
European Journal of Operational Research 270 (2018) 1014–1027

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Production, Manufacturing and Logistics

Large neighborhood-based metaheuristic and branch-and-price for the

pickup and delivery problem with split loads

Matheus Nohra Haddad

a , ∗, Rafael Martinelli b , Thibaut Vidal c , Simone Martins a ,
Luiz Satoru Ochi a , Marcone Jamilson Freitas Souza

d , Richard Hartl e

a Instituto de Computação, Universidade Federal Fluminense, Rua Passo da Pátria, 156 - São Domingos, Niterói RJ 24210-240, Brazil
b Departamento de Engenharia Industrial, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente, 225 - Gávea, Rio de Janeiro RJ

22451-900, Brazil
c Dpt. de Informática, Pontifícia Universidade Católica do Rio de Janeiro Rua Marquês de São Vicente, 225 - Gávea, Rio de Janeiro RJ 22451-900, Brazil
d Departamento de Computação, Universidade Federal de Ouro Preto, Campus Universitário, Morro do Cruzeiro, Ouro Preto - MG 3540 0-0 0 0, Brazil
e Department of Business Administration, Universität Wien, Oskar-Morgenstern-Platz 1, Vienna A-1090, Austria

a r t i c l e i n f o

Article history:

Received 10 October 2016

Accepted 10 April 2018

Available online 13 April 2018

Keywords:

Transportation

Vehicle routing

Pickup and delivery

Split loads

Metaheuristics

Branch-and-price

a b s t r a c t

We consider the multi-vehicle one-to-one pickup and delivery problem with split loads, a NP-hard prob-

lem linked with a variety of applications for bulk product transportation, bike-sharing systems and inven-

tory re-balancing. This problem is notoriously difficult due to the interaction of two challenging vehicle

routing attributes, “pickups and deliveries” and “split deliveries”. This possibly leads to optimal solutions

of a size that grows exponentially with the instance size, containing multiple visits per customer pair,

even in the same route. To solve this problem, we propose an iterated local search metaheuristic as well

as a branch-and-price algorithm. The core of the metaheuristic consists of a new large neighborhood

search, which reduces the problem of finding the best insertion combination of a pickup and delivery

pair into a route (with possible splits) to a resource-constrained shortest path and knapsack problem.

Similarly, the branch-and-price algorithm uses sophisticated labeling techniques, route relaxations, pre-

processing and branching rules for an efficient resolution. Our computational experiments on classical

single-vehicle instances demonstrate the excellent performance of the metaheuristic, which produces new

best known solutions for 92 out of 93 test instances, and outperforms all previous algorithms. Experimen-

tal results on new multi-vehicle instances with distance constraints are also reported. The branch-and-

price algorithm produces optimal solutions for instances with up to 20 pickup-and-delivery pairs, and

very accurate solutions are found by the metaheuristic.

© 2018 Elsevier B.V. All rights reserved.

(

d

p

a

d

b

o
1. Introduction

The classical vehicle routing problem (VRP) aims to find

minimum-distance itineraries to service a set of geographically dis-

tributed customers with a fleet of vehicles, in such a way that

each customer is visited once and the capacity of each vehi-

cle is respected. This important combinatorial optimization prob-

lem has been the focus of extensive research since the 1960’s
∗ Corresponding author.

E-mail addresses: matheushaddad@ic.uff.br (M.N. Haddad), martinelli@puc-

rio.br (R. Martinelli), vidalt@inf.puc-rio.br (T. Vidal), simone@ic.uff.br (S.

Martins), satoru@ic.uff.br (L.S. Ochi), marcone@iceb.ufop.br (M.J.F. Souza),

richard.hartl@univie.ac.at (R. Hartl).

r

d

p

l

f

s

n

e

https://doi.org/10.1016/j.ejor.2018.04.017

0377-2217/© 2018 Elsevier B.V. All rights reserved.
 Laporte, 2009; Laporte, Ropke, & Vidal, 2014; Vidal, Crainic, Gen-

reau, & Prins, 2013). Over the years, the classical version of the

roblem has been increasingly-well solved, but as new applications

re discovered, many additional constraints, objectives, and other

ecision subsets, called “attributes” in Vidal et al. (2013) , are com-

ined with the classical problem, leading to new challenges.

A classical restriction of the VRP is that each delivery is done in

ne block by a single vehicle. Dror and Trudeau (1989) raised this

estriction, allowing the total demand of a customer to be served

uring several visits, leading to the split delivery vehicle routing

roblem (SDVRP). At first, one might think that allowing split de-

iveries results in increased costs since more visits may be per-

ormed. Yet, this relaxation leads to a larger set of solutions, pos-

ibly opening the way to lower costs. The SDVRP is known to be

otoriously more difficult to solve than the classical VRP from an

xact method standpoint, and requires more sophisticated classes

https://doi.org/10.1016/j.ejor.2018.04.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2018.04.017&domain=pdf
mailto:matheushaddad@ic.uff.br
mailto:martinelli@puc-rio.br
mailto:vidalt@inf.puc-rio.br
mailto:simone@ic.uff.br
mailto:satoru@ic.uff.br
mailto:marcone@iceb.ufop.br
mailto:richard.hartl@univie.ac.at
https://doi.org/10.1016/j.ejor.2018.04.017

M.N. Haddad et al. / European Journal of Operational Research 270 (2018) 1014–1027 1015

o

S

a

p

a

s

p

s

i

fi

s

l

r

v

t

f

s

t

W

g

Ç

l

c

m

a

m

o

&

i

i

r

n

a

a

n

c

s

l

a

v

b

d

c

l

v

b

s

p

t

n

w

b

(1

(2

(3

(4

Fig. 1. A feasible MPDPSL solution. The service to (5,12) is split among two routes.

2

c

p

i

r

r

c

i

t

t

r

j

a

v

v

t

a

p

r

t

d

a

s

l

s

F

s

v

c

t

l

m

s

c

i

e

c

t

t

t

f neighborhoods to be adequately solved via metaheuristics (Silva,

ubramanian, & Ochi, 2015).

In the meantime, another VRP variant has drawn considerable

ttention over the years: the one-to-one pickup and delivery (PDP)

roblem, which requires to perform each service as a pair, in such

 way that each pickup precedes its associated delivery in the

ame route. We refer to Berbeglia, Cordeau, Gribkovskaia, and La-

orte (2007) and Parragh, Doerner, and Hartl (2008) for a detailed

urvey on pickup and delivery problems. Once again, an essential

ngredient of state-of-the-art heuristics for this problem is the ef-

cient exploration of a variety of neighbor solutions during the

earch, a task which tends to be more complex when pairs of de-

iveries are relocated or exchanged instead of single visits.

As both “pickups and deliveries” and “split deliveries” attributes

equire sophisticated search techniques, combining them into one

ehicle routing variant poses significant methodological challenges,

hus partly explaining the reduced number of methods proposed

or the multi-vehicle one-to-one pickup and delivery problem with

plit loads (MPDPSL) despite its practical relevance. To this date,

wo main articles have considered this variant. Nowak, Ergun, and

hite III (2008) presented a practical application faced by a lo-

istic company which provides outsourced services. Then, Ş ahin,

avu ̧s lar, Öncan, Ş ahin, and Tüzün Aksu (2013) solved this prob-

em for the transportation of bulk products by ship. In this later

ase, each load is already packaged into multiple containers, and

ail services collect and deliver multiple packets between origin

nd destination pairs. Finally, this problem is of high relevance in

any other application contexts involving pickups and deliveries

f divisible products, e.g. , inventory between supermarkets (Hartl

 Romauch, 2016), or bike repositioning for self-sharing bike shar-

ng systems (Chemla, Meunier, & Wolfler Calvo, 2013).

Note that, despite the description of a multi-vehicle algorithm

n Ş ahin et al. (2013) , all previous experimental analyses have been

estricted to single-vehicle cases. Indeed, the existing instances did

ot contain resource constraints on routes (e.g. , distance or time),

nd the depot does not intervene as a replenishment facility in

 one-to-one PDP. When the triangle inequality holds, it is never

ecessary or profitable to return to the depot, such that the search

an be limited to single-vehicle solutions without compromising

olution quality.

In this paper, we pursue the research on this difficult prob-

em, by proposing new heuristic and exact solution approaches,

long with experimental analyses on distance-constrained multi-

ehicle benchmark instances. More precisely, we introduce a hy-

rid metaheuristic based on iterated local search (ILS) with ran-

om variable neighborhood descent (RVND), which incorporates

lassical neighborhoods and perturbation procedures with new

arger dynamic programming-based neighborhoods for joint ser-

ice reinsertions and optimization of split loads. This method will

e called IL S–PDSL (IL S for pickup-and-delivery problems with

plit loads). Moreover, we propose the first efficient branch-and-

rice algorithm for the MPDPSL. The method exploits problem-

ailored route relaxations, pricing algorithms, pre-processing tech-

iques and branching rules, allowing to solve problem instances

ith up to 20 pickup-and-delivery pairs. As such, the key contri-

utions of this work are:

). Efficient heuristic and exact solutions approaches for the

MPDPSL;

). new dynamic programming based neighborhoods for split

pickup-and-delivery problems;

). new state-of-the-art results for single-vehicle benchmark in-

stances; and finally,

). experimental analyses on new multi-vehicle benchmark in-
stances. t
. Problem statement

Consider a graph G = (V, E) , where V = P ∪ D ∪ { 0 , 2 n + 1 } in-

ludes the vertices associated with n pickup and delivery (p-d)

airs of customers as well as the vertices { 0 , 2 n + 1 } , represent-

ng the initial and final depots locations. The set P = { 1 , 2 , . . . , n }
epresents the pickup customers, while the set D = { n + 1 , . . . , 2 n }
epresents the corresponding delivery customers. Each service i

onsists of a pickup customer i ∈ P and a delivery customer (n +
) ∈ D . A positive demand q i > 0 is associated with each pickup cus-

omer i ∈ P , and a negative demand, q n + i = −q i , is associated with

he corresponding delivery customer (n + i) ∈ D . Each edge (i , j) ∈ E

epresents the possibility of traveling from a vertex i ∈ V to a vertex

 ∈ V with a distance cost d ij .

A homogeneous fleet of m vehicles with capacity limit Q is

vailable to perform the services. Any vehicle arriving at a pickup

ertex can collect all available load, or only a part of it. When a

ehicle arrives at a delivery vertex, all load from this vehicle in-

ended for this customer is delivered. As in previous works, we

ssume that q i ≤ Q for all services i . Moreover, we impose in this

aper a maximum travel distance L for each vehicle.

The objective of the MPDPSL is to design a set of up to m

outes, starting and ending at the depot, with minimum travel dis-

ance, in such a way that the complete demand of each pickup and

elivery is satisfied, the route distance limit is respected as well

s vehicle capacities, and each pickup precedes its delivery in the

ame route.

We adopt the same definition of a split load as in the SDVRP

iterature: a split load occurs when the demand of a customer is

erviced by a larger number of trips than the minimum necessary.

ig. 1 illustrates a feasible MPDPSL solution for an instance with

even p-d pairs served by two vehicles. In this example, the ser-

ice of the pair (5,12) is split among two routes, and each vehi-

le carries a fraction of the demand associated to this service. Note

hat the previous example is not the only situation in which a split

oad can occur. The MPDPSL is notably different from the SDVRP as

ore than one split load can occur in the same route in an optimal

olution. The solution size can also increase significantly and be-

ome, in some cases, exponential as a function of the input size. An

llustrative example of such a situation is presented in Fig. 2 . This

xample includes two p-d pairs, (1,3) and (2,4), with one vehicle of

apacity Q = 100 and distance limit L = ∞ . Customer 1 wishes to

ransfer 99 load units to customer 3, while customer 2 wishes to

ransfer 100 load units to customer 4. The distance between cus-

omers 2 and 4 is small (d 24 = d 42 = ε).

