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A B S T R A C T

This study addresses a hub network design problem to maximize net profit. This problem considers an
incomplete hub network with multiple allocation that does not impose capacity constraints, does not allow
direct connections between non-hub nodes, and accepts the demand to be partially met, being satisfied only
when profitable. To tackle this problem, which is NP-hard, we propose two heuristic algorithms based on the
Iterated Local Search (ILS) metaheuristic, a standard ILS algorithm, and an Enhanced ILS algorithm, which
increases the perturbation level only after a few unsuccessful attempts at improvement. Both algorithms use
Random Variable Neighborhood Descent in the local search. Computational experiments were performed using
benchmark instances for hub location problems, and statistical analyzes of the algorithms were presented.
Numerical results confirm that both algorithms yield good-quality solutions with an acceptable runtime. In
particular, the proposed algorithms obtain the optimal solution for most instances with up to 150 nodes,
which have known optimal solutions. Furthermore, the proposed algorithms were able to handle instances
with up to 500 nodes.
1. Introduction

Hub networks are often used in passenger and freight transporta-
tion systems and telecommunications networks. In such networks, the
demand between origin and destination pairs is routed through inter-
mediate facilities, known as hubs. Hubs are responsible for receiving,
aggregating, transferring, and distributing the demand flow in the net-
work. In this way, origin and destination nodes can be connected using
fewer connections, which reduces the cost of establishing the network.
In addition, consolidating demand flow at hubs can allow economies
of scale to be applied when routing flows through hub arcs, i.e., arcs
connecting a pair of hubs, providing a reduction in transportation costs.

Hub location problems (HLPs) focus on locating the hubs, allocating
nodes to these hubs, and routing the demand flows in the network
while optimizing a given objective. For HLP, the hub network design is
determined by the nodes selected to be hubs and how demand nodes
are allocated to them, assuming that hubs are fully interconnected. In
general, HLPs assume that demands are routed only through trivial
routes, i.e., routes having up to two hub nodes connecting each origin
and destination pair of nodes. On the other hand, there is a more
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complex class of problems in hub literature, known as hub network
design problems (HNDPs), which explicitly consider network design
decisions, such as determining which hub arc will be installed as well
as nontrivial routing decisions. The current study addresses a HNDP.

A hub network is composed of two types of nodes (hub nodes and
non-hub nodes) and also the arcs connecting these nodes. This network
is composed of two kinds of networks: (i) access or distribution net-
works, which connects non-hub nodes to hubs, and (ii) the network at
the hub level (inter-hub network), which interconnects the hubs. Fig. 1
illustrates a hub network, where circles represent non-hub nodes and
triangles indicate hubs. In this figure, simple segments, called allocation
arcs, represent the allocation of non-hub nodes to hubs. In turn, the
segments in red, called hub arcs, represent connections between the
hubs. Note that, in this network, there are demand nodes allocated to
more than one hub and that the hubs are not fully interconnected,
characterizing an HLP with multiple allocation and an incomplete
network, which is addressed in HNDPs.

In the literature, there is a wide range of HLPs and HNDPs, as well
as different mathematical models to describe these problems. Their
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Fig. 1. Incomplete hub network with multiple allocation.

haracterization and classification are related to several factors, such as
he definition of the problem, the nature of the demand, the objectives
o be optimized, and the types of restrictions imposed. In general, such
actors are related to the application area. A review of the various
ypes of problems, models, and taxonomy employed in the area of
ub location can be found in Alumur and Kara (2008), Campbell and
’Kelly (2012), Contreras (2015) and Alumur et al. (2021).

Most hub location problems aim to minimize the total cost of the
etwork, assuming that all origin and destination pairs have their
emand satisfied. However, from the point of view of profit, it may not
e advantageous to meet all the demand, but rather to satisfy only the
emand whose revenue is greater than the costs involved, i.e., when
t is profitable. Furthermore, most of the studies addressing profit
aximization consider that all hubs in the network are interconnected,

hat is, that the inter-hub network is complete.
This study addresses the profit maximizing uncapacitated hub net-

ork design problem with multiple allocation (PMHNDP). This prob-
em aims to determine the quantity and location of hubs, select the
rigin and destination pairs that will be served, establish the arcs that
ill be installed, and determine the optimal routing for each served
emand flow, allowing non-hub nodes to be allocated to more than one
ub, to maximize the total profit given by the difference between the
otal revenue and the total costs of the network design and operation.
hus, this problem does not impose that the demand of the network

s completely satisfied and does not impose any conditions on the
opology of the hub network, so the hub nodes can be partially inter-
onnected. This study also considers that the problem is uncapacitated,
.e., it is assumed that the hubs and the hub arcs have sufficient capacity
o handle the demand flow as necessary.

