European Journal of Operational Research 270 (2018) 1014-1027

=

Contents lists available at ScienceDirect ROPEAN /OURNAL OF

U
PERATIONAL | ESEARCH

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Production, Manufacturing and Logistics

Large neighborhood-based metaheuristic and branch-and-price for the n
pickup and delivery problem with split loads et

Matheus Nohra Haddad®* Rafael Martinelli®, Thibaut Vidal¢, Simone Martins?,
Luiz Satoru Ochi? Marcone Jamilson Freitas Souza¢, Richard Hartl®

2 Instituto de Computagdo, Universidade Federal Fluminense, Rua Passo da Pdtria, 156 - SGo Domingos, Niteréi R 24210-240, Brazil

b Departamento de Engenharia Industrial, Pontificia Universidade Catélica do Rio de Janeiro, Rua Marqués de Séo Vicente, 225 - Gdvea, Rio de Janeiro RJ
22451-900, Brazil

¢Dpt. de Informadtica, Pontificia Universidade Catélica do Rio de Janeiro Rua Marqués de Sdo Vicente, 225 - Gdvea, Rio de Janeiro R] 22451-900, Brazil

d Departamento de Computagdo, Universidade Federal de Ouro Preto, Campus Universitdrio, Morro do Cruzeiro, Ouro Preto - MG 35400-000, Brazil

¢ Department of Business Administration, Universitdt Wien, Oskar-Morgenstern-Platz 1, Vienna A-1090, Austria

ARTICLE INFO ABSTRACT

Article history:

Received 10 October 2016
Accepted 10 April 2018
Available online 13 April 2018

We consider the multi-vehicle one-to-one pickup and delivery problem with split loads, a NP-hard prob-
lem linked with a variety of applications for bulk product transportation, bike-sharing systems and inven-
tory re-balancing. This problem is notoriously difficult due to the interaction of two challenging vehicle
routing attributes, “pickups and deliveries” and “split deliveries”. This possibly leads to optimal solutions
of a size that grows exponentially with the instance size, containing multiple visits per customer pair,
even in the same route. To solve this problem, we propose an iterated local search metaheuristic as well
as a branch-and-price algorithm. The core of the metaheuristic consists of a new large neighborhood
search, which reduces the problem of finding the best insertion combination of a pickup and delivery
pair into a route (with possible splits) to a resource-constrained shortest path and knapsack problem.
Similarly, the branch-and-price algorithm uses sophisticated labeling techniques, route relaxations, pre-
processing and branching rules for an efficient resolution. Our computational experiments on classical
single-vehicle instances demonstrate the excellent performance of the metaheuristic, which produces new
best known solutions for 92 out of 93 test instances, and outperforms all previous algorithms. Experimen-
tal results on new multi-vehicle instances with distance constraints are also reported. The branch-and-
price algorithm produces optimal solutions for instances with up to 20 pickup-and-delivery pairs, and
very accurate solutions are found by the metaheuristic.

Keywords:
Transportation
Vehicle routing
Pickup and delivery
Split loads
Metaheuristics
Branch-and-price

© 2018 Elsevier B.V. All rights reserved.

1. Introduction (Laporte, 2009; Laporte, Ropke, & Vidal, 2014; Vidal, Crainic, Gen-

dreau, & Prins, 2013). Over the years, the classical version of the

The classical vehicle routing problem (VRP) aims to find
minimum-distance itineraries to service a set of geographically dis-
tributed customers with a fleet of vehicles, in such a way that
each customer is visited once and the capacity of each vehi-
cle is respected. This important combinatorial optimization prob-
lem has been the focus of extensive research since the 1960’s

* Corresponding author.

E-mail addresses: matheushaddad@ic.uff.br (M.N. Haddad), martinelli@puc-
rio.br (R. Martinelli), vidalt@inf.puc-rio.br (T. Vidal), simone@ic.uff.br (S.
Martins), satoru@ic.uff.br (LS. Ochi), marcone@iceb.ufop.br (MJ.E. Souza),
richard.hartl@univie.ac.at (R. Hartl).

https://doi.org/10.1016/j.ejor.2018.04.017
0377-2217/© 2018 Elsevier B.V. All rights reserved.

problem has been increasingly-well solved, but as new applications
are discovered, many additional constraints, objectives, and other
decision subsets, called “attributes” in Vidal et al. (2013), are com-
bined with the classical problem, leading to new challenges.

A classical restriction of the VRP is that each delivery is done in
one block by a single vehicle. Dror and Trudeau (1989) raised this
restriction, allowing the total demand of a customer to be served
during several visits, leading to the split delivery vehicle routing
problem (SDVRP). At first, one might think that allowing split de-
liveries results in increased costs since more visits may be per-
formed. Yet, this relaxation leads to a larger set of solutions, pos-
sibly opening the way to lower costs. The SDVRP is known to be
notoriously more difficult to solve than the classical VRP from an
exact method standpoint, and requires more sophisticated classes

https://doi.org/10.1016/j.ejor.2018.04.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2018.04.017&domain=pdf
mailto:matheushaddad@ic.uff.br
mailto:martinelli@puc-rio.br
mailto:vidalt@inf.puc-rio.br
mailto:simone@ic.uff.br
mailto:satoru@ic.uff.br
mailto:marcone@iceb.ufop.br
mailto:richard.hartl@univie.ac.at
https://doi.org/10.1016/j.ejor.2018.04.017

M.N. Haddad et al./European Journal of Operational Research 270 (2018) 1014-1027 1015

of neighborhoods to be adequately solved via metaheuristics (Silva,
Subramanian, & Ochi, 2015).

In the meantime, another VRP variant has drawn considerable
attention over the years: the one-to-one pickup and delivery (PDP)
problem, which requires to perform each service as a pair, in such
a way that each pickup precedes its associated delivery in the
same route. We refer to Berbeglia, Cordeau, Gribkovskaia, and La-
porte (2007) and Parragh, Doerner, and Hartl (2008) for a detailed
survey on pickup and delivery problems. Once again, an essential
ingredient of state-of-the-art heuristics for this problem is the ef-
ficient exploration of a variety of neighbor solutions during the
search, a task which tends to be more complex when pairs of de-
liveries are relocated or exchanged instead of single visits.

As both “pickups and deliveries” and “split deliveries” attributes
require sophisticated search techniques, combining them into one
vehicle routing variant poses significant methodological challenges,
thus partly explaining the reduced number of methods proposed
for the multi-vehicle one-to-one pickup and delivery problem with
split loads (MPDPSL) despite its practical relevance. To this date,
two main articles have considered this variant. Nowak, Ergun, and
White III (2008) presented a practical application faced by a lo-
gistic company which provides outsourced services. Then, Sahin,
Cavuslar, Oncan, Sahin, and Tiiziin Aksu (2013) solved this prob-
lem for the transportation of bulk products by ship. In this later
case, each load is already packaged into multiple containers, and
mail services collect and deliver multiple packets between origin
and destination pairs. Finally, this problem is of high relevance in
many other application contexts involving pickups and deliveries
of divisible products, e.g., inventory between supermarkets (Hartl
& Romauch, 2016), or bike repositioning for self-sharing bike shar-
ing systems (Chemla, Meunier, & Wolfler Calvo, 2013).

Note that, despite the description of a multi-vehicle algorithm
in Sahin et al. (2013), all previous experimental analyses have been
restricted to single-vehicle cases. Indeed, the existing instances did
not contain resource constraints on routes (e.g., distance or time),
and the depot does not intervene as a replenishment facility in
a one-to-one PDP. When the triangle inequality holds, it is never
necessary or profitable to return to the depot, such that the search
can be limited to single-vehicle solutions without compromising
solution quality.

In this paper, we pursue the research on this difficult prob-
lem, by proposing new heuristic and exact solution approaches,
along with experimental analyses on distance-constrained multi-
vehicle benchmark instances. More precisely, we introduce a hy-
brid metaheuristic based on iterated local search (ILS) with ran-
dom variable neighborhood descent (RVND), which incorporates
classical neighborhoods and perturbation procedures with new
larger dynamic programming-based neighborhoods for joint ser-
vice reinsertions and optimization of split loads. This method will
be called ILS-PDSL (ILS for pickup-and-delivery problems with
split loads). Moreover, we propose the first efficient branch-and-
price algorithm for the MPDPSL. The method exploits problem-
tailored route relaxations, pricing algorithms, pre-processing tech-
niques and branching rules, allowing to solve problem instances
with up to 20 pickup-and-delivery pairs. As such, the key contri-
butions of this work are:

(1). Efficient heuristic and exact solutions approaches for the
MPDPSL;

(2). new dynamic programming based neighborhoods for split
pickup-and-delivery problems;

(3). new state-of-the-art results for single-vehicle benchmark in-
stances; and finally,

(4). experimental analyses on new multi-vehicle benchmark in-
stances.

Fig. 1. A feasible MPDPSL solution. The service to (5,12) is split among two routes.

2. Problem statement

Consider a graph G= (V,E), where V=PuUDU{0,2n + 1} in-
cludes the vertices associated with n pickup and delivery (p-d)
pairs of customers as well as the vertices {0,2n+ 1}, represent-
ing the initial and final depots locations. The set P ={1,2,...,n}
represents the pickup customers, while the set D={n+1,..., 2n}
represents the corresponding delivery customers. Each service i
consists of a pickup customer icP and a delivery customer (n -+
i) € D. A positive demand g; > 0 is associated with each pickup cus-
tomer ie P, and a negative demand, q,,; = —¢;, is associated with
the corresponding delivery customer (n +1i) € D. Each edge (i, j) € E
represents the possibility of traveling from a vertex i eV to a vertex
JjeV with a distance cost dj;.

A homogeneous fleet of m vehicles with capacity limit Q is
available to perform the services. Any vehicle arriving at a pickup
vertex can collect all available load, or only a part of it. When a
vehicle arrives at a delivery vertex, all load from this vehicle in-
tended for this customer is delivered. As in previous works, we
assume that g; <Q for all services i. Moreover, we impose in this
paper a maximum travel distance L for each vehicle.

The objective of the MPDPSL is to design a set of up to m
routes, starting and ending at the depot, with minimum travel dis-
tance, in such a way that the complete demand of each pickup and
delivery is satisfied, the route distance limit is respected as well
as vehicle capacities, and each pickup precedes its delivery in the
same route.

We adopt the same definition of a split load as in the SDVRP
literature: a split load occurs when the demand of a customer is
serviced by a larger number of trips than the minimum necessary.
Fig. 1 illustrates a feasible MPDPSL solution for an instance with
seven p-d pairs served by two vehicles. In this example, the ser-
vice of the pair (5,12) is split among two routes, and each vehi-
cle carries a fraction of the demand associated to this service. Note
that the previous example is not the only situation in which a split
load can occur. The MPDPSL is notably different from the SDVRP as
more than one split load can occur in the same route in an optimal
solution. The solution size can also increase significantly and be-
come, in some cases, exponential as a function of the input size. An
illustrative example of such a situation is presented in Fig. 2. This
example includes two p-d pairs, (1,3) and (2,4), with one vehicle of
capacity Q = 100 and distance limit L = co. Customer 1 wishes to
transfer 99 load units to customer 3, while customer 2 wishes to
transfer 100 load units to customer 4. The distance between cus-
tomers 2 and 4 is small (dy4 = dgp = €).

