPMSP-ST is to allocate all n jobs on m ma-
chines to minimize the maximum completion time of the schedul-
ing, value known as makespan. In Fig. 8, the makespan is defined
by the completion time of machine m; and is given by the value
167.

3.2.2. UPMSP-ST neighborhoods

Four neighborhood functions were used to explore the search
space of the UPMSP-ST in the framework instantiation. As in
VRPTW, these neighborhood structures make up the set of states
defined in agent learning. The learning model used in this prob-

lem is presented in the Section 5. These structures are presented
below:

(i) Multiple Insertion in Different Machines: neighborhood func-
tion that performs the relocation of a job from one machine
to another one. Fig. 9 shows the application of this neighbor-
hood function in which the job 7 is removed from the ma-
chine m; and inserted into the machine m,. As can be seen,
the makespan of the initial solution of Fig. 9(a) is obtained
by the machine m;, in the amount of 167; after application
of the neighborhood function, the new makespan (solution of

Fig. 9(b)) is again obtained by machine mq, with a value of 134.

Multiple Insertion in the Same Machines: neighborhood func-

tion that performs the relocation move of one job to another

position in the same machine. Fig. 10 shows the application of
this neighborhood function in which the job 8 is removed from
the last position of the machine m; and inserted in the sec-
ond position of this same machine. This modification reduces

the makespan. Indeed, before the move, the makespan was 167

(Fig. 10(a)), and, after the move, the makespan reduced to 164

(Fig. 10(b)).

(iii) Swap between different machines: neighborhood function that
performs the exchange move of a job of a machine with a job
of another machine. These neighborhood functions are shown
in Fig. 11, in which the job 1 of the machine m; is exchanged
with the job 6 of the machine m,. In this case, the appli-

(ii

-
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(a) Initial solution.
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(b) Solution after the application of the Multiple Insertion in
Different Machines neighborhood function.

Fig. 9. Example: Multiple Insertion in Different Machines neighborhood.

(a) Initial solution.

m;,

m,
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(b) Solution after the application of the Multiple Insertion in
the Same Machines neighborhood function.

Fig. 10. Example: Multiple Insertion in the Same Machines neighborhood.
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(a) Initial solution.

5
I!
oo |

,
Time 0 40 80 116 131 160

(b) Solution after the application of the Swap between different
machines neighborhood function.

Fig. 11. Example: Swap between different machines neighborhood.

cation of the move leads to a significant reduction of the
makespan of the solution, since, in the initial solution shown
in Fig. 11(a), the makespan value is 167, and, in the resulting
solution (Fig. 11(b)), the value obtained is 131.

(iv) Swap between Same Machines: neighborhood function that
performs the exchange move of a job with another job of the
same machine. These neighborhood functions are shown in
Fig. 12, in which the job 1 of the machine m; is exchanged with
the job 8 of this same machine. The initial solution is shown in
Fig. 12(a), with makespan 167. The solution obtained by apply-
ing this move is shown in Fig. 12(b), with resulting makespan
valued at 163.

4. Multi-agent metaheuristic optimization framework

The adaptive agent proposed here is included as an integral
part of the AMAM framework. It arises from initial formulations
presented in Silva (2007), Fernandes et al. (2009) and Silva et al.
(2014, 2015). In this framework, each agent encapsulates a heuris-
tic/metaheuristic and has the function of seeking the solution for a
given Combinatorial Optimization problem.

During the search process of the solution, the agents in the
framework should go through the multi-agent system environ-
ment. In this case, the multi-agent environment is defined by the
search space of the addressed problem. As shown in Fig. 13, the

perception and action capabilities of the agent are defined in this
environment as:

o Perception of the environment: ability of the agents to access
information about the problem that are required to it;
Positioning: ability of the agents to define their positions in the
environment, either by the construction of a new solution or by
the choice of solutions already available;

Move: ability of the agent to move, from one solution to an-
other in the environment. The move here comprises all kinds
of solution modifications (neighborhood structures, operators)
that allow the agent to move from one solution to another;
Cooperation: ability of the agent to share and provide solutions
for the other agents of the system.

The actions available to each agent define the vision that it will
have of the environment. Therefore, its representation of the en-
vironment is partial. The goal is to apply, at the same time, the
strengths of each metaheuristic through the cooperative work of
the agents. The scalability of the AMAM architecture is guaranteed
by the ease of adding new agents, with minimal impact on the
rest of the architecture. These agents interact with the environ-
ment and with others agents cooperatively, exchanging and sharing
information about their condition and about the environment.

The Object Oriented Programming paradigm is used to facilitate
the development of the framework, allowing to reduce the effort
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Fig. 12. Example: Swap between Same Machines neighborhood.
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Fig. 13. Agent interaction.

used in the implementation of methods and in the adaptation of
these to a specific problem. Therefore, a generic structure that en-
ables the definition of the problem characteristics is used.

The conceptual model of the AMAM framework was orig-
inally proposed in Silva (2007). The development from the
conceptual model is presented in Fernandes et al. (2009), and al-
lows the creation of an instance of the environment and multi-
ple agents to the search of the solution. Design patterns are used
to ensure that the AMAM architecture be flexible and extensi-
ble. In this initial conceptual model, six major elements make up
the proposed Multi-agent System: (i) Environment; (ii) Construc-
tor Agent; (iii) Local Search Agent; (iv) Metaheuristic Agent; (v)
Coordinator Agent; and (vi) Solution Analyzer Agent. The cooper-
ative structure of AMAM architecture is reviewed and improved in
Fernandes et al. (2009) and Silva et al. (2014). An adaptive mem-
ory strategy called Pool of Solutions is used for sharing informa-
tion. The available solutions are stored in this Pool of Solutions,
located in the Multi-Agent System environment. In the latest pro-
posal, presented in Silva et al. (2014, 2015), the Coordinator and
Solution Analyzer agents were removed from the architecture, in
relation to the original proposal. The main objective of this change
in the structure is to meet the need to increase the autonomy of
the agent, preventing other agents interfere in its activities. The
new structure for AMAM framework is composed of three main
elements:

(i) Environment: defined mainly by the search space of the tackled
problem. Therefore, it provides all information that is needed
for solving the problem, i.e., in the case of VRPTW, the number
of customers to be attended, the distance between customers,
the number of vehicles, and so on;

(ii) Pool of Solutions: responsible for maintaining the shared solu-
tions to all agents;

(iii) Metaheuristic Agents: responsible for guiding the search for the
solution.

In Silva et al. (2015), self-adaptive skills based on learning
are assigned to framework agents, using the principles defined

in Learning Automata (Narendra & Thathachar, 1974). Finally, a
new adaptive agent, incorporating the reinforcement approach by
learning, is presented in the current proposal and is detailed in
Section 5.

The strength of the proposed framework is the hybridization
capacity of metaheuristics through a multi-agent approach, using
concepts of cooperation and parallelism. Additionally, AMAM offers
the possibility of parallel execution, in which each agent runs on a
separate thread.

The cooperation between agents occurs, in the current release,
through the exchange of information in the search space of the
problem. The available solutions are stored in a pool of solutions in
the environment and shared by the agents at the end of each iter-
ation. The purpose of this cooperative structure is to guide agents
in the solutions space toward the most promising areas, and thus,
improves the final result and reduces the time needed to solve the
problem.

