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A B S T R A C T

This article addresses the Multi-Depot Vehicle Routing Problem with Time Windows with the minimization of
the number of used vehicles, denominated as MDVRPTW*. This problem is a variant of the classical MDVRPTW,
which only minimizes the total traveled distance. We developed an algorithm named Smart General Variable
Neighborhood Search with Adaptive Local Search (SGVNSALS) to solve this problem, and, for comparison
purposes, we also implemented a Smart General Variable Neighborhood Search (SGVNS) and a General Variable
Neighborhood Search (GVNS) algorithms. The SGVNSALS algorithm alternates the local search engine between
two different strategies. In the first strategy, the Randomized Variable Neighborhood Descent method (RVND)
performs the local search, and, when applying this strategy, most successful neighborhoods receive a higher
score. In the second strategy, the local search method is applied only in a single neighborhood, chosen by a
roulette method. Thus, the application of the first local search strategy serves as a learning method for applying
the second strategy. To test these algorithms, we use benchmark instances from MDVRPTW involving up to 960
customers, 12 depots, and 120 vehicles. The results show SGVNSALS performance surpassed both SGVNS and
GVNS concerning the number of used vehicles and covered distance. As there are no algorithms in the literature
dealing with MDVRPTW*, we compared the results from SGVNSALS with those of the best-known solutions
concerning these instances for MDVRPTW, where the objective is only to minimize the total distance covered.
The results showed that the proposed algorithm reduced the vehicle fleet by 91.18% of the evaluated instances,
and the fleet size achieved an average reduction of up to 23.32%. However, there was an average increase
of up to 31.48% in total distance traveled in these instances. Finally, the article evaluated the contribution of
each neighborhood to the local search and shaking operations of the algorithm, allowing the identification of
the neighborhoods that most contribute to a better exploration of the solution space of the problem.
1. Introduction

Several factors, like population growth, globalization, the increasing
informatization, the need to decentralize points of sale, the large variety
of products, among others, have contributed to the increase in the
complexity of the distribution networks of goods and services. In this
context, companies that deal with the logistic of goods are subject to
continually suit their work in response to different scenarios. These ad-
justments may be related to the number of distribution centers, the fleet
size, the capacity of the vehicles allocated, and the schedule of their ac-
tivities. Distribution and business logistical processes are fundamental
tools to face increasingly competitive markets. This context, aggravated
as of 2020 by the enormous impacts of the SARS-Cov-2 pandemic on the
entire global economic process, has led to the emergence of research on
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issues in the distribution processes management, intending to reduce
costs by employing shorter routes and fewer vehicles involved.

The Multi-Depot Vehicle Routing Problem with Time Windows (MD-
VRPTW) is a formulation suitable for modeling logistical situations that
meet the described framework. According to Polacek et al. (2004),
the first article to effectively describe this problem is Cordeau et al.
(2001b). Several works, since then, addressed this problem, the major-
ity in terms of the originally proposed formulation. This formulation
considers, as a hypothesis, that all vehicles in the homogeneous fleet
must be used in routing. This hypothesis, therefore, imposes that there
is no possibility of reducing the vehicle fleet and, consequently, of
routes, during the solution process. Thus, this formulation does not
represent, in fact, an extension of the Vehicle Routing Problem with
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Time Windows (VRPTW) for the approach of multiple depots. VRPTW,
according to Ombuki et al. (2006), is solved hierarchically, firstly min-
imizing the total number of used vehicles (and, consequently, routes)
and, later, minimizing the total distance covered. This solution method-
ology of VRPTW considers, therefore, as the main cost to be minimized,
the addition of a new vehicle, and not the total distance covered by
these vehicles.

This article proposes a variant of MDVRPTW as an extension of
the Vehicle Routing Problem with Time Windows (VRPTW). In this
formulation, which we call MDVRPTW*, a hierarchical solution method
is adopted, as the one applied for solving the VRPTW; therefore, this
solution method first minimizes the number of vehicles and, following,
minimizes the total distance covered. According to Christiaens and Van-
den Berghe (2020), the fleet reduction reflects the need for real-world
transport companies to accommodate their requests. In this sense, the
proposed method seeks the best adaptation to the planning horizon,
reducing the costs related to the number of vehicles involved in the
goods delivery. For the solution of MDVRPTW*, an algorithm called
Smart General Variable Neighborhood Search with Adaptive Local
Search (SGVNSALS) is developed, based on the Variable Neighbor-
hood Search (VNS) metaheuristic, proposed by Mladenović and Hansen
(1997). Additionally, to compare and validate the results obtained by
the SGVNSALS algorithm, we implement the Smart General Variable
Neighborhood Search (SGVNS) and the General Variable Neighborhood
Search (GVNS), which is one of the main variants of VNS (Hansen et al.,
2017, 2019).

This article has as its central objective to solve MDVRPTW* with
the application of SGVNSALS. The main contributions are:

(i) the proposition of MDVRPTW* as an extension of VRPTW with
multiple depots (MDVRPTW), seeking the reduction of the used
vehicle fleet;

(ii) the development of SGVNSALS, a VNS-based hybrid algorithm
to solve MDVRPTW*;

(iii) the assessment of neighborhood structures used in SGVNSALS
when solving MDVRPTW*.

The report described in this article is structured as follows: the next
section presents the complete description of MDVRPTW*. Section 3
shows a bibliographical review of the problem, verifying how different
authors deal with the subject under study. Section 4 introduces the
proposed SGVNSALS algorithm, describing the neighborhoods, the local
search operators, and the shake procedures, as well as describes the
implementation of the SGVNS and GVNS algorithms. It details the
actions related to changes in the choice of neighborhood structures.
Section 5 shows the computational results obtained with the developed
algorithm, statistical analysis for the results, and an evaluation concern-
ing the influence of the neighborhoods and the local search operators
in the solution procedure. Finally, Section 6 refers to the conclusions
involving the general analysis of the work carried out.

2. Multi-Depot Vehicle Routing Problem with Time-Windows

The Multi-Depot Vehicle Routing Problem with Time-Windows
(MDVRPTW), according to its original formulation introduced in
Cordeau et al. (2001b), consists of determining a set of routes that
minimize the total traveled distance, serving all customers, respecting
the maximum number of vehicles allocated per depot, the vehicle
capacity, the maximum duration on the routes, and the time windows
in which the customers must be served. The characteristics of this
problem, as stated by Cordeau et al. (2001b) and Polacek et al. (2004),
are:

(i) the number of depots is greater than one;
(ii) each vehicle starts and ends its route in the same depot;

(iii) the capacity of each vehicle is known;
2

(iv) the vehicle fleet is homogeneous;
Fig. 1. Time window for customer service.

(v) each customer is served by only one vehicle;
(vi) the total demand for each route cannot exceed the capacity of

the vehicle that is on the route;
(vii) the customer’s time window must be respected;

(viii) each route has a maximum duration to be covered;
(ix) all vehicles of the fleet are used, without any leftovers, in the

routing process.

Therefore, as a result of the characteristic (ix) above, the number of
existing routes is exactly equal to the number of vehicles in the fleet.

In this article, on the other hand, we address a variant of this
problem, which we name MDVRPTW*. This variant is an extension
of the solution strategy found in the researches concerning VRPTW to
the multi-depot vehicle routing problem case. This solution strategy
consists of hierarchically constructing the problem solution so that,
first, we minimize the number of used vehicles and, subsequently, min-
imize the total traveled distance. Consequently, the characteristic (ix)
defined above does not apply to the variant here approached since, by
minimizing the number of used vehicles, not all vehicles in the fleet will
be used in the routing process. The characteristic (ix) is, then, replaced
by the following formulation:

(ix) the total number of used vehicles must be minimized, and, after,
the total traveled distance must be minimized.

The MDVRPTW* is an adaptation of the definitions for the MD-
VRPTW, proposed previously by Cordeau et al. (2001a), Polacek et al.
(2004), and Montoya-Torres et al. (2015). This problem, in which 𝑁
customers are served by 𝑀 depots, is defined from a complete graph
 = ( ,), with  being a set of (𝑁 +𝑀) vertices and  a set of arcs.
Therefore, the set  results from the union of two subsets, namely, the
set of customers to be served, represented by  = {1, 2,… , 𝑁}, and
the depots set  = {𝑁 + 1, 𝑁 + 2,… , 𝑁 +𝑀}, so that  =  ∪  and
∩  = ⊘. For the set  of vehicles, there is a subset 𝑑 ⊂  for each
depot 𝑑 ∈ , where || = |𝑁+1|+ |𝑁+2|+⋯+ |𝑁+𝑀 |. The vehicle
fleet is homogeneous so that all vehicles 𝑘 ∈  have the same capacity
𝑉 𝐶, maximum duration time of the route 𝑀𝑇 , and utilization cost 𝛼.
For each consumer 𝑖 ∈ , there is a positive demand 𝑞𝑖, which must be
met in a time window [𝑒𝑖, 𝑙𝑖]; there is also a service time ℎ𝑖 that starts
at 𝑇𝑆𝑖, such that 𝑒𝑖 ≤ 𝑇𝑆𝑖 ≤ 𝑙𝑖. For any depot 𝑑 ∈ , both demand
𝑞𝑑 and service time ℎ𝑑 have zero value, that is, 𝑞𝑑 = ℎ𝑑 = 0. Each arc
(𝑖, 𝑗) ∈  is associated with a non-negative cost 𝑐𝑖𝑗 , which can represent
both the distance between the respective nodes, or the travel time, or
other measurement values.

Fig. 1 illustrates the possible situations encountered in the delivery
of products regarding the time window for customer service. In this
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Fig. 2. Example of Solutions to the MDVRPTW and MDVRPTW*.
Table 1
Data for the example shown in Figs. 2(a) and 2(b).

Data for Fig. 2(a) Data for Fig. 2(b)

𝑘 Routes 𝑐𝑖𝑗 ℎ𝑖 𝑊𝑈𝑘 𝑇𝑘 𝑞𝑖 𝑄𝑘 Routes 𝑐𝑖𝑗 ℎ𝑖 𝑊𝑈𝑘 𝑇𝑘 𝑞𝑖 𝑄𝑘

1 (19, 5, 6, 19) (3, 2, 4) (0,2, 3, 0) 0 14 (0,1, 3, 0) 4 (19, 1, 5, 6, 7, 19) (4, 3, 2, 3, 3) (0,1, 2, 3, 2, 0) 0 23 (0,1, 1, 3, 2, 0) 7
2 (19, 7, 8, 19) (3, 1, 2) (0,2, 2, 0) 0 10 (0,2, 1, 0) 3 (19, 2, 3, 9, 11, 19) (4, 3, 2, 1, 2) (0,2, 2, 2, 1, 0) 0 19 (0,2, 1, 3, 1, 0) 7
3 (19, 3, 9, 11, 19) (3, 2, 1, 2) (0,2, 2, 1, 0) 0 13 (0,1, 3, 1, 0) 5 (20, 4, 8, 10, 14, 20) (2, 5, 3, 2, 2) (0,4, 2, 2, 1, 0) 0 23 (0,2, 1, 2, 1, 0) 6
4 (19, 1, 2, 19) (4, 2, 4) (0,1, 2, 0) 0 13 (0,1, 2, 0) 3 (20, 17, 15, 18, 20) (3, 1, 4, 4) (0,3, 1, 2, 0) 1 19 (0,3, 1, 1, 0) 5
5 (20, 4, 10, 20) (2, 4, 4) (0,4, 2, 0) 0 16 (0,2, 2, 0) 4 (20, 16, 13, 12, 20) (3, 3, 1, 2) (0,2, 1, 3, 0) 1 16 (0,2, 1, 2, 0) 5
6 (20, 14, 17, 15, 20) (2, 1, 1, 3) (0,1, 3, 1, 0) 0 12 (0,1, 3, 1, 0) 5
7 (20, 12, 18, 20) (2, 1, 4) (0,3, 2, 0) 0 12 (0,2, 1, 0) 3
8 (20, 16, 13, 20) (3, 3, 4) (0,2, 1, 0) 0 13 (0,2, 1, 0) 3

Cost 103 100
representation, the first three occurrences result in the delivery of the
order. In the situation (a), the vehicle arrives at the customer 𝑖 before
𝑒𝑖, which leads to a waiting time until 𝑇𝑆𝑖 = 𝑒𝑖. In situations (b) and (c),
the vehicle arrives at the customer so that 𝑒𝑖 ≤ 𝑇𝑆𝑖 ≤ 𝑙𝑖, immediately
starting the delivery. In (b), the product is unloaded entirely in the time
window interval, and in (c), although 𝑇𝑆𝑖 + ℎ𝑖 > 𝑙𝑖, there does not
prevent the delivery. In situation (d), the vehicle arrives at the customer
with 𝑇𝑆𝑖 > 𝑙𝑖, and the delivery cannot be performed.

To better understand the differences between the MDVRPTW and
MDVRPTW* problems, we introduce, in the following, an example,
which presents solutions of a small dimension instance for these two
treated variations. The approached instance has two depots, which
serve eighteen customers. There is a homogeneous fleet of eight ve-
hicles, each one with a capacity of 𝑉 𝐶 = 7. The en-route time of each
vehicle cannot exceed 𝑀𝑇 = 23. Each arc has a cost 𝑐𝑖𝑗 , given by the
travel time between the node 𝑖 and the node 𝑗. A tuple (𝑞𝑖, ℎ𝑖, [𝑒𝑖, 𝑙𝑖])
is associated with the node 𝑖, being, respectively, 𝑞𝑖 the demand, ℎ𝑖
the service time, and [𝑒𝑖, 𝑙𝑖] the time-window for this 𝑖 node. Fig. 2(a)
illustrates an MDVRPTW solution for this instance, according to the
model proposed by Cordeau et al. (2001b). On the other hand, Fig. 2(b)
shows an MDVRPTW* solution for this same instance, as this article
defines the MDVRPTW*.

Table 1 shows the data for the two solutions. For each vehicle
𝑘, the column Routers shows the used routes; the column 𝑊𝑈𝑘𝑖, the
waiting time to unload the vehicle 𝑘 on the customer 𝑖; the column
𝑇𝑘 represents the total time spent by the vehicle 𝑘 on the route; 𝑄𝑘
represents the total cargo carried on the route 𝑘. Fig. 2 includes data
relating to the travel cost 𝑐𝑖𝑗 between the vertices 𝑖 and 𝑗 and the tuple
(𝑞𝑖, ℎ𝑖, [𝑒𝑖, 𝑙𝑖]) for each vertex. Concerning the solution for MDVRPTW,
shown in Fig. 2(a), the number of used vehicles is fixed and equal to the
size of the fleet itself. In the case of the solution for MDVRPTW*, shown
in Fig. 2(a), the smallest fleet that guarantees all the requirements,
except the fixed fleet size, is sought. Thus, in MDVRPTW* case, the
number of used vehicles decreases to five vehicles. The importance of
3

this variant is to show that, from the same set of depots and customers,
it is possible to find compatible solutions in terms of travel costs with
a smaller number of vehicles.