Potential applications of the PMHNDP arise, for example, in the
esign of air transportation networks since profit is a decisive impact
actor in the consolidation and maintenance of these networks. The
bjective, in this case, is to find an ideal hub network structure to
aximize the total net profit to provide air travel services to a set of

lights, taking into account the total cost of the network (Alibeyg et al.,
016). The PMHNDP can also be used in any other areas where profit
s an essential factor in the design of the hub network.

Many procedures have been proposed to solve HLPs and HNDPs.
e can highlight exact algorithms based on the Benders decomposition
ethod (Camargo and Miranda, 2012; Camargo et al., 2017; Martins
e Sá et al., 2018a; Taherkhani et al., 2020) and methods that employ
he branch-and-bound structure together with other techniques such as
utting planes, partial enumeration, and tests to reduce the problem di-
ension (Contreras et al., 2011b; Rodríguez-Martí et al., 2014; Alibeyg

t al., 2017). Due to the complexity of these problems, several types of
euristic approaches have also been used to solve them, including local
earch methods (Rodríguez-Martín and Salazar-González, 2006; Fazel
arandi et al., 2015), tabu search (Calık et al., 2009; Ghaffarinasab,
020), evolutionary and genetic algorithms (Kratica et al., 2011; Shang
t al., 2021), variable neighborhood search (Davari et al., 2013; Todosi-
ević et al., 2017), Lagrangian relaxation (Contreras et al., 2009), and
ther heuristics (Hoff et al., 2017; Dai et al., 2019).

Since HDNPs are NP-hard problems (Alumur and Kara, 2008; Camp-
2

ell and O’Kelly, 2012), the resolution of large instances of these
problems often requires the use of heuristic methods. In this study,
we propose two heuristic algorithms based on local search methods,
that is, methods that consist in exploring the solution space through
perturbations in locally optimal solutions. More specifically, the first
algorithm uses the Iterated Local Search (ILS) (Lourenço et al., 2003)
metaheuristic framework in its standard version. The second algorithm,
called Enhanced Iterated Local Search (E-ILS), is an adaptation of the
ILS method that employs more intensification in the search. This adap-
tation was initially used by Reinsma et al. (2018). The two algorithms
use as a local search procedure the Random Variable Neighborhood
Descent (RVND) method, proposed by Souza et al. (2010) and Subrama-
nian et al. (2010). These algorithms were proposed due to the successful
application of local search methods in other types of HNDPs, such as
the ILS-VND method employed by Martins de Sá et al. (2018a).

Extensive computational experiments were performed using the
benchmark instances from the Australian Post (AP) data set, introduced
by Ernst and Krishnamoorthy (1996), with up to 200 nodes and from
the data set proposed by Contreras et al. (2011a) with up to 500 nodes.
Furthermore, the result of the statistical tests used to compare the two
developed algorithms is presented.

The main contribution of the current article is to present two
efficient heuristic algorithms able to handle large instances of the
PMHNDP. This problem was initially proposed by Taherkhani and
Alumur (2018), which solved only the AP instances with 40 nodes. This
problem was also addressed by Oliveira et al. (2022), which proposed
an exact algorithm, based on the Benders decomposition method, able
to solve the AP instances with up to 150 nodes. However, the proposed
Benders decomposition algorithm was not able to solve all instances
with 125 and 150 nodes, nor was able to solve any AP instance with 200
nodes, which refers to a real application of the Australian post services,
due to exceeding the memory limits. Zhang et al. (2023) proposed
an algorithm based on Variable Neighborhood Search to handle the
PMHNDP, which only solved instances with up to 60 nodes. Hence,
according to our knowledge, this study is the only one that tackles
the AP instances with 200 nodes. Furthermore, the proposed procedure
solves instances with up to 500 nodes to attest to its scalability.

The remainder of this article is structured as follows. Section 2
briefly reviews the literature on related works. Section 3 describes
the characteristics of the PMHNDP and presents a MIP formulation.
Section 4 details the proposed algorithms. Section 5 shows the compu-
tational experiments and statistical analysis of the heuristic algorithms.
Finally, Section 6 presents the final remarks and future work.

2. Literature review

In this section, we review the literature related to our work. Ini-
tially, studies involving HNDPs with an incomplete inter-hub network
are addressed. Then, works focusing on profit maximization and studies
with similar objectives are highlighted.

In general, HLPs assume that the hub network is fully connected,
meaning that all hubs are interconnected. Although this assumption
makes the models simpler, many real-world applications may not be
satisfactorily described by such models. Furthermore, there are situ-
ations in which the installation of many arcs between hubs is not
feasible, for example, when high installation costs are incurred in these
connections. Thus, many researchers have turned their attention to
HNDPs with incomplete networks in recent years.