The maximum size of the pool of solutions is predefined and
the insertion of new solutions is regulated by an evaluation func-
tion, as in Silva et al. (2015). This evaluation function is based on
the niching techniques (Li, Epitropakis, Deb, & Engelbrecht, 2017)
for coordinating solution files. When a solution needs to be in-
serted into the pool and no space in this pool is available, the ex-
isting solutions are evaluated according to the function:

P
() = Zfﬁ()»ij) (2)

j=1

where P is the number of solutions in the pool and A; is the dis-
tance between the solutions i and j. The evaluation function g(¢;)
is defined by the sum of the distances of a solution i to all the
other pool solutions, where ¢(4;) is defined as:

Aii .
1- pflrj if A; < pr 3)
0, if )"ij > pr

o(Aij) =

The factor pr is the pool radius, and controls the dispersion degree
of the solutions, being a parameter of the problem. For example,
for VRPTW, used as one of the case studies in the current article, it
is the minimum number of arcs for one solution to be considered
very close to the other. Therefore, its value depends directly on the
size of the instance to be solved of the problem addressed.

The function (2) estimates the solution density in the neighbor-
hood of the solution i by means of the distance between the so-
lutions contained in the pool. The value A; measures how much
the solutions i and j are similar and depends fundamentally on
the problem being treated. As an example, considering the case of
VRPTW described in Section 3.1, the distance between two solu-
tions is calculated in relation to the number of arcs that are not
common to both solutions. Fig. 14 presents two examples of dis-
tance calculation between VRPTW solutions. For the first example,
the distance between the solution i, shown in Fig. 14(a), and the
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Fig. 14. Examples of calculating distance between solutions.

solution j, shown in Fig. 14(b), is equal to A;; = 12, i.e,, there are 12
non-common arcs between these solutions. For the second exam-
ple, the distance between the solution i, shown in Fig. 14(c), and
the solution h, shown in Fig. 14(d), is equal to A; =6, i.e., there
are 6 non-common arcs between these solutions.

As a consequence, after evaluating the value g(-) of each solu-
tion in the pool, the worst evaluated solution is excluded for the
insertion of a new solution in the pool, if this new solution sat-
isfies two criteria: (i) it is not in the pool yet; (ii) it has better
objective function value than the worst pool solution. These crite-
ria for the insertion of a new solution are proposed in the current
article and is an original contribution of the current article.

The main objective of this evaluation function is to maintain
the diversity of the pool, avoiding to keep very similar or even
equal solutions. At the same time, the best existing solution in the
pool is always stored in a specific attribute of the environment and
updated at every insertion, thus preventing that this best solution
found is eliminated.

The Ilatest version of the AMAM framework, released in
December 2017, is available at https://github.com/mamelials/
AMAM-Multiagente-Architecture-for-Metaheuristics, under the
GNU LGPLv3 license.

5. Adaptive agents

This section introduces the adaptive capabilities of the frame-
work agents. It extends the learning characteristics initially ad-
dressed in Silva et al. (2015) for the same framework.

In Silva et al. (2015), the order of the neighborhoods in local
search is chosen by applying an operator similar to the “roulette
wheel” selection operator from Genetic Algorithms. For each pos-
sible pair of neighborhood structures (m1, m2), a probability of
choice is assigned. Initially, all pairs of sequences have the same
probability value. The probability of choice of the sequence (m1,
m2) is updated by a reinforcement factor w if a move of the neigh-
borhood structure m, applied after another move of the neigh-
borhood structure m; improves the current solution. The concept
that was used is very similar to that defined in Learning Automata
(Narendra & Thathachar, 1974).

In the current article, the choice of application order of the
neighborhood structures of the local search is improved using the
Q-Learning algorithm. The details concerning this implementation
are described in the following subsections. Initially, in Section 5.1,
concepts related to Reinforcement Learning and the used algorithm
are introduced. Then, in Section 5.3, the implementation details of
this proposal are presented.

5.1. Reinforcement learning

Reinforcement Learning consists of learning what to do in a dy-
namic environment from trial-and-error-based interactions. These
interactions are reinforced according to the effects they cause on
the environment. In the model defined by reinforcement learning
there are no input/output pairs and therefore the agent needs to
gather experiences to improve their performance.

According to Narendra and Thathachar (1974), “learning is de-
fined as any relatively permanent change in behavior resulting from
past experience, and a learning system is characterized by its abil-
ity to improve its behavior with time, in some sense tending to-
wards an ultimate goal”. In the reinforcement learning, the behav-
ior is improved from rewards obtained during the interactions of
the agent with the environment. The learning takes place through
the perception (i) of the state of the individual in the environ-
ment; (ii) of the actions performed in this environment; (iii) of the
state changes resulting from these actions; and (iv) of the reward
that the environment returns in response to the performed action.
Through learning, the agent uses the reinforcement value in the
subsequent decision-making.

A Reinforcement Learning (RL) system includes three basic as-
pects: (i) perception; (ii) action; and (iii) goal. In this system, as
shown in Fig. 15, the agent perceives (partially) the state of the en-
vironment and, based on the knowledge obtained through this per-
ception, selects an action to be performed. The action taken affects
the environment, changing the state in which the agent is. Every
agent within an RL system has a goal state that must be achieved.
The main objective is to take the agent to select a sequence of ac-
tions up to the goal state, which maximizes the reinforcement ac-
cumulated over time. Thus, a control/decision policy is generated,
characterized by the mapping of states and actions, representing
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Fig. 15. Interaction agent-environment in the reinforcement learning (Sutton &
Barto, 1998).

the behavior that the RL system follows until it reaches the objec-
tive.

The main elements that compose the formulation of the Rein-
forcement Learning Problem are:

(i) Set of States: set of all possible states describing the environ-
ment;

(ii) Set of Actions: set of all available actions;

(iii) Environment: the environment in the RL problem is dynamic
and must be at least partially observable;

(iv) Control/Decision Policy: defines the behavior of the agent to
achieve the goal at any given time. A control policy maps states
s into actions a and is expressed by the function Il(s, a). This
function defines the probability that an action a will be cho-
sen in a s state. These probabilities change as the agent accu-
mulates experiences as a consequence of interactions with the
environment. Thus, convergence to optimal policy IT* expresses
the learning process in the RL problem;

(v) Reinforcement/Reward: shows the feedback of the environment
in relation to the behavior of the agent. The goal is to maxi-
mize this feedback received from the environment. To achieve
this goal, the agent must consider the future behavior in the
decision making made at the present moment. There are sev-
eral models that define how the agent should accrue the re-
wards received. The most used is the finite-horizon discounted
model (Kaelbling, Littman, & Moore, 1996). In this model, the
RL system seeks to maximize the expected reward as a func-
tion of the sequence of received values until an instant of time
T, in the form:

Rr=rey1 +rgo+ 13+ ... 417 (4)

Considering the rewards received in the long term, a discount
factor y is applied to the expression of reinforcement. As a con-

sequence:
Rr =t + Yo+ ¥+ .+ 1m =Y ¥ (5)
k=0

where 0 <y <1. Thus, if y =0, immediate reinforcements are
maximized; if y = 1, the same importance is given to immedi-
ate and future earnings;

(vi) Reinforcement Function(Reward Function): reinforcement func-
tions are not always simple to define and vary according to the
problem addressed.