The mathematical formulation for the problem under analysis, de-
veloped from the one presented in Li et al. (2016), is given by:

min 𝛽
∑

𝑘∈

∑

𝑖∈

∑

𝑗∈
𝑐𝑖𝑗𝑥𝑘𝑖𝑗 + 𝛼

∑

𝑘∈
𝑦𝑘, (1)

Subject to:
∑

𝑘∈

∑

𝑗∈
𝑥𝑘𝑖𝑗 =

∑

𝑘∈

∑

𝑗∈
𝑥𝑘𝑗𝑖 = 1, ∀𝑖 ∈ , (2)

∑

𝑑∈

∑

𝑗∈
𝑥𝑘𝑑𝑗 =

∑

𝑑∈

∑

𝑖∈
𝑥𝑘𝑖𝑑 ≤ 1, ∀𝑘 ∈ , (3)

∑

𝑖∈

∑

𝑗∈
𝑥𝑘𝑖𝑗 ≤ || − 1, ∀ ⊆ , 𝑘 ∈ , (4)

∑

𝑖∈

∑

𝑗∈
𝑥𝑘𝑖𝑗 = 0, ∀𝑘 ∈ , (5)

𝑥𝑘𝑖𝑗 (𝑇𝑆𝑘𝑖 + ℎ𝑖 + 𝑐𝑖𝑗 − 𝑇𝑆𝑘𝑗 ) ≤ 0, ∀𝑘 ∈ ,∀𝑖, 𝑗 ∈  , (6)

𝑒𝑖 ≤ 𝑇𝑆𝑘𝑖 ≤ 𝑙𝑖, ∀𝑖 ∈ ,∀𝑘 ∈ , (7)

∑

𝑖∈

∑

𝑗∈
𝑞𝑗𝑥𝑘𝑖𝑗 ≤ 𝑉 𝐶, ∀𝑘 ∈ , (8)

∑

𝑖∈

∑

𝑗∈
(𝑐𝑖𝑗 + ℎ𝑗 )𝑥𝑘𝑖𝑗 ≤𝑀𝑇 , ∀𝑘 ∈ , (9)

𝑦𝑘 ≥

∑

𝑖∈

∑

𝑗∈
𝑥𝑘𝑖𝑗

, ∀𝑘 ∈ , (10)

|𝑁|

2
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𝑥𝑘𝑖𝑗 , 𝑦𝑘 ∈ {0, 1}, ∀ 𝑖, 𝑗 ∈  ,∀𝑘 ∈ . (11)

Expression (1) represents the objective function of the problem, to
be minimized. This objective function is given by the weighted sum
between the travel cost between customers and the total number of
involved vehicles. The 𝛼 and 𝛽 weighting factors show the relative
importance of each of the two cost parts. Constraints (2) ensure that
each consumer is visited by exactly one vehicle. Constraints (3) indicate
that each vehicle starts and returns to the same depot. Constraints (4)
guarantee that the graph is connected, as well as the subtours elimi-
nation. Restrictions (5) impose that the vehicle cannot travel directly
from depot 𝑖 to depot 𝑗. Constraints (6) imply the order of visits to
the nodes, because if the vehicle 𝑘 travels directly from the node 𝑖 to
the node 𝑗, then the moment of arrival 𝑇𝑆𝑘𝑗 at the node 𝑗 must be
equal to (𝑇𝑆𝑘𝑖 + ℎ𝑖 + 𝑐𝑖𝑗 ). Constraints (7) guarantee the occurrence of
the 𝑖 customer service within the time window [𝑒𝑖, 𝑙𝑖]. Constraints (8)
ensure that the load will not exceed the capacity of the vehicle 𝑘.
Constraints (9) ensure that the total duration of the route is at most
equal to 𝑇 . Constraints (10) indicate which vehicles will be used, and,
finally, Constraints (11) define the decision variables 𝑥 and 𝑦 as binary.

3. Literature review

The studies found in the literature are only related to MDVRPTW, in
which the focus is on minimizing the total distance traveled by vehicles.
This section, in consequence, addresses the main works treating this
problem to allow the reader to understand the scenario for introducing
the MDVRPTW* variation and its proposed solution procedure.

MDVRPTW was originally introduced in Cordeau et al. (2001b).
This work presented a solution using the Tabu Search (TS) metaheuris-
tic, also including the first set of instances for this problem. This set of
instances continues to be used as a reference for experiments with this
problem. In Cordeau et al. (2004) the authors improved this original
solution proposal that they had presented, producing new results, and,
among them, five still remain as the best obtained for the respective
instances.

Polacek et al. (2004) proposed a VNS-based algorithm, with accep-
tance criteria for the best solutions, together with the choice of neigh-
borhoods in the local search, using, for the computational experiments,
the same group of instances introduced in Cordeau et al. (2001b). The
evaluations carried out showed that this proposed algorithm showed
competitive results to the TS algorithm presented by Cordeau et al.
(2001b) concerning the quality of the solution obtained and the compu-
tational effort required. Polacek et al. (2008) showed a parallel version
of the VNS-based algorithm introduced in Polacek et al. (2004), using
new intensification and diversification strategies through cooperation
adaptation schemes. The results showed that all best-known results in
the literature for the instances of Cordeau et al. (2001b) were found.
Additionally, this algorithm provided new best results in 11 out of the
20 instances.

Tansini and Viera (2006) presented heuristics for clustering cus-
tomers to depots, using, as a reference, time windows and distances
in assessing the proximity between customers and depots. The method
used greedy assignments and allowed a reduction between 5% and 6%
for the distance covered in the tested instances.

Ting and Chen (2008), in turn, introduced a hybrid metaheuristic
involving Multiple Ant Colony System (MACS) and Simulated Anneal-
ing (SA). This hybrid metaheuristic obtained three new best-known
results for the instances presented in Cordeau et al. (2001b). Cordeau
and Maischberger (2012) showed a parallel hybrid metaheuristic, com-
bining Iterated Local Search (ILS) and Tabu Search (TS) to promote
further exploration of the solution space of the problem. This algorithm
led to results similar to those found in Polacek et al. (2008), however,
achieving six new best-known results, with small improvements to the
4

previous values.
Tamashiro et al. (2010) presented a Tabu Search approach com-
bined with an extended saving method for solving the MDVRPTW. The
proposed algorithm consists of two phases. The first phase is a Tabu
Search method, applied for solving the customer assignment problem
and, at the same time, to lead to neighborhood reduction. The second
phase uses the saving method for constructing the routes for the depots.

Noori and Ghannadpour (2012) proposed a three-level hybrid meta-
heuristic to solve the MDVRPTW. In the first level, the ‘‘Cluster-first,
Route second’’ method is applied, associating customers to depots; in
the second level, for each cluster, a Genetic Algorithm (GA) is used to
optimize the routes; and, in the third phase, the solutions are refined
with the Tabu Search metaheuristic. The results obtained by this hybrid
metaheuristic reached those shown in Polacek et al. (2004).

Vidal et al. (2013a,b) proposed a hybrid genetic algorithm with
adaptive diversity management (Hybrid Genetic Search with Advanced
Diversity Control — HGSADC) to solve a wide range of problems
derived from VRPTW. Regarding the MDVRPTW, this algorithm not
only achieved all the best-known solutions of the set of instances
from Cordeau et al. (2001b) but also added nine new best-known
solutions. Additionally, the authors proposed a new set of instances,
as an extension with large dimensions for the set from Cordeau et al.
(2001b).

Montoya-Torres et al. (2015) presented a literature review on the
MDVRP, evaluating articles published until 2014. According to the
authors, 88.44% addressed this problem considering a single objective,
and 25% of these were related to the MDVRPTW. Several variations
of MDVRPTW are listed, without, however, showing authors that ad-
dressed the MDVRPTW* variant treated here. Among these variants,
we highlight the proposition from Li et al. (2016). In this article,
the authors treated the Multi-depot vehicle routing problem with time
windows under shared depot resources (MDVRPTWSDR), in which the
vehicles leave a certain depot but can return to a different depot.
A hybrid genetic algorithm with adaptive local search (HGA_ALS) is
proposed for solving this problem, using, for performing the compu-
tational experiments, ten out twenty instances from Cordeau et al.
(2001b). Wang et al. (2019b) represents an important continuity of the
approach from Li et al. (2016), including the environmental issue as
fundamental for future research on this class of problems.

Hesam Sadati et al. (2021) presented an interesting hybrid imple-
mentation of VNS with Tabu Search, named Variable Tabu Neigh-
borhood Search (VTNS), for solving the Multi-Depot Vehicle Routing
Problems (MDVRP), MDVRP with Time Windows (MDVRPTW), and
Multi-Depot Open Vehicle Routing Problem (MDOVRP). The proposed
algorithm included, in the intensification phase, a granular local search
procedure, and, in the intensification phase, a tabu shaking procedure.
The use of tabu search allows working with infeasible solutions for es-
caping from local optima. The results were very competitive concerning
the state-of-the-art algorithms in the literature. However, the authors
did not work with the large instances from Vidal et al. (2013b), Lahrichi
et al. (2015) for testing the algorithm.

On the other hand, methods based on neighborhood exploration
have been widely applied to solve vehicle routing problems. Belloso
et al. (2019) proposed a multistart biased-randomized heuristic to
solve the fleet size and mix vehicle routing problem with backhauls
(FSMVRPB). The results show a competitive approach that determined
20 new solutions for the 36 evaluated instances. Rezgui et al. (2019)
showed a adapted General Variable Neighborhood Search (GVNS) for
solving the fleet size and mix vehicle routing problem with time win-
dows using electric modular vehicles. This work adapted the instances
from Solomon (1987) to evaluate the proposed method. Ren et al.
(2020) addressed the bi-objective mixed-energy green vehicle routing
problem with time windows (B-MFGVRPTW). The first objective was to
minimize pollutant emissions by minimizing the use of gasoline and oil
vehicles. The second objective was to minimize the total delay time to
maximize customer satisfaction by penalizing the deliveries performed

out of the time windows. For solving this problem, this work applied
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a multi-objective version of the GVNS metaheuristic on the instances
from Solomon, building the Pareto frontiers solutions.

Karakostas et al. (2020a) introduced fleet-size and mix pollution
location-inventory-routing problem with just-in-time replenishment
policy and capacity planning. This article extends the strategic-level de-
cisions of a classic location-inventory-routing problem (LIRP), consid-
ering capacity selection decisions and heterogeneous fleet composition.
The authors proposed an algorithm based on the GVNS metaheuristic
with six different local search strategies that use the Variable Neighbor-
hood Descent method, applying it for solving a set of instances proposed
by them and comparing it with the solution via CPLEX. Karakostas et al.
(2020b) proposed three versions of GVNS for the solution of a supply
distribution structure in the care of immunotherapy patients.

Masmoudi et al. (2021) introduced the Fleet Size and Mixed Vehicle
Routing Problem with Synchronized Visits (FSM-VRPS), i.e., a Vehicle
Routing Problem with Synchronized Visits involving a mixed fleet size
of vehicles composed of heterogeneous passenger cars and bikes. The
article proposed a metaheuristic based on Multi-Start Adaptive Large
Neighborhood Search with Threshold Accepting (MS-ALNS-TA) algo-
rithm for solving a set of instances based on benchmark VRPS instances
from the literature. The modified adaptive local neighborhood search
improved the intensification and diversification mechanisms of the
standard ALNS algorithm during the search process.

Another variant of impact to be highlighted is the one involving
a heterogeneous fleet, as Rabbouch et al. (2018) and Abdallah and
Ennigrou (2020). To conclude this literary review, it is worth noting
that the articles treating the multi-objective formulation of MDVRPTW,
as Wang et al. (2019a) and Li et al. (2019), has reached a large
audience recently, mainly because it allows for the rapid insertion of
environmental issues.

Finally, although several and significant variations of MDVRPTW
have been addressed in the literature, the MDVRPTW* formulation we
have presented here has not been previously treated, at least according
to the authors’ knowledge of the current article. This formulation is the
research gap that we investigate in this article.

4. Smart GVNS with Adaptive Local Search (SGVNSALS)

For treating the MDVRPTW*, we propose an algorithm based on the
General Variable Neighborhood Search metaheuristic (GVNS) (Hansen
et al., 2017). Named SGVNSALS, an acronym for Smart General Vari-
able Neighborhood Search with Adaptive Local Search, this algorithm
uses the ‘‘smart’’ version of the GVNS method developed in Rego and
Souza (2019) and an adaptive local search. While in the algorithm
of Rego and Souza (2019) the local searches are applied following the
Variable Neighborhood Descent (VND) (Mladenović and Hansen, 1997)
method’s structure, in the algorithm proposed here we apply adaptive
local searches according to the local search’s success in each neighbor-
hood in previous iterations. To describe the proposed algorithm, we use
throughout this section the notations introduced in Table 2. Addition-
ally, to better understand the impact of this proposed algorithm in the
solution of MDVRPTW*, we also implemented a variation using only
the ‘‘smart’’ mechanism and performing the local search using VND,
which we named SGVNS, and the classic GVNS algorithm. Section 4.8
explains how this is done.

The use of local search adaptation mechanisms in VNS has been
increasing to solve different problems. Among the works that use
this procedure, we highlight Li and Tian (2016), Todosijević et al.
(2016) and Karakostas et al. (2020b, 2022). Todosijević et al. (2016)
proposed an adaptive general variable neighborhood search for solving
the unit commitment with a simple adaptive success principle in the
shaking procedure. Karakostas et al. (2020b) introduced two adap-
tive shaking procedures, also with a simple success principle but, on
the other hand, with a re-ordering mechanism for the neighborhood
operators. Karakostas et al. (2022) employed similar re-ordering mech-
anisms. Li and Tian (2016) proposed a self-adaptive algorithm where
5

Table 2
Notations used in the description of the SGVNSALS algorithm.

Acronym Description

𝐿 Total distance traveled
𝐹 (𝑠) Cost of solution 𝑠
𝑐𝑑𝑖 Travel cost between a customer 𝑖 and a depot 𝑑
𝑟𝑑 List with routes of the depot 𝑑
𝑟𝑑1𝑑2 Ratio of customer proximity to the two closest depots
𝑠 Solution of the MDVRPTW*
𝑣 Index representing one of the neighborhood structures
𝑞 Average of demands
𝑠̄ Average of customers service times
𝛼 Weight for the number of vehicles
𝛽 Weight for the distance traveled
𝜙(𝑘) Cost for violating the constraints of the vehicle 𝑘

𝜑 Total amount of infeasibility of the solution due to non-compliance
with vehicle constraints

𝜔𝑄 Penalty factor for overload vehicle
𝜔𝑇 Penalty factor for overduration
𝜔𝑇𝑊 Penalty factor for delay
𝜓 Correction factor for Single Thread Rating between used processors
′ Set of pairs (𝑖, 𝑑) of customers 𝑖 assigned to the closest depot 𝑑
′ Set of pairs (𝑖, 𝑑) of customers 𝑖 assigned to the second closest depot 𝑑
 Set of pairs (𝑖, 𝑑) of customers 𝑖 assigned to the depot 𝑑
 Set of pairs (𝑖, 𝑟𝑑1𝑑2)
 Set of neighborhood structures
 Set of lists that represent the routes of the depots
 Set of used vehicles

the sequence of the neighborhoods is determined automatically by the
algorithm from its search history.