The optimal solution for this problem instance contains a single

our, which

1016 M.N. Haddad et al. / European Journal of Operational Research 270 (2018) 1014–1027

Fig. 2. Optimal MPDPSL solution for an instance with two p-d pairs, involving an

arbitrary high number of visits to the same customer in a single route.

w

q

t

h

i

o

fi

n

s

l

t

a

c

g

l

o

T

c

m

a

p

T

t

s

c

a

t

a

t

n

a

s

l

t

f

a

t

t

(

a

l

n

i

p

f

b

a

i

a

s

a

fi

t

4

t

a

(

– visits customer 1 and collects its full load (99 units), then

– visits customer 2 to collect one unit of load and delivers it to

customer 4;

– repeats the previous operation 99 additional times,

– delivers the load of customer 3 (99 units), and returns to the

depot.

This optimal solution performs 202 customer visits instead of

4 for the same problem without split loads. Of course, this is an

extreme case of the classical MPDPSL, as in practical applications

a base service time may be counted (e.g. , as part of the travel dis-

tance), hence increasing d 24 . Nevertheless, a good heuristic should

be able to find multiple split loads, since these situations can nat-

urally occur.

3. Related literature

The PDP and SDVRP have been the focus of extensive work,

counting hundreds of scientific articles. We refer to Archetti and

Speranza (2012) ; Battarra, Cordeau, and Iori (2014) ; Doerner and

Salazar-González (2014) and Irnich, Schneider, and Vigo (2014) for

detailed surveys. Among the current state-of-the-art methods for

PDP, we can highlight, in particular, the adaptive large neighbor-

hood search (ALNS) of Ropke and Pisinger (2006) , which iteratively

improves an incumbent solution by means of repeated destruc-

tion and reconstruction steps, and the hybrid genetic algorithm of

Nagata and Kobayashi (2011) based on a selective route exchange

crossover with efficient local searches, producing to this date the

best results for PDP instances with time constraints. ALNS has been

subsequently extended to a wide range of VRP variants with great

success.

For the SDVRP, the current state-of-the-art results are obtained

by the multi-start ILS-RVND metaheuristic of Silva et al. (2015) .

This method exploits a wide collection of construction techniques

and neighborhoods for solution improvement, as well as a pertur-

bation strategy which operates multiple random k-Split moves. Fi-

nally, Chen, Golden, Wang, and Wasil (2017) proposed an a-priori

Split strategy , in which customer’s demands are split in advance,

and a capacitated VRP (CVRP) solver is subsequently used. This

simple approach leads to solutions of fair quality and leverage

decades of CVRP research.

In contrast, very few articles have considered the combination

of both attributes in a single problem. To our knowledge, Mitra

(2005) first considered a problem related to the PDPSL, but with si-

multaneous pickups and deliveries instead of one-to-one requests.

The objective seeks to minimize the fleet size and then the dis-

tance. The authors propose a mixed integer programming (MIP)

formulation for this problem and a route construction heuristic,
hich firstly determines the minimum number of vehicles re-

uired, and then builds routes based on a cheapest insertion cri-

erion. An additional MIP formulation and an extension of this

euristic, using parallel clustering, are proposed in Mitra (2008) .

Nowak et al. (2008) evaluate the benefits of allowing split loads

n the one-to-one PDP, hence defining the PDPSL. The objective

f the PDPSL is to find a single route with minimum cost, ful-

lling the required demand. A heuristic based on simulated an-

ealing and tabu search is developed and random large-scale in-

tances are created. The authors observe that the benefits of split

oads are closely linked to three characteristics of the instances:

he load size, the cost associated with the pickup or delivery,

nd the percentage of loads which have pickup and delivery lo-

ations in common. They also show that, for a given set of ori-

ins and destinations, the greatest benefits are observed when the

oad size is greater than half the capacity of the vehicle. A variant

f the problem addressed in Nowak et al. (2008) can be found in

hangiah, Fergany, and Awan (2007) , with additional time-window

onstraints. This work describes an algorithm that inserts ship-

ents into vehicles using multiple-insertion heuristics for static

nd real-time test cases.

Nowak, Ergun, and White III (2009) perform an additional em-

irical analysis of the heuristic presented in Nowak et al. (2008) .

he authors note that when demands are between 51% and 60% of

he capacity of the vehicle, up to 30% transportation costs can be

aved. The potential savings due to split loads depends on the per-

entage of loads to be collected or delivered in a common location,

nd the average distance from an origin to a destination relative to

he distance from origin to origin and destination to destination.

Ş ahin et al. (2013) consider the PDPSL with multiple vehicles

nd distance constraints and formally define the MPDPSL. The au-

hors develop a heuristic based on tabu search and simulated an-

ealing. The initial solution is built using a variant of the savings

lgorithm by Clarke and Wright (1964) , and then improved by local

earches based on swap and insert/split neighborhoods. The simu-

ated annealing is then used in combination with a tabu list to con-

rol move acceptance. Experiments are conducted on the instances

rom Nowak et al. (2008) , as well as adapted instances from Ropke

nd Pisinger (2006) . However, since no distance limits are imposed

o the vehicles, it is always better to use a single route, such that

hese instances cannot be viewed as multi-vehicle test cases.

Finally, Ş ahin et al. (2013) and Öncan, Aksu, Ş ahin, and Ş ahin

2011) also introduce an integer programming model and branch-

nd-cut algorithm for the MPDPSL, allowing to solve some prob-

em instances with seven p-d pairs. This method, however, does

ot necessarily produce an optimal solution for the problem (e.g. ,

n cases similar to Fig. 2), as the model allows at most one visit

er route for each p-d pair. More generally, no compact edge-flow

ormulation with a strongly polynomial number of variables can

e built for the MPDPSL, since the number of customer visits of

n optimal solution may grow exponentially with the size of the

nstance. To overcome this issue, we propose a branch-and-price

lgorithm, such that the inherent complexity related to multiple

plit deliveries within the same route is relegated into the labeling

lgorithm used for column generation. This allows to generate the

rst known optimal solutions for the MPDPSL without any restric-

ion on the number of visits.

. Exact solution approach

This section first introduces a set partitioning formulation of

he MPDPSL (Section 4.1), and then describes the column gener-

tion procedure (Section 4.2), and the branch-and-price algorithm

 Section 4.3) designed to solve this problem to optimality.

M.N. Haddad et al. / European Journal of Operational Research 270 (2018) 1014–1027 1017

4

w

i

s

r

w

n

d

p

v

M

s

l

m

m

b

o

e

q

4

d

a

w

(

m

v

s

o

n

w

t

a

o

v

c

w

t

w

l

o

d

r

s

a

v

c

w

r

w

f

s

f

e

r

V

�

�

n
Q

E

E

P
n

s

d

(

Q

M

t

A

d

w

s

r

P

i

l

c

l

v

p

c

t

n

f

c

a

e

n

(

d

a

r

d

d

d

e

(

l

4

i
.1. Mathematical formulation

The mathematical formulation used is an adaptation of the

ell-known set partitioning formulation, which is extensively used

n successful exact approaches for vehicle routing problems. It con-

iders the set of all feasible routes � and binary variables λr , rep-

esenting whether route r ∈ � is used in the solution. In contrast

ith most other vehicle routing problems, set � naturally contains

on-elementary routes, i.e. , routes visiting vertices more than once

ue to split deliveries. In any route r ∈ �, the precedence and ca-

acity constraints should be respected, and the total amount ser-

iced for any p-d pair must not exceed its demand.

inimize
∑

r∈ �
d r λr (1)

ubject to

∑

r∈ �
q̄ ri λr = q i i ∈ P (2)

λr ∈ { 0 , 1 } r ∈ �. (3)

The Objective Function (1) minimizes the total cost of the so-

ution. Given q̄ ri as the total amount of the p-d pair (i, n + i) de-

and serviced by route r , Constraints (2) guarantee that all de-

ands of all p-d pairs are satisfied. Constraints (3) are the variable

ounds constraints. Clearly, set � contains an exponential number

f routes, and the above formulation cannot be solved by consid-

ring all variables. Therefore, a column generation approach is re-

uired to efficiently solve it, as presented in the next section.

.2. Column generation

Since the MPDPSL combines features of both pickup-and-

elivery and split delivery problems, our Column Generation (CG)

lgorithm is first built upon an algorithm for the PDP with time

indows (PDPTW), as the one presented in Ropke and Cordeau

2009) , and then extended to consider split loads. The algorithm

ay generate routes considering all possible loads for all p-d pairs

isited, under the condition that they respect the precedence con-

traints and the maximum travel distance L .

The CG starts with no routes and iteratively generates feasible

nes by solving a pricing subproblem algorithm. Given that with

o routes, the formulation of Section 4.1 would become infeasible,

e introduce one artificial variable for each constraint and solve a

wo-phase CG, following the same idea as the two-phase Simplex

lgorithm. At each iteration, the pricing subproblem must find one

r more variables with negative reduced cost. Given β i , the dual

ariables of Constraints (2) , the reduced cost of a route can be cal-

ulated as d̄ r = d r −
∑

i ∈ P βi ̄q ri . The dual variable β i is only counted

hen the route visits a pickup vertex, and it is multiplied by the

otal amount of demand loaded in this pickup vertex. Therefore,

e can write the reduced cost of an edge (i , j) ∈ E , i ∈ V , j ∈ P that

oads an amount q of vertex j ’s demand as d̄
q
i j

= d i j − β j q . On the

ther hand, the amount of demand unloaded on a delivery vertex

oes not imply any change on the route’s reduced cost. For this

eason, we define the reduced cost of an edge (i , j) ∈ E , i ∈ V , j ∈ D

imply as d̄ i j = d i j .

A partial path (i, d, Q , q) is a non-elementary path that starts

t the depot, visits a subset of vertices and ends in vertex i ser-

icing q units of its demand with total travel distance d . Vector Q
ontains the load of all opened p-d pairs. It also allows to know

hich delivery vertices must be visited in the future, and the cur-

ent total load in the vehicle.

Note that the definition of partial paths allows infeasible routes

ith excess demand for some p-d pairs. This relaxation is used to
acilitate the resolution of the pricing subproblem. Moreover, infea-

ible routes will anyway be excluded in any integer solution of the

ormulation thanks to Constraints (2) .
The pricing subproblem is a resource-constrained short-

st path problem solved by a dynamic programming algo-
ithm that works on a state-space graph G = (V, E) , with
 = V P ∪ V D ∪ { (0 , 0 , 0 n , 0) } , where V P = { (i, d, Q , q) : ∀Q ∈
, Q [i] = q, 1 ≤ q ≤ q i , ∀ i ∈ P, 0 ≤ d ≤ L } , V D = { (i, d, Q , 0) : ∀Q ∈
, Q [i − n] = 0 , ∀ i ∈ D, 0 ≤ d ≤ L } , (0, 0, 0 n , 0) represents the origi-

al depot vertex and � = {Q ∈ N

n : 0 ≤ Q [i] ≤ q i , ∀ i ∈ P,
∑

i ∈ P Q [i] ≤
} . Furthermore E = { ((j, d ′ , Q

′ , q ′) , (i, d, Q , q)) : ∀ (j, d ′ , Q

′ , q ′) ∈

−1 (i, j, d, Q) , ∀ (j, i) ∈ E, ∀ (i, d, Q , q) ∈ V, d ji ≤ d ≤ L } , where

−1 (j, i, d, Q) = { (j, d − d ji , Q

′ , q ′) : ∀Q

′ ∈ � s.t. Q

′ [k] = Q [k] ∀ k ∈
 \{ i } and Q

′ [i] = 0 if i ∈ P, Q

′ [k] = Q [k] ∀ k ∈ P \{ i − n } and Q

′ [i −
] > 0 if i ∈ D, or Q

′ [k] = 0 ∀ k ∈ P if i = 0 , 0 ≤ q ′ ≤ q j } . The recur-
ion can then be written as

f (i, d, Q , q) = min
(j,d ′ , Q ′ ,q ′) ∈E −1 (j,i,d, Q)

{ f (j, d ′ , Q

′ , q ′) + d̄ q
ji
} , ∀ (i, d, Q , q) ∈ V .

