
Algorithms based on VNS for solving the Single
Machine Scheduling Problem with Earliness

and Tardiness Penalties

B. F. Rosa a,1 M. J. F. Souza b,2 S. R. de Souza a,3

a Federal Center of Technological Education of Minas Gerais (CEFET-MG),
Belo Horizonte, MG, 30510-000, Brazil

b Federal University of Ouro Preto (UFOP), Ouro Preto, MG, 35400-000, Brazil

Abstract

This work implements and compares four algorithms based on Variable Neighbor-
hood Search (VNS), named RVNS, GVNSf , GVNSr and GVNSrf , for solving the
Single Machine Scheduling Problem with Earliness and Tardiness Penalties (SM-
SPETP). Computational experiments showed that the algorithm GVNSf obtained
better-quality solutions compared with the other algorithms, including an algorithm
found in the literature. The algorithms GVNSr and GVNSrf obtained solutions
close to the GVNSf , and outperformed the algorithm of the literature, both with
respect to the quality of the solutions and the computational times.

Keywords: Single Machine Scheduling, Sequence-Dependent Setup Times, VNS.

1 Email: brunorosa@div.cefetmg.br
2 Email: marcone@iceb.ufop.br
3 Email: sergio@dppg.cefetmg.br

Available online at www.sciencedirect.com

Electronic Notes in Discrete Mathematics 66 (2018) 47–54

1571-0653/© 2018 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

https://doi.org/10.1016/j.endm.2018.03.007

http://www.elsevier.com/locate/endm
https://doi.org/10.1016/j.endm.2018.03.007
https://doi.org/10.1016/j.endm.2018.03.007
http://www.sciencedirect.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.endm.2018.03.007&domain=pdf


1 Introduction

This work addresses the Single Machine Scheduling Problem with Earliness
and Tardiness Penalties (SMSPETP). In the addressed problem there is a
time window for each job. Machine idle is allowed, even if there is a job
to be performed. Besides this, it is necessary to setup the machine be-
tween two consecutive jobs and the setup times are sequence-dependent. Ac-
cording to the notation employed by [5], the SMSPET is represented by
1/sjk/

∑n
j=1w

′
jEj +

∑n
j=1w

′′
jTj .

The problem to be dealt consists of sequencing and determining the time
in which jobs must be performed in order to minimize the weighted sum of
earliness and tardiness penalties in the execution of the jobs. There are a
variety of applications of this problem in JIT manufacturing, semi-conductor
manufacturing, chemical processing, PERT/CPM scheduling, and video on
demand services, among others [3]. Since it is NP-hard problem [1], it is
usually solved by heuristic methods, among them [8,6,7].

In this work, algorithms based on Variable Neighborhood Search – VNS [2]
for solving the SMSPETP are proposed and tested. The determination of the
optimal starting date for the execution of each job belonging to the sequence
generated by these algorithms is made by the Idle Time Insertion Algorithm
(ITIA) of [7]. Computational experiments are realized in order to compare
the proposed algorithms with the best algorithm of [7].

The remaining of this work is organized as follows. In Section 2 the SM-
SPETP is described in details. The proposed algorithms are presented in
Section 3, while in Section 4 the results are showed and analyzed. In Section
5 the work is concluded.

2 Characteristics of the addressed problem

The SMSPETP has the following characteristics: (i) a single machine must
process a set I of n jobs; (ii) for each job x ∈ I, there is a processing time Px

and a time window [Ex, Tx] in which the job x should preferably be completed
(Ex indicates the earliest due date and Tx is the tardiest due date); (iii) if job
x is completed before Ex, then there is a cost of αx per unit of earliness time;
(iv) if job x is completed after Tx, there is a cost of βx per unit of tardiness
time; (v) the jobs completed within their time windows do not incur costs;
(vi) the machine can perform only one job at a time and once the process is
initiated, it cannot be interrupted; (vii) all jobs are available for processing
starting from time 0; (viii) between two consecutive jobs x and y ∈ I, a setup

B.F. Rosa et al. / Electronic Notes in Discrete Mathematics 66 (2018) 47–5448



time of Sxy is required (it is assumed that the time for setting up the machine
in order to process the first job in the sequence is equal to 0); (ix ) idle time
between the execution of two consecutive jobs is allowed.

The objective is to determine a job sequence X of I and the associated
starting dates for executing the jobs that minimize the weighted sum of the
earliness and tardiness for each job, that is, to minimize the value of:

F (X) =
∑

x∈I

(
αx ·max(0, Ex − Cx) + βx ·max(0, Cx − Tx)

)
, (1)

where Cx represents the time of completion of job x ∈ I in an optimal schedul-
ing of the sequence X.