The optimal solution for this problem instance contains a single
tour, which

1016 M.N. Haddad et al./European Journal of Operational Research 270 (2018) 1014-1027

Fig. 2. Optimal MPDPSL solution for an instance with two p-d pairs, involving an
arbitrary high number of visits to the same customer in a single route.

- visits customer 1 and collects its full load (99 units), then
visits customer 2 to collect one unit of load and delivers it to
customer 4;

repeats the previous operation 99 additional times,

delivers the load of customer 3 (99 units), and returns to the
depot.

This optimal solution performs 202 customer visits instead of
4 for the same problem without split loads. Of course, this is an
extreme case of the classical MPDPSL, as in practical applications
a base service time may be counted (e.g., as part of the travel dis-
tance), hence increasing d,4. Nevertheless, a good heuristic should
be able to find multiple split loads, since these situations can nat-
urally occur.

3. Related literature

The PDP and SDVRP have been the focus of extensive work,
counting hundreds of scientific articles. We refer to Archetti and
Speranza (2012); Battarra, Cordeau, and lori (2014); Doerner and
Salazar-Gonzalez (2014) and Irnich, Schneider, and Vigo (2014) for
detailed surveys. Among the current state-of-the-art methods for
PDP, we can highlight, in particular, the adaptive large neighbor-
hood search (ALNS) of Ropke and Pisinger (2006), which iteratively
improves an incumbent solution by means of repeated destruc-
tion and reconstruction steps, and the hybrid genetic algorithm of
Nagata and Kobayashi (2011) based on a selective route exchange
crossover with efficient local searches, producing to this date the
best results for PDP instances with time constraints. ALNS has been
subsequently extended to a wide range of VRP variants with great
success.

For the SDVRP, the current state-of-the-art results are obtained
by the multi-start ILS-RVND metaheuristic of Silva et al. (2015).
This method exploits a wide collection of construction techniques
and neighborhoods for solution improvement, as well as a pertur-
bation strategy which operates multiple random k-Split moves. Fi-
nally, Chen, Golden, Wang, and Wasil (2017) proposed an a-priori
Split strategy, in which customer’s demands are split in advance,
and a capacitated VRP (CVRP) solver is subsequently used. This
simple approach leads to solutions of fair quality and leverage
decades of CVRP research.

In contrast, very few articles have considered the combination
of both attributes in a single problem. To our knowledge, Mitra
(2005) first considered a problem related to the PDPSL, but with si-
multaneous pickups and deliveries instead of one-to-one requests.
The objective seeks to minimize the fleet size and then the dis-
tance. The authors propose a mixed integer programming (MIP)
formulation for this problem and a route construction heuristic,

which firstly determines the minimum number of vehicles re-
quired, and then builds routes based on a cheapest insertion cri-
terion. An additional MIP formulation and an extension of this
heuristic, using parallel clustering, are proposed in Mitra (2008).

Nowak et al. (2008) evaluate the benefits of allowing split loads
in the one-to-one PDP, hence defining the PDPSL. The objective
of the PDPSL is to find a single route with minimum cost, ful-
filling the required demand. A heuristic based on simulated an-
nealing and tabu search is developed and random large-scale in-
stances are created. The authors observe that the benefits of split
loads are closely linked to three characteristics of the instances:
the load size, the cost associated with the pickup or delivery,
and the percentage of loads which have pickup and delivery lo-
cations in common. They also show that, for a given set of ori-
gins and destinations, the greatest benefits are observed when the
load size is greater than half the capacity of the vehicle. A variant
of the problem addressed in Nowak et al. (2008) can be found in
Thangiah, Fergany, and Awan (2007), with additional time-window
constraints. This work describes an algorithm that inserts ship-
ments into vehicles using multiple-insertion heuristics for static
and real-time test cases.

Nowak, Ergun, and White Il (2009) perform an additional em-
pirical analysis of the heuristic presented in Nowak et al. (2008).
The authors note that when demands are between 51% and 60% of
the capacity of the vehicle, up to 30% transportation costs can be
saved. The potential savings due to split loads depends on the per-
centage of loads to be collected or delivered in a common location,
and the average distance from an origin to a destination relative to
the distance from origin to origin and destination to destination.

Sahin et al. (2013) consider the PDPSL with multiple vehicles
and distance constraints and formally define the MPDPSL. The au-
thors develop a heuristic based on tabu search and simulated an-
nealing. The initial solution is built using a variant of the savings
algorithm by Clarke and Wright (1964), and then improved by local
searches based on swap and insert/split neighborhoods. The simu-
lated annealing is then used in combination with a tabu list to con-
trol move acceptance. Experiments are conducted on the instances
from Nowak et al. (2008), as well as adapted instances from Ropke
and Pisinger (2006). However, since no distance limits are imposed
to the vehicles, it is always better to use a single route, such that
these instances cannot be viewed as multi-vehicle test cases.

Finally, Sahin et al. (2013) and Oncan, Aksu, Sahin, and Sahin
(2011) also introduce an integer programming model and branch-
and-cut algorithm for the MPDPSL, allowing to solve some prob-
lem instances with seven p-d pairs. This method, however, does
not necessarily produce an optimal solution for the problem (e.g.,
in cases similar to Fig. 2), as the model allows at most one visit
per route for each p-d pair. More generally, no compact edge-flow
formulation with a strongly polynomial number of variables can
be built for the MPDPSL, since the number of customer visits of
an optimal solution may grow exponentially with the size of the
instance. To overcome this issue, we propose a branch-and-price
algorithm, such that the inherent complexity related to multiple
split deliveries within the same route is relegated into the labeling
algorithm used for column generation. This allows to generate the
first known optimal solutions for the MPDPSL without any restric-
tion on the number of visits.

4. Exact solution approach

This section first introduces a set partitioning formulation of
the MPDPSL (Section 4.1), and then describes the column gener-
ation procedure (Section 4.2), and the branch-and-price algorithm
(Section 4.3) designed to solve this problem to optimality.

M.N. Haddad et al./European Journal of Operational Research 270 (2018) 1014-1027 1017

4.1. Mathematical formulation

The mathematical formulation used is an adaptation of the
well-known set partitioning formulation, which is extensively used
in successful exact approaches for vehicle routing problems. It con-
siders the set of all feasible routes 2 and binary variables A;, rep-
resenting whether route re Q is used in the solution. In contrast
with most other vehicle routing problems, set 2 naturally contains
non-elementary routes, i.e., routes visiting vertices more than once
due to split deliveries. In any route re €2, the precedence and ca-
pacity constraints should be respected, and the total amount ser-
viced for any p-d pair must not exceed its demand.

Minimize) d;A, (1)
reQ

subject to Y Grikr = g ieP (2)
re2

A € {0, 1} re Q. (3)

The Objective Function (1) minimizes the total cost of the so-
lution. Given g,; as the total amount of the p-d pair (i,n+1i) de-
mand serviced by route r, Constraints (2) guarantee that all de-
mands of all p-d pairs are satisfied. Constraints (3) are the variable
bounds constraints. Clearly, set 2 contains an exponential number
of routes, and the above formulation cannot be solved by consid-
ering all variables. Therefore, a column generation approach is re-
quired to efficiently solve it, as presented in the next section.

4.2. Column generation

Since the MPDPSL combines features of both pickup-and-
delivery and split delivery problems, our Column Generation (CG)
algorithm is first built upon an algorithm for the PDP with time
windows (PDPTW), as the one presented in Ropke and Cordeau
(2009), and then extended to consider split loads. The algorithm
may generate routes considering all possible loads for all p-d pairs
visited, under the condition that they respect the precedence con-
straints and the maximum travel distance L.

The CG starts with no routes and iteratively generates feasible
ones by solving a pricing subproblem algorithm. Given that with
no routes, the formulation of Section 4.1 would become infeasible,
we introduce one artificial variable for each constraint and solve a
two-phase CG, following the same idea as the two-phase Simplex
algorithm. At each iteration, the pricing subproblem must find one
or more variables with negative reduced cost. Given §;, the dual
variables of Constraints (2), the reduced cost of a route can be cal-
culated as dr = dr — ";.p BiGyi- The dual variable S; is only counted
when the route visits a pickup vertex, and it is multiplied by the
total amount of demand loaded in this pickup vertex. Therefore,
we can write the reduced cost of an edge (i, j)€E, ieV, jeP that
loads an amount q of vertex j's demand as dfj =d;; — B;q. On the
other hand, the amount of demand unloaded on a delivery vertex
does not imply any change on the route’s reduced cost. For this
reason, we define the reduced cost of an edge (i, j)€E, ieV, jeD
simply as d;; = d;;.

A partial path (i,d, Q,q) is a non-elementary path that starts
at the depot, visits a subset of vertices and ends in vertex i ser-
vicing ¢ units of its demand with total travel distance d. Vector Q
contains the load of all opened p-d pairs. It also allows to know
which delivery vertices must be visited in the future, and the cur-
rent total load in the vehicle.

Note that the definition of partial paths allows infeasible routes
with excess demand for some p-d pairs. This relaxation is used to

facilitate the resolution of the pricing subproblem. Moreover, infea-
sible routes will anyway be excluded in any integer solution of the
formulation thanks to Constraints (2).

The pricing subproblem is a resource-constrained short-
est path problem solved by a dynamic programming algo-
rithm that works on a state-space graph G = (V,&), with
Y =VPuvPu{(0,0,0",0)}, where VP =1{(i,d Q,q) :VQe
®,Qlil=q.1<q=<q.VieP0<d<L}, VP={(i.d, Q.0):VQe
®,9[i—-n]=0,VieD,0<d <L}, (0,0, 0" 0) represents the origi-
nal depot vertex and ® = {Q e N": 0 < Q[i] < ¢q;,Vie P, > ;.p Qli] <
Q}. Furthermore & ={((j.d'.2Q.¢),((,d, Q.q)):V(.d,2Q.¢)e
713, 4,d,Q).V(j,i) eEV(i,d, Q¢ eV.d; <d < L}, where
£13.i.d, Q) ={(j.d—dj;, Q.q) : YQ' e ® s.t. Q'[k] = Q[k] Vke
P\{i} and Q'[i]=0ifie P, Q'[k] = Q[k] Vke P\{i—n}and Q'[i —
nl>0ifieD, or Q'[k]=0 VkePifi=0,0<gq <gq;}. The recur-
sion can then be written as

flid . q) = {fG.d', Q. q)+d%},¥(i.d, Q. q) e V.

