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A B S T R A C T

The production rate of an ore crushing circuit depends on the amount of equipment in operation. If the amount
of active equipment is less than the optimum level, the reduced ore flow paths restrict the production rate.
However, if the amount of active equipment is greater than the optimum level, the excess circulating load
ore and extra energy consumption reduce the circuit efficiency. In addition, the optimum amount of active
equipment can change over time due to changes in the ore characteristics, such as hardness and particle
size. In this paper, a decision support system is proposed for optimizing the amount of active equipment for
maximum crushing production considering changes in the circuit feed rate. The proposed solution is based
on a simheuristic approach in which a simulated plant model is used to evaluate the production rate. Real
production scenarios at a Brazilian mining plant are used in computational experiments. The results show that
the simheuristic solutions generate a higher production rate and result in less energy consumption. Production
is increased by up to 9%, and energy consumption is reduced by up to 59%, demonstrating the efficacy of the
proposal.
. Introduction

Crushing circuits decrease the size of ore extracted from a mine
ntil it is suitable for the next mineral processing steps. The sequential
rimary, secondary, tertiary, and quaternary crushing stages compose
crushing circuit. Each stage is composed of dozens of pieces of

quipment, such as crushers, screens, and feeders. The processed ore
ize defines the type and position of each stage. For instance, the
rimary crushing stage receives the extracted iron ore directly from the
ine, where the iron ore diameter may reach 1 m. In the quaternary

rushing stage, the size of the ore that feeds the crushers is less than
0 mm. Screens classify the ore by size and therefore divide the flow of
re among the stages.

The flow of coarse ore retained in one stage of the crushing circuit
s called the circulating load. The efficiency of a crusher is not 100%;
ence, some of the ore crushed in one stage does not satisfy the size
pecification for proceeding to the next stage. This thicker material
s retained in the screens and returns to the same crushing stage.
he circulating load occupies space in silos and conveyor belts that
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should contain fresh new ore from the mine, which causes a decrease
in production.

The amount of active equipment at each crushing stage has a sig-
nificant impact on production. A circuit that works with considerably
fewer crushers than the optimum value limits the production flow rate
by restricting the number of lines in which the ore can flow. However,
an excessive and poorly distributed number of crushers can increase
the circulating load. Generally, the plant operator in the control room
decides the amount of active equipment in the crushing circuit. This de-
cision is subjective and dependent on the experience of the responsible
plant operator during the work shift.

Choosing the amount of active equipment is a complex problem due
to inevitable changes in ore features. The ore hardness and particle size
distribution generally change over time. Additionally, the conveyor belt
and silo capacity limits must be taken into account. Such characteristics
of dynamic and stochastic processes make it challenging to apply exact
optimization methods to solve the problem of choosing the amount of
active equipment in a crushing circuit.
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Fig. 1. Crushing circuit equipment.
An artificial-intelligence-based decision support system is required
to address this problem. In the literature, several artificial intelli-
gence methods have been applied in decision support systems, such as
machine learning, fuzzy logic, artificial neural networks and deep learn-
ing (Abbasi et al., 2020; Ji et al., 2020; Si et al., 2019; Vo et al., 2019).
In addition, heuristic optimization techniques based on simulators,
known as simheuristics (Juan et al., 2015), have also been successfully
applied to solve several stochastic optimization problems in which pre-
dicting the operation of the process is a complex task. One advantage of
using a simulation approach is that it enables the emulation of real sit-
uations encountered in the industrial process. Simheuristics have been
applied for problems such as vehicle routing (Gonzalez-Martin et al.,
2018; Gruler et al., 2018, 2020), waste collection in cities (Gruler et al.,
2017a,b), airport flight planning (Guimarans et al., 2015), machine
scheduling (Gonzalez-Neira et al., 2017; Hatami et al., 2018), facility
location (de Armas et al., 2017), and financial investments (Panadero
et al., 2020).
2

To our knowledge, there have been no reports in the literature
on the application of simheuristics or other artificial intelligence tech-
niques to address problems involving decisions on the amount of equip-
ment required in production processes. Thus, this work aims to fill
this gap by presenting a simheuristic-based decision support system
for choosing the optimal amount of active equipment in each stage of
a crusher circuit. The solution is obtained by solving an optimization
problem, in which the goal is to maximize the total production. Local-
search- or population-search-based metaheuristics can be used for this
purpose (Gendreau and Potvin, 2010; Tian and Zhang, 2017; Tian
et al., 2018; Zhongda Tian and Ren, 2019). The algorithm proposed
in this work is inspired by the iterated local search (ILS) (Lourenço
et al., 2003) metaheuristic integrated with a crushing circuit simulator.
Metaheuristics based on local search methods, such as ILS, have been
successfully applied to treat single-objective combinatorial optimiza-
tion problems in a number of studies (Cota et al., 2014; Diniz et al.,
2019; Lourenço et al., 2019). The results are applied to the crushing
circuit of Vale S.A. at the Conceição II plant, Itabira-MG.
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Fig. 2. Opening and nipping cycles in the crusher.
Source: Adapted from King (2012).

The remainder of this paper is organized as follows. The crushing
circuit is detailed in Section 2. In Section 3, the problem is defined. In
Section 4, the cone crusher efficiency is discussed in terms of the cavity
level. The simulation is presented in Section 5. The proposed algorithm
is introduced in Section 6. In Section 7, the results of computational
experiments are reported and discussed. Finally, Section 8 presents the
conclusions and future works.

2. The crushing circuit

A crushing circuit typically consists of five types of equipment:
crushers, feeders, conveyor belts, tripper cars, and screens. Sections 2.1
to 2.5 provide details of these equipment types, and Fig. 1 depicts them.

2.1. Crusher

Crushers are designed to reduce the ore size to a particle size
that is suitable for the next stage of the circuit. The operation of a
crusher is periodic. Each period consists of a nipping action and an
opening action. During the opening period in the cycle, the material
moves down the crusher, and a portion of the material exits the
equipment. Meanwhile, a certain amount of feed enters the crusher.
Fig. 2 illustrates this process.