(4)

In order to reduce the number of states, we use the following

ominance rule. State (i, d, Q , q) dominates state (j, d ′ , Q

′ , q ′) iff

i) i = j, (ii) d ≤ d ′ (iii) f (i, d, Q , q) ≤ f (j, d ′ , Q

′ , q ′) and (iv) Q [k] ≤

′ [k] , ∀ k ∈ P . Note that (iv) assures the total load on partial path

(i, d, Q , q) to be less than the one on partial path (j, d ′ , Q

′ , q ′) .
oreover, this condition is only valid if the reduced costs respect

he Delivery Triangle Inequality (DTI) (Ropke & Cordeau, 2009).

n MPDPSL cost matrix is said to respect the DTI if d i j ≤ d ik +
 k j , ∀ i, j ∈ V, k ∈ D . If the original distances d ij respect the DTI, d̄

q
i j

ill also respect the DTI based on the definition previously pre-

ented.

We apply three additional techniques to improve the CG algo-

ithm. First, we use the dual stabilization procedure proposed in

essoa, Uchoa, Poggi de Aragão, and Rodrigues (2010) . At each CG

teration, let β ′ be the dual solution of the previous iteration and

et α ∈ [0, 1[be the dual stabilization parameter. The CG uses a

omposition of the current and the previous dual solution calcu-

ated as ˆ β = αβ ′ + (1 − α) β . Parameter α starts with a positive

alue, and each time the pricing subproblem returns a route with

ositive reduced cost, α is reduced until it reaches zero, thus con-

luding the dual stabilization procedure.

Moreover, we use a succession of heuristic pricing algorithms

o save computational effort. We first execute a version of the dy-

amic programming that limits the number of partial paths stored

or each i ∈ V , 0 ≤ d ≤ L by one. When this simple heuristic fails, we

all the exact pricing relaxing Condition (iv) of the dominance rule

nd sequentially limiting the number of partial paths stored for

ach i ∈ V , 0 ≤ d ≤ L by {3, 10, 100, ∞ }. When no route is found with

o limitation on the number of partial paths, we restore Condition

iv) and repeat the procedure.

Finally, we use pre-processing to identify forbidden extensions

ue to the travel distance limit. For each 0 ≤ d ≤ L , we forbid

n extension from vertex i to vertex j based on the following

ules: (i) if i ∈ P, j ∈ P, d + d i j + d j(n + i) + d (n + i)(n + j) + d (n + j)0 > L and

 + d i j + d j (n + j) + d (n + j)(n + i) + d (n + i)0 > L, (ii) if i ∈ P , j ∈ D and d +
 i j + d j(n + i) + d (n + i)0 > L, (iii) if i ∈ D , j ∈ P and d + d i j + d j (n + j) +
 (n + j)0 > L, and (iv) if i ∈ D , j ∈ D and d + d i j + d j0 > L . This is an

xtension of the rules created by Dumas, Desrosiers, and Soumis

1991) for the PDPTW, adapted to consider the travel distance

imit.

.3. Branch-and-price

Branch-and-Price (B&P) is the name given when a CG algorithm

s used on each node of a branch-and-bound procedure to obtain

1018 M.N. Haddad et al. / European Journal of Operational Research 270 (2018) 1014–1027

s best ← ∅

s ← Construct Initial Solution
while Termination Criterion is not attained do

s ← RVND (s) // Solution improvement via a RVND
s ← RCSP-insertion (s) // Large neighborhood search
if s best = ∅ or Cost (s) < Cost (s best) then

s best ← s // Saving the best solution
s ← Perturbation (s best) // Perturbation to prepare for next iteration

Return s best

Algorithm 1: ILS–PDSL.

i

i

e

s

h

i

p

a

s

a

(

o

(

h

a

w

5

h

t

o

c

t

o

c

p

5

w

fi

t

b

b

	

t

i

s

F

t

b

r

e

t

a

s
an optimal integer solution. After the solution of a node, a frac-

tional variable (or a set of variables) is chosen and two or more

branches are created by introducing constraints to cut the frac-

tional value. When solving a B&P, the branching rules must be

carefully chosen, otherwise the CG algorithm may price the same

variable again. For this reason, the branching rules used within a

B&P are usually on “original variables”, i.e., variables from an edge-

flow formulation.

Our B&P uses four branching rules. The first one considers the

number of vehicles used in the solution. It can be calculated as

�r ∈ �λr . The second branching rule is done on the degree of each

vertex. Given ā ri , the number of times route r visits pickup i ∈ P ,

the degree can be calculated as
∑

e ∈ � ā ri λr , ∀ i ∈ P . The third one is

done on the edges of the original graph. Given b̄ re , the number of

times route r traverses edge e ∈ E , regardless of the load, it can be

calculated as
∑

r∈ � b̄ re λr , ∀ e = (i, j) ∈ E. Finally, the algorithm also

considers a branching rule on the number of times an edge e =
(i, j) is traversed when loading (or unloading) q̄ i units of demand

on vertex i ∈ V and loading (or unloading) q̄ j units of demand on

vertex j ∈ V .

Each constraint added to the master formulation generates a

new dual variable, which must be considered by the pricing sub-

problem to calculate the reduced cost of the routes. It is not a diffi-

cult task to associate the new dual variables to the edges’ reduced

cost. However, while the first two branching rules do not violate

the DTI, the last two may change the reduced cost matrix in this

sense. To overcome this issue, we apply the fix proposed by Ropke

and Cordeau (2009) . The remaining components of the B&P are

classical in the routing literature. The branching rules are used in

order, at each iteration the algorithm chooses the most fractional

value, and the nodes are explored using the best-first strategy.

5. Large neighborhood-based metaheuristic

As noted in Section 3 , notably few heuristics have been de-

signed for the MPDPSL, and these methods were evaluated on

benchmark instances that only require the use of a single vehi-

cle. Moreover, even the sophisticated B&P algorithm described in

Section 4 is limited to instances of small and medium sizes. To

solve larger test cases, we design a simple and efficient meta-

heuristic for the MPDPSL, based on a new exponential-size neigh-

borhood, and investigate its performance on distance-constrained

benchmark instances that require multiple vehicles.

The proposed ILS–PDSL is built around a very simple search

scheme which consists, as in the classical ILS metaheuristic, of iter-

atively improving a solution via neighborhood searches until reach-

ing a local minimum, and then applying a perturbation operator

to escape. This process is repeated until a termination criterion (a

time limit in our case) is attained. The general pseudo-code of the

method is displayed in Algorithm 1 .

Despite its apparent simplicity, the proposed metaheuristic dif-

fers from traditional ILS due to the nature of the neighborhoods

used for solution improvement. Instead of relying on local search,
t exploits a two-phase improvement method. The first phase

s a randomized variable neighborhood descent (RVND), which

xplores a variety of neighborhoods in random order, and the

econd phase is a search in a new exponential-size neighbor-

ood, called resource-constrained shortest path insertion (RCSP-

nsertion), which allows to optimally split and re-insert each

ickup and delivery. Finally, our perturbation operator is always

pplied on the current best solution in an effort to direct the

earch on more promising regions of the search space.

The remainder of this section details each component of the

lgorithm, starting with the construction of the initial solution

 Section 5.1), the RVND procedure (Section 5.2), the RCSP-insertion

perator (Section 5.3), and finally the perturbation mechanism

 Section 5.4). With the exception of the exponential-size neighbor-

ood search performed in RCSP-insertion, these procedures are rel-

tively simple and classic, leading to a high-performance algorithm

hich can be easily reproduced.

.1. Initial solution

The initial solution s is produced by a greedy constructive

euristic. Iteratively, this heuristic computes for each pickup cus-

omer i its best feasible insertion position, with minimum increase

f distance. The pickup customer i with the shortest distance in-

rease is inserted at each iteration, and the corresponding delivery

(n + i) is added in its best feasible position after i . At this stage,

he method only considers the insertion of full deliveries. More-

ver, only feasible insertions in terms of load capacity and distance

onstraints are enumerated, and a new route is created if no such

osition exists.

.2. Randomized variable neighborhood descent

We first recall the concept of block (Cassani & Righini, 2004),

hich is needed to describe some neighborhoods. A block B i is de-

ned as a sequence of consecutive visits that starts at a pickup cus-

omer i and ends at the corresponding delivery customer (n + i) . A

lock B i is a simple block if there is no customer between i and

(n + i) . A block B i is a compound block when there is at least one

lock B j ∈ B i such that 	(i) < 	(j) < 	(n + j) < 	(n + i) , where

(i) is the position of the customer i in the route. It is noteworthy

hat a compound block cannot contain a pickup customer without

ts corresponding delivery customer and vice versa.

As in the RVND of Souza, Coelho, Ribas, Santos, and Mer-

chmann (2010) and Subramanian, Drummond, Bentes, Ochi, and

arias (2010) , there is no predefined order for the neighborhoods,

hat is, before every execution of the local search, a new neigh-

orhood order is randomly chosen. Each neighborhood is defined

elatively to one type of move, which can be applied on differ-

nt p-d pairs and routes. Each neighborhood is evaluated exhaus-

ively, considering the moves in random order of p-d pairs, and

pplying the first improving move. After each improvement, the

earch restarts from the first neighborhood structure. Otherwise,

M.N. Haddad et al. / European Journal of Operational Research 270 (2018) 1014–1027 1019

t

i

s

n

l

N

I

I

F

o

T

a

s

s

p

p

a

t

g

t

i

t

5

t

l

a

t

a

r

b

d

h

e

fi

p

e

k

d

n

P

s

s

t

s

s

b

a

g

V

E

δ

n

d

v

t

a

δ

F

w

g

he search continues on the next neighborhood structure and fin-

shes when all the neighborhoods have been examined without

uccess. Our RVND uses simple extensions of known enumerative

eighborhoods for vehicle routing and pickup-and-delivery prob-

ems, which are listed in the following. Neighborhoods N

(1) , N

(2) ,

(5) , and N

(6) can be traced back to Cassani and Righini (2004) .

ntra-route neighborhood structures:.

N

(1) – PairSwap considers two pairs of customers (i, n + i) and

(j, n + j) and swaps the pickup customer i with the pickup

customer j , as well as the delivery customer (n + i) with the

delivery customer (n + j) .

N

(2) – PairShift considers a pair of customers (i, n + i) and re-

locates the pickup i in a position of the interval [(i) −

, 	(i) +
] and the delivery (n + i) in a position of the in-

terval [(i) + 1 , 	(i) +
] . Parameter
 limits the size of

the neighborhood (see Section 6).

N

(3) – PickShift relocates a pickup customer i in another position

before the delivery customer (n + i) .

N

(4) – DelShift relocates a delivery customer (n + i) in another

position after the pickup customer i .

N

(5) – BlockSwap swaps a block B i with another block B j .

N

(6) – BlockShift relocates a block B i in another position.

nter-route neighborhood structures:.

N

(7) – InterPairSwap selects a pair of customers (i, n + i) from

a route r 1 and another pair (j, n + j) from a route r 2 and

swaps the pickup customer i with the pickup customer j .

The delivery customer (n + i) is swapped with the delivery

customer (n + j) .

N

(8) – InterPairShift takes a pair of customers (i, n + i) from a

route r 1 and transfer this pair to a route r 2 . After defining

	(i) in r 2 , the delivery customer is inserted in a position of

the interval [(i) + 1 , 	(i) +
] .

N

(9) – InterBlockSwap selects a block B i from a route r 1 and an-

other block B j from a route r 2 and swaps them.

N

(10) – InterBlockShift transfers a block B i from a route r 1 to a

route r 2 .

inally, we rely on the following theorem to perform a post-

ptimization after each local search:

heorem 1 (̧S ahin et al. 2013) . If the distance matrix satisfies the tri-

ngle inequality, then there exists an optimal solution of the MPDPSL

uch that between each visit to a pickup customer i and its corre-

ponding delivery (n + i) no other pickups or deliveries of this same

-d pair occur.