(4)

min
(Jud',Q.q")ee~1(jid, Q)

In order to reduce the number of states, we use the following
dominance rule. State (i,d, Q,q) dominates state (j,d’, Q',q’) iff
(i) i=j. (ii) d=d’ (iii) f(i.d. Q. q) = f(j.d". Q. q") and (iv) Q[K] <
Q'[k], Yk € P. Note that (iv) assures the total load on partial path
(i,d, 9,q) to be less than the one on partial path (j, d’, Q. q").
Moreover, this condition is only valid if the reduced costs respect
the Delivery Triangle Inequality (DTI) (Ropke & Cordeau, 2009).
An MPDPSL cost matrix is said to respect the DTI if d;; < dy +
dyj, Vi, j €V, k e D. If the original distances d;; respect the DTI, d_lq]
will also respect the DTI based on the definition previously pre-
sented.

We apply three additional techniques to improve the CG algo-
rithm. First, we use the dual stabilization procedure proposed in
Pessoa, Uchoa, Poggi de Aragdo, and Rodrigues (2010). At each CG
iteration, let B’ be the dual solution of the previous iteration and
let o [0, 1] be the dual stabilization parameter. The CG uses a
composition of the current and the previous dual solution calcu-
lated as B =af’ + (1 —a)B. Parameter « starts with a positive
value, and each time the pricing subproblem returns a route with
positive reduced cost, « is reduced until it reaches zero, thus con-
cluding the dual stabilization procedure.

Moreover, we use a succession of heuristic pricing algorithms
to save computational effort. We first execute a version of the dy-
namic programming that limits the number of partial paths stored
for each ieV, 0 <d <L by one. When this simple heuristic fails, we
call the exact pricing relaxing Condition (iv) of the dominance rule
and sequentially limiting the number of partial paths stored for
eachieV, 0<d<L by {3, 10, 100, co}. When no route is found with
no limitation on the number of partial paths, we restore Condition
(iv) and repeat the procedure.

Finally, we use pre-processing to identify forbidden extensions
due to the travel distance limit. For each 0<d<L, we forbid
an extension from vertex i to vertex j based on the following
rules: (i)ifieP, jeP,d+ d” + dj(n+i) + d(n+i)(n+j) + d(nJrj)O > L and
d + dl] + d](”‘H) +d(n+j)(n+i) +d(n+i)0 > L, (11) if iEP,]ED and d +
dij +dj(n+i) + d(n+i)0 > L, (iii) if ieD, jeP and d+ d,] + dj(n+j) +
dnijio > L, and (iv) if ieD, jeD and d +d;; +djp > L. This is an
extension of the rules created by Dumas, Desrosiers, and Soumis
(1991) for the PDPTW, adapted to consider the travel distance
limit.

4.3. Branch-and-price

Branch-and-Price (B&P) is the name given when a CG algorithm
is used on each node of a branch-and-bound procedure to obtain

1018 M.N. Haddad et al./European Journal of Operational Research 270 (2018) 1014-1027

SpesT < I
S < Construct Initial Solution
while Termination Criterion is not attained do
S < RVND(S)
S < RCSP-insertion(s)
if Sgpsr = @ Or Cost(S) < Cost(Sgesr) then
‘ SpEsT <— S
S < Perturbation(Sggst)
Return sggsr

// Solution improvement via a RVND
// Large neighborhood search

// Saving the best solution
// Perturbation to prepare for next iteration

Algorithm 1: ILS-PDSL.

an optimal integer solution. After the solution of a node, a frac-
tional variable (or a set of variables) is chosen and two or more
branches are created by introducing constraints to cut the frac-
tional value. When solving a B&P, the branching rules must be
carefully chosen, otherwise the CG algorithm may price the same
variable again. For this reason, the branching rules used within a
B&P are usually on “original variables”, i.e., variables from an edge-
flow formulation.

Our B&P uses four branching rules. The first one considers the
number of vehicles used in the solution. It can be calculated as
Y, caAr. The second branching rule is done on the degree of each
vertex. Given da,;, the number of times route r visits pickup ieP,
the degree can be calculated as Y, q GiAr, Vi € P. The third one is
done on the edges of the original graph. Given b, the number of
times route r traverses edge e € E, regardless of the load, it can be
calculated as Y ;.o Brekr,Ve = (i, j) € E. Finally, the algorithm also
considers a branching rule on the number of times an edge e =
(i, j) is traversed when loading (or unloading) ¢; units of demand
on vertex i€V and loading (or unloading) ¢; units of demand on
vertex je V.

Each constraint added to the master formulation generates a
new dual variable, which must be considered by the pricing sub-
problem to calculate the reduced cost of the routes. It is not a diffi-
cult task to associate the new dual variables to the edges’ reduced
cost. However, while the first two branching rules do not violate
the DTI, the last two may change the reduced cost matrix in this
sense. To overcome this issue, we apply the fix proposed by Ropke
and Cordeau (2009). The remaining components of the B&P are
classical in the routing literature. The branching rules are used in
order, at each iteration the algorithm chooses the most fractional
value, and the nodes are explored using the best-first strategy.

5. Large neighborhood-based metaheuristic

As noted in Section 3, notably few heuristics have been de-
signed for the MPDPSL, and these methods were evaluated on
benchmark instances that only require the use of a single vehi-
cle. Moreover, even the sophisticated B&P algorithm described in
Section 4 is limited to instances of small and medium sizes. To
solve larger test cases, we design a simple and efficient meta-
heuristic for the MPDPSL, based on a new exponential-size neigh-
borhood, and investigate its performance on distance-constrained
benchmark instances that require multiple vehicles.

The proposed ILS-PDSL is built around a very simple search
scheme which consists, as in the classical ILS metaheuristic, of iter-
atively improving a solution via neighborhood searches until reach-
ing a local minimum, and then applying a perturbation operator
to escape. This process is repeated until a termination criterion (a
time limit in our case) is attained. The general pseudo-code of the
method is displayed in Algorithm 1 .

Despite its apparent simplicity, the proposed metaheuristic dif-
fers from traditional ILS due to the nature of the neighborhoods
used for solution improvement. Instead of relying on local search,

it exploits a two-phase improvement method. The first phase
is a randomized variable neighborhood descent (RVND), which
explores a variety of neighborhoods in random order, and the
second phase is a search in a new exponential-size neighbor-
hood, called resource-constrained shortest path insertion (RCSP-
insertion), which allows to optimally split and re-insert each
pickup and delivery. Finally, our perturbation operator is always
applied on the current best solution in an effort to direct the
search on more promising regions of the search space.

The remainder of this section details each component of the
algorithm, starting with the construction of the initial solution
(Section 5.1), the RVND procedure (Section 5.2), the RCSP-insertion
operator (Section 5.3), and finally the perturbation mechanism
(Section 5.4). With the exception of the exponential-size neighbor-
hood search performed in RCSP-insertion, these procedures are rel-
atively simple and classic, leading to a high-performance algorithm
which can be easily reproduced.

5.1. Initial solution

The initial solution s is produced by a greedy constructive
heuristic. Iteratively, this heuristic computes for each pickup cus-
tomer i its best feasible insertion position, with minimum increase
of distance. The pickup customer i with the shortest distance in-
crease is inserted at each iteration, and the corresponding delivery
(n+1) is added in its best feasible position after i. At this stage,
the method only considers the insertion of full deliveries. More-
over, only feasible insertions in terms of load capacity and distance
constraints are enumerated, and a new route is created if no such
position exists.

5.2. Randomized variable neighborhood descent

We first recall the concept of block (Cassani & Righini, 2004),
which is needed to describe some neighborhoods. A block B; is de-
fined as a sequence of consecutive visits that starts at a pickup cus-
tomer i and ends at the corresponding delivery customer (n +1i). A
block B; is a simple block if there is no customer between i and
(n+1). A block B; is a compound block when there is at least one
block B;eB; such that T1(i) < I1(j) < [T(n+ j) < I1(n +1), where
[1(i) is the position of the customer i in the route. It is noteworthy
that a compound block cannot contain a pickup customer without
its corresponding delivery customer and vice versa.

As in the RVND of Souza, Coelho, Ribas, Santos, and Mer-
schmann (2010) and Subramanian, Drummond, Bentes, Ochi, and
Farias (2010), there is no predefined order for the neighborhoods,
that is, before every execution of the local search, a new neigh-
borhood order is randomly chosen. Each neighborhood is defined
relatively to one type of move, which can be applied on differ-
ent p-d pairs and routes. Each neighborhood is evaluated exhaus-
tively, considering the moves in random order of p-d pairs, and
applying the first improving move. After each improvement, the
search restarts from the first neighborhood structure. Otherwise,

M.N. Haddad et al./European Journal of Operational Research 270 (2018) 1014-1027 1019

the search continues on the next neighborhood structure and fin-
ishes when all the neighborhoods have been examined without
success. Our RVND uses simple extensions of known enumerative
neighborhoods for vehicle routing and pickup-and-delivery prob-
lems, which are listed in the following. Neighborhoods N(1), N(2),
NG®), and N®) can be traced back to Cassani and Righini (2004).

Intra-route neighborhood structures:.

N - PairSwap considers two pairs of customers (i,n +i) and
(j,n+ j) and swaps the pickup customer i with the pickup
customer j, as well as the delivery customer (n + i) with the
delivery customer (n + j).

N@) — PairShift considers a pair of customers (i,n+i) and re-
locates the pickup i in a position of the interval [IT(i) —
A, T1(i) + A] and the delivery (n +1) in a position of the in-
terval [I1(i) + 1, T1(i) + A]. Parameter A limits the size of
the neighborhood (see Section 6).

NGB - PickShift relocates a pickup customer i in another position
before the delivery customer (n + i).

N®) — DelShift relocates a delivery customer (n+i) in another
position after the pickup customer i.

N®) - BlockSwap swaps a block B; with another block B.

N(®) _ BlockShift relocates a block B; in another position.

Inter-route neighborhood structures:.

N7 - InterPairSwap selects a pair of customers (i, n+i) from
a route r{ and another pair (j,n+ j) from a route r, and
swaps the pickup customer i with the pickup customer j.
The delivery customer (n+ i) is swapped with the delivery
customer (n+ j).

N®) _ InterPairShift takes a pair of customers (i,n+i) from a
route r; and transfer this pair to a route r,. After defining
(i) in ry, the delivery customer is inserted in a position of
the interval [T1(i) + 1, T1(Q) + A].

NO) — InterBlockSwap selects a block B; from a route r; and an-
other block B; from a route r, and swaps them.

NOO) _ InterBlockShift transfers a block B; from a route r; to a
route ry.

Finally, we rely on the following theorem to perform a post-
optimization after each local search:

Theorem 1 (Sahin et al. 2013). If the distance matrix satisfies the tri-
angle inequality, then there exists an optimal solution of the MPDPSL
such that between each visit to a pickup customer i and its corre-
sponding delivery (n+1i) no other pickups or deliveries of this same
p-d pair occur.