This section is organized as follows. Initially, we describe the work-
ing principle of a VNS based algorithm in Section 4.1. In Section 4.2,
we show how to represent a solution. Section 4.3 presents the pro-
cedure for generating an initial solution to the problem. Section 4.4
describes the function used for evaluating the solution of MDVRPTW*.
Section 4.5 describes the neighborhood structures used to explore the
solution space of the problem. Section 4.6 details the shaking procedure
and Section 4.7 describes the local search method. Finally, Section 4.8
presents the proposed SGVNSALS, SGVNS, and GVNS algorithms.

4.1. Variable Neighborhood Search

Proposed by Mladenović and Hansen (1997), Variable Neighbor-
hood Search (VNS) is a metaheuristic that explores the solution space
through systematic changes of neighborhood structures.

Typically, a basic VNS algorithm alternately executes a local search
procedure and a shake procedure until a predefined stopping criterion
is met. The local search procedure is applied to refine a solution,
guiding it to a local minimum. In turn, the shake procedure promotes
diversification to guide the search towards other basins of attraction.
Shaking operators consist of random moves applied to a given solution 𝑠
to guide it to a perturbed solution 𝑠′. According to Hansen et al. (2017,
2019), perturbations are applied gradually, given by the neighborhood
changes and by the number of times the structure is applied to the
solution.

Among the VNS variants, General Variable Neighborhood Search
(GVNS) (Hansen et al., 2010, 2017, 2019) uses Variable Neighborhood
Descent (VND) as its local search method. VND is a descent method that
realizes change of neighborhoods in a deterministic way to improve a
solution. It has the advantage of returning a local optimum concerning
all used neighborhoods. This is an important property because a local
optimum concerning several neighborhoods is more likely to be a
global optimum than the solution generated as a local optimum for just

one neighborhood.
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Fig. 3. Example of a solution with two depots. The data are from the example shown
in Fig. 2(b).

4.2. Solution representation

In SGVNSALS, a solution 𝑠 is given by a set of lists  =
{

𝑟1, 𝑟2,… ,
𝑟
||

}

, in which || ≥ 2 refers to the amount of depots, and 𝑟 to
the routes associated with each one. Fig. 3 shows the solution repre-
sentation for the scenario described in Section 2 (Fig. 2(b)). In this
figure, 𝑟1 and 𝑟2 represent the routes associated with depots 19 and 20,
respectively.

4.3. Construction of the initial solution

We use the technique of first grouping and then routing, inspired
by the algorithm proposed by Gillett and Johnson (1976), to construct
an initial solution. The procedure for generating clusters is shown in
Algorithm 1, and, that for generating routes, in Algorithm 2. At lines
8–18 of Algorithm 1, we determine the two closest depots to each
customer. Then, we assign the customers to one of these depots (lines
22 to 36). These two depots, called 𝑑1 and 𝑑2, are identified in lines
12 and 14 and they have distances 𝑐𝑑1,𝑖 and 𝑐𝑑2,𝑖, respectively, to each
customer 𝑖. The proximity relationships between each customer 𝑖 and
its depots 𝑑1 and 𝑑2 are calculated in line 15. The pair (𝑖, 𝑐𝑑1,𝑖∕𝑐𝑑2,𝑖)
is assigned to the set  (line 16). From this rate,  is sorted
in ascending order (line 19). Unlike Gillett and Johnson (1976), the
distribution between depots occurs in a balanced way. That is, for each
depot 𝑑 ∈ ′ are designated ⌈||∕||⌉ customers (lines 28 to 34).
Therefore, in the order given by , each pair formed by the customer
𝑖 ∈ ′, and its respective depot 𝑑1 (or 𝑑2), is assigned to the set . The
assigned customers are removed from the set ′ in line 37. In turn, the
depots that have reached their capacity limit are also removed (lines
39 to 46). This procedure is repeated until all customers are assigned
to a depot. Figs. 4(a) and 4(b) exemplify the assigning procedure with
eighteen customers distributed to two depots.

After the assignment, the routes are constructed in a partially greedy
way, respecting the customers’ windows, the capacity, and maximum
route time of the vehicles, as shown in Algorithm 2. The customer 𝑖 and
the depot 𝑑, with (𝑖, 𝑑) ∈ , are chosen from a previously fixed value
𝜆 ∈ [0, 1]. A real random value between 0 and 1 is chosen. If this value
is less than or equal to 𝜆, then we choose any pair (𝑖, 𝑑) ∈  (line 5).
Otherwise, we select the first element of the set . From empirical
tests, we adopt 𝜆 = 0.6. At line 10, the subset 𝑟𝑑 ⊂  represents
the routes of the depot 𝑑. After the composition of the routes by the
customers assigned to the depots, the algorithm is finalized in line 13,
returning the solution set  of routes. For all customers to be served,
the number of vehicles used can be greater than ||. Fig. 4(c) shows a
representation of the routes for the example in Fig. 3.

4.4. Evaluation function

As in Ombuki et al. (2006), which studied the solution of VRPTW,
we evaluate a solution 𝑠 by a function 𝐹 (𝑠) that represents a weighted
sum of three objective functions to be minimized. The function 𝐹 (𝑠) is
calculated according to:

𝐹 (𝑠) = 𝛽𝐿 + 𝛼| | + 𝜑 (12)

The first two objective functions seek to reduce the total distance trav-
eled (represented by 𝐿) by all vehicles and the number of used vehicles
6

Algorithm 1: CreateClusters(, )
1: ′ ← ; ′ ← ; {Copies of the sets: customers and depots}
2:  ← ∅; {Set of pairs (𝑖, 𝑑) of customers 𝑖 assigned to depots 𝑑}
3: while |′

| > 0 do
4: ′ ← ∅; {Set of pairs (𝑖, 𝑑), where 𝑑 is the closest depot to customer 𝑖}
5: ′ ← ∅; {Set of pairs (𝑖, 𝑑), where 𝑑 is the second closest depot to customer 𝑖}
6:  ← ∅; {Set of pairs (𝑖, 𝑟𝑑1𝑑2), where 𝑟𝑑1𝑑2 is the ratio of proximity of

customer 𝑖 to the two closest depots}
7: 𝑗 ← 1;
8: while 𝑗 ≤ |′

| do
9: Let 𝑖 be the client of the 𝑗-th position of ′

| 𝑖 ∈ ′;
10: 𝑐𝑑𝑖 ← distance between the customer 𝑖 and each depot 𝑑 ∈ ′;
11: 𝑑1 = argmin

𝑑
{𝑐𝑑𝑖}, ∀𝑑 ∈ ′;

12: ′ ← ′ ∪ {(𝑖, 𝑑1)};
13: 𝑑2 = argmin

𝑑
{𝑐𝑑𝑖}, ∀𝑑 ∈ ′ , 𝑑1 ≠ 𝑑2;

14: ′ ← ′ ∪ {(𝑖, 𝑑2)};
15: 𝑟𝑑1𝑑2 = 𝑐𝑑1,𝑖∕𝑐𝑑2,𝑖;
16:  ←  ∪ {(𝑖, 𝑟𝑑1𝑑2)};
17: 𝑗 ← 𝑗 + 1;
18: end while
19: Sort  in ascending order, according to the value of 𝑟𝑑1𝑑2;
20: 𝑗 ← 1;
21: ′′ ← ∅; {Set of clients assigned to some depot}
22: while 𝑗 ≤ |′

| do
23: Let 𝑖 be the client of the 𝑗-th position of  | 𝑖 ∈ ′;
24: Let 𝑑1 be the depot associated with the client 𝑖 | (𝑖, 𝑑1) ∈ ′;
25: Let 𝑑2 be the depot associated with the client 𝑖 | (𝑖, 𝑑2) ∈ ′;
26: Let 𝑡𝑑 be the total of customers in  assigned to depot 𝑑1
27: Let 𝑡𝑑′ be the total of customers in  assigned to depot 𝑑2
28: if 𝑡𝑑 < ⌈||∕||⌉ then
29:  ←  ∪ {(𝑖, 𝑑1)};
30: ′′ ← ′′ ∪ {𝑖}
31: else if 𝑡𝑑′ < ⌈||∕||⌉ then
32:  ←  ∪ {(𝑖, 𝑑2)};
33: ′′ ← ′′ ∪ {𝑖}
34: end if
35: 𝑗 ← 𝑗 + 1;
36: end while
37: ′ ← ′ ⧵ ′′;
38: 𝑗 ← 1;
39: while 𝑗 ≤ |′

| do
40: Let 𝑑 be the depot of the 𝑗-th position of ′

| 𝑑 ∈ ;
41: Let 𝑡𝑑 be the total of customers in  assigned to depot 𝑑
42: if 𝑡𝑑 ≥ ⌈||∕||⌉ then
43: ′ ← ′ ⧵ {𝑑};
44: end if
45: 𝑗 ← 𝑗 + 1;
46: end while
47: end while
48: return ;

Algorithm 2: CreateRoutes(, , )
1:  ← ∅; {Solution set of the MDVRPTW*}
2: while || > 0 do
3: 𝑗 ← 1;
4: if 𝑟𝑎𝑛𝑑(0, 1) ≤ 𝜆 then
5: 𝑗 ← 𝑟𝑎𝑛𝑑(||);
6: end if
7: Let 𝑖 be the client of the 𝑗-th position of  | 𝑖 ∈ ;
8: Let 𝑑 be the depot associated with the client 𝑖 of the 𝑗-th position of  | 𝑑 ∈ ;

9: Let 𝑟𝑑 be the list associated with the depot 𝑑 | 𝑟𝑑 ⊂ ;
10: 𝑟𝑑 ← 𝑟𝑑 ∪ {𝑖}; {Compose the routes of the depot 𝑑 respecting the time windows

of the customers, the maximum capacities of the vehicles and the duration of
these routes};

11:  ←  ⧵ {(𝑖, 𝑑)};
12: end while
13: return ;

(named by | | so that | | ≤ ||), respectively. The last objective
function seeks to minimize the violations (𝜑) that may occur due to
applying the moves to explore the solution space of the problem. These
violations can occur due to the excess number of vehicles available in
a depot, vehicle overload, customer service delays, and extrapolation
of the route’s maximum duration.
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Fig. 4. Steps for generating an initial solution.
The three objective functions of Eq. (12) are weighted by factors
𝛽, 𝛼, and 𝜑, that reflect the importance of each objective. As proposed
in Ombuki et al. (2006), we used 𝛽 = 0.001 and 𝛼 is calculated by:

𝛼 = 1
𝑁

𝑁
∑

𝑖,𝑗∈
𝑐𝑖𝑗 (13)

According to Eq. (13), the weight 𝛼 represents the average distance
between each pair of customers. Finally, the weight 𝜑 is calculated
according to:

𝜑 =
∑

𝑘∈
𝜙(𝑘) (14)

where 𝜙(𝑘) represents the penalization for not respecting the con-
straints imposed on the route of each vehicle 𝑘, being calculated as:

𝜙(𝑘) = 𝜔𝑄max
{

0, 𝑄𝑘 − 𝑉 𝐶
}

+ 𝜔𝑇 max
{

0, 𝑇𝑘 −𝑀𝑇
}

+ 𝜔𝑇𝑊 𝑇𝑊𝑘 (15)

In Eq. (15), the parameter 𝜔𝑄 penalizes the vehicle overload; the
parameter 𝜔𝑇 penalizes the time exceeded in the route duration of
vehicle 𝑘; and the parameter 𝜔𝑇𝑊 penalizes the delays in the delivery
of products by vehicle 𝑘. The delay 𝑇𝑊𝑘 is the sum of the times that
exceed the final time window of each customer belonging to the vehicle
route 𝑘.

In turn, the weight values are calculated from 𝛼, the average de-
mands 𝑞, and the average service times ℎ̄ for consumers, as defined
below:

𝜔𝑄 = 𝛼
𝑞

, 𝜔𝑇 = 𝜔𝑇𝑊 = 𝛼
ℎ̄

The use of penalties for constraint violations is a strategy commonly
used in the literature due to the high degree of difficulty in exploring
the solution space of problems like VRPTW or variants using only
feasible solutions. The algorithms of Polacek et al. (2008) and Vidal
et al. (2013a) for solving MDVRPTW are examples of applying this
strategy.

4.5. Local search operators

To explore the MDVRPTW* solution space, we use neighborhood
operators that apply moves in the same depot in different routes
(inter-routes); in the same route (intra-route); or between routes from
different depots (inter-depots).

The intra-route operators used are Swap, Reinsertion, Or-opt2, 2-
opt, and 3-opt. As inter-route operators, we apply the Swap(1,1) and
Shift(1,0) moves. Finally, as inter-depot operators, we apply the same
moves that define the inter-route operator, plus the Swap(2,2) move.
We also apply the Destruction and Reconstruction operator, which con-
sists of redistributing customers from the shortest route to the other
routes. Such operators are widely used in the literature, for example,
in Polacek et al. (2004), Pisinger and Ropke (2007), Subramanian et al.
(2010, 2013), Vidal et al. (2012, 2013a, 2014), Bezerra et al. (2018),
and Christiaens and Vanden Berghe (2020). They are described below.
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Intra-route operators
The Intra-route operators are described as:

(a) 1 (Swap): it consists of swapping two customers in the same
route;

(b) 2 (Reinsertion): A customer is removed and reinserted in an-
other position in the same route;

(c) 3 (Or-opt2): two consecutive customers are removed and rein-
serted in another position in the same route;

(d) 4 (2-Opt): two non-adjacent edges are deleted and two others
are added to generate a new route;

(e) 5 (3-Opt): three edges are excluded and all possibilities of
exchange between them are tested to generate new routes.

Inter-route operators
The Inter-route operators are defined as:

(a) 6 (Swap(1,1)): it consists of swapping a customer 𝑣𝑗 from one
route 𝑟𝑘 with a customer 𝑣𝑡 from another route 𝑟𝑙 belonging to
the same depot;

(b) 7 (Shift(1,0)): it consists of transferring a customer 𝑣𝑗 from a
route 𝑟𝑘 to another route 𝑟𝑙 belonging to the same depot.