According to King (2012), Eq. (1) determines the particle size
distribution of the ore at the crusher output:

𝑝𝑖 =
1 − 𝑐𝑖
1 − 𝑐𝑖𝑏𝑖𝑖

(

𝑝𝐹𝑖 +
𝑖−1
∑

𝑗=1
𝑐𝑗
𝑀𝑚𝑗

𝑊
𝑏𝑖𝑗

)

, (1)

where 𝑝𝑖 is the fraction of the product in size class 𝑖, 𝑝𝐹𝑖 is the fraction
of the feed in size class 𝑖, 𝑀 is the mass of material held in the crusher,
𝑏𝑖𝑗 is the fraction of particles breaking in size class 𝑗 that end up in size
lass 𝑖, 𝑚𝑖 is the fraction of material in the crusher in size class 𝑖, 𝑐𝑖
r 𝑐(𝑑𝑖) is the fraction of material in size class 𝑖 retained for breakage
uring the next nip of the crusher, and 𝑊 is the mass of total feed
ccepted during a single opening.

As reported in King (2012), the parameters of the classification func-
ion 𝑐𝑖 and the breaking function 𝑏𝑖𝑗 are specific to each type and size
f crusher. Few studies have used predictive equations to establish the
alues of these parameters within a range of real operating conditions.
n practice, it is common to estimate these values using the particle size
istribution of operational crusher products. An experiment to model
onical crushers was proposed by Atta et al. (2019).
3

2.2. Feeder

The feeder is essentially a conveyor belt used for short distances.
It regulates the rate of ore transfer from one piece of equipment to
another. For example, in a crushing circuit, feeders commonly feed
screens and crushers by transferring ore stored in silos. In this paper,
the authors modeled the feeders as a constant that represents the
transfer rate from one piece of equipment to another.

2.3. Screen

Screens are responsible for segmenting the processed ore. A screen
separates coarse material from fine material and redirects only the
former to the crusher. The material retained by the screen is called
oversize, and the material that passes through the screen surface is
called undersize. Vibrating screens are the most important screens for
ore treatment applications. The main reason for the use of such screens
in crushing circuits is that the vibration increases the efficiency, as it
reduces clogging and induces the segregation of the fed material.

The classification function 𝑐(𝑑𝑝𝑖 ) defines the probability of an indi-
idual particle entering the oversize stream. The value of this function
xpresses the feed material mass fraction of size class 𝑖 that will be
resent in the overflow. In this paper, the classification function was
etermined using the model from Karra (1979).

From the classification function, the particle size distributions of
ndersize and oversize streams are, respectively,

𝑈
𝑖 =

[1 − 𝑐(𝑑𝑝𝑖 )]𝑝
𝐹
𝑖

∑

𝑖[1 − 𝑐(𝑑𝑝𝑖 )]𝑝
𝐹
𝑖
, (2)

𝑝𝑂𝑖 =
𝑐(𝑑𝑝𝑖 )𝑝

𝐹
𝑖

∑

𝑖 𝑐(𝑑𝑝𝑖 )𝑝
𝐹
𝑖
, (3)

where 𝑝𝑈𝑖 is the fraction of the underflow stream in size class 𝑖, 𝑝𝑂𝑖 is
the fraction of the overflow stream in size class 𝑖, and 𝑝𝐹𝑖 is the fraction
of the feed stream in size class 𝑖.

2.4. Conveyor belt

Another essential type of equipment in the crushing process and
mining is the conveyor belt . The conveyor belt continuously transfers
the material under the influence of frictional force. The conveyor belt
is composed of a simple structure, and it is easy to maintain. This
transport mechanism is commonly responsible for carrying millions of
tonnes of minerals at mining plants and ports (Ribeiro et al., 2019); for
instance, one conveyor belt in the Vale South system has a length of
9600 meters and transports 4000 tons per hour.

2.5. Tripper car

Mineral processing plants often use trippers. The purpose of trippers
is to distribute ore coming from previous stages of the process to a silo
with several hoppers. A tripper consists of a movable metal structure
that physically supports a discharge point of a conveyor belt. Steel
wheels located under the structure of the tripper drive the car. Metal
rails support and guide the tripper along with the silo, allowing it to
distribute among all subdivisions. The positioning of trippers above
the silos is a scheduling problem that determines the position of the

equipment through the divisions of silos over time.
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Fig. 3. Conceição II plant crushing circuit.
Fig. 4. Illustration of cavity levels.
3. Problem statement

The problem under study concerns the crushing circuit of Vale
S.A. at the Conceição II plant, Itabira-MG, and has the following
characteristics:

1. There is a set 𝐶 of 15 cone crushers, which are used to reduce
the ore block size;
4

2. There are 3 sequential crushing stages to gradually reduce the
particle size of the iron ore: secondary, tertiary and quaternary;

3. The secondary crushing aims to reduce the material size to 63
mm or smaller;

4. The tertiary crushing aims to reduce the material size from the
range of 63–50 mm to 50 mm or smaller;

5. The quaternary crushing is the last stage and aims to reduce the
material size from the range of 50–38 mm to 38 mm or smaller;
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Fig. 5. Crusher model validation.
6. There is a set 𝑆 of 15 screens, which separate the material
according to particle size;

7. There is a set 𝐹 of 33 feeders, which represent a complete line
of equipment (feeder–screen or feeder–crusher);

8. The product generated must have a particle size smaller than 12
mm after crushing. All ore with granulometry greater than 12
mm is returned to tertiary or quaternary crushing;

9. The efficiency of each cone crusher depends of the cavity level.
That is, cone crushers that operate at low cavity are less efficient
than crushers operating at super chocked or full cavity. There-
fore, this behavior must be simulated. Section 4 treats this issue
and Section 5 details the simulator developed for evaluating the
crushing circuit;

10. There is a circuit feed rate (𝑟), in t/h, which must be defined to
obtain a production flow per hour, which must respect minimum
and maximum previously established limits.

The objective of the problem is to maximize the production of the
crushing circuit in a time cycle of 𝑡𝑐 = 6 h. Fig. 3 shows the crushing
circuit under study.