(vii) Value Function: value obtained with the mapping of the state
or of the action-state pair, from the current and future rewards.
(a) Value-State Function: function that considers only the state

and is denoted by VI (s). The value-state function depends
on the IT policy and is defined by:

VI(s) = En{Re | s =s} =En{ > ¥*1epr ISe=sp  (6)
k=0

(b) Value-Action Function: function which considers the state-
action pair and is denoted by QI (s, a). As in the value-state

function, the value-action function depends on the IT policy
and is defined by:

[o¢]
Q" (s.a)=En(R: | st=s.ar=a}=En{ > y*re 1 | se=5.ar=a
k=0

(7)

The value-state and value-action functions can be modeled by the
Markov Decision Process (MDP) (Bellman, 1957; Bertsekas, 1987,
Puterman, 1994). A good literature review of Reinforcement Learn-
ing is conducted by Kaelbling et al. (1996).

5.2. Q-learning algorithm

The Q-Learning algorithm, introduced by Watkins and
Dayan (1992), stands out for being widely used, for being
model-free and for dispensing knowledge of a policy. In this way,
the agent, through the Q-learning algorithm, updates its function
value, while following any policy. This algorithm allows to find an
optimum policy of actions selection for any finite Markov Decision
Process (MDP). The objective is, at each step of an episode, to
maximize the value of the function Q(s, a), defined as:

Q(s.a) =Q(s.a) + oe[r +ymaxQ(s',a) - Qs a)] (8)

as shown in the pseudo-code presented in the Algorithm 1, where

Algorithm 1 Q-Learning algorithm.

1: procedure QLEARNING(r, «, €, V)
2 Initialize Q(s, a) arbitrarily;
3 repeat > for each episode
4: Initialize s;
5 repeat > for each step of episode
6: Choose a from s using policy derived from Q (e.g., €-
greedy);
7: Take action a;
8: Observe the next state s’ and the reward r;
9: Q(s.a) < Q(s,a) + a[r +ymaxQ(s',a) - Q. a)];
o
10: S «— S/;
11: until s is terminal

12: until Reaches the number of episodes
13: end procedure

o is the rate of learning; y is the discount factor; s is the cur-
rent state; a is the action taken; and s’ is the resulting state. The
learning rate and the discount factor are parameters that depend
directly on the problem dealt with. The Q function estimates the
expected utility of taking an action a in a given state s. An episode
is defined here as a sequence of states ranging from an initial state
to the final state.

5.3. RL-based adaptive agent

This section shows the RL-based adaptive agent. The adap-
tive capacity is assigned to the agent through an Adaptive Local
Search (ALS-QLearning) based on the Variable Neighborhood De-
scent heuristic - VND (Mladenovi¢ & Hansen, 1997) and on the
concepts of Reinforcement Learning.

VND is a heuristic of refinement that exploits the space of so-
lutions by the systematic exchange of neighborhoods. Algorithm 2
presents the standard VND structure. As seen, for each neigh-
borhood N (k) selected by the standard VND, a local search is
performed on the current solution in order to find its best neigh-
bor. This method employs a deterministic neighborhood order-
ing, being this neighborhood ordering scheme a parameter to be
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(a) A graph with four states (neighborhood
functions of the VRPTW) and the respective
actions of MDP.

Q-table
state/action A B C D
‘ \
A 0 0 0 0
B 0 0 0 0
C 0 0 0 0
D 0 0 0 0

\ y

(b) Initial Q-Table for these four neigh-
borhood functions.

Fig. 16. A graph representing the relationship between states (neighborhood functions) and possible actions.

Algorithm 2 Variable Neighborhood Descent (VND).

Algorithm 3 Next action choice function.

1: procedure VND(X, kmax) > kmax 1S the number of different
neighborhood structures
k< 1;
while k < kmax do
X < bestNeighbor(x, N'(k));
if f(x') < f(x) then
X <X
k< 1;
else
k< k+1;
end if
11: end while
12: end procedure
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determined. In general, this scheme is based on the complexity
growth order of these structures. (i.e., the application order is pre-
defined), but this order does not always produce the best solution
because the best order may be highly dependent on the instance
(Subramanian, Drummond, Bentes, Ochi, & Farias, 2010). If the so-
lution found is better than the current solution, the first neigh-
borhood function is used again; otherwise, the next neighborhood
function is used until there are no more neighborhoods available.
VND returns a local optimum in relation to the all explored neigh-
borhoods.

In this proposal, the sequence in which neighborhoods are ap-
plied is defined through reinforcement learning, based on the Q-
Learning algorithm. The main objective is to evaluate the gain ob-
tained with the application of a sequence of two neighborhoods,
and, from there, to reward the best sequences and maximize the
accumulated reward. Each neighborhood to be used by the search
method is considered, in this article, as a learning state.

The Markov Decision Process (MDP) for this proposal is defined
as follows:

 Set of States S: states are the neighborhood functions, available
for the problem to be handled by the framework. In the case of
the test problems used here, we have:
(a) For the VRPTW case study: the set of states is formed by
the 8 neighborhood functions listed at Section 3.1.2:

Surptw = {Intra-Route Swap, Inter-Route Swap,
Intra-Route Shift, Inter-Route Shift,

1: procedure CHOOSEANACTION(state, type_function)
2 next_state < 0;

3 if type_function = 1 then

4 next_state < e-greedy(state);

5 else

6 if type_function = 2 then

7 next_state < randomAction();

8 end if

9: end if

10: end procedure

Two Intra-Route Swap, Two Intra-Route Shift,
Eliminates Smaller Route,
Eliminates Random Route} 9)

(b) For the UPMSP-ST case study: the set of states is formed by
the 4 neighborhood functions listed at Section 3.2.2:

Supmsp—st = {Multiple Insertion in the Different Machines,
Multiple Insertion in the Same Machines,
Swap between Different Machines,
Swap between Same Machines} (10)

o Set of Actions A(s): an action is defined as the change from one
state to another (“go to”). In this way, the set of actions can be
represented by a complete graph, in which each action is rep-
resented by an arc connecting two states (nodes of the graph).
An example of a graph representing the relationship between
states (neighborhood functions) and possible actions is shown
in Fig. 16(a). In this example, only four neighborhood functions
of the VRPTW are used to facilitate visualization. The Q table,
referring to this example, is shown in Fig. 16(b). The Q table has
dimensions given by M x M, in which M is the number of states,
that is, the number of neighborhood functions of the treated
problem.

e Reward R: based on the value of the fitness function of the
solution x obtained with the application of the current neigh-
borhood function A/ (x). The way in which this transformation
takes place is presented below.

Since the neighborhood functions are specific parameters of the
problem being solved, the purpose of using reinforcement learning
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is to allow the framework to better adapt to the own characteris-
tics of this problem.

The adaptive local search algorithm proposed in this article is
presented in Algorithm 4. In this algorithm, firstly, the Q table is

Algorithm 4 Adaptive Local Search based on Q-learning.