Inter-depots operators
The Inter-depots operators are described as:

(a) 8 (Swap(1,1)-InterDepot): it consists of swapping a customer
𝑣𝑗 from one route 𝑟𝑘 with a customer 𝑣𝑡 from another route 𝑟𝑙
belonging to another depot;

(b) 9 (Shift(1,0)-InterDepot): it consists of transferring a customer
𝑣𝑗 from a route 𝑟𝑘 to another route 𝑟𝑙 belonging to another depot;

(c) 10 (Swap(2, 2)-InterDepot): it consists of swapping two adjacent
customers (𝑣𝑗 , 𝑣𝑗+1) from a route 𝑟𝑘 with two other adjacent
customers (𝑣𝑡, 𝑣𝑡+1) belonging to another route 𝑟𝑙 from another
depot.

Destruction and reconstruction operator
The Destruction and Reconstruction operator is given by:

(a) 11 (Eliminates Smallest Route): It consists of eliminating the
shortest route in the solution: the one with the lowest number
of customers and reinserting its customers in the other routes.

The set of all local search operators is named , that is,  =
{

1,2,… ,11
}

.

4.6. Shake procedure

We use the Shift(1,0)-InterDepot, Swap(1,1)-InterDepot, and Elimi-
nates Smallest Route operators to form the set  = {8,9,11}
of shake operators. For the Shift(1,0)-InterDepot move, a customer is
chosen at random and transferred from the route to another one. In
the Swap(1,1)-InterDepot move, two customers of different routes are
swapped. In the Eliminates Smallest Route move, the smallest route is
removed, and the customers are assigned to other routes. If it is not
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possible to link any of the customers to the routes, a new route is
created in the depot with the least number of vehicles. In all three
moves, the time window, the vehicle’s capacity, and the vehicle’s
route’s maximum duration must be respected.

The shake procedure is presented by Algorithm 3. In this procedure,
𝑝 represents the level of shake to be applied to the 𝑣th perturbation
neighborhood of the solution 𝑠.

Algorithm 3: Shake(𝑠, , 𝑣, 𝑝)
1: for (𝑖 = 1; 𝑖 ≤ 𝑝; 𝑖 + +) do
2: Generate a random neighbor 𝑠′ ∈ 𝑣(𝑠);
3: 𝑠← 𝑠′

4: end for
5: return 𝑠′;

4.7. Proposed local search

We propose an adaptive local search method to explore the solution
space of the problem. Named ALS, Algorithm 4 shows how it works.

Algorithm 4: ALS(𝑠, 𝑠′,  , 𝑠𝑢𝑐𝑐𝑒𝑠𝑠, 𝑖𝑡𝐿𝑆, 𝑚𝑎𝑥𝐿𝑆1)
1: if 𝑖𝑡𝐿𝑆 < 𝑚𝑎𝑥𝐿𝑆1 then
2: 𝑠′′ ← RVND(𝑠, 𝑠′ ,  , 𝑠𝑢𝑐𝑐𝑒𝑠𝑠);
3: else
4: 𝑠′′ ← SingleLocalSearch(𝑠, 𝑠′ ,  , 𝑠𝑢𝑐𝑐𝑒𝑠𝑠);
5: end if
6: return 𝑠′′;

Observe by Algorithm 4 that the perturbed solution 𝑠′ can be refined
either by the RVND method (Souza et al., 2010) (line 2) or by a simple
local search (line 4). It is refined by the RVND method only if the
proposed algorithm’s current iteration is less than maxLS1. Thus, the
RVND method is applied during maxLS1 iterations of the SGVNSALS
algorithm. The advantage of the RVND method is that it does not
require the calibration of the neighborhoods’ exploration orders. Like
the VND method, it ensures that the returned solution is a local opti-
mum for all the used neighborhoods. It is important to highlight that
VND is a deterministic method, as Todosijević et al. (2016), Hansen
et al. (2017, 2019), Karakostas et al. (2020b) pointed out, in which
the exploration order of the neighborhoods is defined in advance, as
shown by Algorithm 6. In the RVND method, on the other hand, the
exploration order of the neighborhoods is randomly defined, as line 1 of
Algorithm 7 shows.

Algorithm 5: UpdateSuccess(𝑠, 𝑠′, 𝑠′′, 𝑣, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠)
1: if 𝑓 (𝑠′′) < 𝑓 (𝑠) then
2: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠[𝑣] ← 𝑠𝑢𝑐𝑐𝑒𝑠𝑠[𝑣] + 15;
3: else if 𝑓 (𝑠′′) < 𝑓 (𝑠′) then
4: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠[𝑣] ← 𝑠𝑢𝑐𝑐𝑒𝑠𝑠[𝑣] + 5;
5: end if

Algorithm 6: VND(𝑠, 𝑠′,  )
1: 𝑣← 1;
2: while 𝑣 ≤ | | do
3: 𝑠′′ ← arg min

𝑧∈𝑣(𝑠′)
𝑓 (𝑧); {Best neighbor of 𝑣(𝑠′)}

4: if 𝑓 (𝑠′′) < 𝑓 (𝑠′) then
5: 𝑠′ ← 𝑠′′;
6: 𝑣← 1;
7: else
8: 𝑣← 𝑣 + 1;
9: end if

10: end while
11: return 𝑠′;

During the application of the RVND (see its pseudocode in Algo-
ithm 7), we store in the success variable the neighborhoods that were
8

Algorithm 7: RVND(𝑠, 𝑠′,  , 𝑠𝑢𝑐𝑐𝑒𝑠𝑠)
1:  ′ ← 𝑟𝑎𝑛𝑑( );
2: 𝑣← 1;
3: while 𝑣 ≤ | ′

| do
4: 𝑠′′ ← arg min

𝑧∈ ′
𝑣 (𝑠′ )

𝑓 (𝑧); {Best neighbor of  ′
𝑣 (𝑠

′)}

5: if 𝑓 (𝑠′′) < 𝑓 (𝑠′) then
6: 𝑠′ ← 𝑠′′;
7: 𝑣← 1;
8: else
9: 𝑣← 𝑣 + 1;
0: end if
1: UpdateSuccess(𝑠, 𝑠′ , 𝑠′′ , 𝑣, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠);
2: end while
3: return 𝑠′;

Algorithm 8: SingleLocalSearch(𝑠, 𝑠′,  , 𝑠𝑢𝑐𝑐𝑒𝑠𝑠)
1: 𝑣← 𝑅𝑜𝑢𝑙𝑙𝑒𝑡𝑡𝑒(𝑠𝑢𝑐𝑐𝑒𝑠𝑠);
2: 𝑠′′ ← arg min

𝑧∈ 𝑣 (𝑠′ )
𝑓 (𝑧); {Best neighbor of 𝑣(𝑠′)}

3: UpdateSuccess(𝑠, 𝑠′ , 𝑠′′ , 𝑣, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠);
4: return 𝑠′′;

most successful in this improvement phase. The scores are calculated
as follows: if the solution 𝑠′′ returned by the local search in the
neighborhood 𝑣 improves only the perturbed solution 𝑠′, that is, if
𝑓 (𝑠) < 𝑓 (𝑠′′) < 𝑓 (𝑠′), then the success variable is increased by 5 units.
However, if the local search also improves the best solution 𝑠 generated
so far, that is, 𝑓 (𝑠′′) < 𝑓 (𝑠′) < 𝑓 (𝑠), then the success variable is increased
by 15 units. Algorithm 5 shows how the success variable is updated
when it receives the shake solution 𝑠′, the improved solution 𝑠′′ by
the local search in neighborhood 𝑣, and the best solution 𝑠 so far.
As the local search with the RVND method is computationally costly,
after maxLS1 iterations of the SGVNSALS algorithm, we apply only
one local search to the shake solution 𝑠′. In this phase, we selected a
local search using the roulette method based on each neighborhood’s
success variable during the application phase of the RVND method. All
neighborhoods have a chance to be chosen; however, those with the
highest values for the success variable have a higher chance. Algorithm
8 shows how the improvement phase works in this second phase of local
search. We affirm that our local search is adaptive because it learns
from the application of the first phase based on the RVND method.

4.8. Proposed algorithms

Three algorithms are implemented here for solving MDVRPTW*.
The Smart General Variable Neighborhood Search with Adaptive Local
Search (SGVNSALS) algorithm is the method we proposed in this article
for solving this problem. For performing a comparison with it, we in-
clude an implementation of the Smart General Variable Neighborhood
Search (SGVNS) method, introduced in Rego and Souza (2019). How-
ever, for conciseness purposes, we presented an unified pseudo-code,
addressing the SGVNSALS and SGVNS algorithms jointly. Algorithm 9
introduces this pseudo-code. The value of the variable 𝑎𝑙𝑠 at line 12
defines which algorithm will be performed for solving the problem. If
it is active (𝑎𝑙𝑠 value is true), the ALS search is triggered, and SGVN-
SALS is executed (line 13); otherwise, the VND search is triggered,
and SGVNS is run (line 15). The third algorithm implemented is the
General Variable Neighborhood Search (GVNS) method (Hansen et al.,
2017, 2019), which is the most classic variant of VNS, used here as
a benchmark for evaluating the behavior of the SGVNSALS proposed
method. Algorithm 10 shows the GVNS procedure implemented.

Algorithm 9 presents the pseudocode of the SGVNSALS method
proposed for solving MDVRPTW*. In lines 1 and 2, an initial solution
is built according to Section 4.3. Lines 4 to 7 set the initial shaking
level, the index for the first neighborhood, the iteration counter without

improvement, and the iteration counter for applying the local search
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Algorithm 9: SGVNSALS(, ,  , , 𝑖𝑡𝑒𝑟𝑀𝑎𝑥, 𝑚𝑎𝑥𝑇 𝑖𝑚𝑒, 𝑚𝑎𝑥𝐿𝑒𝑣𝑒𝑙,
𝐿𝑆1, 𝑝𝐿𝑆2, 𝑎𝑙𝑠)
1:  ← CreateClusters(, );
2: 𝑠← CreateRoutes(, , );
3: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠← InitializeSucess();
4: 𝑝← 1; {Initial shake level}
5: 𝑣← 1; {Index for the first neighborhood}
6: 𝑖𝑡𝑒𝑟← 0; {Iteration counter without improvement}
7: 𝑖𝑡𝐿𝑆 ← 0; {Counter for the local search}
8: 𝑚𝑎𝑥𝐿𝑆1 ← 𝑝𝐿𝑆1 ⋅ 𝑖𝑡𝑒𝑟𝑀𝑎𝑥; {Number of the RVND iterations}
9: 𝑚𝑎𝑥𝐿𝑆2 ← (𝑝𝐿𝑆1 + 𝑝𝐿𝑆2) ⋅ 𝑖𝑡𝑒𝑟𝑀𝑎𝑥; {Number of the SingleLocalSearch iterations}
10: while 𝑖𝑡𝑒𝑟 < 𝑖𝑡𝑒𝑟𝑀𝑎𝑥 and 𝑡𝑖𝑚𝑒 < 𝑚𝑎𝑥𝑇 𝑖𝑚𝑒 do
11: 𝑠′ ← Shake(𝑠, , 𝑣, 𝑝);
12: if 𝑎𝑙𝑠 then
13: 𝑠′′ ← ALS(𝑠, 𝑠′ ,  , 𝑠𝑢𝑐𝑐𝑒𝑠𝑠, 𝑖𝑡𝐿𝑆, 𝑚𝑎𝑥𝐿𝑆1);
14: else
15: 𝑠′′ ← VND(𝑠, 𝑠′ ,  );
6: end if
7: if 𝑓 (𝑠′′) < 𝑓 (𝑠) then
8: 𝑠 ← 𝑠′′;
9: 𝑣 ← 1; {Return to the first neighborhood}

20: 𝑝← 1; {Return to the first shake level}
21: 𝑖𝑡𝑒𝑟 ← 0 {Reset the iteration counter without improvement};
22: else
23: 𝑝← 𝑝 + 1; {Increase the shake level}
24: 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1 {Increase the iteration counter without improvement};
25: end if
26: if 𝑝 > maxLevel then
27: 𝑣 ← 𝑣 + 1; {Move to the next neighborhood}
28: 𝑝← 1 {Return to the first shake level};
29: end if
30: if 𝑣 > || then
31: 𝑣 ← 1; {Return to the first neighborhood}
32: 𝑝← 1; {Return to the first shake level}
33: end if
34: 𝑖𝑡𝐿𝑆 ← 𝑖𝑡𝐿𝑆 + 1;
35: if 𝑖𝑡𝐿𝑆 ≥ 𝑚𝑎𝑥𝐿𝑆2 then
36: 𝑖𝑡𝐿𝑆 ← 0;
37: end if
38: end while
39: return 𝑠;

Algorithm 10: GVNS(, ,  , , 𝑖𝑡𝑒𝑟𝑀𝑎𝑥, 𝑚𝑎𝑥𝑇 𝑖𝑚𝑒)
1:  ← CreateClusters(, );
2: 𝑠← CreateRoutes(, , );
3: 𝑣← 1; {Index for the first neighborhood}
4: 𝑖𝑡𝑒𝑟← 0; {Iteration counter without improvement}
5: while 𝑖𝑡𝑒𝑟 < 𝑖𝑡𝑒𝑟𝑀𝑎𝑥 and 𝑡𝑖𝑚𝑒 < 𝑚𝑎𝑥𝑇 𝑖𝑚𝑒 do
6: Generate a random neighbor 𝑠′ ∈ 𝑣(𝑠);
7: 𝑠′′ ← VND(𝑠, 𝑠′ ,  );
8: if 𝑓 (𝑠′′) < 𝑓 (𝑠) then
9: 𝑠 ← 𝑠′′;
10: 𝑣 ← 1; {Return to the first neighborhood}
11: 𝑖𝑡𝑒𝑟 ← 0 {Reset the iteration counter without improvement};
12: else
13: 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1 {Increase the iteration counter without improvement};
14: end if
15: if 𝑣 > || then
16: 𝑣 ← 1; {Return to the first neighborhood}
17: end if
18: end while
19: return 𝑠;

procedure, respectively. On lines 8 and 9, we set the number of RVND
and ALS iterations, respectively. On lines 10 to 38, the algorithm
starts a loop that finishes when the number of iterations without
improvement reaches its maximum value or when the runtime meets its
maximum duration. In line 11, the solution 𝑠 is perturbed by applying
𝑝 random moves in the 𝑣th neighborhood , as shown in Section 4.6.

Between lines 12 and 16, we apply the local search procedure
escribed in Section 4.7. Then, if the improved solution 𝑠′′ is better

than the current solution, we update the current solution, return to
the first neighborhood and to the first shake level, and reset the
iteration counter without improvement in lines 18 to 21, respectively.
9

Otherwise, we increase the shake level and the iteration counter in lines
23 to 24, respectively. We move to the next neighborhood only if the
shake level meets its maximum level, i.e., maxLevel. When it occurs, we
reset the shake level to its minimum value, i.e., 𝑝 = 1. When we reach
he last shake neighborhood, we return to the first shake neighborhood
nd the first shake level in lines 31 and 32, respectively.