As such, we scan the solution and search for visits to the same

-d pair (i, n + i) appearing in the order i → i → n + i → n + i in

 route (with possible visits to other customers in-between). If

his situation occurs, the two visits can be merged as one sin-

le visit while maintaining feasibility and improving the total dis-

ance. There are 2 × 2 possibilities for insertion of the merged p-d

n place of the previous services, and the best one in terms of dis-

ance is chosen.

.3. RCSP-insertion neighborhood

The improvement procedure of the previous section relies on

he enumeration of many possible moves to produce improved so-

utions. However, we know that MPDPSL solutions can include an

rbitrarily large number of visits to the same p-d pair (as illus-

rated in Figure 2). Enumerating all possible combinations of splits

nd placements of visits would take an exponential time. For this
eason, previous methods adopted strategies which limit the num-

er of split loads (Nowak et al., 2008; Ş ahin et al., 2013). To ad-

ress this issue, we propose a larger (exponential-size) neighbor-

ood, which seeks to optimize the split loads and can be efficiently

xplored via dynamic programming.

In the proposed RCSP-insertion neighborhood, the problem of

nding the best reinsertion of each pickup and delivery pair, with

ossible split loads, is addressed as a resource-constrained short-

st path problem (RCSP) in a directed acyclic graph followed by a

napsack problem. This optimization is conducted once for each p-

 pair, considering the pairs in random order. For each p-d pair (x ,

 + x), the method works as follows:

– Remove all occurrences of x and n + x from all routes.

– Phase 1: For each route σ , evaluate the possible insertions and

combinations of insertions of the p-d pair (x, n + x) via dy-

namic programming (RCSP), therefore characterizing all non-

dominated trade-offs between the extra travel distance and the

quantity of load picked-up from x and delivered to n + x .

– Phase 2: Based on the known trade-offs (labels) for each route,

find the best combination of insertions in all routes in order to

fulfill the total demand q x . This selection can be done by solving

a variant of the knapsack problem.

hase 1: Evaluation of non-dominated insertions for each route. Con-

ider a route σ = (σ1 , . . . , σn (σ)) , in which each element repre-

ents a visit to a depot, pickup or delivery node. This phase aims

o evaluate the minimum additional distance incurred when in-

erting visits to the p-d pair (x, n + x) in the route σ , in order to

ervice any demand quantity q in the interval [0, q x]. Trade-offs

etween distance and delivery quantity can be found by solving

 resource-constrained shortest path problem in a directed acyclic

raph H = (V ′ , A) , illustrated in Fig. 3 and defined in the following.

The node set V

′ is divided into two groups of nodes, V ′ =
 route ∪ V insert :

– V route = { v 1 , . . . , v n (σ) } contains one node per (depot or cus-

tomer) visit in the route.

– V insert = { v p
1
, v d

1
, . . . , v p

n (σ) −1
, v d

n (σ) −1
} contains a pair of nodes

(v p
i
, v d

i
) between each node pair (v i , v i +1) . The nodes v p

i
repre-

sent possible pickups at x , and the nodes v d
i

represent possible

deliveries at n + x .

The total number of nodes in the graph is | V ′ | = 3 × n (σ) − 2 .

The arc set A is also divided into two sets A = A travel ∪ A load .

ach arc is characterized by a distance δdist

a and a delivered load
load

a . The arcs in A travel (dashed arrows in Fig. 3) can either con-

ect successive visits in V route , or connect a visit v i with its can-

idate pickup v p
i
, or connect a candidate delivery v d

i
with the next

isit v i +1 . Each such arc a ∈ A travel represents a pure vehicle reloca-

ion without any load destined for customer x , such that δload

a = 0 ,

nd the associated distance is

dist

a =

{

d σi ,σi +1
if a = (v i , v i +1)

d σi ,x if a = (v i , v p i
)

d n + x,σi +1
if a = (v d

i
, v i +1) .

inally, the arcs in A load (solid arrows in Fig. 3) correspond to trips

hich carry some load of x . The following cases should be distin-

uished.

– Direct arc: a = (v p
i
, v d

i
) . This arc corresponds to a direct travel

between x and n + x . It is characterized by a distance δdist

a =
d x,n + x and a load δload

a = Q −
i ∑

k =1

q σk
, which corresponds to the

free capacity in the vehicle after client σ i .

– Indirect pickup–delivery arc: a = (v p
i
, v d

j
) with i < j . This arc

corresponds to a trip segment starting at the pickup location

x , serving the locations (σi +1 , σi +2 , . . . , σ j) , and ending at the

1020 M.N. Haddad et al. / European Journal of Operational Research 270 (2018) 1014–1027

Fig. 3. Auxiliary graph H for a route containing n (σ) = 6 visits.

s

v

r

s

l

P

e

b

t

l

l

b

b

a

t

t

E

m

y

a

s

m

b

s

s

w

t

o

t

a

l

p

r

n

delivery location n + x . Following the same principles as previ-

ously, ⎧ ⎪ ⎪ ⎪ ⎨

⎪ ⎪ ⎪ ⎩

δdist

a = d x,σi +1
+

j−1 ∑

k = i +1

d σk σk +1
+ d σ j ,n + x , and

δload

a = min

l∈{ i, ... , j}

(

Q −
l ∑

k =1

q σk

)

.

In this equation, δload

a represents the smallest amount of free

capacity in the vehicle at any point of the trip between σ i and

σ j .

– Indirect delivery-delivery arc: a = (v d
i
, v d

j
) with i < j . This arc

corresponds to a trip segment starting at the delivery location

n + x, returning to the pickup location x , serving the locations

(σi +1 , σi +2 , . . . , σ j) , and ending at the delivery location n + x . As

such, ⎧ ⎪ ⎪ ⎪ ⎨

⎪ ⎪ ⎪ ⎩

δdist

a = d x,n + x + d x,σi +1
+

j−1 ∑

k = i +1

d σk σk +1
+ d σ j ,n + x , and

δload

a = min

l∈{ i, ... , j}

(

Q −
l ∑

k =1

q σk

)

.

After the construction of the graph H , the RCSP between v 1 and

v n (σ) is obtained by means of a simple variant of Bellman’s algo-

rithm. The algorithm computes for each vertex v ∈ V ′ , in topologi-

cal order, a set of labels S v = { s v k | k ∈ { 1 , . . . , | S v |}} in which each

label s v k = (s dist

v k , s load

v k) is characterized by a distance s dist

v k and a

load s load

v k transferred from x to n + x . Starting at the depot with

S v 1 = { (0 , 0) } , the labels are iteratively propagated as follows:

for v ∈ (v p 1 , v
d

1 , v 2 , v
p

2 , v
d

2 , . . . , v n (σ)) ,

S v =

⋃

w | (w, v) ∈ A

⋃

s wi ∈S w
{ (s dist

wk + δdist

(w, v) , s
load

wk + δload

(w, v)) } . (5)

Non-dominated labels are eliminated at each step. A label s v k
is dominated by a label s v k ′ if s dist

v k ≥ s dist

v k ′ and min { s load

v k , q x } ≤
min { s load

v k ′ , q x } . Moreover, a completion bound is used to eliminate

additional labels: for any v i ∈ V route , any label s v i k that covers the

total demand of the client x (such that s load

v i k
≥ q x) leads to a dis-

tance bound of s dist

v i k
+

n σ −1 ∑

k = i
d k,k +1 . The best distance bound is up-

dated during the search, and any label whose distance exceeds this

bound can be pruned.

For each route σ , the set of non-dominated labels S(σ) = S v n (σ)

is stored at the end of the algorithm. For single-vehicle problem in-

stances, the best combination of insertions of visits to the p-d pair

(x, n + x) corresponds to the single non-dominated label s ∈ S (σ)
uch that s load ≥ q x . In cases involving multiple vehicles, the best

isits for the p-d pair (x, n + x) can be distributed into multiple

outes. As described in the following, the best combination of in-

ertions can be found by solving a knapsack problem based on the

abels S (σ) for each route σ .

hase 2: Combination of insertions in multiple vehicles. In the pres-

nce of multiple vehicles, the algorithm searches for a good com-

ination of insertions in different routes in order to cover the to-

al demand. This problem can be formulated as a knapsack prob-

em with an additional constraint that limits the selection to one

abel at most in each route. Let C σ be the distance of a route σ
efore the insertion of any visit to the p-d pair (x, n + x) . Each la-

el s σ j ∈ S (σ) corresponds to a detour cost of s dist

σ j
− C σ , to deliver

 load quantity s load

σ j
from the pickup x to the delivery n + x . We

hus define a binary decision variable y σ j , equal to 1 if and only if

he label s σ j is selected. This leads to the optimization problem of

qs. (6) –(9) .

in

∑

σ∈R

∑

s σ j ∈ S(σ)

(
s dist

σ j − C σ
)
y σ j (6)

∑

σ∈R

∑

s σ j ∈ S(σ)

s load

σ j y σ j ≥ q x (7)

∑

s σ j ∈ S(σ)

y σ j ≤ 1 σ ∈ R (8)

 σ j ∈ { 0 , 1 } σ ∈ R , s σ j ∈ S(σ) (9)

This formulation is identical to the one used in Boudia, Prins,

nd Reghioui (2007) for the SDVRP. At this stage, the challenges

pecific to the MPDPSL have already been relegated to the deter-

ination of the labels (s dist

σ j
,s load

σ j
) ; a task which could not be done

y inspection in O (n), but instead required a pseudo-polynomial

earch algorithm (Phase 1) to produce non-dominated pairs of in-

ertion positions —as well as combinations of insertion positions—

ithin each route.

To solve Eqs. (6) –(9) , we tested different exact techniques, ei-

her based on dynamic programming or integer programming. In

ur experiments, these methods led to a significant computational-

ime overhead. Similarly to Boudia et al. (2007) , we thus opted for

 heuristic resolution, using a greedy heuristic which iteratively se-

ects the label s σ j with maximum ratio s load

σ j
/ (s dist

σ j
− C σ) . In our ex-

eriments, this heuristic matches in 69% of the cases the optimal

esult. Finally, the best visit insertions are performed, forming the

ew incumbent solution in the algorithm.

M.N. Haddad et al. / European Journal of Operational Research 270 (2018) 1014–1027 1021

5

i

b

p

i

n

b

b

m

6

t

w

e

s

t

e

b

7

p

h

e

i

1

p

g

I

c

t

w

Q

i

m

e

c

a

C

(

s

t

t

fi

c

t

t

o

s

t

p

B

f

W

r

g

“

p

f

t

G

6

p

a

I

e

T

l

t

t

t

i

w

9

d

o

t

w

l

t

(

q

c

p

a

f

s

s

W

T

t

i

I

s

1

r

b

v

a

i

t

a

p

t

5

t

i

m

b

a

l

i

a

2

t

e

t
.4. Perturbation mechanism

The last component of ILS–PDSL, the perturbation mechanism,

s designed to escape from the local minima of the previous neigh-

orhood improvement procedures. It relocates n pert random p-d

airs from their original routes to new random positions, insert-

ng both pickup and deliveries consecutively. The number of pairs

 pert to be relocated, which determines the strength of the pertur-

ation, is randomly selected in { 1 , 2 , ..., p max } with uniform distri-

ution. As such, p max is a method parameter which establishes a

aximum limit on the impact of the perturbation.

. Computational results

Our computational experiments have been conducted on the

wo existing sets of PDPSL instances from previous literature, as

ell as new MPDPSL instances. The first set originates from Nowak

t al. (2008) , and the second from Ş ahin et al. (2013) . These in-

tances were generated in such a way that each load occupies 51%

o 60% of the capacity of the vehicle. In those conditions, Nowak

t al. (2008) noticed that the savings related to split loads tend to

e the greatest.