1: procedure ADAPTIVELOCALSEARCHQLEARNIG(Xg)
2: initialize(Q (state, action));

3: improved < true;
4 no_improvement < 0;
5: X* < Xo;
6: X < Xp,
7: repeat > for each episode
8: reward < 0;
9: states_visited_count < 0;
10: next_state < chooseAnAction(0, 2); > 2: initial state
defined by random function
11: X < bestNeighbor (next_state, x);
12: if (x is better than x*) then
13: X* <~ X;
14: reward < x.getFitnessLearning();
15: else
16: states_visited_count + +;
17: while (not reached the state goal) do > state goal:
improving the solution
18: if (no_improvement = 0) then
19: state < next_state;
20: next_state = chooseAnAction(state, 1); > 1:
epsilon greedy function
21: else
22: next_state = chooseAnAction(0, 2); > if not

improved, the greedy function should not be used
23: end if

24: X = bestNeighbor (next_state, x);

25: if (x is better than x+) then > reached the state
goal

26: X* <~ X;

27: improved <« true,

28: no_improvement < 0;

29: reward < reward + x.getFitnessLearning();

30: calculateQValue(state, next_state, reward);

31: else

32: no_improvement + +;

33: if (the state has been visited) then

34: states_visited_count + +;

35: end if

36: if ((no_improvement >
max_iterations_without_improvement) and
(states_visited_count = q_size)) then

37: improved < false;

38: end if

39: end if

40: end while

41: € < € xdecay_rate;

42: end if

43: until (not(improved))
44: return x;
45: end procedure

initialized. This table is responsible for storing the values of the
state-action pairs in the course of the learning process. In this pro-
posal, each element of the Q table is initialized with a zero value,
so as the learning process is carried out non-biased.

Then, for each episode related to the Q-Learning algorithm,
the learning is associated with the search process of the solu-

tion. For this, in the first part, the initial state is randomly se-
lected. The chooseAnAction(state, type-function) function, presented
in Algorithm 3, is used to determine both the initial state (where
type-function = 2 as shown at line 6 of Algorithm 3) and to deter-
mine next states with specific functions (where type-function =1
as shown at line 3 of Algorithm 3). In this way, this function allows
new selection functions to be easily inserted. The initial state is
then applied to the solution through the best improvement strat-
egy (bestNeighbor(next-state, x) — line 11 of Algorithm 4).

The reward used is based on the fitness function of the solution
and its calculation depends on the type of problem being treated.
Considering the treatment given to the Q matrix in the Q-Learning
algorithm, the fitness value reward(x) of the solution x is evaluated
on the basis of the objective function f{x) of the problem. Then, in
the maximization problems, reward(x) = f(x); in the minimization
problems, reward(x) = f(xg) — f(x), where xq is the initial solution
of the current local search.

As the objective is to define the gain obtained by applying a
sequence of two neighborhoods, the reward is calculated from the
sum of the values obtained by these neighborhoods, as shown at
lines 14 and 29 of the Algorithm 4. In case of improvement of the
solution with the neighborhood application, the value to be added
to the reward is the fitness function of the current solution; if the
new solution found is not better than the current one, the value to
be added is zero.

The second part of the episode is executed until the goal is
reached (lines 17-40 of the Algorithm 4). The objective is to find a
better solution than the current one and, if achieved, ends the cur-
rent episode. The other states to be visited in the episode are de-
fined using the e-greedy function (Watkins, 1989), presented in the
Algorithm 5. The e-greedy function selects a random action with

Algorithm 5 ¢-greedy function.
1: function e-GREEDY(current_state, €, q_size)
2 p < random();
3 if p < € then
4 action < random(q_size);
5 else
6: action < maxAction(current_state);
7
8
9:

end if
returnaction;
end function

a probability € or an action that returns the highest reward with
a probability 1 — €. The next state is also applied to the solution
through the best improvement strategy (bestNeighbor(next-state, x)
- line 24 of the Algorithm 4). When the solution improves, the re-
ward is assigned, its value in the Q matrix is calculated, the value
of € decreases with the decay rate, and the episode ends.

Considering the specific characteristics of the optimization
problems, a neighborhood needs to be applied to a solution, from
a Descent/Ascent local search heuristic, only once. In consequence,
the visited states (neighborhoods) are registered. When all states
have been visited, the local search is finished. The same happens
after a certain number of iterations without improvement. For the
evaluation of the adaptive agent introduced here, the following
section presents the experiments performed.

6. Computational experiments

This section presents the computational experiments performed
in order to evaluate and test the AMAM framework. This frame-
work is implemented in Java language with JDK 1.8, using the IDE
Elipse neon 2. The experiments were executed using a computer
with processor Intel i7 - 4500U, 1.8 GHz, 16 GB DDR3 RAM and
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operational system Windows 7 Home Premium. It is important to
highlight that the tests presented here were executed in a common
notebook, with a single processor, showing the effectiveness of the
exposed framework.

In order to allow its evaluation, the proposed framework was
instantiated for two classical problems of Combinatorial Optimiza-
tion. The first problem instantiated is the Vehicle Routing Problem
with Time Window (VRPTW). The second problem instantiated is
the Unrelated Parallel Machine Scheduling Problem with Sequence-
Dependent Setup Times (UPMSP-ST). A description of these prob-
lems is presented in Section 4.

The 56 instances of VRPTW with 100 customers proposed by
Solomon (1987) were used. These instances are formed by three
different sets of customers (C-Cluster; R-Random; and RC-Random-
Cluster) in accordance with the geographic distribution considered.
Customer geographical positions are randomly generated in the R1
and R2 sets of problems. In C1 and C2 sets of problems, the ge-
ographical positions are clustered. In addition, a mixture of ran-
domized and clustered structures are used in RC1 and RC2 problem
sets. It is worthy mentioning that competing with the best litera-
ture results for these instances of VRPTW is out the scope of this
experiment.

The set of instances used for computational tests associated
with UPMSP-ST were proposed by Vallada and Ruiz (2011) and
are available at http://soa.iti.es/problem-instances. For evaluating
AMAM, 24 instances from this data set were chosen. These test
problems used involve combinations of 50 and 100 jobs, with 10,
15, 20 and 25 machines. As for VRPTW, the main objective of this
experiment is not to overcome the best results in the literature for
UPMSP-ST.

The experiments were conducted in order to analyze the per-
formance of the adaptive agent proposed here. The main objective
is to evaluate if the form of learning, embedded in the agent, has a
direct influence on the performance of the framework with respect
to the quality of the obtained results, both in terms of the individ-
ual point of view and in terms of the teamwork point of view.

For this evaluation, the tests were made with the adaptive
agent presented in the current proposal and with the adaptive
agent proposed in Silva et al. (2015). The tests were carried out us-
ing the same test conditions for the two adaptive agent structures
considered here and, as a consequence, the tests with the adaptive
agent proposed in Silva et al. (2015) were executed again.

The agents used in this experiment implement, as performed
in Silva et al. (2015), a variation of the Iterated Local Search (ILS)
metaheuristic (Lourenco, Martin, & Stiitzle, 2003), a well known
trajectory metaheuristic. This method is shown in Algorithm 6. In

Algorithm 6 Iterated Local Search (Lourenco et al., 2003).