In line 34, we increment itLS, that is, the number of applications
f the local search procedure. In the next line, if this number exceeds
axLS2 iterations, then itLS is restarted. In this way, we apply a new

ound of maxLS1 iterations with the RVND method and (maxLS2 -
axLS1) iterations using the SingleLocalSearch method, both described

n Section 4.7. This cycle is repeated during the execution of the SGVN-
ALS, alternating between RVND and SingleLocalSearch procedures as
ocal search methods. The proposed algorithm returns, in line 39, the
est solution 𝑠 found during the search.

Regarding the GVNS procedure shown in Algorithm 10, the per-
formed implementation corresponds to removing, from Algorithm 9,
the adaptation and intelligent neighborhood choice mechanisms. Thus,
it becomes a standard implementation of this classic procedure for the
solution of MDVRPTW*.

5. Computational results

The SGVNSALS, SGVNS and GVNS algorithms, shown in Algorithms
9 and 10, were coded in C++ and executed on an Intel Xeon E5620
2.40 GHz × 16 machine with 112 GB of RAM under the Linux operating
system 64 bits.

Two sets of instances, named Group I and Group II, were used as
benchmark in this article. They were used in Cordeau et al. (2001a)
and Vidal et al. (2013a), respectively, and are available at http://
neo.lcc.uma.es/vrp/vrp-instances/ and https://w1.cirrelt.ca/~vidalt/
en/VRP-resources.html, respectively. Both groups have a homogeneous
fleet per depot. Their characteristics are described in Tables 8 and 12,
respectively. In these tables, the first five columns refer to the number
of customers, depots, vehicles per depot, and the total of vehicles
available, respectively. Group I contains 20 instances involving 48 to
288 customers, 4 to 6 depots, vehicles with capacity ranging from 150 to
200 and route duration ranging from 400 to 500. The first ten instances
of this group have narrow time windows, while the last ten ones have
wide windows. The 28 instances presented in Group II contain 360 to
960 customers, 4 to 12 depots, and vehicles available per depot between
4 and 26.

This section is organized as follows. Section 5.1 shows the pro-
cedures for tuning the parameters. Sections 5.2 and 5.3 show the
computational results concerning the application of Algorithms 9 and
10 to Groups I and II of instances, respectively. Section 5.4 presents a
study about the influence of the local search and shake operators on
the found results.

5.1. Parameter tuning

We used the Iterated Racing for Automatic Algorithm Configuration
(IRACE) (López-Ibáñez et al., 2016) for tuning the SGVNSALS algorithm
parameters.

Initially, we selected 30% of the Group I instances to calibrate the
parameters of the proposed algorithm. These instances were chosen
because they contain the different characteristics of all instances of the
group. Table 3 shows the six chosen instances, ordered by the values
of 𝜌 = || × |𝑑 | × || and grouped by tight and wide time windows,
respectively.

Table 4 shows the proposed algorithm’s parameters, the values
tested, and those returned by IRACE after tuning. The parameter iter-
Max was fixed at the maximum value established because, in empirical
tests, values above this value required high times with insignificant
improvements in the results. The value ranges tested for the pLS1
and pLS2 parameters values were selected from empirical observations,

http://neo.lcc.uma.es/vrp/vrp-instances/
http://neo.lcc.uma.es/vrp/vrp-instances/
http://neo.lcc.uma.es/vrp/vrp-instances/
https://w1.cirrelt.ca/~vidalt/en/VRP-resources.html
https://w1.cirrelt.ca/~vidalt/en/VRP-resources.html
https://w1.cirrelt.ca/~vidalt/en/VRP-resources.html
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Table 3
Characteristics of the instances used for tuning with IRACE.

Instance pr03 pr04 pr06 pr12 pr19 pr16
|| 144 192 288 96 216 288
|𝑑 | 4 5 7 2 3 6
|| 4 4 4 4 6 4

𝜌 2304 3840 8064 768 3888 6912

in which the best results were obtained between 20% and 40% of
iterMax. For each value of the maximum number of iterations without
improvement, the percentages were verified, and, as values returned by
IRACE, pLS1 and pLS2 resulted in 30% of the best value of iterMax.

5.2. Group I results

Table 5 reports the results achieved by the SGVNSALS, SGVNS,
and GVNS algorithms when solving MDVRPTW* for the Group I of
instances. For each algorithm, Columns | | and ‘‘Distance’’ show the
best results found by the algorithms in 30 runs with 60 minutes per
instance. Column ‘‘Time’’ reports the average runtime found by these
algorithms in minutes. Line ‘‘Percent’’ presents the difference between
the results, considering SGNVSALS as a baseline.

For Group I, when comparing the three algorithms, this table shows
that SGVNSALS behaved better than SGVNS and GVNS in the three
items listed. It showed a reduction of 13.99% in the number of available
vehicles, against a reduction of 13.10% obtained by SGVNS and 13.39
obtained by GVNS, which used 3 and 2 more vehicles, respectively, than
SGVNSALS. Furthermore, when using SGVNS, there was an increase
of 0.76% in the total traveled distance and 8.59% in the runtime;
concerning GVNS, there was an increase of 4.61% in the total traveled
distance and 32.85 in the runtime.

The three algorithms tied in the number of used vehicles in 14
out of the 20 instances analyzed. In 8 out of these 14 tied, however,
SGVNSALS presented better results concerning the covered distance;
SGVNS won in 4 from these 14; GVNS won in the two remaining
nstances. Besides, in 7 of these 14 tied instances, SGVNSALS presented
etter results about runtime; SGVNS won in the other 3, and GVNS
on in the four remainings. Additionally, in 3 instances, SGVNSALS
vercame the others algorithms about the number of used vehicles;
VNS overcame the others in 2 instances regarding this item; finally, in
instance, SGVNSALS and SGVNS tied in the number of used vehicles

nd overcame GVNS.
The statistical analysis of these results involving the three methods

as performed concerning the number of used vehicles and the covered
istance. For normalizing the data, the gap between the respective
edians and the results shown in Table 5 was considered, in the form:

𝐺𝑎𝑝𝑣𝑒ℎ𝑖𝑐𝑙𝑒 =
𝑀𝑒𝑑𝑖𝑎𝑛𝑣𝑒ℎ𝑖𝑐𝑙𝑒 −𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑠𝑒𝑑 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠

𝑀𝑒𝑑𝑖𝑎𝑛𝑣𝑒ℎ𝑖𝑐𝑙𝑒
(16)

𝑎𝑝𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑀𝑒𝑑𝑖𝑎𝑛𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 −𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑀𝑒𝑑𝑖𝑎𝑛𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
(17)

Table 6 shows the 𝑝-values obtained for the hypotheses tests concern-
ng randomness, normality, and homoscedasticity.

From the Durbin–Watson and Fligner-Killeen tests, the random-
ess and homoscedasticity of the data were guaranteed. From the
hapiro–Wilk test, as the normality of the data was not guaranteed,
e used the Kruskal–Wallis hypothesis test. The null hypothesis (𝐻0)

onsiders there are no statistical differences between the results found
y the methods and, as an alternative hypothesis (𝐻1), there is a

difference between the found results. Regarding used vehicles, from
SGVNSALS × SGVNS and SGVNSALS × GVNS relations, with 95%
confidence, there is evidence to refute 𝐻0, i.e., these statistical tests
showed there are differences in the found results by the methods
concerning the number of used vehicles.

However, when analyzing the 𝑝-values for the covered distance, for
10

the case SGVNSALS × SGVNS, there is a strong relationship between
the found results and, therefore, there is statistical evidence to accept
𝐻0 and no statistical difference was detected between the results from
these methods. For the case SGVNSALS × GVNS, with 95% confidence,
there is evidence to refute 𝐻0 and, thus, to accept 𝐻1 and conclude that
there are differences in the results about the covered distance.

To deepen the comparison between the three methods, we per-
formed a statistical analysis involving only the instances in which there
were ties in the number of used vehicles. Table 7 presents the found
results, involving the evaluation regarding the 𝐺𝑎𝑝𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, for a confi-
dence level of 5%. These results showed that for SGVNSALS × SGVNS
and from the Kruskal–Wallis test, there was no statistical evidence
demonstrating differences in the values of covered distances. On the
other hand, for SGVNSALS × GVNS, the Kruskal–Wallis test allowed us
to conclude that there are statistical differences between the results for
covered distances.

Table 8 reports the values found by SGVNSALS in comparison with
the best-known results in the literature for the Group I of instances, as-
sociated with the results for the HGSADC algorithm, described in Vidal
et al. (2013a), for solving the classic MDVRPTW. In the literature, we
did not find any work that addresses the minimization in the number of
used vehicles, and, in this sense, this reference material was presented
here only to report the traveled distance. As we described in Section 2,
MDVRPTW* prioritizes the minimization of the number of used vehi-
cles ( ) and, secondarily, the minimization of the traveled distance
(Column Distance). Columns six and seven of this table report the total
traveled distance and the average runtime, in minutes, respectively,
found by the HGSADC algorithm. As in Table 5, Columns | | and
‘‘Distance’’ record the best results found by the SGVNSALS algorithm
in 30 runs in 60 minutes per instance. The ‘‘Time’’ column records the
average execution time. The ‘‘Adjusted time’’ column shows the ad-
justed runtime of the SGVNSALS algorithm. The adopted procedure for
obtaining this adjusted runtime will be explained next. The penultimate
column shows the difference between the numbers of used vehicles and
available vehicles in each instance. Finally, the last column records
the percentage variation in the used vehicle number concerning the
HGSADC algorithm, i.e., concerning the fleet size.

As HGSADC and SGVNSALS algorithms were executed in different
machines, we determine the Single Thread Rating of the processor for
each computer used and apply the Passmark software (https://www.
cpubenchmark.net/) for allowing a fairer comparison between the re-
sults achieved from them. According to this software, the Single Thread
Rating values for the processors used by the HGSADC and SGVNSALS
algorithms are 1426 and 1098, respectively. Hence, as the SGVNSALS
algorithm was tested on a slower machine, we use a correction factor
𝜓1, given by 𝜓1 = 1098∕1426 = 0.77 to adjust its runtime. Thus, the time
contained in the ‘‘Adjusted time’’ column records this adjusted runtime
in minutes.

From the results of Table 8, it is possible to notice a reduction of
approximately 14% in the total number of used vehicles, i.e., 47 used
vehicles. This reduction occurs differently for each instance, varying
between 0% and 41.67%. The instances with narrow time windows
have a greater reduction in the number of used vehicles. In this case,
among the ten instances, six present a reduction greater than 20%.
On the other hand, the instances with wide time windows have a
low reduction in the number of used vehicles, and, in six of the ten
instances, it was not possible to obtain a reduction in the number of
used vehicles. These characteristics of the achieved solutions show the
similarity between MDVRPTW* and the classic VRPTW.

5.3. Group II results

Table 9 shows the results generated by the SGVNSALS, SGVNS, and
GVNS algorithms for the Group II of instances. This table maintains
the same formatting described for Table 5. Line ‘‘Percent’’ of this table
shows the difference between the results, considering SGNVSALS as a

baseline.

https://www.cpubenchmark.net/
https://www.cpubenchmark.net/
https://www.cpubenchmark.net/
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Table 4
Tested parameter values and results returned by IRACE.

Description Parameter Range Returned value

Maximum number of iterations without improvement iterMax {300, 400, 500} 500
Maximum level of shake maxLevel {3, 4, 5, 6, 7} 5
Percentage of iterMax used for training pLS1 {0.2, 0.3, 0.4} 0.3
Percentage of iterMax used for applying the adaptive local searches pLS2 {0.2, 0.3, 0.4} 0.3

𝑚𝑎𝑥𝐿𝑆1 = 𝑝𝐿𝑆1 ⋅ 𝑖𝑡𝑒𝑟𝑀𝑎𝑥 = 0.3 ⋅ 500 = 150 (see line 8 of Algorithm 9)
𝑚𝑎𝑥𝐿𝑆2 = (𝑝𝐿𝑆1 + 𝑝𝐿𝑆2) ⋅ 𝑖𝑡𝑒𝑟𝑀𝑎𝑥 = (0.3 + 0.3) ⋅ 500 = 300 (see line 9 of Algorithm 9).
Table 5
Results for MDVRPTW* from the SGVNSALS algorithm versus SGVNS and GVNS algorithms concerning the Group I of instances.

Instances data SGVNSALS SGVNS GVNS

Name || || |𝑑 | || | | Distance Time | | Distance Time | | Distance Time

pr01 48 4 2 8 5 1 190.00 0.26 5 1 198.82 0.40 5 1 197.91 0.35
pr02 96 4 3 12 9 2 082.10 1.48 9 2 029.35 2.53 9 2 021.23 2.75
pr03 144 4 4 16 12 2 725.56 3.79 13 2 676.56 5.42 13 2 758.97 6.64
pr04 192 4 5 20 17 3 558.48 8.20 17 3 816.50 8.66 16 3 848.25 9.51
pr05 240 4 6 24 21 3 789.84 17.58 21 3 769.81 12.91 21 3 899.95 16.37
pr06 288 4 7 28 26 4 651.68 28.93 26 4 897.11 26.91 26 4 929.69 60.00
pr07 72 6 2 12 7 1 527.00 0.68 7 1 639.05 1.18 7 1 734.83 0.53
pr08 144 6 3 18 12 2 511.62 4.41 12 2 452.78 6.96 12 2 732.75 7.42
pr09 216 6 4 24 17 3 431.24 11.04 18 3 287.81 15.07 18 3 389.11 23.79
pr10 288 6 5 30 25 4 671.04 22.66 25 4 580.05 17.38 26 4 532.35 30.94
pr11 48 4 1 4 4 1 032.98 0.19 4 1 012.47 4.08 4 1 005.73 0.44
pr12 96 4 2 8 8 1 602.65 2.04 8 1 592.03 10.82 8 1 664.28 3.87
pr13 144 4 3 12 11 2 274.40 5.21 11 2 280.04 7.74 11 2 865.31 1.98
pr14 192 4 4 16 15 2 721.26 10.25 15 2 745.77 12.99 15 2 793.73 21.78
pr15 240 4 5 20 20 3 171.43 19.23 20 3 280.77 14.40 20 3 325.56 5.92
pr16 288 4 6 24 22 3 808.61 30.09 23 3 950.76 22.21 23 4 079.80 26.55
pr17 72 6 1 6 6 1 253.21 0.59 6 1 255.93 9.33 6 1 254.01 0.50
pr18 144 6 2 12 12 2 040.39 4.49 12 1 976.29 9.36 11 2 348.53 3.57
pr19 216 6 3 18 16 2 681.81 13.72 16 2 658.08 17.20 16 2 825.88 18.35
pr20 288 6 4 24 24 3 864.18 29.86 24 3 905.85 27.60 24 3 899.81 43.96

Sum 336 289 54 589.48 214.70 292 55 005.83 233.15 291 57 107.68 285.21
Percent (%) +1.04 +0.76 +8.59 +0.69 +4.61 +32.85

Maximum runtime for each instance 𝑚𝑎𝑥𝑇 𝑖𝑚𝑒 = 60 min
Runs per instance: 30
Table 6
𝑝-values for hypothesis tests concerning randomness, normality, and homoscedasticity for Group I.