Trucks transport ore extracted from the mine and unload it into the
primary crusher. The primary crusher reduces ore blocks with sizes of
up to 1 m to a maximum size of 150 mm. Conveyor belts transport the
primary crusher throughput to the buffer pile. In our study, we consider
that the crushing circuit begins from the buffer pile.

The buffer pile has an approximate volume of 56,000 m3. It permits
the secondary, tertiary and quaternary stages of the crushing circuit to
operate despite moments in which the primary crusher stops. Vibratory
feeders located under the buffer pile remove the ore and transport it
5

to the conveyor belt, which is responsible for transferring it to the
secondary crushing area.

There are three lines in the secondary crushing stage that operate
independently. Each line has a silo division, a feeder, a sloped vibrating
screen, and a standard cone crusher. The feeder extracts ore from the
corresponding silo division at a controlled speed to maintain a stable
load on the crusher. From the screen, the oversize stream feeds the
crusher, and the undersize stream goes to a conveyor belt that feeds
the silos of the screening stage.

Similar to the secondary crushing stage, the tertiary and quaternary
crushing stages have four and eight lines, respectively. These lines
operate independently and are composed of a silo division, a feeder,
a standard cone crusher for the tertiary crushing stage and a short
head crusher for the quaternary crushing stage. The throughput of the
tertiary and quaternary crushers flows to the screening stage silo.

There are twelve lines within the screening stage, and each line
operates independently. Each line is composed of a silo division, a
feeder, and a sloped two-deck vibrating screen. The oversize stream
of the upper deck proceeds to the tertiary crushing stage, the oversize
stream of the lower deck flows to the quaternary crushing stage, and
the undersize stream goes to the milling courtyard.

The set of equipment that constitutes the crushing circuit consumes
approximately 2534 MWh per month. In Brazil, hydropower generation
systems provide 86% of the electrical energy consumed (Zhang et al.,
2017; Li et al., 2018, 2019). The Conceição II Plant is fully powered
by electrical energy from hydropower systems. Therefore, the energy
efficiency of circuit operation is an important issue.
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Fig. 6. Screening stage screen model validation.
Fig. 7. Crushers with half cavity.
. The cone crusher efficiency problem

The cavity level has a strong effect on cone crusher efficiency. Fig. 4
hows three different scenarios of cone crusher operation.

According to Jacobson et al. (2010), filling the crushing cavity is
ital for three reasons:

1. It allows for interparticle crushing to begin at a higher level in
the crushing chamber;
6

2. The additional weight of the material above the particles receiv-
ing compression strokes enhances the downward flow through
the cavity and increases particle density in the crushing zones;

3. It increases the probability of nip and improves the mass flow
rate and throughput.

Moreover, Jacobson et al. (2010) shows that cone crushers that
operate at half cavity are 17% and 14% less efficient than crushers
operating at super chocked or full cavity, respectively. Therefore, it is
better to work with only one active crusher with a super chocked cavity
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Fig. 8. Mass balance of plant and simulation.
Fig. 9. Representation of a solution.

level than to work with two or more crushers operating with half cavity
levels.

Usually, low-level silo interlocks are applied to avoid crushers op-
erating at half cavity level. That is, the feeder turns off while the level
in the silo is under a low limit and turns on when the level in silo is
above a threshold. However, this strategy leads to feeders turn-on and
turn-off repeatedly switching, which still leads to temporary half cavity
level operation. Thus, a correctly chosen number of active crushers is
necessary for higher production in complex crushing circuits.

5. Simulation

In this section, the simulation results for the Conceição II crushing
plant shown in Fig. 3 are presented. The simheuristic approach requires
the simulated crushing circuit model to test combinations of active
equipment to identify the combination that results in maximum produc-
tion. Therefore, it is essential that the simulation results are consistent
with the actual dynamics of the circuit.

The models of crushers and screens used are described in King
(2012). The dynamics of these types of equipment are represented by
Eqs. (1), (2) and (3), presented in Section 2. These are the most im-
portant types of equipment in the circuit because they are responsible
for the reduction and classification of processed ore. Simulator imple-
mentation was performed in MathWorks MATLAB® version R2016b.
Figs. 5 and 6 illustrate the real and simulated processed ore particle
size distributions at the output of the crusher and at the overflow and
underflow of the screen. The results demonstrate the representativeness
between the simulated model and the operational plant data.

In the simulation, the conveyor belt was considered to be an ore
flow adder. An essential conveyor belt feature in the simulation is its
maximum load limit. The simulator discards any solution that violates
this characteristic. In operation, the particle size of the material that
feeds the crushing process varies. The simulation considers a random
range of 3 mm in the size of particles that feed the circuit. This range
is compatible with the crushing circuit addressed.

The tripper car is not included in the simulation. Hence, the ore
distribution among the silos is considered to be homogeneous. This
approach is not far from reality because existing control solutions make
the level variability among silos negligible. In the literature, some
7

Fig. 10. Examples of moves.

papers, including Caldas and Martins (2018) and Albuquerque et al.
(2019), are dedicated to level control systems through manipulation of
the tripper car position.

A condition was created to represent a 20% decrease in the efficiency
of tertiary and quaternary crushers if they are operating below their
capacity to represent a crusher working with a low cavity level. In
practice, this penalty results in thicker material at the output compared
to the same crusher working with a full chamber (Jacobson et al.,
2010). Fig. 7 illustrates the change in output particle size compared
to the full chamber crusher.

Fig. 8 shows the mass balance of the crushing circuit in percent-
ages, comparing the design values of the crushing site with the values
obtained by the simulator. Note that the results of the model were close
to the project values. Additionally, note that values above 100% exist
in the screening feed because, in addition to the new feed coming from
secondary crushing, the circulating load is coming from tertiary and
quaternary crushing.

6. Proposed algorithm

In this section, the proposed simheuristic algorithm is presented.
The representation and evaluation of a solution are described in Sec-
tion 6.1. In Section 6.2, the proposed algorithm is detailed. The local
search is shown in Section 6.3. Finally, in Section 6.4, the simheuristic-
based system is presented.