1: procedure ILS

2 Xo < pfihInitialSolution();

3 x < localSearch(x,);

4 while (not reached the stopping condition) do
5: X' <« perturbation(x, level_perturbation);
6

7

8

9

X" < adaptiveLocalSearch(x');
if (acceptationCriteria(x, x”)) then

x < Xx";
: level _perturbation < 1;
10: else
11: level_perturbation + +;
12: end if

13: end while
14: end procedure

this algorithm, the perturbation of the solution, performed from
changes in the current solution, is implemented at levels, i.e., at

each iteration the perturbation function is changed if there is no
improvement in the solution (line 11), and returns to its first level
(line 9), if a better solution is found. The adaptiveLocalSearch(s’)
function implements the specific adaptive local search of each pro-
posal. The proposal described in Silva et al. (2015) is called here
ALS-LA (Adaptive Local Search - Learning Automata); the proposal
described in the current article is referred here as ALS-QLearning
(Adaptive Local Search - QLearning). For the computational tests
shown here, the values of the RL parameters (see Algorithm 1)
used in the experiments are ¥y =0.9, « = 0.1 and € = 0.05, with
decay rate given by 0.999.

The composition of the multi-agent system, used in the experi-
ments for each of the proposals, involved identical ILS agents and
the cooperation process described in Section 4. Four scenarios for
each one of the two proposals are used to evaluate the framework:

(i) a single ILS agent;

(ii) two identical ILS agents;
(iii) four identical ILS agents;
(iv) eight identical ILS agents;

In this context, the proposals presented were analyzed in five
ways:

(i) ALS-LA proposal performance: specific analysis of the results
obtained by the ALS-LA proposal, comparing the performance
of the scenario in which there is a single agent, which performs
the search in an isolated manner, with the performance of the
other scenarios (2 agents, 4 agents and 8 agents), in which a set
of agents cooperates in the search for the solution. This item
will allow us to evaluate the effectiveness of the cooperation
and the scalability of the framework using the ALS-LA proposal;

(ii) ALS-QLearning proposal performance: specific analysis of the
results obtained by the ALS-QLearning proposal, with the same
purposes of the previous item;

(iii) Comparison between the two proposals: comparison of the
means of solutions obtained by the two proposals (ALS-LA and
ALS-QLearning);

(iv) Performance of individual learning: comparison of the perfor-
mance of a single agent using each of the proposals (ALS-LA
and ALS-QLearning); and,

(v) Team performance: the influence of individual learning on the
cooperative process, through the use of two or more agents co-
operating to solve the problem, also evaluated for each of the
proposals (ALS-LA and ALS-QLearning).

Once the used algorithms are of stochastic nature, each one
of the eight evaluated scenarios, being four scenarios about the
ALS-LA proposal and four scenarios concerning the ALS-QLearning
proposal, were executed 30 times for each instance. The results
obtained in each one of these scenarios were compared using a
parametric hypothesis test, with a confidence level of 95%. The
parametric test used was the ANOVA variance analysis. This test
verifies if there are differences between the averages of the popu-
lations of evaluated solutions. In this way, the hypotheses should
be formulated as follows. Considering two scenarios SC1 and SC2,
the following hypotheses are raised to compare the average solu-
tions obtained in each one:

(i) Null hypothesis (Hp): the average of the solutions obtained in
scenarios SC1 and SC2 is equal. If the null hypothesis is not re-
jected, then there is no significant statistical difference between
the solutions obtained by the scenarios analyzed;

(ii) Alternative hypothesis (H;): the average of the solutions ob-
tained using SC1 is less than the average of the solutions ob-
tained by SC2. If the null hypothesis is rejected, then there is
statistical evidence (with 95% confidence level) that the solu-
tions obtained by SC1 are better than those obtained by SC2.
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Number of times each scenario was better with ALS-LA VRPTW - values obtained from the

parametric test.

Set of instances  Total instances per set  Scenarios
1agent 2 agents 4 agents 8 agents

c1 9 1 2 2 5

Cc2 8 0 0 4 5

R1 12 0 4 8 8

R2 1 1 3 4 9

RC1 8 0 2 2 7

RC2 8 0 0 6 4

Total 56 2 1 26 38

Table 4

Number of times each scenario was better with ALS-LA UPMSP-ST - values obtained from the

parametric test.

Set of instances  Total instances per set  Scenarios
1 agent 2 agents 4 agents 8 agents
50 jobs 16 0 1 3 16
100 jobs 8 0 0 1 8
Total 24 0 1 4 24

6.1. ALS-LA proposal

The analysis will begin by addressing the results obtained in
the four scenarios of the ALS-LA proposal for the two problems in-
stantiated. Tables 3 and 4 show the number of times that each sce-
nario of the ALS-LA proposal was better, for the VRPTW instances
and UPMSP-ST instances, respectively, based on the results of the
parametric test used. The objective here is to evaluate the scalabil-
ity of the proposals, that is, if the increase in the number of agents
involved in the solution influences the performance of the multi-
agent system.

For the VRPTW instances, the obtained results showed that
there is statistical evidence that, at 89.28% of the instances, the
scenarios with 2 or more agents were better than the scenario
with 1 single agent. On the other hand, for the UPMSP-ST in-
stances, the obtained results showed that there is statistical evi-
dence that using 2 or more agents were better at 100.00% of the
instances. Tables 3 and 4 also show that when the number of
agents used to solve the two problems is increased, the evaluation
function of the two problems decreases.

Figs. 17 and 18 use boxplot graphics to illustrate, through the
results obtained in the 30 executions of the R201 and R203 in-
stances of VRPTW, respectively, the improvement in the quality of
the solution with the addition of more agents to the solution pro-
cess. The same result can be observed in the boxplot graphic pre-
sented in Fig. 19, used to illustrate the results obtained for the 30
executions of the UPMSP-ST 1_50_10_S_1-9_1 instance.

It is important to highlight that, in some cases, the scenarios
tied with the best results, i.e., there was no statistical difference
between the averages of the solutions. In these cases, all the sce-
narios that matched the best results were counted.

6.2. ALS-Q learning proposal

In this section, we focus on the results obtained by the ALS-
QLearning proposal, introduced in the current article, for the two
problems instantiated.

Regarding the VRPTW, from the 56 instances analyzed, in 12
of them (21.42%), the ALS-QLearning proposal obtained the best
solution of the literature in all scenarios (including the scenario
with a single agent). Therefore, in these instances, there was no
statistical difference for comparison and, as a consequence, they
were excluded from this analysis. For the remaining 44 instances,

there is statistical evidence that, at 90.90% of them, the scenarios
with 2 or more agents were better than the scenario with 1 single
agent. Concerning the UPMSP-ST, there is statistical evidence that,
at 95.83% from the 24 instances analyzed, the scenarios with 2 or
more agents were better than the scenario with 1 single agent.

Tables 5 and 6 show the number of times that each scenario
of the ALS-QLearning proposal was better, for the VRPTW and
UPMSP-ST instances, respectively, based on the results of the para-
metric test used. As in Section 6.1, the objective is to evaluate the
scalability of the proposals. In a similar way to the results shown
in Tables 3 and 4, by the Tables 5 and 6, it is concluded that in-
creases the number of times that each scenario is better in so far
as the number of agents also grows.

Figs. 20 and 21 show examples of the effect of the addition of
agents in the solution process. This figure exhibits the solution due
to the instance R111, for VRPTW, and instance 1.50_15_S_1-99_1,
for UPMSP-ST problems, respectively, and reveals its improvement
in so far as the number of agents grows.