SGVNSALS versus Performance measure Test

Durbin–Watson Shapiro–Wilk Fligner-Killeen Kruskal–Wallis

SGVNS 𝐺𝑎𝑝𝑣𝑒ℎ𝑖𝑐𝑙𝑒 1.95 4.67 e−38 0.06 0.02
𝐺𝑎𝑝𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 2.02 5.01 e−18 0.29 0.97

GVNS 𝐺𝑎𝑝𝑣𝑒ℎ𝑖𝑐𝑙𝑒 1.95 4.32 e−31 0.19 2.34 e−19
𝐺𝑎𝑝𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 1.94 5.26 e−15 0.18 9.96 e−26
Table 7
𝑝-values for hypothesis tests concerning randomness, normality, and homoscedasticity for Group I, considering only the situations in which there was a tie in the
number of used vehicles.

SGVNSALS versus Performance measure Test

Durbin–Watson Shapiro–Wilk Fligner-Killeen Kruskal–Wallis

SGVNS 𝐺𝑎𝑝𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 1.98 7.04 e−17 0.76 0.90
GVNS 𝐺𝑎𝑝𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 2.01 4.69 e−14 0.15 7.44 e−16
I

The results show that SGVNSALS overcame SGVNS and GVNS in the
hree evaluated items. From the total fleet (1960 vehicles), SGVNSALS

provided a reduction of 23.32% (457 vehicles) in the number of used
vehicles, from a reduction of 22.35% (438 vehicles) obtained by SGVNS
and 21.07% (413 vehicles) by GVNS.

Considering the results from SGVNSALS as a reference, there was
an increase of 2.80% in the traveled distance found using SGVNS
and a 36.25% decrease in runtime; using GVNS, the result for trav-
eled distance was 6.58% higher, and there was a 57.61% decrease
in runtime. There were no ties for this evaluated item involving only
SGVNS and GVNS. In 13 of the 28 instances, SGVNSALS outperformed
the other algorithms concerning the number of used vehicles; in these
same 13 instances, the total distance covered is the smallest among
11
those obtained by the three algorithms; SGVNS outperformed the others
in 3 instances, and, in the same way, generated the shortest covered
distance; and GVNS only outperformed the others in 1 instance. In the
remaining 11 instances, there were ties in the number of used vehicles.
n these 11 instances where there was a tie, SGVNSALS generated the

shortest traveled distance in 6 instances; SGVNS in 4; and GVNS in only
one. In a single instance (pr21b), there was a tie in the number of used
vehicles between the three algorithms.

Furthermore, there was a tie in the number of used vehicles between
SGVNSALS and SGVNS in 9 of these 11 instances; in two others, there
was a tie between SGVNSALS and GVNS. There were no ties for this
item involving only SGVNS and GVNS. In terms of runtime, in 26 of
the 28 instances, GVNS had the shortest runtime; SGVNSALS had the
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Table 8
Results for MDVRPTW* from the SGVNSALS algorithm concerning Group I instances compared with the results for MDVRPTW from the HGSADC algorithm.

Instances data HGSADC SGVNSALS

Name || || |𝑑 | || Distance Time | | Distance Time Adjusted
time

| | – || Percent

pr01 48 4 2 8 1 074.12 0.31 5 1 190.00 0.26 0.20 −3 −37.50%
pr02 96 4 3 12 1 762.21 1.15 9 2 082.10 1.48 1.14 −3 −25.00%
pr03 144 4 4 16 2 373.65 1.75 12 2 725.56 3.79 2.92 −4 −25.00%
pr04 192 4 5 20 2 815.48 5.89 17 3 558.48 8.20 6.31 −3 −15.00%
pr05 240 4 6 24 2 964.65 8.68 21 3 789.84 17.58 13.53 −3 −12.50%
pr06 288 4 7 28 3 588.78 13.43 26 4 651.68 28.93 22.27 −2 −7.14%
pr07 72 6 2 12 1 418.22 0.51 7 1 527.00 0.68 0.52 −5 −41.67%
pr08 144 6 3 18 2 096.73 2.39 12 2 511.62 4.41 3.39 −6 −33.33%
pr09 216 6 4 24 2 712.56 5.20 17 3 431.24 11.04 8.50 −7 −29.17%
pr10 288 6 5 30 3 465.92 15.22 25 4 671.04 22.66 17.44 −5 −16.67%
pr11 48 4 1 4 1 005.73 0.51 4 1 032.98 0.19 0.15 0 0.00%
pr12 96 4 2 8 1 464.5 1.68 8 1 602.65 2.04 1.57 0 0.00%
pr13 144 4 3 12 2 001.83 2.94 11 2 274.40 5.21 4.01 −1 −8.33%
pr14 192 4 4 16 2 195.33 6.55 15 2 721.26 10.25 7.90 −1 −6.25%
pr15 240 4 5 20 2 433.15 12.56 20 3 171.43 19.23 14.81 0 0.00%
pr16 288 4 6 24 2 836.67 15.97 22 3 808.61 30.09 23.17 −2 −8.33%
pr17 72 6 1 6 1 236.24 1.05 6 1 253.21 0.59 0.45 0 0.00%
pr18 144 6 2 12 1 788.18 3.30 12 2 040.39 4.49 3.46 0 0.00%
pr19 216 6 3 18 2 261.08 8.59 16 2 681.81 13.72 10.56 −2 −11.11%
pr20 288 6 4 24 2 993.31 22.18 24 3 864.18 29.86 22.99 0 0.00%

Sum 336 44 488.34 129.86 289 54 589.48 214.68 165.30 −47
Percent −13.99 +22.71% +27.29% −13.99%

Maximum runtime for each instance 𝑚𝑎𝑥𝑇 𝑖𝑚𝑒 = 60 min.
Adjusted time: Adjusted time to the processor used by the SGVNSALS algorithm.
Runs per instance: 30.
Table 9
Results for MDVRPTW* from the SGVNSALS algorithm versus SGVNS and GVNS algorithms concerning the Group II of instances.

Instance || || |𝑑 | || SGVNSALS SGVNS GVNS

| | Distance Time | | Distance Time | | Distance Time

pr11a 360 4 10 40 34 8 367.96 26.52 34 8 726.24 25.88 36 8 965.56 13.31
pr12a 480 4 13 52 43 10 203.06 79.13 43 10 787.73 54.83 45 11 300.13 19.22
pr13a 600 4 16 64 52 12 050.67 166.16 54 12 861.05 56.68 54 13 161.64 53.30
pr14a 720 4 19 76 63 14 430.54 257.14 64 15 272.39 99.36 66 15 673.55 62.52
pr15a 840 4 22 88 77 17 298.62 266.35 76 16 861.08 155.03 80 18 407.24 91.22
pr16a 960 4 26 104 87 19 526.10 300.00 90 20 129.48 167.49 93 21 590.78 130.60
pr17a 360 6 7 42 33 8 071.20 29.81 32 7 909.23 35.81 33 8 425.72 16.31
pr18a 520 6 10 60 47 10 905.42 67.13 48 11 027.97 45.25 50 11 840.88 29.97
pr19a 700 6 13 78 63 14 193.26 216.85 64 15 267.10 105.01 65 15 564.61 46.69
pr20a 880 6 16 96 75 15 825.91 276.89 76 16 251.23 151.12 78 17 093.54 105.50
pr21a 420 12 4 48 36 8 222.74 29.20 36 8 161.57 77.92 37 8 143.01 75.39
pr22a 600 12 6 72 49 10 648.65 128.15 48 10 438.98 135.31 51 12 185.14 55.44
pr23a 780 12 8 96 64 13 746.12 183.50 64 13 745.38 138.61 65 14 089.12 97.91
pr24a 960 12 10 120 84 16 890.61 242.67 85 17 322.22 147.39 85 17 868.87 96.16
pr11b 360 4 8 32 27 6 068.24 29.91 27 5 959.04 24.34 28 6 280.37 16.97
pr12b 480 4 11 44 36 7 739.38 39.11 36 7 945.88 35.91 35 8 195.71 34.23
pr13b 600 4 14 56 44 9 409.75 95.18 44 9 919.54 77.03 45 9 821.87 49.86
pr14b 720 4 17 68 54 11 283.40 244.13 56 11 910.17 92.98 56 12 753.49 65.50
pr15b 840 4 20 80 66 13 948.48 256.86 66 14 101.22 134.17 67 14 412.66 94.59
pr16b 960 4 23 92 75 15 364.09 290.66 76 15 871.36 170.54 75 15 290.21 134.04
pr17b 360 6 6 36 26 5 839.02 36.87 28 5 995.21 27.23 28 6 328.40 16.52
pr18b 520 6 9 54 39 8 061.21 65.19 40 8 388.09 57.77 40 8 073.65 29.44
pr19b 700 6 12 72 52 10 662.51 166.90 54 11 676.04 69.08 55 11 819.53 56.60
pr20b 880 6 15 90 69 13 743.12 264.70 71 14 309.46 115.42 70 14 739.72 94.74
pr21b 420 12 4 48 30 6 252.96 40.45 30 6 138.25 113.45 30 6 396.91 64.98
pr22b 600 12 6 72 43 8 567.72 72.62 43 9 386.33 104.15 44 9 016.95 69.82
pr23b 780 12 7 84 58 11 495.28 131.89 59 11 643.89 135.59 59 12 329.20 63.13
pr24b 960 12 8 96 77 14 398.34 202.32 78 14 264.83 128.28 77 14 711.38 98.89

Sum 1960 1503 323 214.36 4206.29 1522 332 270.96 2681.63 1547 344 479.84 1782.86
Percent 1.26% 2.80% −36.25 2.93% 6.58% −57.61%

Maximum runtime for each instance 𝑚𝑎𝑥𝑇 𝑖𝑚𝑒 = 300 min.
Runs per instance: 10.
shortest runtime in the remaining two. The analysis concerning runtime
for SGVNS and GVNS clearly indicates a premature convergence of
these algorithms and the success of the adaptive and the ‘‘smart’’
procedures of SGVNSALS, a fact demonstrated by the results obtained.

The statistical analysis of the results for Group II of instances re-
garding the application of SGVNSALS, SGVNS, and GVNS was realized
12
considering the number of used vehicles and the covered distance.
Table 10 presents the obtained 𝑝-values for the hypotheses tests for
randomness, normality, and homoscedasticity. As occurred in the sta-
tistical analysis of the results for Group I of instances, the randomness,
and homoscedasticity of the data were guaranteed from the Durbin–
Watson and Fligner-Killeen tests. The Shapiro–Wilk test showed that
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Table 10
𝑝-values for hypothesis tests concerning randomness, normality, and homoscedasticity for Group II.

SGVNSALS versus Performance measure Test

Durbin–Watson Shapiro–Wilk Fligner-Killeen Kruskal–Wallis

SGVNS 𝐺𝑎𝑝𝑣𝑒ℎ𝑖𝑐𝑙𝑒 1.95 1.02 e−09 0.01 6.35 e−21
𝐺𝑎𝑝𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 2.08 0.09 1.05 e−06 1.36 e−37

GVNS 𝐺𝑎𝑝𝑣𝑒ℎ𝑖𝑐𝑙𝑒 1.92 5.60 e−08 1.43 e−07 1.52 e−57
𝐺𝑎𝑝𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 1.94 3.76 e−05 4.31 e−07 4.40 e−73
Table 11
𝑝-values for hypothesis tests concerning randomness, normality, and homoscedasticity for Group I, considering only the situations in which there was a tie in the
number of used vehicles.

SGVNSALS versus Performance measure Test

Durbin–Watson Shapiro–Wilk Fligner-Killeen Kruskal–Wallis

SGVNS 𝐺𝑎𝑝𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 2.09 0.02 1.90 e−03 4.01 e−09
GVNS 𝐺𝑎𝑝𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 2.21 0.12 0.05 2.90 e−09
Fig. 5. Percentage of contribution of each local search operator.
the normality of the data was not guaranteed, and, thus, the Kruskal–
Wallis hypothesis test was used to identify statistical differences be-
tween the results. The null hypothesis (𝐻0) considers there are no
statistical differences between the results found by the methods, and, as
an alternative hypothesis (𝐻1), there is a difference between the found
results. Based on the results obtained with the Kruskal–Wallis test, there
is statistical evidence to refute the 𝐻0 hypothesis in all cases, which
allowed us to conclude that there are statistical differences between
the results found by the three methods.

As we have done for Group I of instances, we performed a statistical
analysis involving only the instances in which there were ties in the
number of used vehicles for Group II of instances. Table 11 describes
the found results, evaluating the 𝐺𝑎𝑝𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, for a confidence level of
5%. These results showed that for SGVNSALs × SGVNS and for SGVN-
SALS × GVNS, the Kruskal–Wallis test led us to conclude that there are
statistical differences between the results for covered distances.

Table 12 compares the results from SGVNSALS with the best-known
results in the literature for the Group II of instances, provided for the
HGSADC algorithm, described in Vidal et al. (2013b), for solving the
classic MDVRPTW. This table maintains the same structure described
for Table 8, including the column ‘‘Adjusted time’’, which represents
the adjusted runtime due to the difference in the used processors.
The results found for this group differ from those for Group I. For all
instances, there was a reduction in the number of used vehicles, with
the smallest reduction being 12.50% (occurring in instance pr15a) and
the biggest reduction being 40.28% (occurring in instance pr22b). The
total reduction for the used vehicles was 23.32% (457 vehicles).

There is a greater percentage reduction in the vehicle number
concerning the total fleet from Group I to Group II (13.99% against
13

23.32%). In Group II, however, the group of narrow time windows
instances has a greater reduction than that achieved by the group of
wide time windows instances. For the narrow time windows instances,
four of the 14 instances have a greater reduction than the general
average reduction; for the wide time windows instances, eight out of
14 instances have a reduction greater than the average. Hence, for
Group II, there is a smaller usage of vehicles for the wide time windows
instances than for the tight windows instances.

5.4. Influence of the local search and shake operators

In this section, we analyze the influence of the different local search
and shake operators on the performance of the SGVNSALS algorithm.
To evaluate the behavior of the local search operators, we compute
the score that each one received, as described in Section 4.7. Fig. 5
summarizes the percentage relative to each one obtained from this
score. Fig. 5(a) presents the percentages relative to the test results in
the instances of Group I. In turn, we show the results of the instances
of Group II in Fig. 5(b).