The first set contains three subsets of 15 instances each, with

5, 100 and 125 pickup and delivery pairs. In each instance, the

ickups can occur in only five different locations, and each subset

as a different number of delivery locations: 15, 20 and 25 deliv-

ry locations, respectively. The second set was derived from the

nstances of Ropke and Pisinger (2006) . It contains four subsets of

2 instances each, with 50, 100, 250 and 500 pickup and delivery

airs. In this set, both pickup and delivery locations are randomly

enerated, such that coincident service locations are unlikely.

Both exact and heuristic approaches were developed in C++.

LS–PDSL was implemented using OptFrame (Coelho et al., 2011), a

omputational framework for the development of efficient heuris-

ic algorithms for combinatorial optimization problems. Each test

as executed on a single thread, the ILS–PDSL on an Intel Core 2

uad 2.4 GHz with 4 GB of RAM, and the B&P on an Intel Core

7-3960X 3.3 GHz with 64 GB of RAM. We compare the perfor-

ance of ILS–PDSL with that of the “TESA” algorithm of Nowak

t al. (2008) , and the “TABU” search of Ş ahin et al. (2013) . Our

omputer is nearly identical to the one used in Ş ahin et al. (2013) :

n Intel Core 2 Quad 2.33 GHz with 3.46 GB of RAM. Moreover, the

PU time of Nowak et al. (2008) has been scaled in Ş ahin et al.

2013) to take into account the speed difference between their re-

pective computers.

ILS–PDSL uses three main parameters: the strength of the per-

urbation operator p max , the range of insertions
 considered in

he PairShift neighborhoods, and the stopping criterion T max . The

rst two parameters have been calibrated in preliminary analysis,

onsidering values of p max ∈ { 1 , . . . , 10 } and
 ∈ { 1 , . . . , 10 } , and

he configuration p max = 3 and
 = 5 led to good results. Finally,

he stopping criterion T max has been set to be identical to that

f the TABU search of Ş ahin et al. (2013) , for each group of in-

tances, in order to compare with previous authors in similar CPU

ime.

Depending on the instance set, previous authors have either re-

orted results on a single run, or best results over multiple runs.

oth measures tend to be influenced by the variance of the per-

ormance of an algorithm over different runs with different seeds.

e thus opted to report the average solution quality over several

uns, which is a better estimate of the average behavior of an al-

orithm. In the following, we will report solution values and their

Gap(%)” for each instance. Let z be the solution value of the pro-

osed method, and z bks be the best known solution (BKS) ever

ound in previous literature for this instance (possibly over mul-
iple runs, with different algorithms and parameter settings), then

ap(%) = 100 × (z − z bks) /z bks .

.1. Metaheuristic – Performance evaluation on PDPSL instances

We first evaluate the performance of the ILS–PDSL. For this

urpose, we establish a comparison with previous metaheuristics

vailable in the literature, which were tested on PDPSL instances.

nstances from Nowak et al. (2008) . Nowak et al. (2008) and Ş ahin

t al. (2013) reported the solution quality of their algorithms,

ESA and TABU, based on one run per instance. To provide a re-

iable estimate of performance, we repeated our experiments 20

imes with different random seeds, and report the average solu-

ions on each instance. The best results are also indicated to es-

ablish bounds for future research. We adopted the same time lim-

ts as Ş ahin et al. (2013) : 25.50 minutes per run for each instance

ith 75 pairs, 56.20 minutes for each instance with 100 pairs, and

5.90 minutes for each instance with 125 pairs. Tables 1 , 2 and 3

isplay the results on these instances. For each instance, the result

f the best method is highlighted in boldface.

From these experiments, ILS–PDSL appears to produce solu-

ions of higher quality than the TESA and TABU algorithms, as it

as able to find better average results on all 45 instances. The

argest improvements occur on the largest data sets. Considering

he average gaps, we observe negative values for every instance set

 −0 . 85% , −1 . 51% and −2 . 65%), meaning that the average solution

uality of ILS–PDSL is better than the BKS in the literature. Finally,

onsidering the best results out of 20 runs, we observe large im-

rovements of the BKS (3.41% overall), with new best solutions for

ll 45 instances.

We conducted a Friedman test comparing the solution values

or each instance to validate the statistical significance of the re-

ults. This test led to a value p < 2 . 2 × 10 −16 , which indicates a

ignificant difference of performance. We also performed pairwise

ilcoxon tests to locate these differences which, as reported in

able 4 , support the existence of significant differences between all

hree methods: ILS–PDSL is significantly better than TABU, which is

n turn significantly better than TESA.

nstances from Ş ahin et al. (2013) . Ş ahin et al. (2013) introduced a

econd set of instances and presented, for each instance with 50,

00 or 250 p-d pairs, the best solutions obtained by TABU over 20

uns. For the instances with 500 pairs, the authors presented the

est solutions over five runs. As indicated by the authors in a pri-

ate communication, the associated time values correspond to the

verage time of one run. These values also depend on the specific

nstance. As such, we have defined for each group of instances a

ermination criterion T max which is smaller or equal to the aver-

ge CPU time of TABU: 5 seconds for the instances with 50 service

airs, 40 seconds for the instances with 100 pairs, 5 minutes for

he instances with 250 pairs, and 1 hour for the instances with

00 pairs. Tables 5 –8 display the results of these experiments. In

hese tables, the solution quality of the best method is highlighted

n boldface.

Since the best solution quality of TABU has been measured over

ultiple runs (20 or 5), the comparison is established with the

est solution of ILS–PDSL over the same number of runs. When

nalyzing the tables, we observe that ILS–PDSL produces best so-

utions of higher quality than TABU (better than the BKS) on 47

nstances out of 48. The significance of these improvements is

gain confirmed by a pairwise Wilcoxon test with a value p =
 . 35 × 10 −13 . The magnitude of these improvements is also larger

han on previous instances, with an improvement of 7.11% on av-

rage (comparing best solutions together), which seems to indicate

hat these instances with a wider diversity of possible pickup and

1022 M.N. Haddad et al. / European Journal of Operational Research 270 (2018) 1014–1027

Table 1

Results for the PDPSL with 75 pairs – Instances from Nowak et al. (2008) Time limit set to 25.5 minutes per run.

TESA TABU ILS–PDSL

Instance BKS 1-Run Gap(%) 1-Run Gap(%) Avg-20 Gap(%) Best-20 Gap(%)

75 _ 1A 3796.32 3830.12 0.89 3894.34 2.58 3786.30 −0.26 3727.32 −1.82

75 _ 1B 3808.16 3857.12 1.29 3842.88 0.91 3764.84 −1.14 3683.20 −3.28

75 _ 1C 3790.03 3810.50 0.54 3790.03 0.00 3767.15 −0.60 3686.44 −2.73

75 _ 1D 3799.32 3799.32 0.00 3862.23 1.66 3755.47 −1.15 3707.17 −2.43

75 _ 1E 3788.37 3868.96 2.13 3820.87 0.86 3781.96 −0.17 3719.38 −1.82

75 _ 2A 3161.69 3313.48 4.80 3177.98 0.52 3104.55 −1.81 3044.34 −3.71

75 _ 2B 3169.92 3296.36 3.99 3179.00 0.29 3102.96 −2.11 3069.97 −3.15

75 _ 2C 3121.97 3203.25 2.60 3121.97 0.00 3085.99 −1.15 3040.38 −2.61

75 _ 2D 3117.69 3266.42 4.77 3117.69 0.00 3074.07 −1.40 3010.40 −3.44

75 _ 2E 3148.70 3332.59 5.84 3168.66 0.63 3109.04 −1.26 3075.34 −2.33

75 _ 3A 3897.12 4058.37 4.14 3910.04 0.33 3892.26 −0.12 3817.39 −2.05

75 _ 3B 3868.75 4172.42 7.85 3868.75 0.00 3860.70 −0.21 3771.77 −2.51

75 _ 3C 3858.71 4090.65 6.01 3900.38 1.08 3866.62 0.20 3787.46 −1.85

75 _ 3D 3845.05 4110.39 6.90 3888.20 1.12 3850.45 0.14 3762.61 −2.14

75 _ 3E 3893.36 4052.23 4.08 3908.01 0.38 3826.36 −1.72 3733.67 −4.10

Avg 3.72 0.69 −0.85 −2.66

Xeon Intel Core 2 Quad Intel Core 2 Quad

CPU 2.4 GHz 2.4 GHz 2.4 GHz

2 GB 4 GB 4 GB

Table 2

Results for the PDPSL with 100 pairs – Instances from Nowak et al. (2008) Time limit set to 56.2 minutes per run.

TESA TABU ILS–PDSL

Instance BKS 1-Run Gap(%) 1-Run Gap(%) Avg-20 Gap(%) Best-20 Gap(%)

100_1A 4992.59 5073.40 1.62 4992.59 0.00 4886.80 −2.12 4823.76 −3.38

100_1B 5036.55 5036.55 0.00 5042.30 0.11 4921.42 −2.29 4 861.4 9 −3.48

100_1C 5015.09 5029.38 0.29 5015.09 0.00 4922.82 −1.84 4813.72 −4.02

100_1D 4996.08 5012.97 0.34 4996.08 0.00 4922.44 −1.47 4831.00 −3.30

100_1E 5015.26 5130.15 2.29 5015.26 0.00 4896.29 −2.37 4792.94 −4.43

100_2A 4204.28 4450.06 5.85 4258.49 1.29 4169.72 −0.82 4096.25 −2.57

100_2B 4306.73 4484.47 4.13 4306.73 0.00 4225.95 −1.88 4156.74 −3.48

100_2C 4215.07 4473.39 6.13 4259.09 1.04 4201.15 −0.33 4134.60 −1.91

100_2D 4244.77 4424.57 4.24 4267.37 0.53 4194.76 −1.18 4089.79 −3.65

100_2E 4228.82 4559.26 7.81 4228.82 0.00 4200.25 −0.68 4132.97 −2.27

100_3A 5126.71 5294.37 3.27 5126.71 0.00 4987.04 −2.72 4934.62 −3.75

100_3B 5084.70 5371.74 5.65 5161.29 1.51 5042.60 −0.83 4974.61 −2.17

100_3C 5075.45 5216.80 2.78 5098.71 0.46 5004.95 −1.39 4938.02 −2.71

100_3D 5106.32 5467.79 7.08 5106.32 0.00 5010.16 −1.88 4941.18 −3.23

100_3E 5076.14 5572.47 9.78 5076.14 0.00 5029.86 −0.91 4884.24 −3.78

Avg 4.08 0.33 −1.51 −3.21

Xeon Intel Core 2 Quad Intel Core 2 Quad

CPU 2.4 GHz 2.4 GHzz 2.4 GHz

2 GB 4 GB 4 GB

o

s

T

f

t

t

o

o

o

v

s

n

i
delivery locations are more difficult to solve, and remain challeng-

ing for future works.

6.2. Metaheuristic – Sensitivity analysis

In order to examine the relative role of each component in the

proposed heuristic, we started from the standard version of the al-

gorithm and generated some alternative configurations by remov-

ing, in turn, a different neighborhood:

Base – The standard configuration, with all local-search neigh-

borhoods and the RCSP insertion ;

WN 1 – Base configuration without the PairSwap neighborhood;

WN 2 – Base configuration without the PairShift neighborhood;

WN 34 – Base configuration without the PickShift and DelShift

neighborhoods;

WN 5 – Base configuration without the BlockSwap neighbor-

hood;

WN 6 – Base configuration without the BlockShift neighborhood;
WR – Base configuration without the RCSP insertion neighbor-

hood. We note that the removal of the RCSP insertion neigh-

borhood forces the algorithm to work on a classic pickup

and delivery problem, without possible split moves.

The resulting algorithms have been all tested on the instances

f Nowak et al. (2008) , performing five runs for each of the 45 data

ets, and using the same termination criterion as in Section 6.1 .

able 9 displays, for each variant of the algorithm, the average gap

or each set of instances (Gap-75, Gap-100 and Gap-125) as well as

he average gap overall (Avg).