As described in relation to the results of the ALS-LA proposal,
for the VRPTW, the results obtained in some scenarios of the ALS-
QLearning proposal also tied with the best results in the literature.
In these cases, as in the analysis of the ALS-LA proposal, all the
scenarios that matched the best results were counted.

6.3. ALS-LA x ALS-Q learning

This section presents the comparison between averages values
of the solutions found for the proposals ALS-LA and ALS-QLearning,
evaluated in this experiment. This comparison addressed the two
problems instantiated. Sections 6.3.1 and 6.3.2 show the analysis of
these results.

6.3.1. VRPTW

The cost of a solution for VRPTW is calculated according to
Eqg. (1). In this equation, the priority is to minimize the number of
routes of the solution, i.e., the number of vehicles that are used. In
some cases, the solutions generated in the evaluated scenarios may
have different number of routes. If the number of routes is differ-
ent, it is not possible to compare the cost of these solutions. In
these cases, the comparison is made through the number of routes.
The instances that obtained the same number of routes were com-
pared in relation to the distance traveled. The same happens for
the instances that obtained different number of routes, but did not
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Fig. 17. Comparison of the ALS-LA scenarios in relation to the distance traveled - R201 instance.
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Table 5
Number of times each scenario was better with ALS-QLearning - values obtained from the
parametric test.

Set of instances  Total instances per set  Scenarios

1agent 2 agents 4 agents 8 agents

C1 3 0 1 1 2
Cc2 2 0 1 1 2
R1 12 0 2 5 1
R2 1n 0 4 4 9
RC1 8 1 3 6 8
RC2 8 0 2 4 6
Total 44 1 13 21 38
Table 6

Number of times each scenario was better with ALS-QLearning UPMSP-ST - values obtained
from the parametric test.

Set of instances  Total instances per set  Scenarios

1 agent 2 agents 4 agents 8 agents

50 jobs 16 0 0 2 14
100 jobs 8 0 1 1 8
Total 24 0 1 3 22
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Fig. 20. Comparison of the ALS-QLearning scenarios in relation to the distance traveled - R111 instance.
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Table 7
Number of instances where the ALS-QLearning proposal is better than the ALS-LA proposal, per scenario, considering the Number of Routes.

Set of instances Total instances per set  Total instances per set with different routes number  Scenarios

1 agent 2 agents 4 agents 8 agents

c1 9 5 5 4 2 4

c2 8 1 1 0 0 0

R1 12 12 8 10 9 1

R2 1n 2 1 0 0 1

RC1 8 8 7 6 8 8

RC2 8 3 3 2 2 1

Total of instances 56 31 25 22 21 25

Table 8

Number of instances where the ALS-QLearning proposal is better than the ALS-LA proposal, per scenario, considering the total distance traveled.
Set of instances Total instances per set  Total instances per set with equal routes number  Scenarios

1agent 2 agents 4 agents 8 agents

C1 9 4 4 4 4 4
Cc2 8 7 6 6 4 6
R1 12 0 0 0 0 0
R2 1 9 9 9 9 9
RC1 8 0 0 0 0 0
RC2 8 5 5 5 5 5
Total of instances 56 25 24 24 22 24
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Fig. 22.

present statistical difference in these values. In this case, the solu-
tions with number of routes that do not influence the result were
removed and, therefore, the statistical analysis was done with the
other solutions in relation to the distance traveled.

In relation to the statistical analysis and considering the num-
ber of solutions routes, the ALS-QLearning proposal obtained the
best results in the majority of instances and scenarios for VRPTW.
This proposal found the best number of routes known in the liter-
ature in 60.71% of the evaluated instances, while the ALS-LA pro-
posal achieved the best number of routes known in the literature
at only 26.78% instances.

In this context, the number of times ALS-QLearning was bet-
ter per scenario than ALS-LA was evaluated, considering the num-
ber of routes of the analyzed solutions. Table 7 shows the val-
ues concerning 31 instances. Regarding the 25 remain instances,
ALS-QLearning and ALS-LA obtained the same number of routes
and this situation is evaluated in Table 8 in the sequel. As can be
seen, the ALS-QLearning proposal obtained better results in most
of the analyzed instances. The results for groups of instances R1
and RC1 should be highlighted because the ALS-QLearning pro-
posal was able to improve the results found in the ALS-LA proposal
in all instances of these groups.

Comparison between ALS-LA and ALS-QLearning proposals in relation to the number of routes - RC106 instance.

Fig. 22 illustrates the situation where the ALS-QLearning pro-
posal achieves better results than the ALS-LA proposal. In this fig-
ure, the results for instance R106 show a reduction from 15 routes
(obtained by ALS-LA) to 12 routes (obtained by ALS-QLearning).

The 25 instances not addressed in the situation dealt with in
Table 7, that is, the ones that obtained the same number of routes
for both the ALS-SA proposal and the ALS-QLearning proposal,
were analyzed in Table 8 for the total distance traveled. This Table
shows the number of times there is statistical evidence that ALS-
QLearning was better than ALS-LA, regarding the distance traveled
and per scenario. A direct observation of Table 7 concludes that
the ALS-QLearning proposal obtained better results in most of the
analyzed instances.

Fig. 23 shows a good example where the values of ALS-
QLearning solutions are significantly better than ALS-LA solutions.
In this specific case, there is a reduction in the distance traveled
from 1609.4, obtained by ALS-LA, to the value of 1249.4, which is
equivalent to the best known result of the literature, obtained by
ALS-QLearning.

The performance of the individual learning and the team learn-
ing of the agents in the presented multi-agent environment were
also evaluated. Table 9 presents this analysis. Regarding individual
learning, the number of times that a single agent using the ALS-
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Table 9

Number of times ALS-QLearning is better than ALS-LA individually and as a team

VRPTW.

Set of instances

Total of instances per set

C1 9
C2 8
R1 12
R2 1n
RC1 8
RC2 8
Total 56

Scenarios

Individually In group

Value % Value %

9 1000 9 100.0
7 875 7 875
1 91.7 12 100.0
10 90.9 10 90.9
7 875 8 100.0
8 1000 8 100.0
52.0 929 54 96.4

QLearning proposal was better than a single agent using the ALS-
LA proposal was assessed (value presented in the third column and
the corresponding percentage value in the fourth column of the ta-
ble). Regarding the evaluation of the influence of learning in the
cooperative process, that is, in teamwork, the number of times the
ALS-QLearning proposal was better, in two or more scenarios, than
the ALS-LA proposal was also presented (value presented in the
fifth column and the corresponding percentage value in the fifth
column of the table).

At 92.9% of the instances, the parametric test used shows
that there is statistical evidence that ALS-Q Learning is better
than ALS-LA when using only one agent to solve the problem.
Regarding the use of two or more agents to solve the prob-
lem, at 96.4% of the used instances the parametric test shows
that there is statistical evidence that ALS-QLearning is better
than ALS-LA.

Fig. 24 presents an example of the distances traveled obtained
in the 30 runs of instance R203, for the four scenarios used in each
of the tested proposals (ALS-LA and ALS-Q Learning). It is impor-
tant to note how the values achieved by ALS-QLearning are better
than those found by ALS-LA, whether considering a single agent or
considering two or more agents. In addition, the values improve as
the number of agents involved in the search for the solution in-
creases.