From the results obtained, we can verify that the algorithm’s be-
havior in the two groups of instances is the same. Furthermore, the
Reinsertion, Swap, Swap(1,1)-Interdepot, and 3-Opt local search opera-
tors have the most influence to reduce the size of the vehicle fleet in
both groups. Together, these operators represent 64% of the total score
distributed for Group I and 63% for Group II.

In Section 5.4.1, we analyze the algorithm’s behavior when elim-
inating neighborhood operators with less contribution in the local
search procedure. In turn, in Section 5.4.2, we analyze the algorithm’s
behavior, modifying the shake operators. Finally, in Section 5.4.3, we
analyze the algorithm’s behavior by eliminating the operators with the

smallest contributions both in the local search and in the shake phase.



Computers and Operations Research 149 (2023) 106016S.N. Bezerra et al.

o
W
e
t
p

Table 12
Results for MDVRPTW* from the SGVNSALS algorithm concerning Group II instances compared with the results for MDVRPTW from the HGSADC algorithm.

Instances data HGSADC SGVNSALS

Name || || |𝑑 | || Distance Time | | Distance Time Adjusted
time

| | – || Variation

pr11a 360 4 10 40 6 720.71 16.81 34 8 367.96 26.52 20.42 −6 −15.00%
pr12a 480 4 13 52 8 179.80 30.00 43 10 203.06 79.13 60.93 −9 −17.31%
pr13a 600 4 16 64 9 667.20 54.85 52 12 050.67 166.16 127.94 −12 −18.75%
pr14a 720 4 19 76 11 124.01 65.65 63 14 430.54 257.14 197.99 −13 −17.11%
pr15a 840 4 22 88 13 013.97 132.44 77 17 298.62 266.35 205.09 −11 −12.50%
pr16a 960 4 26 104 14 299.87 133.63 87 19 526.10 300.00 231.00 −17 −16.35%
pr17a 360 6 7 42 6 304.30 17.23 33 8 071.20 29.81 22.95 −9 −21.43%
pr18a 520 6 10 60 8 308.32 44.25 47 10 905.42 67.13 51.69 −13 −21.67%
pr19a 700 6 13 78 10 677.61 74.42 63 14 193.26 216.85 166.97 −15 −19.23%
pr20a 880 6 16 96 11 963.91 107.37 75 15 825.91 276.89 213.20 −21 −21.88%
pr21a 420 12 4 48 6 260.53 28.00 36 8 222.74 29.20 22.48 −12 −25.00%
pr22a 600 12 6 72 7 985.37 76.05 49 10 648.65 128.15 98.67 −23 −31.94%
pr23a 780 12 8 96 9 937.43 137.72 64 13 746.12 183.50 141.29 −32 −33.33%
pr24a 960 12 10 120 11 923.72 197.17 84 16 890.61 242.67 186.85 −36 −30.00%
pr11b 360 4 8 32 4 839.44 18.04 27 6 068.24 29.91 23.03 −5 −15.63%
pr12b 480 4 11 44 6 063.26 29.09 36 7 739.38 39.11 30.11 −8 −18.18%
pr13b 600 4 14 56 7 254.17 70.99 44 9 409.75 95.18 73.29 −12 −21.43%
pr14b 720 4 17 68 8 732.29 98.92 54 11 283.40 244.13 187.98 −14 −20.59%
pr15b 840 4 20 80 10 439.72 129.48 66 13 948.48 256.86 197.78 −14 −17.50%
pr16b 960 4 23 92 11 483.22 170.31 75 15 364.09 290.66 223.80 −17 −18.48%
pr17b 360 6 6 36 4 806.01 15.78 26 5 839.02 36.87 28.39 −10 −27.78%
pr18b 520 6 9 54 6 526.72 39.45 39 8 061.21 65.19 50.20 −15 −27.78%
pr19b 700 6 12 72 8 227.25 80.55 52 10 662.51 166.90 128.51 −20 −27.78%
pr20b 880 6 15 90 10 325.80 150.74 69 13 743.12 264.70 203.82 −21 −23.33%
pr21b 420 12 4 48 4 866.57 36.75 30 6 252.96 40.45 31.15 −18 −37.50%
pr22b 600 12 6 72 6 488.50 73.28 43 8 567.72 72.62 55.92 −29 −40.28%
pr23b 780 12 7 84 8 523.41 163.99 58 11 495.28 131.89 101.55 −26 −30.95%
pr24b 960 12 8 96 10 890.08 298.51 77 14 398.34 202.32 155.78 −19 −19.79%

Sum 1960 245 833.19 2491.47 1503 323 214.36 4206.31 3238.78 −457
Percent +31.48% +29.99% −23.32%

Maximum runtime per instance maxTime: 300 min
Runs per instance: 10
Due to the similar behavior of the algorithm in the two groups
f instances, we chose to execute it only in the instances of Group I.
e run the algorithm with the same parameter configuration already

stablished and with 30 executions per instance. We performed the
ests on the CEFET-MG cluster, which contains AMD Opteron 6376
rocessors, 2.30 GHz, and Linux operating system 64 bits, Single Thread

Rating equal to 1165 and correction factor 𝜓2 = 1165∕1426 = 0.82 when
compared to the reference machine used to calculate 𝜓1.

5.4.1. Influence of the operators with less contribution in the local search
In this subsection, we investigate the influence of the operators

that have a contribution of less than 5% in Group I results, that is,
Swap(2,2), Eliminates Smaller Route, and Shift(1,0) local search opera-
tors. For this, we run the proposed algorithm eliminating the two and
three neighborhood operators that contributed least to the algorithm
results. As we are only analyzing the influence of local search operators,
we kept the same three shake operators, that is, Shift(1,0)-InterDepot,
Swap(1,1)-InterDepot and Eliminates Smaller Route.

Therefore, in addition to the original set with the eleven local search
operators described in Section 4.5, named 11, we also analyzed
the performance of the proposed algorithm using two other sets of
neighborhood operators, 9 and 8, as local search procedures.
The 9 and 8 sets have the nine and eight most influential
local search operators in the proposed algorithm results, respectively.
Table 13 presents the neighborhoods that are part of each set.

In Table 13, 𝐼𝑅 represents the set formed by all intra-route opera-
tors 1 to 5 described in Section 4.5, that is, 𝐼𝑅 = {Swap, Reinsertion,
Or-opt2, 2-Opt, 3-Opt}. In turn, 11 is the set of all neighborhood
operators described in Section 4.5.  is the set of local search
14

9

operators resulting from the elimination of Shift(1,0)-InterDepot and
Swap(2,2)-InterDepot operators from the 11 set. Finally, the 8
set excludes the Eliminates Smaller Route operator from 9.

In the 8 set, 6.50% of the solutions were infeasible. Thus, we
discard the algorithm results in this set. Table 14 reports the results
of the proposed algorithm using the 9 and 11 sets of local
search operators in Group I instances. In this table, we maintain the
same nomenclature defined in Table 8.

Fig. 6 illustrates the boxplots of the SGVNSALS algorithm results in
Group I instances using the 9 and 11 local search operators. In
Figs. 6(a) and 6(b), the ordinate axes represent the gaps of the average
solution value concerning vehicles and the runtime in 30 executions of
the proposed algorithm in the instances of Group I, respectively.

To verify whether there is a statistical difference of the proposed
algorithm in these two sets of local search operators at the significance
level of 5%, we consider as a null hypothesis (𝐻0) the absence of sta-
tistical difference between the results and as an alternative hypothesis
(𝐻1) the existence of difference in the results.

As the normality of the samples was not guaranteed, we applied the
Kruskal–Wallis test. Table 15 reports the 𝑝-values of the tests on the two
performance measures analyzed.

Based on the Kruskal–Wallis test, with 95% confidence, there is no
statistical evidence to refute the null hypothesis 𝐻0 for the runtime gap
as a performance measure. Thus, there is no significant difference in
runtime when using the 9 and 11 operator sets. On the other
hand, regarding the gap in the number of vehicles, the 𝑝-value found
was equal to 6.43 𝑒−07. So, with 95% of confidence, there is a statistical
difference in the SGVNSALS algorithm results when considering the
9 and 11 operator sets. Thus, as the SGVNSALS algorithm
with 11 operators presents a smaller gap concerning the number

of vehicles, it outperforms the version that uses 9 operators.
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Fig. 6. Boxplots of the SGVNSALS algorithm results in Group I instances using 9 and 11 local search operators.
Table 13
Subsets of operators used to analyze the influence of the local search operators.

Inter-Depot

Set IR Shift(1, 0) Swap(1,1) Shift(1, 0) Swap(1,1) Swap(2,2) Eliminates Smaller Route
1 −5 6 7 8 9 10 11

11 � � � � � � �
9 � � � � � – –
8 � � � – � – –
Table 14
Results of the proposed algorithm using 9 and 11 sets of local search operators in Group I instances.

Algorithm HGSADC SGVNSALS

Set of local search operators – 9 11

Instance || || |𝑑 | || Distance Time | | Distance Time Adjusted
time

| | Distance Time

pr01 48 4 2 8 1 074.12 0.31 5 1 221.36 0.30 0.24 5 1 190.00 0.20
pr02 96 4 3 12 1 762.21 1.15 9 1 967.90 1.64 1.34 9 2 082.10 1.14
pr03 144 4 4 16 2 373.65 1.75 12 2 631.95 3.72 3.04 12 2 725.56 2.92
pr04 192 4 5 20 2 815.48 5.89 17 3 527.35 6.81 5.56 17 3 558.48 6.31
pr05 240 4 6 24 2 964.65 8.68 21 3 757.40 14.16 11.57 21 3 789.84 13.53
pr06 288 4 7 28 3 588.78 13.43 26 4 619.54 25.33 20.69 26 4 651.68 22.27
pr07 72 6 2 12 1 418.22 0.51 7 1 554.67 0.68 0.55 7 1 527.00 0.52
pr08 144 6 3 18 2 096.73 2.39 12 2 584.57 4.03 3.29 12 2 511.62 3.39
pr09 216 6 4 24 2 712.56 5.20 17 3 637.90 10.50 8.58 17 3 431.24 8.50
pr10 288 6 5 30 3 465.92 15.22 26 4 478.62 17.60 14.38 25 4 671.04 17.44
pr11 48 4 1 4 1 005.73 0.51 4 1 005.73 0.25 0.20 4 1 032.98 0.15
pr12 96 4 2 8 1 464.50 1.68 8 1 631.58 2.14 1.75 8 1 602.65 1.57
pr13 144 4 3 12 2 001.83 2.94 11 2 229.73 3.88 3.17 11 2 274.40 4.01
pr14 192 4 4 16 2 195.33 6.55 15 2 709.21 9.80 8.01 15 2 721.26 7.90
pr15 240 4 5 20 2 433.15 12.56 19 3 293.20 15.42 12.59 20 3 171.43 14.81
pr16 288 4 6 24 2 836.67 15.97 23 3 684.07 21.84 17.84 22 3 808.61 23.17
pr17 72 6 1 6 1 236.24 1.05 6 1 250.64 0.69 0.57 6 1 253.21 0.45
pr18 144 6 2 12 1 788.18 3.30 12 1 942.50 4.42 3.61 12 2 040.39 3.46
pr19 216 6 3 18 2 261.08 8.59 16 2 591.18 12.11 9.90 16 2 681.81 10.56
pr20 288 6 4 24 2 993.31 22.18 24 3 785.40 24.26 19.82 24 3 864.18 22.99

Sum 336 44 488.34 129.86 290 54 104.50 140.70 289 54 589.48 165.30
Percent −13.69% 21.62% 12.97% −13.99% 22.71% 27.29%

Maximum runtime per instance (maxTime): 60 min
Executions per instance: 30
Table 15
𝑝-values for randomness, normality and homoscedasticity tests.

Performance measure Test

Durbin–Watson Shapiro–Wilk Fligner-Killeen Kruskal–Wallis

𝐺𝑎𝑝𝑣𝑒ℎ𝑖𝑐𝑙𝑒 1.90 7.06 e−36 0.85 6.43 e−07
𝐺𝑎𝑝𝑟𝑢𝑛𝑡𝑖𝑚𝑒 2.03 4.48 e−26 0.99 0.48
5.4.2. Influence of the shake operators
In this subsection, we analyze the influence of the shake operators,

keeping all eleven local search operators used by SGVNSALS. Table 16
lists the subsets formed by all possible combinations of these shake
15

operators. The 3 set is listed only to inform the original shake
operators used by SGVNSALS. In each subset, we eliminate one or two
operators from the 3 set.

Fig. 7(a) shows the percentage of infeasible solutions when the
SGVNSALS algorithm uses the 1𝑎, 1𝑏, 1𝑐 , 2𝑏, and 2𝑐

subsets as shake operators. In turn, Fig. 7 illustrates, as a bubble
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Table 16
Subsets of operators used to analyze the influence of the shake operators.

Subsets Local search operators Shake operators

1 −11 8: Shift(1, 0)-InterDepot 9: Swap(1,1)-InterDepot 11: Eliminates Smaller Route

3 � � � �
1𝑎 � � – –
1𝑏 � – � –
1𝑐 � – – �
2𝑎 � � � –
2𝑏 � � – �
2𝑐 � – � �
Fig. 7. Graphs computing the number of infeasibilities found in 𝑎 − 2𝑐 subsets.
chart, the number of infeasible and feasible solutions generated in 30
executions of the proposed algorithm in the 20 instances with these
subsets of shake operators.

Fig. 7(a) shows that the proposed algorithm has the worst perfor-
mance in the 1𝑐 subset, with more than 30% of infeasible solutions
generated in the tests performed. These results show that the com-
bination of the Shift(1, 0)-InterDepot and Swap(1,1)-InterDepot shake
operators provide the necessary diversity for the SGVNSALS algorithm
in the search for feasible solutions for the MDVRPTW*. Using the shake
operators described in the 2𝑎 subset, all solutions generated by the
SGVNSALS algorithm were feasible. Therefore, we report in Table 17
only the results generated by the proposed algorithm with this subset
of shake operators. The nomenclature is the same as used previously.

5.4.3. Influence of simultaneous elimination of low-contribution operators
In this subsection, we analyze the influence of eliminating the local

search and shake operators with a low contribution in the results.
Table 18 presents the configurations of the local search and shake

operators, eliminating the operators Shift(1,0)-InterDepot and Eliminates
Smaller Route, which had a contribution smaller than 5% according to
Fig. 5(a).

Fig. 8 shows the bubble chart relative to the number of feasible and
infeasible solutions generated by the proposed algorithm using the local
search and shake operators marked in Table 18.

As we can see in Fig. 8, the proposed algorithm with these local
search and shake generates infeasible solutions in all cases. This result
shows that these operators are also essential for the search process of
the proposed algorithm.