As such, we scan the solution and search for visits to the same
p-d pair (i,n+1i) appearing in the order i - i—n+i—n+i in
a route (with possible visits to other customers in-between). If
this situation occurs, the two visits can be merged as one sin-
gle visit while maintaining feasibility and improving the total dis-
tance. There are 2 x 2 possibilities for insertion of the merged p-d
in place of the previous services, and the best one in terms of dis-
tance is chosen.

5.3. RCSP-insertion neighborhood

The improvement procedure of the previous section relies on
the enumeration of many possible moves to produce improved so-
lutions. However, we know that MPDPSL solutions can include an
arbitrarily large number of visits to the same p-d pair (as illus-
trated in Figure 2). Enumerating all possible combinations of splits
and placements of visits would take an exponential time. For this

reason, previous methods adopted strategies which limit the num-
ber of split loads (Nowak et al., 2008; Sahin et al., 2013). To ad-
dress this issue, we propose a larger (exponential-size) neighbor-
hood, which seeks to optimize the split loads and can be efficiently
explored via dynamic programming.

In the proposed RCSP-insertion neighborhood, the problem of
finding the best reinsertion of each pickup and delivery pair, with
possible split loads, is addressed as a resource-constrained short-
est path problem (RCSP) in a directed acyclic graph followed by a
knapsack problem. This optimization is conducted once for each p-
d pair, considering the pairs in random order. For each p-d pair (x,
n + x), the method works as follows:

- Remove all occurrences of x and n + x from all routes.

- Phase 1: For each route o, evaluate the possible insertions and
combinations of insertions of the p-d pair (x,n+x) via dy-
namic programming (RCSP), therefore characterizing all non-
dominated trade-offs between the extra travel distance and the
quantity of load picked-up from x and delivered to n + x.

- Phase 2: Based on the known trade-offs (labels) for each route,
find the best combination of insertions in all routes in order to
fulfill the total demand gy. This selection can be done by solving
a variant of the knapsack problem.

Phase 1: Evaluation of non-dominated insertions for each route. Con-
sider a route o = (0y,...,0p(), in which each element repre-
sents a visit to a depot, pickup or delivery node. This phase aims
to evaluate the minimum additional distance incurred when in-
serting visits to the p-d pair (x,n+x) in the route o, in order to
service any demand quantity g in the interval [0, gx]. Trade-offs
between distance and delivery quantity can be found by solving
a resource-constrained shortest path problem in a directed acyclic
graph H = (V’, A), illustrated in Fig. 3 and defined in the following.

The node set V' is divided into two groups of nodes, V' =

Vroute U Vinserr:

- Vkoure = {1.....Vy(s)} contains one node per (depot or cus-
tomer) visit in the route.

= Vinserr = {v‘{,v?,...,vfl((,)_rvg(a)_]} contains a pair of nodes
(v7, v?) between each node pair (v;, V). The nodes v repre-
sent possible pickups at x, and the nodes v? represent possible
deliveries at n + x.

The total number of nodes in the graph is |V/| =3 x n(o) — 2.

The arc set A is also divided into two sets A = Argaver U Aroan-
Each arc is characterized by a distance §2'T and a delivered load
SL°AP. The arcs in Arraver (dashed arrows in Fig. 3) can either con-
nect successive visits in Vyourg, Or connect a visit v; with its can-
didate pickup v?, or connect a candidate delivery vP with the next
visit v;, 1. Each such arc a € Arraver represents a pure vehicle reloca-
tion without any load destined for customer x, such that §5°A° =0,
and the associated distance is

da,-,a,-ﬂ lf a= (U,-, Ui+1)
825" = {dg,x if a= (v,)
dnixo;, if a= (1P, viyq).

Finally, the arcs in Ajpap (solid arrows in Fig. 3) correspond to trips
which carry some load of x. The following cases should be distin-
guished.

- Direct arc: a = (v}, v). This arc corresponds to a direct travel
between x and n+x. It is characterized by a distance 62T =

1
dxnix and a load §°*° =Q — Y oy which corresponds to the
k=1
free capacity in the vehicle after client o;.
- Indirect pickup-delivery arc: a = (v}, u']?) with i<j. This arc

corresponds to a trip segment starting at the pickup location
x, serving the locations (0,1, 0j;2,...,0;), and ending at the

1020

M.N. Haddad et al./European Journal of Operational Research 270 (2018) 1014-1027

O Customer

Depot

Fig. 3. Auxiliary graph H for a route containing n(o’) = 6 visits.

delivery location n + x. Following the same principles as previ-
ously,
j-1
8gIST = dx,o*m + Z d0k0k+1 + dﬁjvnﬂﬁ and
k=i+1

I
Q=) 4o,
k=1

In this equation, §;°*" represents the smallest amount of free
capacity in the vehicle at any point of the trip between o; and
O'j.

- Indirect delivery-delivery arc: a = (17, v]‘?) with i <j. This arc
corresponds to a trip segment starting at the delivery location
n+ x, returning to the pickup location x, serving the locations

LOAD __
Sa = AR
1efi,....j}

(0it1, 042, .-, 0}), and ending at the delivery location n + x. As
such,
j-1
80T = dynix + dxony +) ooy, + oy nixe and
k=i+1

!
oAb — min [Q —
a) gq“k

After the construction of the graph H, the RCSP between v; and
Un(o) is obtained by means of a simple variant of Bellman'’s algo-
rithm. The algorithm computes for each vertex v e V', in topologi-
cal order, a set of labels S, = {s,, | ke {1,...,|Sy|}} in which each
label s, = (sp*", s;p*P) is characterized by a distance s)°" and a
load 24P transferred from x to n+x. Starting at the depot with
Sy, =1{(0,0)}, the labels are iteratively propagated as follows:

for ve (5,19, 12, V5, 13, ..., Uno)s
so= U U (G + 8000 s + 8- (5)

w|(w,v)eA Swi€Sw

Non-dominated labels are eliminated at each step. A label s,
is dominated by a label s, if spS" > sD5T and min{s.2*®, gy} <
min{sbﬁf"’, gx}. Moreover, a completion bound is used to eliminate
additional labels: for any v; € Vroure, any label Su;k that covers the

total demand of the client x (such that s}%® > qx) leads to a dis-

ng—1
tance bound of Sl'ji‘,? + kZ dy k+1- The best distance bound is up-

=1
dated during the search, and any label whose distance exceeds this
bound can be pruned.

For each route o, the set of non-dominated labels S(o) = Syn(v)
is stored at the end of the algorithm. For single-vehicle problem in-
stances, the best combination of insertions of visits to the p-d pair
(x,n +x) corresponds to the single non-dominated label seS(o)

such that s'©AP > q,. In cases involving multiple vehicles, the best
visits for the p-d pair (x,n+x) can be distributed into multiple
routes. As described in the following, the best combination of in-
sertions can be found by solving a knapsack problem based on the
labels S(o) for each route o.

Phase 2: Combination of insertions in multiple vehicles. In the pres-
ence of multiple vehicles, the algorithm searches for a good com-
bination of insertions in different routes in order to cover the to-
tal demand. This problem can be formulated as a knapsack prob-
lem with an additional constraint that limits the selection to one
label at most in each route. Let C, be the distance of a route o
before the insertion of any visit to the p-d pair (x, n +x). Each la-
bel s,;€S(o) corresponds to a detour cost of s(';‘fT —Cy, to deliver
a load quantity s;"j“’ from the pickup x to the delivery n +x. We
thus define a binary decision variable y,;, equal to 1 if and only if
the label s,; is selected. This leads to the optimization problem of
Egs. (6)—(9).

min Y Y (95— Co)Yoj (6)

0E€R 5,;€S(0)
Z Z Sl}ojADyaj > (x (7)
OER 5,;€S(0)
D Yoj =1 oeR (8)
557€S(0)
Yoj € {0, 1} 0€R, S5j€5(0) (9)

This formulation is identical to the one used in Boudia, Prins,
and Reghioui (2007) for the SDVRP. At this stage, the challenges
specific to the MPDPSL have already been relegated to the deter-
mination of the labels (sg‘]?T,s;‘zf‘D): a task which could not be done
by inspection in O(n), but instead required a pseudo-polynomial
search algorithm (Phase 1) to produce non-dominated pairs of in-
sertion positions —as well as combinations of insertion positions—
within each route.

To solve Eqs. (6)-(9), we tested different exact techniques, ei-
ther based on dynamic programming or integer programming. In
our experiments, these methods led to a significant computational-
time overhead. Similarly to Boudia et al. (2007), we thus opted for
a heuristic resolution, using a greedy heuristic which iteratively se-
lects the label s,; with maximum ratio sb"f‘” / (sgle —Cy). In our ex-
periments, this heuristic matches in 69% of the cases the optimal
result. Finally, the best visit insertions are performed, forming the
new incumbent solution in the algorithm.

M.N. Haddad et al./European Journal of Operational Research 270 (2018) 1014-1027 1021

5.4. Perturbation mechanism

The last component of ILS-PDSL, the perturbation mechanism,
is designed to escape from the local minima of the previous neigh-
borhood improvement procedures. It relocates nperr random p-d
pairs from their original routes to new random positions, insert-
ing both pickup and deliveries consecutively. The number of pairs
nperr t0 be relocated, which determines the strength of the pertur-
bation, is randomly selected in {1, 2, ..., puax} With uniform distri-
bution. As such, puax is @ method parameter which establishes a
maximum limit on the impact of the perturbation.

6. Computational results

Our computational experiments have been conducted on the
two existing sets of PDPSL instances from previous literature, as
well as new MPDPSL instances. The first set originates from Nowak
et al. (2008), and the second from Sahin et al. (2013). These in-
stances were generated in such a way that each load occupies 51%
to 60% of the capacity of the vehicle. In those conditions, Nowak
et al. (2008) noticed that the savings related to split loads tend to
be the greatest.

The first set contains three subsets of 15 instances each, with
75, 100 and 125 pickup and delivery pairs. In each instance, the
pickups can occur in only five different locations, and each subset
has a different number of delivery locations: 15, 20 and 25 deliv-
ery locations, respectively. The second set was derived from the
instances of Ropke and Pisinger (2006). It contains four subsets of
12 instances each, with 50, 100, 250 and 500 pickup and delivery
pairs. In this set, both pickup and delivery locations are randomly
generated, such that coincident service locations are unlikely.

Both exact and heuristic approaches were developed in C++.
ILS-PDSL was implemented using OptFrame (Coelho et al., 2011), a
computational framework for the development of efficient heuris-
tic algorithms for combinatorial optimization problems. Each test
was executed on a single thread, the ILS-PDSL on an Intel Core 2
Quad 2.4 GHz with 4 GB of RAM, and the B&P on an Intel Core
i7-3960X 3.3 GHz with 64 GB of RAM. We compare the perfor-
mance of ILS-PDSL with that of the “TESA” algorithm of Nowak
et al. (2008), and the “TABU” search of Sahin et al. (2013). Our
computer is nearly identical to the one used in Sahin et al. (2013):
an Intel Core 2 Quad 2.33 GHz with 3.46 GB of RAM. Moreover, the
CPU time of Nowak et al. (2008) has been scaled in Sahin et al.
(2013) to take into account the speed difference between their re-
spective computers.