Nickel et al. (2001) presented two formulations for a HNDP applied
to urban public transportation networks to minimize transportation
costs and the fixed costs of installing hubs and hub arcs. These for-
mulations allow direct connections between non-hub nodes and use
the multiple allocation strategy. Campbell et al. (2005a) introduced
the hub arc location problems, which aim to locate a fixed number of
hub arcs, minimizing total transportation costs. Campbell et al. (2005b)
proposed enumeration-based solution methods for this type of problem
and solved instances with up to 25 nodes. Yoon and Current (2008)
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addressed a HNDP associating fixed and variable costs to the hub
arcs. They developed dual-based heuristics and solved instances with
up to 25 nodes, varying the cost structures. Alumur and Kara (2009)
proposed a formulation for the hub coverage problem to minimize the
hubs and hub arcs installation costs while designing a network that
serves each origin and destination pair within a time limit, considering
single allocation and routes with a maximum of three hubs. The authors
used the CPLEX solver to solve instances with 81 nodes. This type of
problem was also addressed by Calık et al. (2009), who developed a
heuristic based on tabu search, used to solve instances with up to 81
odes. Alumur et al. (2009) proposed mathematical models for different
ersions of HNDPs, considering incomplete inter-hub networks and
ingle allocation, and they used the CPLEX solver to solve the proposed
ormulations.

Gelareh and Nickel (2011) addressed an uncapacitated HNDP with
ultiple allocation applied to urban and maritime transportation net-
ork design. They propose an accelerated Benders decomposition
ethod and a greedy heuristic algorithm, being able to solve instances
ith up to 50 nodes. Davari et al. (2013) addressed a hub coverage
roblem, in which the demands are unknown and estimated with
uzzy variables. This work considered the objective of maximizing the
remise that each flow in the network can be satisfied in a deter-
ined fixed time. An algorithm based on the Variable Neighborhood

earch (VNS) was developed and instances with up to 25 nodes were
olved. Camargo et al. (2017) proposed formulations and developed
pecialized algorithms based on Benders decomposition to solve HNDPs
ith incomplete networks with and without hop-constraints. Benders
ecomposition was also applied to solve HNDPs with capacity con-
traints by Xu et al. (2017). Martins de Sá et al. (2018a) addressed

robust HNDP assuming uncertainties in demand flows and fixed
osts of installation of the hubs. The authors developed methods based
n Benders decomposition and also presented an ILS-VND heuristic,
olving instances with up to 100 nodes. Dai et al. (2019) implemented a
euristic algorithm, named HUBBI, to handle a p-hub location problem
ith incomplete network, which focuses on minimizing the transporta-

ion and configuration costs. Öztürk et al. (2021) also dealt with HNDPs
here the number of hubs is determined beforehand. They considered

he single allocation strategy and presented heuristic methods that use
easures of centrality. In both works, they performed computational

xperiments using benchmark instances with up to 200 nodes. Wandelt
t al. (2022) studies 12 versions of hub location problems that include
our variants of HNDPs, presenting an experimental benchmark for hub
ocation problems.

Table 1 summarizes these studies, presenting the method used to
olve the problems and the largest instance solved in each study, where
he instance size is given by the number of nodes in the network. Note
hat the largest instance solved has 200 nodes. It is worth pointing
ut here that, although the studies addressing HNDPs solved instances
ith up to 200 nodes, there are studies in the literature that solved
LPs instances with 500 nodes (Contreras et al., 2011a,b; Taherkhani
t al., 2020). Indeed, it is well known in the hub location area that
NDPs are more difficult to solve than HLPs since they also include
omplex network designing decisions and have to handle non-trivial
outes (O’Kelly and Miller, 1994; Alumur et al., 2021).

Classical HLPs and HNDPs aim to minimize the total cost of the hub
etwork under the premise of serving the entire demand. However,
his hypothesis may not always be the most adequate when dealing
ith profit maximization. In this case, it may be more advantageous to

erve only a portion of the origin and destination pairs corresponding to
hose whose service revenue is greater than the incident costs. Thus, as
relatively new approach, some studies in the literature have discussed

he trade-off between revenue and total costs in the design of hub
etworks.

Alibeyg et al. (2016) introduced the first study considering profit
aximization, which proposed several versions of the multiple alloca-
3

ion problem. Additional constraints and/or decisions were considered, (
uch as the imposition of fully meeting the demand in the network, and,
lthough an HNDP was addressed, they also assumed that the route
etween the origin and destination pairs should contain at least one
nd at most two hubs. The proposed formulations were evaluated using
nstances with up to 70 nodes using the CPLEX solver. Alibeyg et al.