5.5. Influence of the 𝛼 and 𝛽 parameters of the evaluation function (12)

This section evaluates the influence of parameters 𝛼, which weights
the total number of used vehicles, and 𝛽, which weights the total trav-
eled distance, of the evaluation function (12), on the results found by
16
Fig. 8. Bubble chart concerning the number of feasible and infeasible solutions found
by the proposed algorithm using the operators defined by the 10𝑎 − 10𝑏
subsets.

the SGVNSALS algorithm in the solution of the proposed MDVRPTW*.
As stated in Section 4.4, the defined values for these parameters for
the results shown in Tables 5–17 imply minimizing the total number of
used vehicles in the solution. Thus, the value of parameter 𝛼 is defined
by Expression (12), and parameter 𝛽 is set to 𝛽 = 0.001.

Tables 19 and 20 show the results obtained when setting 𝛼 = 0
and 𝛽 = 1. For these values, the minimization of the total number of
used vehicles is disregarded, and the evaluation function leads only
to the minimization of the total traveled distance. In this sense, the
MDVRPTW* problem is no longer addressed, and the shown solutions,
therefore, refer to the classical MDVRPTW. In these tables, columns 1–5
define the addressed instance data. Columns 6–7 reproduce the solu-
tions found by the HGSADC algorithm, placed in Vidal et al. (2013b),
for Groups I and II of instances. The remaining (columns 8–11) present
the found results from the performed computational experiments for
𝛼 = 0 and 𝛽 = 1 regarding the SGNVSALS algorithm.
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Table 17
SGVNSALS results with the 2𝑎 subset.

Instance HGSADC 2𝑎

|| Distance Time | | Distance Time Adjusted
time

pr01 8 1 074.12 0.31 5 1 223.19 0.39 0.32
pr02 12 1 762.21 1.15 9 2 053.28 2.52 2.06
pr03 16 2 373.65 1.75 12 2 733.25 5.63 4.60
pr04 20 2 815.48 5.89 17 3 515.26 14.82 12.11
pr05 24 2 964.65 8.68 21 3 722.81 23.86 19.49
pr06 28 3 588.78 13.43 26 4 764.20 39.41 32.20
pr07 12 1 418.22 0.51 7 1 605.97 1.12 0.92
pr08 18 2 096.73 2.39 12 2 443.41 6.92 5.66
pr09 24 2 712.56 5.20 17 3 310.29 16.58 13.54
pr10 30 3 465.92 15.22 25 4 661.87 34.75 28.39
pr11 4 1 005.73 0.51 4 1 005.73 0.43 0.35
pr12 8 1 464.50 1.68 8 1 618.91 3.01 2.46
pr13 12 2 001.83 2.94 11 2 432.16 6.10 4.98
pr14 16 2 195.33 6.55 14 2 736.13 14.14 11.55
pr15 20 2 433.15 12.56 20 3 168.53 24.51 20.02
pr16 24 2 836.67 15.97 23 3 631.15 37.99 31.04
pr17 6 1 236.24 1.05 6 1 262.39 1.10 0.90
pr18 12 1 788.18 3.30 12 2 063.66 7.75 6.33
pr19 18 2 261.08 8.59 16 2 760.53 20.05 16.38
pr20 24 2 993.31 22.18 24 3 801.72 35.80 29.24

Sum 336 44 488.34 129.86 289 54 514.44 296.88 242.54
Percentage −13.99% 22.54% 128.61% 86.77%
V

Table 18
Subsets of operators used to analyze the influence of the Local search and Shake
operators.

Subset Local search operators Shake operators

1 −5 6 7 8 9 10 11 8 9 11

10𝑎 � � � � � � – � � –
10𝑏 � � � – � � � – � �

From these tables, we conclude that the SGVNSALS algorithm, as a
etaheuristic procedure, is tightly coupled to the MDVRPTW* solution

nd, therefore, does not behave as a procedure aimed at determining
uality solutions for the classical MDVRPTW. Only in the pr11 instance
f Group I did the SGVNSALS algorithm obtain a total distance traveled
qual to that found by the HGSADC algorithm, using the total number
f vehicles in the fleet, however with a higher computational time, after
he adjustment caused by the difference between the processors.

Another feature of the solution found by SGVNSALS is, despite the
alues of 𝛼 and 𝛽, the savings in the number of vehicles used concerning
he available fleet in 9 of the 20 instances for Group I and in all of
roup II. Once again, it shows the strict adherence of the procedure to

he MDVRPTW* solution because, even with the unfavorable weighting
n the evaluation function, it still determines results closer to the
DVRPTW* than to the classic MDVRPTW. Except for instance pr11

lready mentioned, in all other instances of Groups I and II, the total
istance covered is higher than the values determined by the HGSADC
lgorithm.

Another interesting comparison is between the values shown in
ables 8 and 9 (𝛼 = 0 and 𝛽) and those found in Tables 19 and 20
𝛼 = 0 and 𝛽 = 1). For Group I (Tables 8 and 19), in 5 of the 20

instances, there is a tie in the total number of used vehicles; in the
others, the number of used vehicles shown in Table 19 is higher than
that shown in Table 8. In four of these five instances, the values of total
traveled distance in Table 19 are lower than those shown in Table 8,
i.e., in terms of the MDVRPTW*, these solutions have better quality
than those shown in Table 8. Once again, this fact proves the strict
adherence of the SGVNSALS algorithm to the MDVRPTW* solution. For
Group II (Tables 9 and 20), in five of the 28 instances, there is a tie in
the total number of used vehicles; among these five, in two of these, the
17

total distance covered in Table 20 is lower than that shown in Table 9.
Again, these two solutions have better quality than the associated ones
in Table 9.

6. General discussions and conclusions

This article addressed the Multi-Depot Vehicle Routing Problem
with Time Windows and the minimization of the number of used
vehicles. We called this problem as MDVRPTW* once this is a variation
of the classical MDVRPTW, which addresses only the minimization
of the total distance traveled. As this problem is NP-hard, we de-
veloped an algorithm named Smart General Variable Neighborhood
Search with Adaptive Local Search (SGVNSALS) for solving it. The
proposed algorithm used two different local search strategies, which
were applied alternately. The local search was performed with the
Randomized Variable Neighborhood Descent (RVND) method in the
first strategy, using 11 classic moves from the literature. When applying
this strategy, most successful neighborhoods received a higher score.
The second strategy refined a solution in a single neighborhood, chosen
by a roulette method. In this way, neighborhoods with the highest score
were more likely to be selected. Thus, the first local search strategy
served as a learning method for the second strategy. In the SGVNSALS
algorithm, the shake level was increased only after a maximum number
of iterations without improving the current solution. Consequently, the
algorithm more adequately explored the region of the solution space in
which the current solution was located.

To test the algorithm, we used 48 benchmark instances of MD-
RPTW involving up to 960 customers, 12 depots, and 120 vehicles.

We compared SGVNSALS with the classic variant GVNS, in which the
Variable Neighborhood Descent (VND) algorithm is applied as the local
search, and with the SGVNS algorithm. When comparing the results
found by these three methods concerning the number of used vehicles,
there was a tie in 54.17% of the instances, and SGVNSALS had a
superior performance in 33.33% of the evaluated cases. According to
the definition of MDVRPTW*, the second criteria to define the solution
quality is the covered distance. Regarding the instances with the tie
in the number of used vehicles, SGVNSALS obtained better results
in 53.85% of the instances. Therefore, this evaluation allowed us to
conclude that the SGVNSALS algorithm had better behavior than the
SGVNS and the GVNS algorithms for solving the benchmark instances.
The main reason for this superiority is the nonpremature convergence
provided by the use of the adaptive and the ‘‘smart ’’ procedures. The
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Table 19
Results from the SGVNSALS algorithm for 𝛼 = 0 and 𝛽 = 1, for Group I instances, compared with the results from the HGSADC algorithm.

Instances data HGSADC SGVNSALS

Name || || |𝑑 | || Distance Time | | Distance Time Adjusted
time

pr01 48 4 2 8 1 074.12 0.31 7 1 149.41 0.43 0.33
pr02 96 4 3 12 1 762.21 1.15 11 1 945.82 2.15 1.65
pr03 144 4 4 16 2 373.65 1.75 13 2 748.80 4.39 3.38
pr04 192 4 5 20 2 815.48 5.89 18 3 554.20 9.56 7.36
pr05 240 4 6 24 2 964.65 8.68 23 3 842.26 18.59 14.32
pr06 288 4 7 28 3 588.78 13.43 28 4 750.90 29.47 22.69
pr07 72 6 2 12 1 418.22 0.51 9 1 511.92 1.08 0.83
pr08 144 6 3 18 2 096.73 2.39 15 2 468.18 5.63 4.34
pr09 216 6 4 24 2 712.56 5.20 20 3 381.65 13.44 10.35
pr10 288 6 5 30 3 465.92 15.22 29 4 757.72 24.58 18.93
pr11 48 4 1 4 1 005.73 0.51 4 1 005.73 3.56 2.74
pr12 96 4 2 8 1 464.50 1.68 8 1 575.79 9.17 7.06
pr13 144 4 3 12 2 001.83 2.94 12 2 175.18 13.61 10.48
pr14 192 4 4 16 2 195.33 6.55 16 2 703.54 16.55 12.75
pr15 240 4 5 20 2 433.15 12.56 20 3 122.11 17.23 13.27
pr16 288 4 6 24 2 836.67 15.97 24 3 776.93 31.94 24.60
pr17 72 6 1 6 1 236.24 1.05 6 1 250.56 4.67 3.59
pr18 144 6 2 12 1 788.18 3.30 12 1 954.29 11.70 9.01
pr19 216 6 3 18 2 261.08 8.59 18 2 645.77 17.30 13.32
pr20 288 6 4 24 2 993.31 22.18 24 3 900.87 23.97 18.46

Sum 336 44 488.34 129.86 317 54 221.63 259.02 199.44

Maximum runtime for each instance 𝑚𝑎𝑥𝑇 𝑖𝑚𝑒 = 60 min.
Runs per instance: 30.
Table 20
Results from the SGVNSALS algorithm for 𝛼 = 0 and 𝛽 = 1, for Group II instances, compared with the results from the HGSADC algorithm.

Instances data HGSADC SGVNSALS

Name || || |𝑑 | || Distance Time | | Distance Time Adjusted
time

pr11a 360 4 10 40 6 720.71 16.81 35 8 666.96 41.48 31.94
pr12a 480 4 13 52 8 179.80 30.00 44 10 657.16 80.71 62.15
pr13a 600 4 16 64 9 667.20 54.85 57 12 806.52 224.13 172.58
pr14a 720 4 19 76 11 124.01 65.65 69 15 148.58 248.01 190.97
pr15a 840 4 22 88 13 013.97 132.44 81 17 786.38 260.32 200.45
pr16a 960 4 26 104 14 299.87 133.63 93 19 905.54 298.69 229.99
pr17a 360 6 7 42 6 304.30 17.23 36 8 303.79 37.02 28.51
pr18a 520 6 10 60 8 308.32 44.25 47 11 133.98 123.72 95.27
pr19a 700 6 13 78 10 677.61 74.42 67 15 050.56 226.66 174.53
pr20a 880 6 16 96 11 963.91 107.37 79 16 751.01 261.67 201.49
pr21a 420 12 4 48 6 260.53 28.00 36 8 198.88 75.07 57.80
pr22a 600 12 6 72 7 985.37 76.05 50 11 367.75 104.05 80.12
pr23a 780 12 8 96 9 937.43 137.72 68 14 047.48 228.94 176.28
pr24a 960 12 10 120 11 923.72 197.17 86 16 938.92 273.98 210.96
pr11b 360 4 8 32 4 839.44 18.04 28 6 111.42 53.12 40.90
pr12b 480 4 11 44 6 063.26 29.09 36 8 000.16 102.69 79.07
pr13b 600 4 14 56 7 254.17 70.99 44 9 483.42 187.45 144.34
pr14b 720 4 17 68 8 732.29 98.92 55 11 658.84 248.26 191.16
pr15b 840 4 20 80 10 439.72 129.48 69 14 005.21 233.27 179.62
pr16b 960 4 23 92 11 483.22 170.31 77 15 589.62 293.73 226.17
pr17b 360 6 6 36 4 806.01 15.78 28 6 211.66 29.04 22.36
pr18b 520 6 9 54 6 526.72 39.45 40 8 201.48 133.66 102.92
pr19b 700 6 12 72 8 227.25 80.55 54 10 958.81 177.08 136.35
pr20b 880 6 15 90 10 325.80 150.74 70 13 948.10 282.31 217.38
pr21b 420 12 4 48 4 866.57 36.75 31 6 242.38 58.22 44.83
pr22b 600 12 6 72 6 488.50 73.28 43 8 323.41 140.75 108.38
pr23b 780 12 7 84 8 523.41 163.99 60 11 148.14 207.45 159.73
pr24b 960 12 8 96 10 890.08 298.51 79 14 300.39 256.69 197.65

Sum 1960 245 833.19 2491.47 1562 330 946.55 4888.17 3763.89

Maximum runtime per instance maxTime: 300 min
Runs per instance: 10
results for the larger instances confirmed this statement, once GVNS has
a lower runtime than the other algorithms in 26 of the 28 instances,
providing, however, a result of lower quality both in the number of
used vehicles and in the covered distance. For SGVNS, on the other
hand, in 22 of the 28 instances in this group, the runtime is shorter
18

than that of SGVNSALS but generating lower quality solutions.
As there are no algorithms in the literature dealing with MD-
VRPTW*, we compared the results provided by the proposed algorithm
with those of the best-known solutions for two groups of benchmark
instances of MDVRPTW, where the objective is only to minimize the
covered distance. The results showed that the proposed algorithm

reduced the number of used vehicles by 87.50% of the evaluated
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instances. In the first group of instances, there was an average reduction
of 13.99% in the number of used vehicles and an average increase of
22.71% in the total covered distance. All instances where the number of
used vehicles generated by SGVNSALS is equal to the number of avail-
able vehicles in the fleet had a wide time window. This fact indicates
that these instances have a fair dimensioning. In the second group of
instances, there was an average reduction of 23.32% in the fleet size
and an average increase of 31.48% in the total distance traveled. It
is important to highlight that SGVNSALS obtained a reduction in fleet
size in all instances of this group. Additionally, the shown results in
Tables 19 and 20 led to conclude that the SGVNSALS procedure was
strongly coupled to the search for the best solution to the proposed
MDVRPTW* and was weakly suited for solving the classic MDVRPTW.
The search for competitive results for the classic MDVRPTW problem
would require a complete reformulation of the SGVNSALS procedure,
which is far beyond the scope of this article.

Finally, we also evaluate the contribution of neighborhoods to the
algorithm’s local search and shake operations. This study enabled the
identification of the neighborhoods that further contribute to a better
exploration of the problem’s solution space and the necessary moves to
generate search diversification. This analysis allowed us to understand
more clearly the characteristics of the solution to this problem and
its solution space. The methodology applied for this analysis can be
extended to other classes of optimization problems.
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