ILS-PDSL uses three main parameters: the strength of the per-
turbation operator pyax, the range of insertions A considered in
the PairShift neighborhoods, and the stopping criterion Tyax. The
first two parameters have been calibrated in preliminary analysis,
considering values of puax € {1,...,10} and A € {1,...,10}, and
the configuration pyax =3 and A =5 led to good results. Finally,
the stopping criterion Tyax has been set to be identical to that
of the TABU search of Sahin et al. (2013), for each group of in-
stances, in order to compare with previous authors in similar CPU
time.

Depending on the instance set, previous authors have either re-
ported results on a single run, or best results over multiple runs.
Both measures tend to be influenced by the variance of the per-
formance of an algorithm over different runs with different seeds.
We thus opted to report the average solution quality over several
runs, which is a better estimate of the average behavior of an al-
gorithm. In the following, we will report solution values and their
“Gap(%)” for each instance. Let z be the solution value of the pro-
posed method, and zzks be the best known solution (BKS) ever
found in previous literature for this instance (possibly over mul-

tiple runs, with different algorithms and parameter settings), then
Gap(%) = 100 x (z — Zpks) /Zsxks-

6.1. Metaheuristic - Performance evaluation on PDPSL instances

We first evaluate the performance of the ILS-PDSL. For this
purpose, we establish a comparison with previous metaheuristics
available in the literature, which were tested on PDPSL instances.

Instances from Nowak et al. (2008). Nowak et al. (2008) and Sahin
et al. (2013) reported the solution quality of their algorithms,
TESA and TABU, based on one run per instance. To provide a re-
liable estimate of performance, we repeated our experiments 20
times with different random seeds, and report the average solu-
tions on each instance. The best results are also indicated to es-
tablish bounds for future research. We adopted the same time lim-
its as Sahin et al. (2013): 25.50 minutes per run for each instance
with 75 pairs, 56.20 minutes for each instance with 100 pairs, and
95.90 minutes for each instance with 125 pairs. Tables 1, 2 and 3
display the results on these instances. For each instance, the result
of the best method is highlighted in boldface.

From these experiments, ILS-PDSL appears to produce solu-
tions of higher quality than the TESA and TABU algorithms, as it
was able to find better average results on all 45 instances. The
largest improvements occur on the largest data sets. Considering
the average gaps, we observe negative values for every instance set
(—-0.85%, —1.51% and —2.65%), meaning that the average solution
quality of ILS-PDSL is better than the BKS in the literature. Finally,
considering the best results out of 20 runs, we observe large im-
provements of the BKS (3.41% overall), with new best solutions for
all 45 instances.

We conducted a Friedman test comparing the solution values
for each instance to validate the statistical significance of the re-
sults. This test led to a value p < 2.2 x 10716, which indicates a
significant difference of performance. We also performed pairwise
Wilcoxon tests to locate these differences which, as reported in
Table 4, support the existence of significant differences between all
three methods: ILS-PDSL is significantly better than TABU, which is
in turn significantly better than TESA.

Instances from Sahin et al. (2013). Sahin et al. (2013) introduced a
second set of instances and presented, for each instance with 50,
100 or 250 p-d pairs, the best solutions obtained by TABU over 20
runs. For the instances with 500 pairs, the authors presented the
best solutions over five runs. As indicated by the authors in a pri-
vate communication, the associated time values correspond to the
average time of one run. These values also depend on the specific
instance. As such, we have defined for each group of instances a
termination criterion Tyax Which is smaller or equal to the aver-
age CPU time of TABU: 5 seconds for the instances with 50 service
pairs, 40 seconds for the instances with 100 pairs, 5 minutes for
the instances with 250 pairs, and 1 hour for the instances with
500 pairs. Tables 5-8 display the results of these experiments. In
these tables, the solution quality of the best method is highlighted
in boldface.

Since the best solution quality of TABU has been measured over
multiple runs (20 or 5), the comparison is established with the
best solution of ILS-PDSL over the same number of runs. When
analyzing the tables, we observe that ILS-PDSL produces best so-
lutions of higher quality than TABU (better than the BKS) on 47
instances out of 48. The significance of these improvements is
again confirmed by a pairwise Wilcoxon test with a value p=
2.35 x 10~13, The magnitude of these improvements is also larger
than on previous instances, with an improvement of 7.11% on av-
erage (comparing best solutions together), which seems to indicate
that these instances with a wider diversity of possible pickup and

1022 M.N. Haddad et al./European Journal of Operational Research 270 (2018) 1014-1027
Table 1
Results for the PDPSL with 75 pairs - Instances from Nowak et al. (2008) Time limit set to 25.5 minutes per run.
TESA TABU ILS-PDSL
Instance ~ BKS 1-Run Gap(%) 1-Run Gap(%) Avg-20 Gap(%) Best-20 Gap(%)
75_1A 379632 3830.12 0.89 3894.34 2.58 3786.30 -0.26 3727.32 -1.82
75_1B 3808.16 3857.12 129 3842.88 091 376484 -114 368320 -3.28
75_1C 3790.03 3810.50 0.54 3790.03 0.00 3767.15 -0.60 3686.44 -2.73
75_1D 379932 3799.32 0.00 3862.23 166 3755.47 -115 3707.17 -243
75_1E 378837 386896 2.13 382087 0.86 3781.96 -0.17 3719.38 -1.82
75_2A 3161.69 331348 4.80 3177.98 0.52 3104.55 -1.81 304434 -3.71
75_2B 3169.92 329636 3.99 3179.00 0.29 3102.96 -211 3069.97 -3.15
75_2C 3121.97 320325 2.60 3121.97 0.00 308599 -115 304038 -2.61
75_2D 3117.69 326642 477 3117.69 0.00 3074.07 -140 3010.40 -3.44
75_2E 3148.70 333259 5.84 3168.66 0.63 3109.04 -1.26 307534 -2.33
75_3A 3897.12 405837 4.14 391004 033 389226 -0.12 381739 -2.05
75_3B 3868.75 4172.42 7.85 3868.75 0.00 3860.70 -0.21 3771.77 -2.51
75_3C 3858.71 4090.65 6.01 3900.38 1.08 3866.62 0.20 3787.46 -1.85
75_3D 3845.05 411039 6.90 388820 112 385045 0.14 3762.61 -214
75_3E 389336 405223 4.08 3908.01 0.38 3826.36 -1.72 3733.67 -4.10
Avg 3.72 0.69 -0.85 -2.66
Xeon Intel Core 2 Quad Intel Core 2 Quad
CPU 2.4 GHz 2.4 GHz 2.4 GHz
2 GB 4 GB 4 GB
Table 2
Results for the PDPSL with 100 pairs - Instances from Nowak et al. (2008) Time limit set to 56.2 minutes per run.
TESA TABU ILS-PDSL
Instance BKS 1-Run Gap(%) 1-Run Gap(%) Avg-20 Gap(%) Best-20 Gap(%)
100_1A 499259 5073.40 1.62 4992.59 0.00 4886.80 -2.12 4823.76 -3.38
100_1B 5036.55 5036.55 0.00 504230 0.11 4921.42 -2.29 4861.49 -3.48
100_1C 5015.09 5029.38 0.29 5015.09 0.00 4922.82 -1.84 4813.72 —4.02
100_1D 4996.08 5012.97 0.34 4996.08 0.00 492244 -147 4831.00 -3.30
100_1E 5015.26 5130.15 229 501526 0.00 4896.29 -2.37 479294 -443
100_2A 4204.28 4450.06 5.85 425849 1.29 4169.72 -0.82 4096.25 -2.57
100_2B 4306.73 448447 413 4306.73 0.00 422595 -1.88 4156.74 -3.48
100_2C 4215.07 447339 613 4259.09 104 4201.15 -0.33 4134.60 -1.91
100_2D 424477 442457 4.24 426737 0.53 4194.76 -1.18 4089.79 -3.65
100_2E 4228.82 4559.26 781 4228.82 0.00 4200.25 -0.68 4132.97 -2.27
100_3A 5126.71 529437 3.27 5126.71 0.00 4987.04 -2.72 493462 -3.75
100_3B 5084.70 5371.74 5.65 5161.29 1.51 504260 -0.83 4974.61 =217
100_3C 5075.45 5216.80 2.78 5098.71 0.46 5004.95 -1.39 4938.02 -2.71
100_3D 5106.32 5467.79 7.08 5106.32 0.00 5010.16 -1.88 494118 -3.23
100_3E 5076.14 5572.47 9.78 5076.14 0.00 5029.86 -0.91 488424 -3.78
Avg 4.08 033 -1.51 -3.21
Xeon Intel Core 2 Quad Intel Core 2 Quad
CPU 24 GHz 2.4 GHzz 24 GHz
2 GB 4 GB 4 GB

delivery locations are more difficult to solve, and remain challeng-
ing for future works.

6.2. Metaheuristic — Sensitivity analysis

In order to examine the relative role of each component in the
proposed heuristic, we started from the standard version of the al-
gorithm and generated some alternative configurations by remov-
ing, in turn, a different neighborhood:

Base - The standard configuration, with all local-search neigh-
borhoods and the RCSP insertion;

WN; - Base configuration without the PairSwap neighborhood;

WN, - Base configuration without the PairShift neighborhood,;

WN,, - Base configuration without the PickShift and DelShift
neighborhoods;

WN; - Base configuration without the BlockSwap neighbor-
hood;

WN; - Base configuration without the BlockShift neighborhood;

WR - Base configuration without the RCSP insertion neighbor-
hood. We note that the removal of the RCSP insertion neigh-
borhood forces the algorithm to work on a classic pickup
and delivery problem, without possible split moves.

The resulting algorithms have been all tested on the instances
of Nowak et al. (2008), performing five runs for each of the 45 data
sets, and using the same termination criterion as in Section 6.1.
Table 9 displays, for each variant of the algorithm, the average gap
for each set of instances (Gap-75, Gap-100 and Gap-125) as well as
the average gap overall (Avg).