In this table, we observe that the Base configuration leads to

he best overall gap (−1 . 82%), as well as the best average gaps

n the 75-pairs and 100-pairs instances. Still, the best average gap

n the 125-pairs instances is attributed to the WN 5 variant, with-

ut the BlockSwap neighborhood. This effect is possibly due to the

ariance of the solution quality of the algorithm on this relatively

mall sample of 15 instances, but it also demonstrates that some

eighborhoods have a much larger impact than others. In decreas-

ng order of importance, the most important neighborhood is the

M.N. Haddad et al. / European Journal of Operational Research 270 (2018) 1014–1027 1023

Table 3

Results for the PDPSL with 125 pairs – Instances from Nowak et al. (2008) Time limit set to 95.9 minutes per run.

TESA TABU ILS–PDSL

Instance BKS 1-Run Gap(%) 1-Run Gap(%) Avg-20 Gap(%) Best-20 Gap(%)

125 _ 1A 5950.44 6020.05 1.17 6002.15 0.87 5762.68 −3.16 5682.79 −4.50

125 _ 1B 5938.94 5938.94 0.00 5998.06 1.00 5785.19 −2.59 5678.06 −4.39

125 _ 1C 5933.69 5977.69 0.74 5933.69 0.00 5758.32 −2.96 5625.24 −5.20

125 _ 1D 6060.85 6138.94 1.29 6083.59 0.38 5802.33 −4.27 5701.05 −5.94

125 _ 1E 5906.34 6024.26 2.00 5906.34 0.00 5755.05 −2.56 5660.45 −4.16

125 _ 2A 5396.85 5717.54 5.94 54 4 4.23 0.88 5262.65 −2.49 5183.40 −3.96

125 _ 2B 5456.91 5745.38 5.29 5460.81 0.07 5313.86 −2.62 5209.02 −4.54

125 _ 2C 5412.81 5667.26 4.70 5412.81 0.00 5289.23 −2.28 5145.39 −4.94

125 _ 2D 5475.40 5778.58 5.54 5494.71 0.35 5321.00 −2.82 5234.01 −4.41

125 _ 2E 5419.02 5780.01 6.66 5419.02 0.00 5281.44 −2.54 5191.63 −4.20

125 _ 3A 6237.20 6934.05 11.17 6252.24 0.24 6128.28 −1.75 6050.78 −2.99

125 _ 3B 6300.04 6918.16 9.81 6300.04 0.00 6152.84 −2.34 6057.74 −3.85

125 _ 3C 6324.66 6607.30 4.47 6332.93 0.13 6129.45 −3.09 6024.87 −4.74

125 _ 3D 6317.05 7239.79 14.61 6359.16 0.67 6166.94 −2.38 6040.13 −4.38

125 _ 3E 6257.16 6776.37 8.30 6277.38 0.32 6137.54 −1.91 6057.75 −3.19

Avg 5.45 0.33 −2.65 −4.36

Xeon Intel Core 2 Quad Intel Core 2 Quad

CPU 2.4 GHz 2.4 GHz 2.4 GHz

2 GB 4 GB 4 GB

Table 4

Results of pairwise Wilcoxon tests – In-

stances from Nowak et al. (2008) .

Algorithms p -value

TESA and TABU 2 . 12 × 10 −10

ILS–PDSL and TESA 5 . 68 × 10 −14

ILS–PDSL and TABU 5 . 68 × 10 −14

Table 5

Results for the PDPSL with 50 pairs – Instances from Ş ahin et al. (2013) Time

limit set to 5 seconds per run.

TABU ILS–PDSL

Instance T(s) Best-20 Best-20 Gap(%) Avg-20 Gap(%)

50A 4.5 16791.20 15481.36 −7.80 15913.01 −5.23

50B 4.3 17115.50 15422.03 −9.89 15814.13 −7.60

50C 4.5 14956.00 14131.43 −5.51 14591.86 −2.43

50D 4.3 16290.00 14947.06 −8.24 15345.82 −5.80

50E 7.6 11397.50 9517.49 −16.49 9895.06 −13.18

50F 7.4 9532.59 8429.16 −11.58 8927.89 −6.34

50G 6.2 9665.06 8820.07 −8.74 9175.39 −5.07

50H 11.2 9199.58 7608.63 −17.29 7930.69 −13.79

50I 5.8 14469.40 12864.70 −11.09 13235.73 −8.53

50J 6.5 13200.20 11891.39 −9.92 12131.98 −8.09

50K 2.3 12759.30 12337.42 −3.31 12594.40 −1.29

50L 4.4 14867.80 13426.21 −9.70 13973.27 −6.02

Avg 5.7 −9.96 −6.95

p

t

o

a

a

b

r

fi

p

(

P

a

v

Table 6

Results for the PDPSL with 100 pairs – Instances from Ş ahin et al. (2013) Time

limit set to 40 seconds per run.

TABU ILS–PDSL

Instance T(s) Best-20 Best-20 Gap(%) Avg-20 Gap(%)

100A 25.1 27301.2 25398.19 −6.97 26268.75 −3.78

100B 19.4 27090.1 25027.88 −7.61 26020.76 −3.95

100C 34.0 27221.3 25319.76 −6.99 25833.95 −5.10

100D 19.0 28574.7 26110.15 −8.62 27177.34 −4.89

100E 74.7 15320 13498.17 −11.89 14022.84 −8.47

100F 95.8 17574.2 13548.03 −22.91 13919.54 −20.80

100G 50.1 14888.4 14508.21 −2.55 15062.04 1.17

100H 57.9 16259.7 14 4 45.99 −11.15 15021.09 −7.62

100I 32.4 24994.4 22603.21 −9.57 23292.98 −6.81

100J 37.5 23025.5 21284.65 −7.56 21843.80 −5.13

100K 30.4 24509 22435.89 −8.46 23248.32 −5.14

100L 49.3 23994.7 20705.86 −13.71 21400.98 −10.81

Avg 43.8 −9.83 −6.78

Table 7

Results for the PDPSL with 250 pairs – Instances from Ş ahin et al. (2013) Time limit

set to 5 minutes per run.

TABU ILS–PDSL

Instance T(s) Best-20 Best-20 Gap(%) Avg-20 Gap(%)

250A 287.3 58847.6 56857.45 −3.38 58821.37 −0.04

250B 253.0 57559.1 55871.66 −2.93 57637.00 0.14

250C 299.5 57495.9 56483.36 −1.76 58107.41 1.06

250D 356.1 59396.7 57368.20 −3.42 59438.78 0.07

250E 3174.6 31736.8 28327.20 −10.74 29454.09 −7.19

250F 1123.1 27596 24820.19 −10.06 25562.37 −7.37

250G 1089.3 29421.8 26552.49 −9.75 27549.93 −6.36

250H 939.5 31911.5 27326.55 −14.37 28656.36 −10.20

250I 468.2 50154.8 48124.77 −4.05 50165.75 0.02

250J 448.8 53636.2 51119.88 −4.69 52868.55 −1.43

250K 537.5 50084.4 46946.17 −6.27 49128.23 −1.91

250L 392.3 54393.4 52580.00 −3.33 55067.03 1.24

Avg 780.8 −6.23 −2.66

e

p

t

t
roposed RCSP insertion , followed by the PairSwap neighborhood,

he BlockShift , PickShift and DelShift neighborhoods, and then the

thers. The RCSP insertion , in our context, is essential since it man-

ges the optimization of the split loads.

The gaps obtained by all ILS–PDSL variants (on all runs) can

lso be better observed by means of box plots, as in Fig. 4 . In these

ox plots, represented without the results of WR so as to enhance

eadability, we can observe the general superiority of the Base con-

guration. The removal of PairSwap (WN 1) has a large negative im-

act on the final solutions, followed by the removal of BlockShift

 WN 6), the removal of PickShift and DelShift (WN 34), the removal of

airShift (WN 2) and the removal of BlockSwap (WN 5).

We performed a Friedman test based on the gap values of each

lgorithm to validate the previous observations. The test led to a

alue p < 2 . 2 × 10 −16 , demonstrating significant statistical differ-
nces. Then, we performed paired-sample Wilcoxon tests to com-

are the Base algorithm with all other algorithms. The results of

hese tests are reported in Table 10 .

These results confirm, with high confidence, the hypotheses

hat the Base algorithm produces results of significantly (better)

1024 M.N. Haddad et al. / European Journal of Operational Research 270 (2018) 1014–1027

Table 8

Results for the PDPSL with 500 pairs – Instances from Ş ahin et al. (2013) Time

limit set to 1 hour per run.

TABU ILS–PDSL

Instance T(s) Best-5 Best-5 Gap(%) Avg-5 Gap(%)

500A 2124.6 106674 105536.28 −1.07 107176.11 0.47

500B 2374.2 110881 107657.18 −2.91 109636.75 −1.12

500C 1985.8 109181 107676.77 −1.38 109991.16 0.74

500D 2247.0 109746 104432.98 −4.84 107220.16 −2.30

500E 10860.4 63068.4 62322.13 −1.18 63411.06 0.54

500F 10815.8 68829.7 62951.49 −8.54 64701.06 −6.00

500G 11101.8 70038.8 67147.93 −4.13 69658.51 −0.54

500H 16763.8 60568.5 60489.14 −0.13 62636.44 3.41

500I 5075.4 93178.2 94264.57 1.17 97404.34 4.54

500J 4698.0 96984.8 94512.62 −2.55 97141.73 0.16

500K 4539.6 97429.5 96717.63 −0.73 98134.65 0.72

500L 5996.2 98102.7 95634.88 −2.52 97539.59 −0.57

Avg 6548.6 −2.40 0.00

Fig. 4. Box plot showing the gaps for each configuration of the ILS–PDSL.

Table 9

Results for each configuration of the ILS–PDSL – Instances from Nowak

et al. (2008) .

Configuration Gap-75(%) Gap-100(%) Gap-125(%) Avg(%)

Base −1.07 −1.82 −2.57 −1.82

WN 1 −0.25 −0.93 −1.37 −0.85

WN 2 −0.98 −1.58 −2.52 −1.70

WN 34 −0.75 −1.55 −2.46 −1.59

WN 5 −0.98 −1.74 −2.67 −1.80

WN 6 −0.80 −1.45 −1.95 −1.40

WR 48.84 48.93 47.18 48.32

Table 10

Results from paired-sample

Wilcoxon tests with the Base

algorithm.

Algorithms p -value

Base – WN 1 3 . 26 × 10 −16

Base – WN 2 0.18

Base – WN 34 0.01

Base – WN 5 0.78

Base – WN 6 5 . 05 × 10 −5

Base – WR < 2 . 2 × 10 −16

q

p

h

t

t

a

m

c

S

a

s

o

6

c

s

a

a

i

c

s

L

e

t

b

a

g

t

t

e

B

l

c

f

t

n

F

p

t

u

t

a

f

s

a

m

1

t

b

g

g

o

t

m

f

o

T

l

0

i

b
uality than the WN 1 , WN 34 , WN 6 and WR configurations, with

 -values which are always smaller than a threshold of 0.05. This

ighlights the importance of the neighborhoods which were deac-

ivated in those configurations. A pairwise Wilcoxon test between

he Base configuration and WN 2 and WN 5 led to p -values of 0.18

nd 0.78, such that the significance of the difference of perfor-

ance is not established in these cases. We can still reasonably

onjecture that the associated neighborhoods (PairShift and Block-

wap) have a smaller impact, which would be better visible with

dditional runs and/or test instances. Besides, the CPU time con-

umption dedicated to these neighborhoods is very small, hence

ur choice to maintain them in the Base algorithm.