6.3.2. UPMSP-ST

In relation to the statistical analysis and considering the
makespan value, the ALS-QLearning proposal obtained the best re-
sults in the majority of instances and scenarios for UPMSP-ST.

In this context, the number of times ALS-QLearning was better
per scenario than ALS-LA was evaluated, considering the makespan

of the analyzed solutions. Table 10 shows the values concern-
ing 24 instances. As can be seen, the ALS-QLearning proposal
obtained better results in most of the analyzed instances. The
results for groups of instances with 100 jobs should be high-
lighted because the ALS-QLearning proposal was able to improve
the results found in the ALS-LA proposal in all instances of these
groups.

Fig. 25 shows a good example where the values of ALS-
QLearning solutions are significantly better than ALS-LA solu-
tions. In this specific case, there is a reduction in the average
makespan from 273.00, obtained by ALS-LA, to 221.00, which is
equivalent to the best known result of the literature, obtained by
ALS-QLearning.

The performance of the individual learning and the team learn-
ing of the agents in the presented multi-agent environment were
also evaluated for the UPMSP-ST. Table 11 presents this analysis.
Just like in VRPTW, regarding individual learning, the number of
times that a single agent using the ALS-QLearning proposal was
better than a single agent using the ALS-LA proposal was evalu-
ated. This value is presented in the third column and the corre-
sponding percentage value is showed in the fourth column of the
table. Concerning the evaluation of the influence of learning in the
cooperative process, that is, in teamwork, the number of times the
ALS-QLearning proposal was better than the ALS-LA proposal in
two or more scenarios was also presented. This value is presented
in the fifth column and the corresponding percentage value is in
the fifth column of the table.

For 83.33% of the instances, the parametric test used shows that
there is statistical evidence that ALS-Q Learning is better than ALS-
LA when using only one agent to solve the problem. Regarding the
use of two or more agents to solve the problem, at 75.00% of the
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Fig. 24. Comparison between ALS-LA and ALS-QLearning proposals in relation to the distance traveled — R203 instance.
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Fig. 25. Comparison between ALS-LA and ALS-QLearning proposals in relation to the makespan value - 1_100_10_S_1-124_1 instance.

Table 10
Number of instances where the ALS-QLearning proposal is better than the ALS-LA proposal, per
scenario, considering the total makespan UPMSP-ST.

Set of instances Total instances per set  Scenarios

1 agent 2 agents 4 agents 8 agents

50 jobs 16 12 10 11 12
100 jobs 8 8 8 8 8
Total of instances 24 20 18 19 20
Table 11
Number of times ALS-QLearning is better than ALS-LA individually and as a team for
UPMSP-ST.

Set of instances  Total of instances per set  Scenarios

Individually In group

Value % Value %
50 jobs 16 12 75.00 10 62.50
100 jobs 8 8 100.0 8 100.0
Total 24 20 83.33 18 75.00

used instances the parametric test shows that there is statistical As in VRPTW, it is important to note how the values achieved by
evidence that ALS-QLearning is better than ALS-LA. ALS-QLearning are better than those found by ALS-LA, whether

Fig. 26 presents an example of the makespan obtained in the 30 considering a single agent or considering two or more agents. In
executions of the instance [_100_10_S_1-9_1, for the four scenarios addition, the values improve as the number of agents involved
used in each of the tested proposals (ALS-LA and ALS-QLearning). in the search for the solution increases. In this case, the ALS-
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Fig. 26. Comparison between ALS-LA and ALS-QLearning proposals in relation to the makespan value - 1_.100_10_S_1-9_1 instance.

Table 12
Average costs of the ALS-AL proposal for VRPTW.
Class BKS ALS-AL
1 Agent 2 Agents 4 Agents 8 Agents
Cost NR Cost NR Cost NR Cost NR Cost NR
C1 7455.42 90.00 11468.59 95,00 11106,00 93.73 10867.57 92.5 10722.16 93.57
C2 4718.87 24.00 5963.84 25,00 5760.4 24.57 5462.43 24,00 5336.65 24,00
R1 14524.02 143.00 16372.98 162.6 16303.79 162.67 16448.36  158.6 16051.72 158.93
R2 10461.33 30.00 12729.07 35.1 12400.8 3417 12310.51 34.37 12000.78 34,00
RC1 11073.32 92.00 12565.04  107.47 12355.63 105.43 12325.24 106.33 12097.62 103.87
RC2 8953.92 26.00 1104554  30.17 10931.74 29.47 10600.83  28.9 11220.26 28.47
TOTAL 57186.88 405.00 70145.06 45534 68858.36 450.04 6801494 44440 67429.19 442.84
Table 13
Average costs of the ALS-QLearning proposal for VRPTW.
Class BKS ALS-QLearning
1 Agent 2 Agents 4 Agents 8 Agents
Cost NR Cost NR Cost NR Cost NR Cost NR
c1 7455.42 90.00 7489.31 90.00 7459.83 90.00 7466.76 90.00 7446.39 90.00
c2 4718.87 24.00 4811.19 24.00 4720.42 24.00 474331 24.00 4716.08 24.00
R1 14524.02  143.00 14743.21 153.53  14566.80 152,63 14611.01 151.37 14567.00 150.70
R2 10461.33 30.00 10787.21 34.00 10567.68 33,57 10562.31 33.87 10522.76  33.03
RC1 11073.32 92.00 11179.67 102.80  11186.01 100,93 11153.62 97.87 11161.14 97.53
RC2 8953.92 26.00 9531.43 27.00 9353.25 27.00 9295.74 27.00 9316.87 27.00
TOTAL 57186.88 405.00 58542.02 431.33 57853.99 428,13 57832.76 42410 57730.25 422.27

QLearning proposal found the best known result of the literature
for all four scenarios.

6.4. Computational results for the average solution

For completeness, the computational results associated to the
average solutions are shown.

Table 12 presents the average costs distance traveled (DT) and
number of routes (NR) of the solutions obtained with the 30 ex-
ecutions of ALS-AL proposal. Table 13, on the other hand, shows
the average costs of the solutions obtained with the 30 exe-
cutions of ALS-QLearning proposal. In addition, Table 14 shows
the average value of the makespan for the solutions obtained
with the 30 executions with the ALS-AL proposal. In its turn,
Table 15 includes the average value of the makespan for the so-
lutions obtained with the 30 executions with the ALS-QLearning
proposal.

From the analysis of these tables, some observations arose. The
first observation, valid for both problems and proposals, is the ef-
fect of increasing the number of agents in use in the framework.

There is a considerable improvement in the results obtained by in-
creasing the number of agents in action in the framework. In the
case of VRPTW, this fact is valid both with respect to the total
number of vehicles and the total distance traveled, and regardless
of the instance class evaluated. Clearly, therefore, there is an iden-
tification of a scalabilty effect on the number of agents. This effect,
by the way, is also reported in applications of the A-Teams archi-
tecture (Barbucha et al., 2010).

The second observation is about the comparison between the
two learning techniques and their results. Independently of the
class of the problem evaluated, the great superiority of the results
obtained with the ALS-QLearning proposal in relation to those ob-
tained with the ALS-AL proposal, already previously proven in the
statistical analysis, is also shown by the direct presentation of the
results in these tables.