In this table, we observe that the Base configuration leads to
the best overall gap (—1.82%), as well as the best average gaps
on the 75-pairs and 100-pairs instances. Still, the best average gap
on the 125-pairs instances is attributed to the WNs variant, with-
out the BlockSwap neighborhood. This effect is possibly due to the
variance of the solution quality of the algorithm on this relatively
small sample of 15 instances, but it also demonstrates that some
neighborhoods have a much larger impact than others. In decreas-
ing order of importance, the most important neighborhood is the

Table 5

M.N. Haddad et al./European Journal of Operational Research 270 (2018) 1014-1027 1023
Table 3
Results for the PDPSL with 125 pairs - Instances from Nowak et al. (2008) Time limit set to 95.9 minutes per run.
TESA TABU ILS-PDSL
Instance BKS 1-Run Gap(%) 1-Run Gap(%) Avg-20 Gap(%) Best-20 Gap(%)
125_1A 595044 6020.05 117 6002.15 0.87 5762.68 -3.16 5682.79 —4.50
125_1B 593894 5938.94 0.00 5998.06 1.00 5785.19 -2.59 5678.06 —4.39
125_1C 5933.69 597769 0.74 5933.69 0.00 5758.32 -2.96 562524 -5.20
125_1D 6060.85 613894 1.29 6083.59 0.38 5802.33 -4.27 5701.05 —5.94
125_1E 5906.34 6024.26 2.00 5906.34 0.00 5755.05 -2.56 566045 —4.16
125_2A 5396.85 5717.54 5.94 544423 0.88 5262.65 -2.49 5183.40 -3.96
125_2B 5456.91 5745.38 5.29 5460.81 0.07 5313.86 -2.62 5209.02 454
125_2C 5412.81 566726 4.70 5412.81 0.00 5289.23 -2.28 5145.39 -4.94
125_2D 547540 577858 5.54 5494.71 0.35 5321.00 -2.82 5234.01 —4.41
125_2E 5419.02 5780.01 6.66 5419.02 0.00 528144 -2.54 5191.63 —4.20
125_3A 6237.20 6934.05 1117 625224 024 612828 -1.75 6050.78 —2.99
125_3B 6300.04 6918.16 9.81 6300.04 0.00 6152.84 -2.34 6057.74 -3.85
125_3C 6324.66 6607.30 4.47 633293 013 612945 -3.09 6024.87 -4.74
125_3D 6317.05 7239.79 14.61 6359.16 0.67 6166.94 -2.38 6040.13 —4.38
125_3E 6257.16 677637 8.30 6277.38 0.32 6137.54 -1.91 6057.75 -3.19
Avg 5.45 0.33 -2.65 —4.36
Xeon Intel Core 2 Quad Intel Core 2 Quad
CPU 2.4 GHz 2.4 GHz 2.4 GHz
2 GB 4 GB 4 GB
Table 4 Table 6

Results of pairwise Wilcoxon tests - In-
stances from Nowak et al. (2008).

Algorithms p-value

TESA and TABU 2.12 x 10710
ILS-PDSL and TESA ~ 5.68 x 10~*
ILS-PDSL and TABU 5.68 x 1014

Results for the PDPSL with 50 pairs - Instances from Sahin et al. (2013) Time
limit set to 5 seconds per run.

TABU ILS-PDSL
Instance T(s) Best-20 Best-20 Gap(%) Avg-20 Gap(%)
50A 45 16791.20 1548136 -7.80 15913.01 -5.23
50B 43 17115.50 15422.03 -9.89 15814.13 —-7.60
50C 4.5 14956.00 14131.43 -5.51 14591.86 -2.43
50D 43 16290.00 14947.06 -8.24 1534582 -5.80
50E 76 11397.50 9517.49 -1649 9895.06 -13.18
50F 74 9532.59 8429.16 -11.58 8927.89 -6.34
50G 6.2 9665.06 8820.07 -8.74 9175.39 -5.07
50H 112 9199.58 7608.63 -17.29 7930.69 -13.79
501 5.8 14469.40 1286470 -11.09 1323573 -8.53
50) 6.5 13200.20 11891.39 -9.92 12131.98 —-8.09
50K 23 1275930 1233742 -3.31 1259440 -1.29
50L 44 14867.80 13426.21 -9.70 1397327 -6.02
Avg 5.7 -9.96 —6.95

proposed RCSP insertion, followed by the PairSwap neighborhood,
the BlockShift, PickShift and DelShift neighborhoods, and then the
others. The RCSP insertion, in our context, is essential since it man-
ages the optimization of the split loads.

The gaps obtained by all ILS-PDSL variants (on all runs) can

also be better observed by means of box plots, as in Fig. 4. In these
box plots, represented without the results of WR so as to enhance
readability, we can observe the general superiority of the Base con-
figuration. The removal of PairSwap (WN;) has a large negative im-
pact on the final solutions, followed by the removal of BlockShift
(WNg), the removal of PickShift and DelShift (WN34), the removal of
PairShift (WN,) and the removal of BlockSwap (WN5).

We performed a Friedman test based on the gap values of each
algorithm to validate the previous observations. The test led to a
value p < 2.2 x 10716, demonstrating significant statistical differ-

Results for the PDPSL with 100 pairs - Instances from Sahin et al. (2013) Time

limit set to 40 seconds per run.

TABU ILS-PDSL
Instance T(s) Best-20 Best-20 Gap(%) Avg-20 Gap(%)
100A 25.1 27301.2 25398.19 -6.97 26268.75 -3.78
100B 194 27090.1 25027.88 -7.61 26020.76 —3.95
100C 340 272213 25319.76 -6.99 2583395 -5.10
100D 19.0 285747 26110.15 -8.62 2717734 —4.89
100E 74.7 15320 13498.17 -11.89 14022.84 -8.47
100F 95.8 17574.2 13548.03 -2291 13919.54 —-20.80
100G 50.1 148884 14508.21 -2.55 15062.04 117
100H 57.9 16259.7 1444599 -11.15 15021.09 -7.62
1001 324 249944 22603.21 -9.57 2329298 -6.81
100J 375 23025.5 21284.65 -7.56 21843.80 -5.13
100K 304 24509 22435.89 -8.46 2324832 514
100L 493 239947 20705.86 -13.71 21400.98 -10.81
Avg 43.8 -9.83 —6.78
Table 7

Results for the PDPSL with 250 pairs - Instances from Sahin et al. (2013) Time limit
set to 5 minutes per run.

TABU ILS-PDSL

Instance T(s) Best-20 Best-20 Gap(%) Avg-20 Gap(%)
250A 2873 58847.6 56857.45 -3.38 58821.37 —-0.04
250B 253.0 57559.1 55871.66 -2.93 57637.00 0.14
250C 299.5 574959 56483.36 -1.76 58107.41 1.06
250D 356.1 59396.7 57368.20 -3.42 59438.78 0.07
250E 3174.6 31736.8 28327.20 -10.74 2945409 -7.19
250F 11231 27596 24820.19 -10.06 2556237 737
250G 1089.3 29421.8 2655249 -9.75 2754993 -6.36
250H 939.5 319115 27326.55 -1437 2865636 —10.20
2501 468.2 50154.8 48124.77 -4.05 50165.75 0.02
250) 448.8 53636.2 51119.88 -4.69 52868.55 143
250K 5375 500844 46946.17 -6.27 49128.23 -1.91
250L 392.3 543934 52580.00 -3.33 55067.03 1.24
Avg 780.8 -6.23 -2.66

ences. Then, we performed paired-sample Wilcoxon tests to com-
pare the Base algorithm with all other algorithms. The results of
these tests are reported in Table 10.

These results confirm, with high confidence, the hypotheses
that the Base algorithm produces results of significantly (better)

1024 M.N. Haddad et al./European Journal of Operational Research 270 (2018) 1014-1027

Table 8
Results for the PDPSL with 500 pairs - Instances from Sahin et al. (2013) Time
limit set to 1 hour per run.

TABU ILS-PDSL

Instance T(s) Best-5 Best-5 Gap(%) Avg-5 Gap(%)

107176.11 0.47
109636.75 —1.12
10999116 0.74
10722016 -2.30

500A 2124.6 106674
5008 23742 110881
500C 1985.8 109181
500D 22470 109746

105536.28 -1.07
107657.18 -291
107676.77 -1.38
10443298 -4.84

500E 10860.4 630684 6232213 -118 63411.06 0.54
500F 108158 68829.7 6295149 —-854 64701.06 —6.00
500G 11101.8 70038.8 67147.93 -413 69658.51 —0.54
500H 16763.8 60568.5 60489.14 013 6263644 3.41
5001 5075.4 931782 9426457 117 9740434 454
500 4698.0 96984.8 9451262 -255 9714173 0.16
500K 4539.6 974295 96717.63 -0.73 9813465 0.72
500L 59962 98102.7 95634.88 -2.52 9753959 —0.57
Avg 6548.6 —-2.40 0.00
(o]
[e]
S o
H o
“7 8 - 8 :
—_ 8 H -
. 8 : :
o
o
<<
0]
~ :
l '
< — : :
! . .
o -5 : -
° i
(o]
«? - o
T T T T T T
Base WN1 WN2 WN34 WN5 WN6

Configuration

Fig. 4. Box plot showing the gaps for each configuration of the ILS-PDSL.

Table 9

Results for each configuration of the ILS-PDSL - Instances from Nowak

et al. (2008).
Configuration ~ Gap-75(%) Gap-100(%) Gap-125(%) Avg(%)
Base -1.07 -1.82 —2.57 -1.82
WN, -0.25 -0.93 -1.37 -0.85
WN, -0.98 -1.58 —2.52 -1.70
WN,, -0.75 -1.55 —2.46 -1.59
WN; -0.98 -1.74 -2.67 -1.80
WNg -0.80 —-145 -1.95 —1.40
WR 48.84 48.93 4718 48.32

Table 10

Results from paired-sample
Wilcoxon tests with the Base

algorithm.
Algorithms p-value
Base - WN, 3.26 x 10716

Base - WN, 0.18

Base - WN;, 0.01

Base - WN; 0.78

Base - WNg 5.05 x 10->
Base - WR <22x10°16

quality than the WN;, WN34, WNg and WR configurations, with
p-values which are always smaller than a threshold of 0.05. This
highlights the importance of the neighborhoods which were deac-
tivated in those configurations. A pairwise Wilcoxon test between
the Base configuration and WN, and WN5s led to p-values of 0.18
and 0.78, such that the significance of the difference of perfor-
mance is not established in these cases. We can still reasonably
conjecture that the associated neighborhoods (PairShift and Block-
Swap) have a smaller impact, which would be better visible with
additional runs and/or test instances. Besides, the CPU time con-
sumption dedicated to these neighborhoods is very small, hence
our choice to maintain them in the Base algorithm.

6.3. Metaheuristic and exact — Multiple vehicles and distance
constraints

As discussed in Sections 1 and 3, the absence of distance con-
straints in the classical benchmark instances leads to the use of
a single vehicle. To investigate real MPDPSL test cases, we gener-
ated two sets of instances with distance constraints. The first set
includes 40 small instances with 10 to 25 p-d pairs and a distance
constraint L = 300. The second set extends the 45 medium-size in-
stances from Nowak et al. (2008) with a distance constraint set to
L = 1000. All instances are available at https://wl.cirrelt.ca/~vidalt/
en/VRP-resources.html. The first set of instances allows to compare
the results of the metaheuristic with some optimal solutions found
by the B&P. Due to their larger size, the instances of the second set
are only solved heuristically.