.3. Metaheuristic and exact – Multiple vehicles and distance

onstraints

As discussed in Sections 1 and 3 , the absence of distance con-

traints in the classical benchmark instances leads to the use of

 single vehicle. To investigate real MPDPSL test cases, we gener-

ted two sets of instances with distance constraints. The first set

ncludes 40 small instances with 10 to 25 p-d pairs and a distance

onstraint L = 300 . The second set extends the 45 medium-size in-

tances from Nowak et al. (2008) with a distance constraint set to

 = 10 0 0 . All instances are available at https://w1.cirrelt.ca/ ∼vidalt/

n/VRP-resources.html . The first set of instances allows to compare

he results of the metaheuristic with some optimal solutions found

y the B&P. Due to their larger size, the instances of the second set

re only solved heuristically.

Table 11 presents the results obtained on the first set. The first

roup of columns report the average and best solutions found by

he ILS-PDSL over 20 runs as well as the percentage gap between

hese two values. A time limit of one minute was imposed for

ach run. The second group of columns reports the results of the

&P algorithm, considering a time limit of two hours. When this

imit is reached, the time is reported as “tl ”. From left to right, the

olumns indicate the root node relaxation value, the time needed

or the root node resolution, the final lower and upper bounds, the

otal CPU time, the percentage gap between the LB and UB, and fi-

ally the number of nodes explored in the branch-and-bound tree.

or a few instances, indicated with “–”, the B&P could not com-

lete the resolution of the root node within the time limit. When

he exact method can prove optimality, the upper bound value is

nderlined. Finally, note that the B&P receives the best solution of

he ILS-PDSL as initial upper bound, therefore the columns UB is

lways smaller or equal to the best solution of the ILS-PDSL. In a

ew cases, the B&P found a better UB during the execution. These

olutions are highlighted in boldface.

These results show that the B&P can solve instances of small

nd medium size. Out of the 40 instances of the first set, opti-

al solutions were found for 20 instances: for all instances with

0 p-d pairs, all but one with 15 pairs, and one with 20 pairs. For

he last open instance with 15 pairs, the B&P improved the upper

ound found by the heuristic and attained a very small optimality

ap (0.4%). For the largest instances, the time needed for column

eneration becomes prohibitively high. In particular, the time limit

f 2 hours was attained during the resolution of the root node on

wo instances with 25 p-d pairs. In the other cases, the B&P still

anages to find decent-quality lower bounds, at most 14.7% away

rom the heuristic upper bound.

Considering the metaheuristic results, we observe that 18 out

f the 20 known optimal solutions were found in at least one run.

he average percentage deviation between the average and best so-

utions of ILS–PDSL, over the complete set of instances, amounts to

.98%, therefore illustrating the good stability of the method. Sim-

larly, the deviation between the average solutions and the lower

ound found by the B&P method (eliminating instances 25–2 and

https://w1.cirrelt.ca/~vidalt/en/VRP-resources.html

M.N. Haddad et al. / European Journal of Operational Research 270 (2018) 1014–1027 1025

Table 11

Results for the MPDPSL – Small instances ILS-PDSL time limit set to 1 minute per run, B&P time limit set to 2 hours.

Instance ILS-PDSL Branch-and-Price

Best-20 Avg-20 Gap(%) LB 0 T 0 (s) LB UB T(s) Gap(%) Nodes

10-1 953 953.0 0.0 861.2 0.3 953.0 953 7.3 0.0 23

10-2 1020 1021.8 0.2 907.7 2.5 1020.0 1020 42.8 0.0 29

10-3 968 970.7 0.3 787.5 1.2 968.0 968 1318.7 0.0 1865

10-4 979 979.0 0.0 851.4 1.0 979.0 979 518.3 0.0 681

10-5 1026 1026.0 0.0 891.6 0.2 1026.0 1026 41.7 0.0 293

10-6 742 742.0 0.0 653.7 0.5 742.0 742 5.9 0.0 15

10-7 1019 1019.0 0.0 902.7 0.6 1019.0 1019 15.8 0.0 25

10-8 818 818.0 0.0 725.9 0.6 818.0 818 19.4 0.0 31

10-9 765 765.0 0.0 680.6 3.0 765.0 765 161.6 0.0 89

10-10 1058 1058.0 0.0 1008.7 0.1 1058.0 1058 3.7 0.0 29

15-1 1346 1379.2 2.5 1188.0 2.4 1346.0 1346 165.6 0.0 65

15-2 1116 1116.0 0.0 1073.0 40.9 1116.0 1116 666.8 0.0 29

15-3 1184 1194.6 0.9 1152.8 113.2 1175.5 1180 tl 0.4 122

15-4 1297 1302.6 0.4 1124.3 5.2 1297.0 1297 3308.3 0.0 1029

15-5 1028 1028.0 0.0 898.7 13.3 1028.0 1028 4533.0 0.0 639

15-6 1155 1157.8 0.2 1085.7 21.6 1140.0 1140 249.9 0.0 13

15-7 1102 1116.9 1.4 1076.8 96.2 1102.0 1102 857.9 0.0 13

15-8 1145 1145.3 0.0 1107.5 11.8 1145.0 1145 322.4 0.0 43

15-9 1150 1154.4 0.4 1117.1 84.0 1150.0 1150 3060.4 0.0 49

15-10 1060 1060.0 0.0 1010.1 27.5 1060.0 1060 589.3 0.0 33

20-1 1350 1351.1 0.1 1216.8 478.5 1272.1 1350 tl 6.1 49

20-2 1454 1457.9 0.3 1333.9 69.8 1452.7 1454 tl 0.1 215

20-3 861 862.2 0.1 856.7 1210.9 861.0 861 2999.7 0.0 3

20-4 1348 1350.8 0.2 1223.4 451.7 1267.4 1348 tl 6.4 37

20-5 1327 1337.0 0.7 1177.7 3117.5 1177.7 1327 tl 12.7 3

20-6 1614 1625.3 0.7 1447.3 127.0 1546.4 1614 tl 4.4 99

20-7 1399 1399.5 0.0 1297.7 2947.8 1297.7 1399 tl 7.8 3

20-8 1299 1329.3 2.3 1118.6 653.5 1143.3 1299 tl 13.6 13

20-9 1469 1588.0 8.1 1316.3 428.1 1369.4 1469 tl 7.3 17

20-10 1429 1460.5 2.2 1366.9 2379.3 1380.9 1429 tl 3.5 6

25-1 1887 1908.8 1.2 1619.3 2022.1 1665.7 1887 tl 13.3 6

25-2 1692 1748.4 3.3 – – – – tl – –

25-3 1549 1555.2 0.4 1391.0 2678.4 1391.0 1549 tl 11.4 3

25-4 1675 1685.5 0.6 1581.1 2621.1 1587.5 1675 tl 5.5 5

25-5 1415 1428.9 1.0 – – – – tl – –

25-6 1882 1923.3 2.2 1687.3 1425.6 1692.7 1882 tl 11.2 6

25-7 1487 1604.3 7.9 1442.5 4089.6 1442.5 1487 tl 3.1 3

25-8 1429 1446.6 1.2 1377.5 5308.6 1377.5 1429 tl 3.7 3

25-9 1613 1616.1 0.2 1400.9 1032.5 1422.1 1613 tl 13.4 8

25-10 1802 1802.6 0.0 1538.5 2335.8 1571.6 1802 tl 14.7 4

Table 12

Results for the MPDPSL with 75 pairs – Instances from

Nowak et al. (2008) Time limit set to 25.50 minutes per run.

Instance Best-20 Avg-20 Gap(%) Std Dev(%)

75_1A 3782.93 3865.12 2.17 1.66

75_1B 3747.57 3836.27 2.37 1.62

75_1C 3793.62 3864.07 1.86 1.17

75_1D 3765.05 3835.80 1.88 1.15

75_1E 3757.36 3835.99 2.09 1.44

75_2A 3097.22 3200.18 3.32 1.23

75_2B 3123.89 3181.35 1.84 1.04

75_2C 3110.82 3174.16 2.04 1.19

75_2D 3097.16 3163.17 2.13 1.45

75_2E 3118.38 3192.46 2.38 1.59

75_3A 3866.08 3981.00 2.97 1.32

75_3B 3855.72 3976.12 3.12 1.61

75_3C 3886.66 3959.61 1.88 1.07

75_3D 3870.89 3944.61 1.90 1.16

75_3E 3828.10 3958.88 3.42 1.55

Avg 2.36 1.35

2

t

e

a

s

Table 13

Results for the MPDPSL with 100 pairs – Instances from

Nowak et al. (2008) Time limit set to 56.20 minutes per run.

Instance Best-20 Avg-20 Gap(%) Std Dev(%)

100 _ 1A 4920.25 4993.39 1.49 1.02

100 _ 1B 4940.53 5029.61 1.80 1.08

100 _ 1C 4903.04 5010.18 2.19 1.17

100 _ 1D 4928.88 5012.28 1.69 0.86

100 _ 1E 4869.26 4977.90 2.23 1.05

100 _ 2A 4212.57 4270.83 1.38 0.88

100 _ 2B 4226.56 4304.39 1.84 1.13

100 _ 2C 4213.68 4281.58 1.61 1.06

100 _ 2D 4217.27 4305.97 2.10 1.27

100 _ 2E 4186.25 4275.55 2.13 1.16

100 _ 3A 4982.29 5131.18 2.99 1.31

100 _ 3B 5057.84 5189.52 2.60 1.38

100 _ 3C 5031.36 5137.47 2.11 1.38

100 _ 3D 5049.84 5152.46 2.03 1.35

100 _ 3E 5029.86 5144.86 2.29 1.46

Avg 2.03 1.17

t

(

s

n

p
5–5) amounts to 4.65%. This guarantees a good proximity be-

ween the solutions of ILS–PDSL and the true optima, even if this

stimate is naturally pessimistic due to the gap between the LB

nd the optima.

Tables 12–14 display the results of the metaheuristic for the

econd instance set, using the same time limits as in Section 6.1 :
he average solution in the 20 executions (Avg-20), the average gap

Gap), the best solution in the 20 executions (Best-20), and the

tandard deviation related to the gaps (Std Dev) for each instance.

These results aim to provide a useful base for comparisons with

ew algorithms in the future. They also reflect the difficulty of the

roblems, since small deviations related to the best solutions are

1026 M.N. Haddad et al. / European Journal of Operational Research 270 (2018) 1014–1027

Table 14

Results for the MPDPSL with 125 pairs – Instances from

Nowak et al. (2008) Time limit set to 95.90 minutes per run.

Instance Best-20 Avg-20 Gap(%) Std Dev(%)

125 _ 1A 5794.79 5888.54 1.62 0.96

125 _ 1B 5880.96 5966.92 1.46 0.91

125 _ 1C 5738.87 5881.25 2.48 1.22

125 _ 1D 5738.32 5945.99 3.62 1.49

125 _ 1E 5822.20 5915.08 1.60 0.89

125 _ 2A 5310.49 5419.77 2.06 0.87

125 _ 2B 5361.25 5476.77 2.15 1.11

125 _ 2C 5357.90 5417.37 1.11 0.66

125 _ 2D 5331.69 5458.60 2.38 0.98

125 _ 2E 5339.33 5443.11 1.94 1.18

125 _ 3A 6177.11 6283.43 1.72 1.22

125 _ 3B 6205.87 6343.14 2.21 1.17

125 _ 3C 6230.02 6312.84 1.33 0.92

125 _ 3D 6181.96 6351.26 2.74 1.45

125 _ 3E 6128.42 6313.40 3.02 1.52

Avg 2.10 1.10

e

l

k

t

o

s

o

M

t

A

2

a

R

A

B

B

C

C

C

C

C

D

D

D

H

I

L

L

M

N

N

Ö

P
usually good indications of performance. From these experiments,

we observe that the average gap remains moderate: 2.36% for the

75-pairs set, 2.03% for the 100-pairs set and 2.10% for the 125-

pairs set. These values are sensibly higher than those of the single-

vehicle experiments, with average gaps of 1.86%, 1.75% and 1.79%,

respectively (when computed relatively to the best solutions of 20

runs). As such, the new MPDPSL instances appear to be more chal-

lenging, and would deserve further attention in the coming years.