The resolution of this problem involves two actions, which must be per-
formed in sequence: (i) determine the job processing sequence, i.e., the order
in which the jobs must be executed; and (ii) determine the starting date for
each job, such that the weighted sum of earliness and tardiness for all jobs is
minimized.

3 Algorithms based on VNS applied to SMSPETP

Four algorithms based on Variable Neighborhood Search (VNS) metaheuristic
[2] were tested for solving SMSPETP: (i) Reduced Variable Neighborhood
Search – RVNS; (ii) General Variable Neighborhood Search – GVNSf ; (iii)
GVNSr; and (iv) GVNSrf . All of them use the classic VNS algorithm, which
is presented by the Algorithm 1.

Algorithm 1 VNS(I, n, F (.), N1(.), N2(.), N3(.),VNSmax)

1: X ← InitialSolution(I, n);
2: Iter ← 0; f� ← F (X);
3: while Iter < VNSmax do
4: k ← 1; Iter ← Iter + 1;
5: while k ≤ 3 do
6: Randomly generates a neighbor X ′ ∈ Nk(X);
7: X ′′ ← LocalSearch(X ′, F (.));
8: if F (X ′′) < F (X) then
9: X ← X ′′; f� ← F (X); k ← 1; Iter ← 0;
10: else
11: k ← k + 1;
12: return f�;

B.F. Rosa et al. / Electronic Notes in Discrete Mathematics 66 (2018) 47–54 49



In the Algorithm 1, VNSmax indicates the maximum number of iterations
without improvement in the best solution found. The details of the procedures
InitialSolution, F and LocalSearch, as well as those for the neighborhoods N1,
N2 and N3 are presented in the next subsections. The first tested algorithm,
named RVNS, consists in excluding the procedure LocalSearch, correspond-
ing to line 7 of Algorithm 1. The second tested algorithm, called GVNSf ,
uses VNDf as the local search procedure; the third tested algorithm, named
GVNSr, uses, as the local search, the procedure VNDr. The last algorithm,
named GVNSrf , consists in applying the local search VNDf after GVNSr.
The local search procedures VNDr and VNDf are described in Subsection 3.4.

3.1 Initial solution construction

A solution X for the SMSPETP with n jobs is represented by a vector of n
positions. Each index i = 1, 2, . . . , n indicates the job to be executed at
position i of X. For example, in the sequence X = (5, 1, 2, 6, 4, 3), job 5 is
the first to be executed, and job 3 is the last.

An initial solution is constructed by an adaptation of the Earliest Due
Date (EDD) heuristic [5]. The procedure initializes with a null sequence. For
each iteration, the job not yet sequenced that has the completion window with
the smallest starting date is inserted at the end of the current subsequence.
Ties are broken by choosing the job that has the completion window with
the smallest ending date. If the tie persists, a job is chosen randomly. The
construction procedure is stopped when all the jobs are sequenced.

3.2 Neighborhoods of a solution

Such as in [7], three types of movements are used to explore the solution space
of the problem: (i) pairwise interchange; (ii) one job reallocation; and (iii) k-
jobs subsequence reallocation, with 1 ≤ k < n. These movements define the
neighborhoods N1, N2 and N3, respectively.

3.3 Evaluation of a solution

A solution X is evaluated by the function F described in Eq. (1). The optimal
date of each job of X is obtained by applying the algorithm ITIA of [7].

3.4 Local search methods

Two local search procedures, based on the Variable Neighborhood Descent –
VND method [4], are used: (i) VNDf ; and (ii) VNDr. Both use movements

B.F. Rosa et al. / Electronic Notes in Discrete Mathematics 66 (2018) 47–5450



based on neighborhoods N1, N2, and N3 in order to explore the solution space.

The local search VNDf uses the following deterministic sequence of local
searches: (LS1) First Improvement using the neighborhood N1; and (LS2)
First Improvement using the neighborhood N3. When there are not neighbor
solutions X ′ that improve the current solution X during the local search LS1,
then the neighborhood is changed to the next one (N3), that is, the local
search LS2 is applied. LS2 initializes with 1-job reallocation movements. If it
is not possible to improve the current solution with these movements, then the
size of the subsequence reallocations is increased in one unit, that is, 2-jobs
subsequence reallocations are used. The maximum size of the subsequence
reallocation is n − 1. Whenever a solution X ′ that improves the current one
X is found, then X ′ becomes the new current solution and the search returns
to the local search LS1. The method VNDf finishes when the local search
LS2 does not improve the solution from the local search LS1. In this case,
the final solution is a local optimum in relation to the neighborhoods N1 and
N3. It is important to note that the neighborhood N2 uses 1-job reallocation
movements. Thus, as N2 is contained in N3, then the final solution of the
method VNDf is also a local optimum in relation to the neighborhood N2.