6.1. Representation and evaluation of a solution

An array of six positions represents a solution. The first five po-
sitions identify the number of active feeders in each circuit stage.
The feeders represent a complete line of equipment (feeder–screen

or feeder–crusher). The last position represents the circuit feed rate.
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Fig. 9 illustrates the representation of a solution 𝑠 by the following
onfiguration: (𝑖) two feeders in the buffer pile, (𝑖𝑖) four feeders in
econdary crushing, (𝑖𝑖𝑖) one feeder in tertiary crushing, (𝑖𝑣) three
eeders in quaternary crushing, (𝑣) seven feeders in screening, and (𝑣𝑖)
se of a circuit feed rate of 𝑟 = 3400 t/h.

The objective function of the problem is to maximize the production
f the crushing circuit. The evaluation of a solution is performed by the
imulator.

.2. SILS-SIM algorithm

The proposed algorithm is based on the ILS metaheuristic (Lourenço
t al., 2019). This metaheuristic explores the solution space of an
ptimization problem through perturbations in local optima. To apply
n ILS algorithm, four components need to be specified: (i) the Ini-
ialSolution() procedure, which generates an initial solution 𝑠0 to the

problem; (ii) the LocalSearch(⋅) procedure, which returns a possibly
improved solution; (iii) the Perturbation(⋅) procedure, which modifies
the current solution to produce an intermediate solution; and (iv) the
cceptanceCriterion procedure, which decides the criterion for accepting
solution.

The proposed simheuristic algorithm, called SILS-SIM, uses the de-
eloped crushing circuit simulator to evaluate the objective function.
he version of ILS used is Smart ILS (SILS) (Reinsma et al., 2018). SILS
iffers from ILS in regard to the perturbation mechanism. Whereas in
LS, the level of perturbation increases whenever there is no improve-
ent in the solution, in SILS, some attempts are made to perform a

ocal search at the same level before the perturbation is increased. The
seudocode of SILS-SIM is shown in Algorithm 1.

Algorithm 1: SILS-SIM
input : 𝑖𝑡𝑒𝑟𝑚𝑎𝑥, 𝑡𝑒𝑥𝑒𝑐 , 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑚𝑎𝑥
output: 𝑠

1 𝑙𝑒𝑣𝑒𝑙, 𝑎𝑡𝑡𝑒𝑚𝑝𝑡, 𝑖𝑡𝑒𝑟𝑤𝑖𝑡ℎ𝑜𝑢𝑡𝐼𝑚𝑝 ← 1;
2 𝑠0 ← InitialSolution();
3 𝑠 ← LocalSearch(𝑠0);
4 Update 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡;
5 while (𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≤ 𝑡𝑒𝑥𝑒𝑐 ) ∧ (𝑖𝑡𝑒𝑟𝑤𝑖𝑡ℎ𝑜𝑢𝑡𝐼𝑚𝑝 ≤ 𝑖𝑡𝑒𝑟max) do
6 𝑠′ ← Perturbation(𝑠, 𝑙𝑒𝑣𝑒𝑙);
7 𝑠′′ ← LocalSearch(𝑠′);
8 if 𝑓 (𝑠′′) > 𝑓 (𝑠) then
9 𝑠 ← 𝑠′′;
10 𝑙𝑒𝑣𝑒𝑙 ← 1;
11 𝑎𝑡𝑡𝑒𝑚𝑝𝑡 ← 1;
12 𝑖𝑡𝑒𝑟𝑤𝑖𝑡ℎ𝑜𝑢𝑡𝐼𝑚𝑝 ← 1;
13 end
14 else
15 𝑎𝑡𝑡𝑒𝑚𝑝𝑡 ← 𝑎𝑡𝑡𝑒𝑚𝑝𝑡 + 1;
16 𝑖𝑡𝑒𝑟𝑤𝑖𝑡ℎ𝑜𝑢𝑡𝐼𝑚𝑝 ← 𝑖𝑡𝑒𝑟𝑤𝑖𝑡ℎ𝑜𝑢𝑡𝐼𝑚𝑝 + 1;
17 if 𝑎𝑡𝑡𝑒𝑚𝑝𝑡 > 𝑎𝑡𝑡𝑒𝑚𝑝𝑡max then
18 𝑎𝑡𝑡𝑒𝑚𝑝𝑡 ← 1;
19 𝑙𝑒𝑣𝑒𝑙 ← 𝑙𝑒𝑣𝑒𝑙 + 1;
20 end
21 end
22 Update 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡;
23 end
24 return 𝑠;

Algorithm 1 has two stopping criteria: a time limit and a maximum
umber of executions without improvement in the objective function.
t has the following parameters: (𝑖) 𝑡𝑒𝑥𝑒𝑐 represents the time limit,
(𝑖𝑖) 𝑎𝑡𝑡𝑒𝑚𝑝𝑡max defines the allowed number of attempts at a particular
perturbation level to search for better solutions, and (𝑖𝑖𝑖) 𝑖𝑡𝑒𝑟max is the
maximum number of iterations without improvement in the objective
function.
8

An initial solution 𝑠0 is built with two distinct strategies, each giving
rise to a different version of the algorithm, respecting the bounds of the
parameters. In the first version, named SILS-SIM-R, the initial solution
is built randomly as follows. In the first five positions of the solution,
the amount of equipment is randomly chosen among the number of
available feeders, and in the last position, the circuit feed rate is
randomly selected within the minimum and maximum limits. As an
example, suppose that there are 8 feeders available in the quaternary
crushing; then, we randomly select a number between 1 and 8 to
represent the number of feeders that should be active in this crushing
stage. Likewise, assuming that the circuit feed rate varies between 3000
and 4015 t/h, we choose a random integer within this range. In the
second version, named SILS-SIM-G, the initial solution is greedy, that is,
all available feeders are activated and the circuit feed rate is maximum.
Once the initial solution is generated, it is submitted to a local search
for refinement. The algorithm performs the following steps in each
iteration.