Finally, the solutions of these larger multi-vehicle instances with

distance constraints, and their single-vehicle counterpart, contain

a high proportion of split loads (55.69% and 58.52%, respectively),

likely due to the fact that each p-d pair occupies between 51% to

60% of the truck capacity.

7. Conclusions

In this article, we have considered the multi-vehicle one-to-one

pickup and delivery problem with split loads (MPDPSL). Because

this problem combines pickups and deliveries with split deliveries,

solving it is a challenging task. In particular, since the number of

visits in a solution may grow exponentially with the instance size,

no flow-based formulation with a polynomial number of variables

can represent the problem. For local-search based heuristics, the

sequencing and split deliveries decision subsets are also very in-

terdependent, such that various neighborhoods must be designed

to jointly modify some of these decisions.

To address these challenges, we proposed a branch-and-price

method as well as a conceptually simple ILS, based on classic

neighborhoods for pickup-and-delivery problems. Moreover, to effi-

ciently manage the split deliveries, we introduced an exponential-

sized neighborhood, which iteratively optimizes the pickup-and-

delivery locations and splits for each service, and can be effi-

ciently explored in pseudo-polynomial time. The performance of

the proposed methods has been validated through extensive com-

putational experiments. For the classical single-vehicle problem in-

stances, our heuristic outperforms all existing algorithms in simi-

lar computational time, and finds new best known solutions for 92

out of 93 instances. We also proposed new multi-vehicle problem

instances and solutions for future comparisons. For 20 instances,

the branch-and-price algorithm could produce optimal solutions,

and good-quality lower bounds were otherwise generated for the

majority of small and medium instances.

Overall, our research on metaheuristics takes place in a gen-

eral research line which aims at progressing towards an intelli-

gent search and exploration of larger neighborhoods via efficient

dynamic-programming techniques, in contrast with the brute-force
numeration of simpler neighborhoods. The MPDPSL is a very chal-

enging problem in this regard. For future research, we suggest to

eep on generalizing these neighborhoods and their exploration

echniques, as well as extending the methodology to a wider range

f difficult vehicle routing variants. For exact methods, many re-

earch avenues are also open. Similarly to the research conducted

n the classical split delivery problem, new structural properties of

PDPSL optimal solutions and polyhedral results may be essential

o trigger new methodological progress.

cknowledgments

This research was partially supported by the CNPQ (grants

01554/2014-3 , 308498/2015-1 , 425962/2016-4 , 307915/2016-6

nd 305889/2015-0), as well as CAPES, FAPEMIG and FAPERJ, Brazil.

eferences

rchetti, C. , & Speranza, M. (2012). Vehicle routing problems with split deliveries.
International Transactions in Operational Research, 19 (1–2), 3–22 .

Battarra, M. , Cordeau, J.-F. , & Iori, M. (2014). Pickup-and-delivery problems for goods
transportation. In P. Toth, & D. Vigo (Eds.), Vehicle routing: Problems, methods,

and applications (pp. 161–191). Philadelphia, PA: SIAM .

erbeglia, G. , Cordeau, J.-F. , Gribkovskaia, I. , & Laporte, G. (2007). Static pickup and
delivery problems: a classification scheme and survey. Top, 15 (1), 1–31 .

oudia, M. , Prins, C. , & Reghioui, M. (2007). An effective memetic algorithm with
population management for the split delivery vehicle routing problem. . In

T. Bartz-Beielstein, M. J. B. Aguilera, C. Blum, B. Naujoks, A. Roli, G. Rudolph,
& M. Sampels (Eds.), Hybrid metaheuristics . In Lecture Notes in Computer Science:

4771 (pp. 16–30). Springer .
assani, L. , & Righini, G. (2004). Heuristic algorithms for the TSP with rear-load-

ing. In Proceedings of the thirty-fifth annual conference of the Italian operations

research society, LECCE, Italy .
hemla, D. , Meunier, F. , & Wolfler Calvo, R. (2013). Bike sharing systems: Solving

the static rebalancing problem. Discrete Optimization, 10 (2), 120–146 .
hen, P. , Golden, B. , Wang, X. , & Wasil, E. (2017). A novel approach to solve the

split delivery vehicle routing problem. International Transactions in Operational
Research, 24 (1–2), 27–41 .

larke, G. , & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a

number of delivery points. Operations Research, 12 (4), 568–581 .
oelho, I. M. , Munhoz, P. L. A. , Haddad, M. N. , Coelho, V. N. , Silva, M. M. ,

Souza, M. J. F. , & Ochi, L. S. (2011). A computational framework for combina-
torial optimization problems. In Proceedings of the VII ALIO/Euro workshop on

applied combinatorial optimization, Porto (pp. 51–54) .
oerner, K. , & Salazar-González, J.-J. (2014). Pickup-and-delivery problems for peo-

ple transportation. In P. Toth, & D. Vigo (Eds.), Vehicle routing: Problems, methods,

and applications (pp. 193–212). Philadelphia, PA: SIAM .
ror, M. , & Trudeau, P. (1989). Savings by split delivery routing. Transportation Sci-

ence, 23 (2), 141–145 .
umas, Y. , Desrosiers, J. , & Soumis, F. (1991). The pickup and delivery problem with

time windows. European Journal of Operational Research, 54 (1), 7–22 .
artl, R. , & Romauch, M. (2016). Notes on the single route lateral transhipment

problem. Journal of Global Optimization, 65 (1), 57–82 .

rnich, S. , Schneider, M. , & Vigo, D. (2014). Four variants of the vehicle routing prob-
lem. In P. Toth, & D. Vigo (Eds.), Vehicle routing: Problems, methods, and applica-

tions (pp. 241–271). Philadelphia, PA: SIAM .
aporte, G. (2009). Fifty years of vehicle routing. Transportation Science, 43 (4),

408–416 .
aporte, G. , Ropke, S. , & Vidal, T. (2014). Heuristics for the vehicle routing problem.

In P. Toth, & D. Vigo (Eds.), Vehicle routing: Problems, methods, and applications

(pp. 87–116). Society for Industrial and Applied Mathematics .
Mitra, S. (2005). An algorithm for the generalized vehicle routing problem with

backhauling. Asia-Pacific Journal of Operational Research, 22 (2), 153–170 .
itra, S. (2008). A parallel clustering technique for the vehicle routing problem

with split deliveries and pickups. The Journal of the Operational Research Soci-
ety, 59 (11), 1532–1546 .

Nagata, Y. , & Kobayashi, S. (2011). A memetic algorithm for the pickup and deliv-

ery problem with time windows using selective route exchange crossover. In
R. Schaefer, C. Cotta, J. Kołodziej, & G. Rudolph (Eds.), Parallel problem solving

from nature . In LNCS: 6238 (pp. 536–545). Berlin, Heidelberg: Springer .
owak, M. , Ergun, Ö. , & White III, C. C. (2008). Pickup and delivery with split loads..

Transportation Science, 42 (1), 32–43 .
owak, M. , Ergun, Ö. , & White III, C. C. W. (2009). An empirical study on the benefit

of split loads with the pickup and delivery problem. European Journal of Opera-
tional Research, 198 (3), 734–740 .

ncan, T., Aksu, D. T., Ş ahin, G., & Ş ahin, M. (2011). A branch and cut algorithm

for the multi-vehicle one-to-one pickup and delivery problem with split loads.
IEEE international conference on industrial engineering and engineering man-

agement, (pp. 1864–1868).
arragh, S. N. , Doerner, K. F. , & Hartl, R. F. (2008). A survey on pickup and delivery

problems. Journal für Betriebswirtschaft, 58 (1), 21–51 .

https://doi.org/10.13039/501100003593
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0001
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0001
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0001
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0001
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0002
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0002
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0002
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0002
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0002
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0003
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0003
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0003
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0003
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0003
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0003
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0004
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0004
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0004
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0004
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0004
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0005
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0005
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0005
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0005
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0006
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0006
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0006
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0006
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0006
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0007
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0007
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0007
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0007
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0007
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0007
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0008
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0008
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0008
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0008
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0009
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0009
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0009
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0009
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0009
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0009
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0009
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0009
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0009
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0010
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0010
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0010
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0010
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0011
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0011
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0011
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0011
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0012
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0012
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0012
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0012
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0012
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0013
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0013
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0013
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0013
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0014
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0014
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0014
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0014
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0014
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0015
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0015
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0016
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0016
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0016
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0016
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0016
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0017
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0017
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0018
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0018
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0019
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0019
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0019
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0019
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0020
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0020
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0020
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0020
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0020
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0021
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0021
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0021
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0021
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0021
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0022
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0022
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0022
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0022
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0022

M.N. Haddad et al. / European Journal of Operational Research 270 (2018) 1014–1027 1027

P

R

R

S

S

S

S

T

V

essoa, A. , Uchoa, E. , Poggi de Aragão, M. , & Rodrigues, R. (2010). Exact algorithm
over an arc-time-indexed formulation for parallel machine scheduling problems.

Mathematical Programming Computation, 2 (3), 259–290 .
opke, S. , & Cordeau, J.-F. (2009). Branch and cut and price for the pickup and de-

livery problem with time windows. Transportation Science, 43 (3), 267–286 .
opke, S. , & Pisinger, D. (2006). An adaptive large neighborhood search heuristic

for the pickup and delivery problem with time windows. Transportation Science,
40 (4), 455–472 .

¸ ahin, M. , Çavu ̧s lar, G. , Öncan, T. , Ş ahin, G. , & Tüzün Aksu, D. (2013). An efficient

heuristic for the multi-vehicle one-to-one pickup and delivery problem with
split loads. Transportation Research Part C: Emerging Technologies, 27 , 169–188 .

ilva, M. M. , Subramanian, A. , & Ochi, L. S. (2015). An iterated local search heuristic
for the split delivery vehicle routing problem. Computers & Operations Research,

53 , 234–249 .
ouza, M. , Coelho, I. , Ribas, S. , Santos, H. , & Merschmann, L. (2010). A hybrid heuris-
tic algorithm for the open-pit-mining operational planning problem. European

Journal of Operational Research, 207 (2), 1041–1051 .
ubramanian, A. , Drummond, L. , Bentes, C. , Ochi, L. , & Farias, R. (2010). A parallel

heuristic for the vehicle routing problem with simultaneous pickup and deliv-
ery. Computers & Operations Research, 37 (11), 1899–1911 .

hangiah, S. , Fergany, A. , & Awan, S. (2007). Real-time split-delivery pickup and de-
livery time window problems with transfers. Central European Journal of Opera-

tions Research, 15 (4), 329–349 .

idal, T. , Crainic, T. G. , Gendreau, M. , & Prins, C. (2013). Heuristics for multi-attribute
vehicle routing problems: a survey and synthesis. European Journal of Opera-

tional Research, 231 (1), 1–21 .

http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0023
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0023
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0023
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0023
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0023
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0023
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0024
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0024
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0024
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0024
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0025
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0025
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0025
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0025
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0026
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0026
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0026
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0026
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0026
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0026
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0026
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0027
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0027
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0027
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0027
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0027
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0028
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0028
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0028
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0028
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0028
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0028
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0028
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0029
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0029
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0029
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0029
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0029
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0029
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0029
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0030
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0030
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0030
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0030
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0030
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0031
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0031
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0031
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0031
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0031
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0031

	Large neighborhood-based metaheuristic and branch-and-price for the pickup and delivery problem with split loads
	1 Introduction
	2 Problem statement
	3 Related literature
	4 Exact solution approach
	4.1 Mathematical formulation
	4.2 Column generation
	4.3 Branch-and-price

	5 Large neighborhood-based metaheuristic
	5.1 Initial solution
	5.2 Randomized variable neighborhood descent
	5.3 RCSP-insertion neighborhood
	5.4 Perturbation mechanism

	6 Computational results
	6.1 Metaheuristic - Performance evaluation on PDPSL instances
	6.2 Metaheuristic - Sensitivity analysis
	6.3 Metaheuristic and exact - Multiple vehicles and distance constraints

	7 Conclusions
	 Acknowledgments
	 References