The local search VNDr uses the following sequence of local searches: (LS3)
Random Descent using the neighborhood N1; (LS4) Random Descent using
the neighborhood N2; and (LS5) Random Descent using the neighborhood
N3. When a solution X ′ that improves the current one X is found, then X ′

becomes the new current solution and the search returns to the local search
LS3. After VNDmax iterations without improvement, the next local search
is triggered. The method VNDr is finished when the current solution is not
improved in these three local searches.

4 Computational experiments

The algorithms RVNS, GVNSf , GVNSr and GVNSrf , as well as the local
search methods VNDf and VNDr were implemented in C++, using the compiler
g++, version 4.8.5, for their execution. A set of instances of [7], involving 10,
20, 30, 40, 50 and 75 jobs, were used in order to test these algorithms. As
each set contains 16 instances, then 96 instances were used.

The experiments were performed on a computer with Intel R© Xeon(R) CPU
E5620 @ 2.40GHz × 16, with 48 GB of RAM and CentOS Linux 7 operational
system. Although the processor of this computer has more than one core, the
algorithms are not optimized for multi-processing.

In order to compare the results produced by the algorithms, the relative

B.F. Rosa et al. / Electronic Notes in Discrete Mathematics 66 (2018) 47–54 51



average deviation, calculated by the expression Δavg
i =

(
f
A

i −f �
i

)
/f �

i was used.
In this expression, f �

i represents the best value to instance i found by the best

algorithm of [7] and f
A

i represents the average value produced by algorithm A.
The smaller the value of Δavg

i is, the better the algorithm will be.

Initially, the set of 50-jobs instances was used to calibrate the parameter
VNDmax of the local search VNDr. The values 5n, 7n, 9n, 11n and 13n
were experimented, where n represents the number of jobs. Each instance was
solved 30 times by this procedure. The results are reported in Table 1. In this
table, the column Δavg shows the average values of the gaps (Δavg

i ) in each
instance i, while the column t shows the average required time (in seconds)
for solving this set of instances.

Table 1
Influence of the values VNDmax in the procedure VNDr for 50-jobs instance set

3n 5n 7n 9n 11n 13n

Δavg t Δavg t Δavg t Δavg t Δavg t Δavg t

(%) (s) (%) (s) (%) (s) (%) (s) (%) (s) (%) (s)

15.18 0.03 11.62 0.04 9.62 0.05 8.32 0.06 7.62 0.08 7.19 0.09

According to Table 1, as the value of VNDmax is increased, the better is the
average value of the solutions and the greater is the average time demanded.
The difference between the value of Δavg with VNDmax = 11n and the value of
Δavg with VNDmax = 13n is lower than 0.5%. In addition, the time demanded
with VNDmax = 13n is longer than the time required with VNDmax = 11n.
For these reasons and as the local search is applied many times, the value of
VNDmax was set at 11n in the other experiments.

In order to calibrate the parameter VNSmax of the proposed algorithms,
the set of 30-jobs instances was used. The following values are tried: n, 2n,
3n, 4n and 5n, where n represents the number of jobs. Each instance was
solved 30 times by the algorithm GVNSf and the results are summarized in
Table 2. In this Table, the columns “Δavg” and “t” have the same meaning
of Table 1.

According to Table 2, as the value of VNSmax is increased, the better is the
average value of the solutions and the greater is the average time demanded.
When VNSmax > 2n, the difference between the values of Δavg is less than
0.05%, but the time required grows a lot. Thus, the value of VNSmax was
fixed at 2n in the algorithms RVNS, GVNSf , GVNSr and GVNSrf .

The results obtained by the proposed algorithms, as well as the best algo-
rithm of [7], are reported in Table 3. In this table, the first column shows the

B.F. Rosa et al. / Electronic Notes in Discrete Mathematics 66 (2018) 47–5452



Table 2
Influence of the values of VNSmax in algorithm GVNSf for 30-jobs instance set

1n 2n 3n 4n 5n

Δavg t Δavg t Δavg t Δavg t Δavg t

(%) (s) (%) (s) (%) (s) (%) (s) (%) (s)

0.10 3.91 0.05 7.09 0.04 10.07 0.04 13.35 0.03 16.24

number of jobs for each set of instances. The columns “Δavg” and “t” have
the same meaning of the Table 1.