1. Perturbation: A perturbation is applied to the solution 𝑠. This
perturbation consists of selecting a random position and chang-
ing its value upward or downward while respecting the bounds
for each position of the solution. The 𝑙𝑒𝑣𝑒𝑙 variable defines the
number of times this strategy is applied;

2. Local Search: A local search is applied on the perturbed solution
𝑠′ to generate a new solution 𝑠′′;

3. Acceptance Criterion: If the solution 𝑠′′ is better than the current
solution 𝑠, then 𝑠 is updated; otherwise, the variable 𝑎𝑡𝑡𝑒𝑚𝑝𝑡 is
incremented. If 𝑎𝑡𝑡𝑒𝑚𝑝𝑡max is exceeded, 𝑙𝑒𝑣𝑒𝑙 is incremented and
𝑎𝑡𝑡𝑒𝑚𝑝𝑡 is set to 1;

4. Stopping Criteria: When one of the stopping criteria is reached
(𝑡𝑒𝑥𝑒𝑐 or 𝑖𝑡𝑒𝑟𝑚𝑎𝑥), the search is finalized, and the best solution is
returned.

6.3. Local search procedure

The local search procedure uses the first improvement strategy and
a neighborhood structure based on upward or downward moves. If the
analyzed position is one of the first five, then the move consists of
increasing or decreasing the number of pieces of active equipment in
the circuit stage by one. If the last position of the array is analyzed, the
circuit feed rate is increased or decreased by 𝑓𝑙𝑜𝑤𝑉 𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 units. The
𝑓𝑙𝑜𝑤𝑉 𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 is defined as the minimum rate variation that generates
some significant change in production. There are upper and lower
bounds for each position of the solution. In the first five positions, the
bounds define the amount of active equipment permitted. In the last
position, the bounds define the allowed circuit feed rate. The upper
and lower bounds are represented by two arrays, 𝑢 and 𝑙, respectively.

Fig. 10 shows an example of two moves in a solution. The bounds
are 𝑙 = (1, 1, 1, 1, 1, 3000) and 𝑢 = (3, 5, 2, 5, 7, 3800). In Fig. 10(a),
the amount of active equipment is decreased, and in Fig. 10(b), it is
increased.

Because there are two possible values for each position of the
solution, the size of the neighborhood can be defined easily. Each
solution has 2(𝑛 + 1) neighbors, where 𝑛 represents the number of
positions of solution 𝑠. For 𝑓𝑙𝑜𝑤𝑉 𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = 1, all neighbors of the
solution 𝑠 = (2, 4, 1, 3, 7, 3400) are presented as follows.

𝑠1 = (𝟏, 4, 1, 3, 7, 3400)
𝑠2 = (𝟑, 4, 1, 3, 7, 3400)
𝑠3 = (2, 𝟑, 1, 3, 7, 3400)
𝑠4 = (2, 𝟓, 1, 3, 7, 3400)
𝑠5 = (2, 4, 𝟐, 3, 7, 3400)
𝑠6 = (2, 4, 1, 𝟐, 7, 3400)
𝑠7 = (2, 4, 1, 𝟒, 7, 3400)

𝑠8 = (2, 4, 1, 3, 𝟔, 3400)
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Fig. 11. Decision support system user interface.
Fig. 12. Accumulated production over 6 h for Example 1.
Fig. 13. SILS-SIM algorithm results box plot diagram for Example 1.
9

𝑠9 = (2, 4, 1, 3, 7, 𝟑𝟑𝟗𝟗)
𝑠10 = (2, 4, 1, 3, 7, 𝟑𝟒𝟎𝟏)

The solutions (2, 4, 0, 3, 7, 3400) and (2, 4, 1, 3, 8, 3400) are not consid-
ered because the bounds are extrapolated.

The pseudocode of the local search procedure is presented in Algo-
rithm 2.

In Algorithm 2, the search starts from a solution 𝑠′. In each step, a
neighbor is visited. If the neighbor is better than the current solution
𝑠′′, then 𝑠′′ is updated. The evaluation of the objective function is
performed by a simulation that measures the production rate. Only
for the circuit feed rate (last position) can the increase or decrease in
the value be greater than 1 because the circuit feed rate amplitude
is extremely large. At the end of the search, an improved solution
is returned. This solution is a local optimum for the neighborhood
analyzed. Note that there are 2𝑛 neighbors to be evaluated, where 𝑛
is the size of the array that represents the solution. Therefore, the time
complexity of the local search procedure is 𝑂(𝑛).

6.4. Implementation of the decision support system

The SILS-SIM algorithm was implemented using MathWorks
MATLAB® version R2016b. The software interface was generated in
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Fig. 14. Accumulated production over 6 h for Example 2.
Algorithm 2: Local search procedure
input : 𝑠′, 𝑙, 𝑢, 𝑓 𝑙𝑜𝑤𝑉 𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
output: Refined solution 𝑠′

1 𝑠′′ ← 𝑠′;
2 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 ← 𝑇𝑅𝑈𝐸;
3 while 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 do
4 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 ← 𝐹𝐴𝐿𝑆𝐸;
5 for 𝑖 ∈ 𝑠′ do
6 𝑠𝑡𝑒𝑝 ← 1;
7 if 𝑖 = 6 then
8 𝑠𝑡𝑒𝑝 ← 𝑓𝑙𝑜𝑤𝑉 𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛;
9 end
10 Let 𝑠′+ be the result of adding the value 𝑠𝑡𝑒𝑝 in position 𝑖

of solution 𝑠′;
11 if 𝑙(𝑖) ≤ 𝑠′+(𝑖) ≤ 𝑢(𝑖) then
12 if 𝑓 (𝑠′+) > 𝑓 (𝑠′′) then
13 𝑠′′ ← 𝑠′+;
14 end
15 end
16 Let 𝑠′− be the result of subtracting the value 𝑠𝑡𝑒𝑝 in

position 𝑖 of solution 𝑠′;
17 if 𝑙(𝑖) ≤ 𝑠′−(𝑖) ≤ 𝑢(𝑖) then
18 if 𝑓 (𝑠′−) > 𝑓 (𝑠′′) then
19 𝑠′′ ← 𝑠′−;
20 end
21 end
22 end
23 if 𝑓 (𝑠′′) > 𝑓 (𝑠′) then
24 𝑠′ ← 𝑠′′;
25 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 ← 𝑇𝑅𝑈𝐸;
26 end
27 end
28 return 𝑠′;

the App Designer tool. The parameters of SILS-SIM were empirically
fixed to the following values: (𝑖) 𝑡𝑒𝑥𝑒𝑐 = 10 minutes, (𝑖𝑖) 𝑎𝑡𝑡𝑒𝑚𝑝𝑡max = 2,
and (𝑖𝑖𝑖) 𝑖𝑡𝑒𝑟max = 5.