In addition, a noticeable issue is the results concerning the
VRPTW instances from Table 13 are strongly competitive with re-
spect to the total distance traveled, even though this is not a ques-
tion put as a goal in the development of this framework at this
moment. The total distance traveled found with the application
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Table 14

Average costs of the ALS-AL proposal for UPMSP-ST.
Instance BKS Scenarios

1 agent 2 agents 4 agents 8 agents

1.50_10_S_1-9_1 67.00 8115 77.70 75.65 73.55
1.50_10_S_1-49_1 77.00 92.80 88.25 87.55 85.70
1.50_10_S_1-99_1 118.00 131.85 128.10 123.05 123.25
1.50_10_S_1-124_1 114.00 132.00 130.34 124.40 121.50
1.50_15_S_1-9_1 36.00 46.50 43.85 43.35 42.35
1.50_15_S_1-49_1 59.00 70.30 68.40 67.00 66.70
1.50_15_S_1-99_1 78.00 87.05 85.40 82.45 80.45
1.50_15_S_1-124_1 75.00 92.85 90.30 84.85 81.25
1.50_20_S_1-9_1 31.00 40.15 37.90 36.45 35.25
1.50_20_S_1-49_1 39.00 63.65 60.65 60.80 57.15
1.50_20_S_1-99_1 49.00 68.05 65.35 65.55 65.60
1.50_20_S 1-124_1 52.00 71.70 68.05 66.15 66.50
1.50_25_S_1-9_1 22.00 26.60 24.90 23.55 22.60
1.50_25_S_1-49_1 25.00 49.70 50.20 46.30 44.95
1.50_25_S_1-99_1 35.00 60.30 59.50 56.40 51.05
1.50_25_S 1-124_1 37.00 62.30 59.40 59.60 57.20
1.100_10_S_1-9_1 131.00 144.73 141.80 139.90 137.87
1.100_10_S_1-49_1 159.00 201.07 196.77 191.40 188.33
1.100_10_S_1-99_1 212.00  266.53 256.83 253.30 246.33
1.100_10_S_1-124_1  221.00  270.87 265.30 258.83 25423

1.100_15_S_1-9_1 68.00 8177 8120 79.07 77.80

1.100_15_S_1-49_1 97.00 137.37 132.40 128.80 123.47
1_.100_15_S_1-99_1 123.00 167.50 159.27 153.70 151.70
1.100_15_S_1-124_.1  141.00 189.07 179.20 17413 169.40
Table 15
Average costs of the ALS-QLearning proposal for UPMSP-ST.
Instance BKS Scenarios
1agent 2 agents 4 agents 8 agents

1.50_10_S_1-9_1 67.00 72.03 71.10 69.37 68.20
1.50_10_S_1-49_1 77.00 83.50 81.60 79.70 78.90
1.50_10_S_1-99_1 118.00 121.30 118.20 116.67 11513
1.50_10_S_1-124_1 114.00 119.30 118.34 118.00 116.66
1.50_15_S_1-9_1 36.00 45.37 44.17 42.57 41.30
1.50_15_S_1-49_1 59.00 66.63 66.83 66.60 66.17
1.50_15_S_1-99_1 78.00 78.70 74.23 72.77 70.27
1.50_15_S_1-124_1 75.00 80.60 77.80 76.13 75.17
1.50_20_S_1-9_1 31.00 41.10 38.40 37.07 35.43
1.50_20_S_1-49_1 39.00 61.43 60.50 58.67 56.37
1.50_20_S_1-99_1 49.00 65.37 65.50 65.53 64.63
1_.50_20_S_1-124_1 52.00 66.23 65.90 66.13 65.53
1.50_25_S_1-9_1 22.00 27.87 25.87 23.57 22.67
1.50_25_S 1-49_1 25.00 50.43 48.23 44.27 42.20
1.50_25_S_1-99_1 35.00 59.37 56.10 54.30 50.17
1.50_25_S 1-124_1 37.00 60.93 60.27 56.53 54.83
1.100_10_S_1-9_1 131.00 131.60 13113 130.90 130.93
1.100_10_S_1-49_1 159.00 179.83 175.53 172.27 170.63
1.100_10_S_1-99_1 212.00 239.37 230.30 22730 224.80
1.100_10_S_1-124_.1 221.00 243.07 236.00 231.77 229.13

1.100_15_S_1-9_1 68.00 75.43 75.57 73.37 72.43

1.100_15_S_1-49_1 97.00 116.27 115.50 112.47 108.63
1.100_15_S_1-99_1 123.00 146.60 141.50 136.33 134.77
1.100_15_S_1-124_1 141.00 163.93 158.37 156.70 150.97

of the ALS-QLearning proposal is only 0.95% above the best value
found in the literature for the VRPTW solution using metaheuris-
tics. The total number of routes is 4.26% above (i.e., 17 routes) of
the total number of routes associated with the best results in the
literature.

7. Conclusions and future directions

This paper presented AMAM, a multi-agent framework for
optimization using metaheuristics. Its main characteristic is to
facilitate the hybridization of metaheuristics through a multi-
agent structure. Each agent implements a heuristic / metaheuris-
tic and the environment in which the agents act and dia-

logue is the search space of the combinatorial optimization be-
ing solved. Each agent act autonomously in this environment
and interacts cooperatively with it and with the other agents.
The interaction between the agents allows the metaheuristic hy-
bridization. The latest version of the AMAM framework, released
in January 2018, is available at https://github.com/mamelials/
AMAM-Multiagente-Architecture-for-Metaheuristics, licensed un-
der the GNU LGPLv3 license.

The main objective of this article was to propose new self-
adaptive skills for the framework agents. Through these skills, the
agents modify their actions based on the experience acquired in
the interaction with the environment and with the other agents.
The concepts of reinforcement learning, more specifically using the
Q-Learning algorithm, are central in the definition of these new
adaptive skills. The learning is used to select the application order
of the neighborhood structures of the local search based on the
VND heuristic.

In order to accomplish the validation of the AMAM framework
with reinforcement learning, computational experiments were per-
formed, using, as a case study for this purpose, the Vehicle Rout-
ing Problem with Time Window and Unrelated Parallel Machine
Scheduling Problem with Sequence-Dependent Setup Times. The
main objective of the experiments was to evaluate the perfor-
mance of the adaptive agent. For this evaluation, the tests were
made with the adaptive agent presented in the current proposal,
called ALS-QLearning, and with the adaptive agent proposed in
Silva et al. (2015), called ALS-LA.

The results obtained show that there are statistical evidences
that the ALS-QLearning proposal obtained the best results in most
instances and scenarios. In this way, the direct influence of the
form of learning embedded in the agent is confirmed by the ex-
periments, both from the individual point of view, and from the
point of view of teamwork.

Additionally, for the two evaluated proposals (ALS-LA and ALS-
QLearning), the scenarios with 2 or more agents were significantly
higher in performance than the scenarios with 1 single agent.
Thus, it is confirmed that the cooperation between the agents in-
fluences the quality of the solutions and the scalability of the
framework, since, with the addition of new agents, there is an im-
provement in the results. The use of learning to assign adaptive
capabilities to agents places the AMAM framework a step ahead of
other frameworks in the literature as an alternative to the need to
adapt the methods to specific aspects of the problem. In this way,
it also makes possible future researches, such as the introduction
of new forms of learning to improve adaptive capacities, as well as
the study of the insertion of reinforcement learning methodologies
among the agents.
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