Table 11 presents the results obtained on the first set. The first
group of columns report the average and best solutions found by
the ILS-PDSL over 20 runs as well as the percentage gap between
these two values. A time limit of one minute was imposed for
each run. The second group of columns reports the results of the
B&P algorithm, considering a time limit of two hours. When this
limit is reached, the time is reported as “TL". From left to right, the
columns indicate the root node relaxation value, the time needed
for the root node resolution, the final lower and upper bounds, the
total CPU time, the percentage gap between the LB and UB, and fi-
nally the number of nodes explored in the branch-and-bound tree.
For a few instances, indicated with “-”, the B&P could not com-
plete the resolution of the root node within the time limit. When
the exact method can prove optimality, the upper bound value is
underlined. Finally, note that the B&P receives the best solution of
the ILS-PDSL as initial upper bound, therefore the columns UB is
always smaller or equal to the best solution of the ILS-PDSL. In a
few cases, the B&P found a better UB during the execution. These
solutions are highlighted in boldface.

These results show that the B&P can solve instances of small
and medium size. Out of the 40 instances of the first set, opti-
mal solutions were found for 20 instances: for all instances with
10 p-d pairs, all but one with 15 pairs, and one with 20 pairs. For
the last open instance with 15 pairs, the B&P improved the upper
bound found by the heuristic and attained a very small optimality
gap (0.4%). For the largest instances, the time needed for column
generation becomes prohibitively high. In particular, the time limit
of 2 hours was attained during the resolution of the root node on
two instances with 25 p-d pairs. In the other cases, the B&P still
manages to find decent-quality lower bounds, at most 14.7% away
from the heuristic upper bound.

Considering the metaheuristic results, we observe that 18 out
of the 20 known optimal solutions were found in at least one run.
The average percentage deviation between the average and best so-
lutions of ILS-PDSL, over the complete set of instances, amounts to
0.98%, therefore illustrating the good stability of the method. Sim-
ilarly, the deviation between the average solutions and the lower
bound found by the B&P method (eliminating instances 25-2 and

https://w1.cirrelt.ca/~vidalt/en/VRP-resources.html

M.N. Haddad et al./European Journal of Operational Research 270 (2018) 1014-1027

Table 11

1025

Results for the MPDPSL - Small instances ILS-PDSL time limit set to 1 minute per run, B&P time limit set to 2 hours.

Instance ILS-PDSL Branch-and-Price
Best-20 Avg-20 Gap(%) LBg To(s) LB UB T(s) Gap(%) Nodes
10-1 953 953.0 0.0 861.2 0.3 953.0 953 73 0.0 23
10-2 1020 1021.8 0.2 907.7 2.5 1020.0 1020 428 0.0 29
10-3 968 970.7 0.3 7875 1.2 968.0 968 1318.7 0.0 1865
10-4 979 979.0 0.0 8514 1.0 979.0 979 518.3 0.0 681
10-5 1026 1026.0 0.0 891.6 0.2 1026.0 1026 417 0.0 293
10-6 742 742.0 0.0 653.7 0.5 742.0 742 5.9 0.0 15
10-7 1019 1019.0 0.0 902.7 0.6 1019.0 1019 158 0.0 25
10-8 818 818.0 0.0 725.9 0.6 818.0 818 19.4 0.0 31
10-9 765 765.0 0.0 680.6 3.0 765.0 765 161.6 0.0 89
10-10 1058 1058.0 0.0 1008.7 0.1 1058.0 1058 3.7 0.0 29
15-1 1346 1379.2 2.5 1188.0 2.4 1346.0 1346 165.6 0.0 65
15-2 1116 1116.0 0.0 1073.0 409 1116.0 1116 666.8 0.0 29
15-3 1184 1194.6 0.9 1152.8 113.2 1175.5 1180 TL 0.4 122
15-4 1297 1302.6 04 1124.3 52 12970 1297 33083 0.0 1029
15-5 1028 1028.0 0.0 898.7 13.3 1028.0 1028 4533.0 0.0 639
15-6 1155 1157.8 0.2 1085.7 216 11400 1140 2499 0.0 13
15-7 1102 1116.9 14 1076.8 96.2 1102.0 1102 8579 0.0 13
15-8 1145 1145.3 0.0 1107.5 11.8 1145.0 1145 3224 0.0 43
15-9 1150 1154.4 0.4 11171 84.0 1150.0 1150 30604 0.0 49
15-10 1060 1060.0 0.0 1010.1 275 1060.0 1060 589.3 0.0 33
20-1 1350 13511 0.1 1216.8 478.5 12721 1350 1L 6.1 49
20-2 1454 1457.9 0.3 13339 698 1452.7 1454 1L 0.1 215
20-3 861 862.2 0.1 856.7 1210.9 861.0 861 2999.7 0.0 3
20-4 1348 1350.8 0.2 12234 4517 1267.4 1348 TL 6.4 37
20-5 1327 1337.0 0.7 1177.7 31175 1177.7 1327 1L 12.7 3
20-6 1614 1625.3 0.7 14473 127.0 15464 1614 1L 44 99
20-7 1399 1399.5 0.0 1297.7 2947.8 1297.7 1399 1L 7.8 3
20-8 1299 1329.3 2.3 1118.6 653.5 1143.3 1299 1L 13.6 13
20-9 1469 1588.0 8.1 1316.3 428.1 13694 1469 TL 73 17
20-10 1429 1460.5 2.2 13669 23793 13809 1429 1L 35 6
25-1 1887 1908.8 1.2 1619.3 20221 1665.7 1887 TL 13.3 6
25-2 1692 1748.4 33 - - - - TL - -
25-3 1549 1555.2 0.4 1391.0 26784 1391.0 1549 1L 114 3
25-4 1675 1685.5 0.6 1581.1 26211 1587.5 1675 TL 55 5
25-5 1415 1428.9 1.0 - - - - TL - -
25-6 1882 1923.3 2.2 1687.3 14256 1692.7 1882 TL 11.2 6
25-7 1487 1604.3 7.9 14425 4089.6 14425 1487 TL 3.1 3
25-8 1429 1446.6 1.2 13775 5308.6 13775 1429 1L 3.7 3
25-9 1613 1616.1 0.2 14009 10325 1422.1 1613 1L 134 8
25-10 1802 1802.6 0.0 15385 23358 15716 1802 1L 14.7 4
Table 12 Table 13

Results for the MPDPSL with 75 pairs - Instances from
Nowak et al. (2008) Time limit set to 25.50 minutes per run.

Instance Best-20 Avg-20 Gap(%) Std Dev(%)
75_1A 378293 3865.12 217 1.66
75_1B 3747.57 3836.27 237 1.62
75_1C 3793.62 3864.07 1.86 117
75_1D 3765.05 3835.80 1.88 115
75_1E 3757.36 383599 2.09 144
75_2A 3097.22 3200.18 3.32 1.23
75_2B 3123.89 318135 1.84 1.04
75_2C 3110.82 3174.16 2.04 119
75_2D 3097.16 3163.17 213 145
75_2E 3118.38 319246 2.38 1.59
75_3A 3866.08 3981.00 2.97 132
75_3B 3855.72 3976.12 312 1.61
75_3C 3886.66 3959.61 1.88 1.07
75_3D 3870.89 3944.61 1.90 116
75_3E 3828.10 3958.88 3.42 1.55
Avg 2.36 135

25-5) amounts to 4.65%. This guarantees a good proximity be-
tween the solutions of ILS-PDSL and the true optima, even if this
estimate is naturally pessimistic due to the gap between the LB
and the optima.

Tables 12-14 display the results of the metaheuristic for the
second instance set, using the same time limits as in Section 6.1:

Results for the MPDPSL with 100 pairs - Instances from
Nowak et al. (2008) Time limit set to 56.20 minutes per run.

Instance Best-20 Avg-20 Gap(%) Std Dev(%)
100_1A 4920.25 499339 149 1.02
100_1B 4940.53 5029.61 1.80 1.08
100_1C 4903.04 5010.18 2.19 117
100_1D 4928.88 5012.28 1.69 0.86
100_1E 4869.26 4977.90 2.23 1.05
100_2A 4212.57 4270.83 1.38 0.88
100_2B 4226.56 430439 184 113
100_2C 4213.68 4281.58 1.61 1.06
100_2D 4217.27 4305.97 2.10 1.27
100_2E 4186.25 427555 213 116
100_3A 4982.29 513118 2.99 1.31
100_3B 5057.84 5189.52 2.60 1.38
100_3C 5031.36 5137.47 211 1.38
100_3D 5049.84 5152.46 2.03 135
100_3E 5029.86 5144.86 2.29 1.46
Avg 2.03 117

the average solution in the 20 executions (Avg-20), the average gap
(Gap), the best solution in the 20 executions (Best-20), and the
standard deviation related to the gaps (Std Dev) for each instance.

These results aim to provide a useful base for comparisons with
new algorithms in the future. They also reflect the difficulty of the
problems, since small deviations related to the best solutions are

1026 M.N. Haddad et al./European Journal of Operational Research 270 (2018) 1014-1027

Table 14
Results for the MPDPSL with 125 pairs - Instances from
Nowak et al. (2008) Time limit set to 95.90 minutes per run.

Instance Best-20 Avg-20 Gap(%) Std Dev(%)
125_1A 579479 5888.54 162 0.96
125_1B 5880.96 5966.92 146 0.91
125_1C 5738.87 5881.25 2.48 1.22
125_1D 573832 594599 3.62 149
125_1E 582220 5915.08 1.60 0.89
125_2A 531049 5419.77 2.06 0.87
125_2B 5361.25 5476.77 215 11
125_2C 5357.90 5417.37 11 0.66
125_2D 5331.69 5458.60 2.38 0.98
125_2E 533933 544311 194 118
125_3A 6177.11 628343 172 1.22
125_3B 6205.87 6343.14 2.21 117
125_3C 6230.02 6312.84 133 0.92
125_3D 6181.96 6351.26 2.74 145
125_3E 612842 631340 3.02 1.52
Avg 2.10 110

usually good indications of performance. From these experiments,
we observe that the average gap remains moderate: 2.36% for the
75-pairs set, 2.03% for the 100-pairs set and 2.10% for the 125-
pairs set. These values are sensibly higher than those of the single-
vehicle experiments, with average gaps of 1.86%, 1.75% and 1.79%,
respectively (when computed relatively to the best solutions of 20
runs). As such, the new MPDPSL instances appear to be more chal-
lenging, and would deserve further attention in the coming years.
Finally, the solutions of these larger multi-vehicle instances with
distance constraints, and their single-vehicle counterpart, contain
a high proportion of split loads (55.69% and 58.52%, respectively),
likely due to the fact that each p-d pair occupies between 51% to
60% of the truck capacity.

7. Conclusions

In this article, we have considered the multi-vehicle one-to-one
pickup and delivery problem with split loads (MPDPSL). Because
this problem combines pickups and deliveries with split deliveries,
solving it is a challenging task. In particular, since the number of
visits in a solution may grow exponentially with the instance size,
no flow-based formulation with a polynomial number of variables
can represent the problem. For local-search based heuristics, the
sequencing and split deliveries decision subsets are also very in-
terdependent, such that various neighborhoods must be designed
to jointly modify some of these decisions.