Fig. 11 shows the main screen of the decision support system. In
this software, the plant operator defines the following parameters: (𝑖)
bounds of the circuit feed rate (t/h), (𝑖𝑖) bounds of the amount of
active equipment, and (𝑖𝑖𝑖) the size of the crushing circuit cycle (h).
Subsequently, the plant operator clicks the compute button, and the
system suggests the amount of active equipment and the circuit feed
rate that should be used for maximum production.

7. Computational experiments

The simulation experiments are based on a set of typical production
scenarios at the Conceição II plant. The SILS-SIM algorithm results were
compared with the results of two other strategies. The first strategy
10
Fig. 15. SILS-SIM algorithm results box plot diagram for Example 2.

is to allow all equipment to be active. The second strategy is based
on the actions of a plant operator for a similar situation. The plant
operator chooses the minimum number of feeders in each stage capable
of operating the plant with the maximum circuit feed rate of ore
(the maximum circuit feed rate at Conceição II is 4015 t/h). The
feeder capacity in each stage is (𝑖) 1222 t/h in the buffer pile, (𝑖𝑖)
2037 t/h in secondary crushing, (𝑖𝑖𝑖) 373 t/h in tertiary crushing, (𝑖𝑣)
274 t/h in quaternary crushing, and (𝑣) 647 t/h in screening. For
instance, suppose that all feeders are available to operate and that the
required production flow rate is 3000 t/h. The operator will likely to
choose to run three feeders in the buffer pile, two feeders in secondary
crushing, three feeders in tertiary crushing, six feeders in quaternary
crushing and five feeders in screening. Notably, not all the material that
feeds the circuit goes to secondary and tertiary crushing. According to
Fig. 8, 27.5% and 47.2% of the material that feeds the circuit goes to
tertiary and quaternary crushing, respectively. Despite its simplicity,
the operator strategy fails to account for the particle size distribution
of the ore in the pile and the circulating load in the circuit; thus, this
strategy requires adjustments on the fly.

The tests were executed on a computer with an Intel Xeon E5-
2670 2.3 GHz processor, 16 GB of RAM and the Windows Server 2012
operating system. The simulator considers a time cycle of 6 h. The
following subsections show the results of the simulation experiments,
an analysis of energy consumption and a convergence check of the
algorithm.

7.1. Simulation experiments based on real production scenarios

The simulation experiments illustrate some real situations of the
crushing circuit that frequently occur, such as unavailable equipment,



M.S. Santos, T.V.B. Pinto, Ê. Lopes Júnior et al. Engineering Applications of Artificial Intelligence 94 (2020) 103789
Table 1
Numbers of feeders suggested for Example 1.
Process stages Number of feeders

Lower bound Upper bound Plant operator SILS-SIM-R SILS-SIM-G

Buffer pile 1 6 4 5 6
Secondary crushing 1 3 2 3 3
Tertiary crushing 1 4 3 4 4
Quaternary crushing 1 8 7 5 5
Screening 1 12 7 12 12
Table 2
Numbers of feeders suggested for Example 2.
Process stages Number of feeders

Lower bound Upper bound Plant operator SILS-SIM-R SILS-SIM-G

Buffer pile 1 6 4 6 5
Secondary crushing 1 3 2 3 3
Tertiary crushing 1 4 3 3 3
Quaternary crushing 1 8 7 5 5
Screening 1 12 7 12 12
Fig. 16. Accumulated production over 6 h for Example 3.
Fig. 17. SILS-SIM algorithm results box plot diagram for Example 3.

changes in particle size distribution, changes in type of minerals and
variation in circuit feed rate. In all tests, the two versions of the SILS-
SIM algorithm were each executed thirty times for each production
scenario. The justification for executing the SILS-SIM algorithms thirty
times is that the solutions they produce may vary among executions due
to the stochastic components of the ILS metaheuristic and the simulator.

7.1.1. Example 1: Standard situation
This production scenario describes a regular situation at the plant.

All feeders are available in the crushing circuit, and the feeding ore
11
has a 𝐷80 = 60.63 mm, i.e., 60.63 mm is the diameter at which 80% of
the feeding ore mass consists of particles with a diameter less than this
value. Table 1 reports the best results for this example.

As can be seen, the SILS-SIM algorithms and the plant operator
suggest a low number of active feeders. The recommended circuit feed
rate is the same in both strategies: 4015 t/h. The best solution and the
median solution of the four strategies (SILS-SIM-R, SILS-SIM-G, plant
operator, and all feeders) are compared in Fig. 12.

This figure shows that the best SILS-SIM solution results in greater
production than the other solutions do. Although the production cor-
responding to the solution with all feeders is similar to that of the
SILS-SIM solution, the proposed algorithm suggests a considerably
smaller number of active feeders, thus allowing a reduction in the
numbers of operating crushers and screens, leading to energy savings.

The production rate suggested by the plant operator solution is the
smallest for this scenario.

Fig. 13 shows a box plot diagram with the obtained solutions,
comparing the random and greedy initial solutions for Example 1. As
can be seen, the two initial solutions have similar best solutions, but
the variation is greater during the thirty executions of the SILS-SIM
algorithm with the random initial solution.