Table 3
Results obtained by the algorithms RVNS, GVNSf , GVNSr and GVNSrf

[7] RVNS GVNSf GVNSr GVNSrf

n Δavg t Δavg t Δavg t Δavg t Δavg t

(%) (s) (%) (s) (%) (s) (%) (s) (%) (s)

10 0.00 0.03 8.64 0.00 0.00 0.02 0.00 0.02 0.00 0.02

20 0.01 0.42 14.26 0.00 0.13 0.68 0.04 0.34 0.04 0.34

30 0.17 2.31 16.74 0.00 0.05 7.20 0.14 1.92 0.14 1.93

40 0.25 8.61 18.21 0.01 0.03 40.91 0.15 6.85 0.15 6.88

50 0.52 24.69 18.42 0.02 0.04 159.07 0.27 21.42 0.27 21.55

75 0.98 172.61 22.18 0.07 -0.18 1972.85 0.56 155.71 0.54 162.65

According to Table 3, GVNSf was the algorithm with the best performance
in relation to the quality of the average solutions. Except in 20-jobs instances,
it outperformed all the other algorithms, including the best one of [7]. It is
also important to note that it found new best solutions in 75-jobs instances.
However, this algorithm required a very high processing time. On the other
hand, the algorithms GVNSr and GVNSrf have a very similar performance
and both also outperformed the best algorithm of [7]. In fact, except in 20-
jobs instances, both presented better solutions and required less processing
time.

5 Conclusions
This work deals with the single machine scheduling problem with distinct time
windows and sequence-dependent setup times (SMSPETP). Four algorithms
based on VNS metaheuristic were proposed: RVNS, GVNSf , GVNSr and
GVNSrf .

B.F. Rosa et al. / Electronic Notes in Discrete Mathematics 66 (2018) 47–54 53



Computational results showed that the algorithm GVNSf outperformed
the others algorithms in relation to the solution quality, including the best
algorithm of [7]. However, this algorithm demanded a high processing time.
On the other hand, the algorithms GVNSr and GVNSrf have proved to be
a good alternative for solving SMSPETP, since they obtained solutions close
to the GVNSf , outperformed the best algorithm of [7], and required a much
shorter processing time.

Acknowledgement
The authors thank FAPEMIG, CNPq, CEFET-MG and UFOP for supporting
the development of this research.

References

[1] Allahverdi, A., J. N. Gupta and T. Aldowaisan, A review of scheduling research
involving setup considerations, Omega 27 (1999), pp. 219–239.

[2] Hansen, P., N. Mladenović and J. A. M. Pérez, Variable neighbourhood search:
methods and applications, 4OR 6 (2008), pp. 319–360.

[3] Janiak, A., W. A. Janiak, T. Krysiak and T. Kwiatkowski, A survey on scheduling
problems with due windows, European Journal of Operational Research 242
(2015), pp. 347–357.

[4] Mladenović, N. and P. Hansen, Variable neighborhood search, Computers &
Operations Research 24 (1997), pp. 1097–1100.

[5] Pinedo, M., “Scheduling: Theory, Algorithms, and Systems,” Springer New York,
2012, 4th edition.

[6] Ribeiro, F. F., M. J. F. Souza and S. R. De Souza, An adaptive genetic algorithm
to the single machine scheduling problem with earliness and tardiness penalties,
in: Advances in Artificial Intelligence - SBIA 2010, Lecture Notes in Computer
Science 6404, Springer Berlin Heidelberg, 2010, pp. 203–212.

[7] Rosa, B. F., M. J. F. Souza, S. R. de Souza, M. F. de França Filho, Z. Ales
and P. Y. P. Michelon, Algorithms for job scheduling problems with distinct
time windows and general earliness/tardiness penalties, Computers & Operations
Research 81 (2017), pp. 203–215.

[8] Souza, M., L. Ochi and N. Maculan Filho, Minimizing earliness and tardiness
penalties on a single machine scheduling problem with distinct due windows and
sequence-dependent setup times, in: Proc. of the ALIO/EURO 2008 Conference,
Buenos Aires, 2008.

B.F. Rosa et al. / Electronic Notes in Discrete Mathematics 66 (2018) 47–5454


	Introduction
	Characteristics of the addressed problem
	Algorithms based on VNS applied to SMSPETP
	Initial solution construction
	Neighborhoods of a solution
	Evaluation of a solution
	Local search methods

	Computational experiments
	Conclusions
	References