To address these challenges, we proposed a branch-and-price
method as well as a conceptually simple ILS, based on classic
neighborhoods for pickup-and-delivery problems. Moreover, to effi-
ciently manage the split deliveries, we introduced an exponential-
sized neighborhood, which iteratively optimizes the pickup-and-
delivery locations and splits for each service, and can be effi-
ciently explored in pseudo-polynomial time. The performance of
the proposed methods has been validated through extensive com-
putational experiments. For the classical single-vehicle problem in-
stances, our heuristic outperforms all existing algorithms in simi-
lar computational time, and finds new best known solutions for 92
out of 93 instances. We also proposed new multi-vehicle problem
instances and solutions for future comparisons. For 20 instances,
the branch-and-price algorithm could produce optimal solutions,
and good-quality lower bounds were otherwise generated for the
majority of small and medium instances.

Overall, our research on metaheuristics takes place in a gen-
eral research line which aims at progressing towards an intelli-
gent search and exploration of larger neighborhoods via efficient
dynamic-programming techniques, in contrast with the brute-force

enumeration of simpler neighborhoods. The MPDPSL is a very chal-
lenging problem in this regard. For future research, we suggest to
keep on generalizing these neighborhoods and their exploration
techniques, as well as extending the methodology to a wider range
of difficult vehicle routing variants. For exact methods, many re-
search avenues are also open. Similarly to the research conducted
on the classical split delivery problem, new structural properties of
MPDPSL optimal solutions and polyhedral results may be essential
to trigger new methodological progress.

Acknowledgments

This research was partially supported by the CNPQ (grants
201554/2014-3, 308498/2015-1, 425962/2016-4, 307915/2016-6
and 305889/2015-0), as well as CAPES, FAPEMIG and FAPER], Brazil.

References

Archetti, C., & Speranza, M. (2012). Vehicle routing problems with split deliveries.
International Transactions in Operational Research, 19(1-2), 3-22.

Battarra, M., Cordeau,].-F, & lori, M. (2014). Pickup-and-delivery problems for goods
transportation. In P. Toth, & D. Vigo (Eds.), Vehicle routing: Problems, methods,
and applications (pp. 161-191). Philadelphia, PA: SIAM.

Berbeglia, G., Cordeau, J.-F.,, Gribkovskaia, I., & Laporte, G. (2007). Static pickup and
delivery problems: a classification scheme and survey. Top, 15(1), 1-31.

Boudia, M., Prins, C., & Reghioui, M. (2007). An effective memetic algorithm with
population management for the split delivery vehicle routing problem. . In
T. Bartz-Beielstein, M. J. B. Aguilera, C. Blum, B. Naujoks, A. Roli, G. Rudolph,
& M. Sampels (Eds.), Hybrid metaheuristics. In Lecture Notes in Computer Science:
4771 (pp. 16-30). Springer.

Cassani, L., & Righini, G. (2004). Heuristic algorithms for the TSP with rear-load-
ing. In Proceedings of the thirty-fifth annual conference of the Italian operations
research society, LECCE, Italy.

Chemla, D., Meunier, F, & Wolfler Calvo, R. (2013). Bike sharing systems: Solving
the static rebalancing problem. Discrete Optimization, 10(2), 120-146.

Chen, P, Golden, B., Wang, X., & Wasil, E. (2017). A novel approach to solve the
split delivery vehicle routing problem. International Transactions in Operational
Research, 24(1-2), 27-41.

Clarke, G., & Wright,]. W. (1964). Scheduling of vehicles from a central depot to a
number of delivery points. Operations Research, 12(4), 568-581.

Coelho, I. M., Munhoz, P. L. A, Haddad, M. N., Coelho, V. N., Silva, M. M.,
Souza, M. J. F, & Ochi, L. S. (2011). A computational framework for combina-
torial optimization problems. In Proceedings of the VII ALIO/Euro workshop on
applied combinatorial optimization, Porto (pp. 51-54).

Doerner, K., & Salazar-Gonzalez, J.-J. (2014). Pickup-and-delivery problems for peo-
ple transportation. In P. Toth, & D. Vigo (Eds.), Vehicle routing: Problems, methods,
and applications (pp. 193-212). Philadelphia, PA: SIAM.

Dror, M., & Trudeau, P. (1989). Savings by split delivery routing. Transportation Sci-
ence, 23(2), 141-145.

Dumas, Y., Desrosiers, J., & Soumis, F. (1991). The pickup and delivery problem with
time windows. European Journal of Operational Research, 54(1), 7-22.

Hartl, R, & Romauch, M. (2016). Notes on the single route lateral transhipment
problem. Journal of Global Optimization, 65(1), 57-82.

Irnich, S., Schneider, M., & Vigo, D. (2014). Four variants of the vehicle routing prob-
lem. In P. Toth, & D. Vigo (Eds.), Vehicle routing: Problems, methods, and applica-
tions (pp. 241-271). Philadelphia, PA: SIAM.

Laporte, G. (2009). Fifty years of vehicle routing. Transportation Science, 43(4),
408-416.

Laporte, G., Ropke, S., & Vidal, T. (2014). Heuristics for the vehicle routing problem.
In P. Toth, & D. Vigo (Eds.), Vehicle routing: Problems, methods, and applications
(pp. 87-116). Society for Industrial and Applied Mathematics.

Mitra, S. (2005). An algorithm for the generalized vehicle routing problem with
backhauling. Asia-Pacific Journal of Operational Research, 22(2), 153-170.

Mitra, S. (2008). A parallel clustering technique for the vehicle routing problem
with split deliveries and pickups. The Journal of the Operational Research Soci-
ety, 59(11), 1532-1546.

Nagata, Y., & Kobayashi, S. (2011). A memetic algorithm for the pickup and deliv-
ery problem with time windows using selective route exchange crossover. In
R. Schaefer, C. Cotta,]J. Kotodziej, & G. Rudolph (Eds.), Parallel problem solving
from nature. In LNCS: 6238 (pp. 536-545). Berlin, Heidelberg: Springer.

Nowak, M., Ergun, O., & White 111, C. C. (2008). Pickup and delivery with split loads..
Transportation Science, 42(1), 32-43.

Nowak, M., Ergun, 0., & White III, C. C. W. (2009). An empirical study on the benefit
of split loads with the pickup and delivery problem. European Journal of Opera-
tional Research, 198(3), 734-740.

Oncan, T, Aksu, D. T, Sahin, G., & Sahin, M. (2011). A branch and cut algorithm
for the multi-vehicle one-to-one pickup and delivery problem with split loads.
IEEE international conference on industrial engineering and engineering man-
agement, (pp. 1864-1868).

Parragh, S. N., Doerner, K. F, & Hartl, R. F. (2008). A survey on pickup and delivery
problems. Journal fiir Betriebswirtschaft, 58(1), 21-51.

https://doi.org/10.13039/501100003593
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0001
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0001
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0001
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0001
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0002
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0002
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0002
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0002
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0002
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0003
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0003
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0003
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0003
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0003
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0003
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0004
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0004
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0004
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0004
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0004
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0005
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0005
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0005
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0005
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0006
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0006
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0006
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0006
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0006
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0007
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0007
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0007
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0007
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0007
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0007
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0008
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0008
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0008
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0008
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0009
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0009
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0009
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0009
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0009
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0009
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0009
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0009
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0009
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0010
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0010
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0010
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0010
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0011
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0011
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0011
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0011
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0012
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0012
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0012
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0012
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0012
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0013
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0013
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0013
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0013
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0014
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0014
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0014
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0014
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0014
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0015
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0015
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0016
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0016
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0016
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0016
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0016
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0017
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0017
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0018
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0018
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0019
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0019
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0019
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0019
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0020
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0020
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0020
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0020
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0020
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0021
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0021
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0021
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0021
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0021
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0022
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0022
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0022
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0022
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0022

M.N. Haddad et al./European Journal of Operational Research 270 (2018) 1014-1027 1027

Pessoa, A., Uchoa, E., Poggi de Aragdo, M., & Rodrigues, R. (2010). Exact algorithm
over an arc-time-indexed formulation for parallel machine scheduling problems.
Mathematical Programming Computation, 2(3), 259-290.

Ropke, S., & Cordeau, J.-F. (2009). Branch and cut and price for the pickup and de-
livery problem with time windows. Transportation Science, 43(3), 267-286.
Ropke, S., & Pisinger, D. (2006). An adaptive large neighborhood search heuristic
for the pickup and delivery problem with time windows. Transportation Science,

40(4), 455-472.

Sahin, M., Cavuslar, G., Oncan, T,, Sahin, G., & Tiiziin Aksu, D. (2013). An efficient
heuristic for the multi-vehicle one-to-one pickup and delivery problem with
split loads. Transportation Research Part C: Emerging Technologies, 27, 169-188.

Silva, M. M., Subramanian, A., & Ochi, L. S. (2015). An iterated local search heuristic
for the split delivery vehicle routing problem. Computers & Operations Research,
53, 234-249.

Souza, M., Coelho, I, Ribas, S., Santos, H., & Merschmann, L. (2010). A hybrid heuris-
tic algorithm for the open-pit-mining operational planning problem. European
Journal of Operational Research, 207(2), 1041-1051.

Subramanian, A., Drummond, L., Bentes, C., Ochi, L., & Farias, R. (2010). A parallel
heuristic for the vehicle routing problem with simultaneous pickup and deliv-
ery. Computers & Operations Research, 37(11), 1899-1911.

Thangiah, S., Fergany, A., & Awan, S. (2007). Real-time split-delivery pickup and de-
livery time window problems with transfers. Central European Journal of Opera-
tions Research, 15(4), 329-349.

Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2013). Heuristics for multi-attribute
vehicle routing problems: a survey and synthesis. European Journal of Opera-
tional Research, 231(1), 1-21.

http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0023
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0023
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0023
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0023
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0023
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0023
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0024
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0024
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0024
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0024
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0025
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0025
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0025
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0025
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0026
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0026
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0026
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0026
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0026
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0026
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0026
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0027
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0027
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0027
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0027
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0027
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0028
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0028
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0028
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0028
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0028
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0028
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0028
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0029
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0029
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0029
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0029
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0029
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0029
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0029
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0030
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0030
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0030
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0030
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0030
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0031
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0031
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0031
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0031
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0031
http://refhub.elsevier.com/S0377-2217(18)30320-5/sbref0031

	Large neighborhood-based metaheuristic and branch-and-price for the pickup and delivery problem with split loads
	1 Introduction
	2 Problem statement
	3 Related literature
	4 Exact solution approach
	4.1 Mathematical formulation
	4.2 Column generation
	4.3 Branch-and-price

	5 Large neighborhood-based metaheuristic
	5.1 Initial solution
	5.2 Randomized variable neighborhood descent
	5.3 RCSP-insertion neighborhood
	5.4 Perturbation mechanism

	6 Computational results
	6.1 Metaheuristic - Performance evaluation on PDPSL instances
	6.2 Metaheuristic - Sensitivity analysis
	6.3 Metaheuristic and exact - Multiple vehicles and distance constraints

	7 Conclusions
	 Acknowledgments
	 References