7.1.2. Example 2: Fine fresh ore
A scenario with fine fresh ore is described in this example. The

input ore may be smaller for several reasons, such as extraction of less
compact minerals or greater use of explosives in rock detonation. In this
production scenario, all feeders are available, the range of the circuit
feed rate is the same as in the previous production scenario, and the
particle size is 𝐷80 = 45.71 mm. Table 2 shows the best results, and
Fig. 14 illustrates the accumulated production for the best solution and
the median solution. Note that the SILS-SIM algorithms show better
performance than the other solution methods.
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Table 3
Numbers of feeders suggested for Example 3.
Process stages Number of feeders

Lower bound Upper bound Plant operator SILS-SIM-R SILS-SIM-G

Buffer pile 1 6 4 4 5
Secondary crushing 1 3 2 2 3
Tertiary crushing 1 4 3 4 4
Quaternary crushing 1 8 7 5 8
Screening 1 12 7 12 12
Table 4
Numbers of feeders suggested for Example 4.
Process stages Number of feeders

Lower bound Upper bound Plant operator SILS-SIM-R SILS-SIM-G

Buffer pile 1 6 3 5 5
Secondary crushing 1 3 2 2 3
Tertiary crushing 1 4 3 2 4
Quaternary crushing 1 8 6 5 8
Screening 1 12 5 12 12
Fig. 18. Accumulated production over 6 h for Example 4.
I
f
T
a
a

a
p
i
a
r
g

7

i
c
c
s
T
I
s

p
s

l
i
e

Fig. 19. SILS-SIM algorithm results box plot diagram for Example 4.

As in Example 1, the variability of production generated by the
SILS-SIM-R algorithm is higher than that generated by the SILS-SIM-G
algorithm, as seen in Fig. 15. The variability of SILS-SIM with a greedy
initial solution is small because the greedy solution (all equipment
active) is already a good solution.

7.1.3. Example 3: Thicker fresh ore
This production scenario specifies a thicker fresh ore. This situation

depends on the type of ore explored in the mines and the amount of
12
explosive used. The input material has a particle size of 𝐷80 = 69.2 mm.
n this production scenario, all feeders are available, and the circuit
eed rate is the same as that in the previous production scenario.
able 3 shows the numbers of feeders suggested by the best solution,
nd Fig. 16 illustrates the accumulated production for the best solution
nd the median solution.

In this production scenario, the solutions suggested by the SILS-SIM
lgorithms use fewer active feeders and generate more accumulated
roduction. The variability of the SILS-SIM algorithm with a random
nitial solution is again larger than that with a greedy initial solution,
s seen in Fig. 17. However, the best solution of the algorithm with a
andom initial solution results in greater production than that with a
reedy initial solution.

.1.4. Example 4: Limited flow rate
This scenario presents a situation in which there is a limitation

n the ore flow rate. This may occur when there is damage to the
onveyor belt or an interruption in mine exploration. The simulated
ircuit feed rate is 3000 t/h, the particle size of the material is the
ame as in Example 1 (𝐷80 = 60.63 mm), and all feeders are available.
able 4 presents the number of feeders suggested by the best solution.
n addiction, Fig. 18 shows the accumulated production for the best
olution and median solution.

It can be verified that the SILS-SIM algorithm again achieves better
erformance in accumulated production. Furthermore, the algorithm
uggests that fewer feeders are activated.

As shown in Fig. 19, both the random and greedy initial solutions
ead to low variability and similar results. However, with a random
nitial solution, the SILS-SIM algorithm produces some outliers during
xecution.
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Table 5
Numbers of feeders suggested for Example 5.
Process stages Number of feeders

Lower bound Upper bound SILS-SIM-R SILS-SIM-G

Buffer pile 1 4 4 4
Secondary crushing 1 2 2 2
Tertiary crushing 1 3 3 3
Quaternary crushing 1 7 5 7
Screening 1 10 10 10
Fig. 20. Accumulated production over 6 h for Example 5.
7.1.5. Example 5: Random equipment unavailability
In this production scenario, five feeders are not available in the

crushing circuit. Feeders may be unavailable for various reasons, such
as maintenance stops in crushers or screens and interruptions in plant
feeding. The particle size of the materials and the range of the circuit
feed rate are the same as those in Example 1.

Table 5 presents the best results, and Fig. 20 illustrates the accu-
mulated production for the best solution and the median solution. The
plant operator solution is not considered because it is similar to that
with all available equipment operating.

The SILS-SIM algorithm suggests fewer feeders in quaternary crush-
ing and generates the highest accumulated production when running
with a random initial solution. As in Example 3, despite the high
variability and outliers generated during the execution of the algo-
rithm with a random initial solution, the best result leads to higher
production, as shown in Fig. 21.

7.1.6. Example 6: Half screening unavailability
In Example 6, six feeders for screening are not available. The

screening stage is divided into two parts. Therefore, during some
types of maintenance, half of the screening stage is stopped. For this
production scenario, the best results are shown in Table 6, and Fig. 22
illustrates the accumulated production for the best solution and the
median solution. As in Example 5, the plant operator solution is not
considered.

The solutions from SILS-SIM suggest a reduction by 10 feeders in
relation to the solution with all feeders, that is, a 37% reduction.
The solution generated by the proposed algorithm also achieves better
accumulated production (a total of 1298 tonnes or 9.38%). As shown
in Fig. 23, in this example, the executions of the SILS-SIM algorithms
present an insignificant difference in terms of the median solution
value.

7.2. Analysis of energy consumption

The mineral industry is among the most energy-intensive sectors,
mainly because of the comminution stage (Steyn et al., 2010; McLellan
et al., 2012; Holmberg et al., 2017). An analysis of the energy con-
sumption in all production scenarios is performed in this subsection.
13
Fig. 21. SILS-SIM algorithm results box plot diagram for Example 5.

The energy consumption is verified only for the cone crusher for two
reasons: (𝑖) this equipment consumes the most energy in the crushing
circuit, and (𝑖𝑖) considering the real plant, this is the only equipment
that has a power measurement. The average power required of the cone
crushers in each stage is (𝑖) 40.52 kW in secondary crushing, (𝑖𝑖) 70.62
kW in tertiary crushing, and (𝑖𝑖𝑖) 82.68 kW in quaternary crushing. The
screening stage does not have cone crushers.

Fig. 24 illustrates the energy consumption in each production sce-
nario for three solutions: one solution from the SILS-SIM-R algorithm,
one solution from the SILS-SIM-G algorithm and the solution with all
feeders activated. Approaches that generated a higher production rate
were analyzed. The data are expressed in MWh and correspond to a
time course of 6 h (the time cycle used in the production scenarios).

The solutions of the SILS-SIM algorithms incur considerably less
energy consumption in most cases. The SILS-SIM-R algorithm leads to
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Table 6
Numbers of feeders suggested for Example 6.
Process stages Number of feeders

Lower bound Upper bound SILS-SIM-R SILS-SIM-G

Buffer pile 1 6 4 6
Secondary crushing 1 3 3 3
Tertiary crushing 1 4 1 1
Quaternary crushing 1 8 3 3
Screening 1 6 6 6
Fig. 22. Accumulated production over 6 h for Example 6.
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Fig. 23. SILS-SIM algorithm results box plot diagram for Example 6.

considerably less energy consumption in all cases; however, the SILS-
SIM-G algorithm results in the same energy consumption as that with
all feeders activated in Examples 3 and 5. In Example 6, there is a 59%
savings in energy consumption with the SILS-SIM-R algorithm. These
results are important and demonstrate the efficiency of the SILS-SIM
algorithm.

7.3. Convergence check of the SILS-SIM algorithms

SILS-SIM is a heuristic algorithm; thus, there is no guarantee that the
solutions found are optimal. To analyze the convergence of SILS-SIM, a
brute force algorithm was implemented. This type of algorithm gener-
ates all possible solutions and returns the globally optimal solution to
the problem.

A random production scenario with all feeders available and the
same particle size from Example 1 (𝐷80 = 60.63 mm) is used in the
simulation experiment. The range of the circuit flow rate is 4000 t/h
 p

14
to 4015 t/h. Because the problem addressed is a real one-mine circuit,
there is a lower bound and an upper bound for the number of feeders
in every stage. Values that extrapolate these bounds are impossible to
apply. Table 7 shows the bounds of the production scenario used.

The number of feasible solutions (#𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠) to the problem can be
alculated using Eq. (4):

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 =

( 5
∏

𝑖=1
(𝑈𝐵𝑖 − 𝐿𝐵𝑖 + 1)

)

×
(

𝑟𝑎𝑡𝑒max − 𝑟𝑎𝑡𝑒min + 1
)

, (4)

here 𝐿𝐵𝑖 and 𝑈𝐵𝑖 are the lower and upper bounds, respectively,
n the number of feeders in stage 𝑖 and ratemin and ratemax are the
inimum and maximum flow rates, respectively.

Thus, according to Eq. (4), the number of possible feasible solutions
or this scenario is 10,368. The brute force algorithm required 18 h
o find the optimal solution, for which the accumulated production
s 22,579.61 tonnes. The optimal solution is (𝑖) a buffer pile with 4
eeders, (𝑖𝑖) secondary crushing with 3 feeders, (𝑖𝑖𝑖) tertiary crushing
ith 4 feeders, (𝑖𝑣) quaternary crushing with 5 feeders, (𝑣) screening
ith 10 feeders, and (𝑣𝑖) a flow rate of 4015 t/h.

To obtain a measure of how far the solutions are from this optimal
olution, the optimality gap was calculated for a set of thirty SILS-
IM algorithm solutions. The results showed a gap of 0.06% for the
est solution and an average gap of 9.05% considering all executions
or SILS-SIM-R. SILS-SIM-G also showed a gap of 0.06% for the best
olution and an average gap of 0.83% considering all executions. For
he best solution, the gap was the same, but in terms of the average gap,
he execution of the SILS-SIM algorithm with a greedy initial solution
ielded a better result.

Table 8 presents the results of the convergence analysis for the
ILS-SIM algorithms. For each of the 30 executions, the time and the
teration at which the best solution was obtained were recorded. The
verage time and average number of iterations were used as evaluation
etrics.

Some general conclusions about the results of the SILS-SIM algo-
ithms can be obtained as follows. SILS-SIM-G can find a good solution
uickly, and the previous box plots show that the solutions have low
ariability. Both versions of the SILS-SIM algorithm result in increased
roduction and reduced energy consumption in all simulated scenarios.
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Fig. 24. Energy consumption in all production scenarios.
Table 7
Bounds on the number of feeders.

Stage index Process stage Number of feeders

Lower bound Upper bound

1 Buffer pile 3 6
2 Secondary crushing 1 3
3 Tertiary crushing 2 4
4 Quaternary crushing 3 8
5 Screening 10 12

Table 8
Convergence analysis of the SILS-SIM algorithms.

Evaluation item Methods

SILS-SIM-R SILS-SIM-G

Average time (in seconds) 580.62 (± 104.71) 53.00 (± 9.61)
Average number of iterations 88.75 (± 63.88) 12.00 (± 9.09)

8. Conclusions

In this paper, a crushing circuit operation problem at a Brazilian
mining plant was investigated. The amount of active equipment in
each crushing stage has a significant effect on production, and the
choice of the optimal amount of active equipment is complex due
to inevitable variations in ore features, such as hardness and particle
size distribution. A simheuristic technique was used to address this
problem. The optimization heuristic is based on the iterated local
search metaheuristic. The developed simulator includes all aspects of
the crushing circuit, such as mass balance, active equipment, and
material particle size properties. It enables the simulation of various
scenarios that differ in the quantity of active equipment. Hence, it
is possible to determine the optimal relationship between production
and the amount of active equipment. The results demonstrated the
effectiveness of the method, showing that it is possible to increase
production with less active equipment than is currently in operation,
thus contributing to better crushing circuit efficiency, lower energy
consumption, and reduced equipment wear. In Example 6, energy
consumption was reduced by approximately 59%, and production was
increased by 9% (109,870 tonnes/month). Future work should employ
improved crusher and sieve models. The problem should be extended to
consider not only productivity and energy consumption but also issues
regarding maintenance and varying equipment performance. In this
way, new practical concerns for industrial operations can be addressed
using the proposed decision support system.
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