(2017) presented an exact algorithm, based on branch-and-bound and
Lagrangian relaxation, to solve the models proposed by Alibeyg et al.
(2016). The proposed algorithm was able to solve instances with up to
100 nodes.

Taherkhani and Alumur (2018) proposed new formulations for
profit-maximizing HNDPs. Models for different versions of the problem
were presented, obtained according to the type of allocation strategy
(single, multiple, or 𝑟-allocation), allowing or not direct connections
between non-hub nodes and assuming that the inter-hub network is
complete or incomplete. The CPLEX solver was used to evaluate the
performance of the proposed formulations with the CAB data set and
AP instances with 40 nodes. Taherkhani et al. (2020) addressed a profit-

aximizing capacitated HLP with multiple classes of demand. They
eveloped two models, a deterministic and a stochastic, considering
ultiple allocation, a complete inter-hub network, and assuming that

here are at most two hubs on the paths connecting the origin and
estination pairs. To solve the proposed models, the authors proposed
lgorithms based on Benders decomposition that use tests to reduce
he problem size and variable pre-fixation. With the deterministic
odel, instances of up to 500 nodes were solved. It is important

o highlight that, although large instances have been solved in this
tudy, complete inter-hub network problems are less challenging than
ncomplete inter-hub network problems, as already mentioned. Oliveira
t al. (2022) addressed an uncapacitated HNDP with an incomplete
etwork, multiple allocation, and focused on profit maximization. The
uthors presented different versions of exact algorithms based on Ben-
ers decomposition that apply Pareto-optimal cuts. The most promising
ethod, which adds Benders cuts into a branch-and-cut structure, was

ble to solve AP instances with up to 150 nodes.
Recently, Zhang et al. (2023) applied a Variable Neighborhood

earch procedure to solve some variants of uncapacitated HNDPs with
rofits and incomplete hub network. They addressed problems with
ingle allocation, multiple allocation, and 𝑟-allocation strategies with
nd without direct connections. The authors presented computational
esults with CAB instances containing up to 60 nodes.

In addition to these studies that addressed the design of hub net-
orks, selecting the origin and destination pairs with profitable de-
and flows, there are also works dealing with maximization objectives

ssociated with the concept of profitability. Lür-Villagra and Marianov
2013) used a genetic algorithm to deal with a HLP incorporating price
ecisions, considering a competitive environment. Lin and Lee (2018)
ddressed a HNDP applied to freight transport, which was solved with
mplicit enumeration, applying a built-in pricing sub-problem. Čvokić
nd Stanimirović (2020) incorporate price decisions in an uncapaci-
ated single-allocation HLP, in which the amount of commodities flows
etween the pairs of nodes has a stochastic nature. A deterministic
nd a robust model were proposed. An equivalent conic-quadratic
ormulation was presented for the deterministic model, while the robust
ersion was solved through a two-phase matheuristic approach.

Other studies, such as Tikani et al. (2018), Huo et al. (2019)
nd Salehi and Tikani (2020) have integrated revenue management
echniques into HLPs and HNDPs. In these studies, genetic algorithms
r hybrid algorithms that apply genetic operators were used to solve
nstances of the proposed problems. Studies related to profit maximiza-
ion also often arise in problems involving a competitive environment.
or example, Neamatian Monemi et al. (2017), Mahmoodjanloo et al.
2020) and Tiwari et al. (2021) deal with the design of hub networks
pplied to transportation systems. A matheuristic approach combined
ith Lagrangian relaxation was employed by Neamatian Monemi et al.
2017). To solve the problem, Mahmoodjanloo et al. (2020) performed
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Table 1
Studies addressing incomplete inter-hub network.

Article Solution Method Instance size

Nickel et al. (2001) Shortest path algorithms 10
Campbell et al. (2005b) Enumeration based algorithms 25
Yoon and Current (2008) Dual-based heuristic algorithms 25
Alumur and Kara (2009) The CPLEX solver 81
Calık et al. (2009) Heuristic algorithms based on tabu search 81
Alumur et al. (2009) The CPLEX solver 81
Gelareh and Nickel (2011) Benders decomposition and greedy algorithms 50
Davari et al. (2013) VNS-based heuristic algorithms 25
Camargo et al. (2017) Benders decomposition 100
Xu et al. (2017) Benders decomposition 25
Martins de Sá et al. (2018a) Benders decomposition and ILS-VND 100
Martins de Sá et al. (2018b) Benders decomposition 50
Dai et al. (2019) VNS-based heuristic algorithms 200
Öztürk et al. (2021) Heuristic algorithms based on centrality measures 200
Table 2
Studies addressing profit maximization HNDPs.

Article Profit
maximization
HNDP

Route
restriction

Solution method Instance size

Alibeyg et al. (2016) UMAI, CapMAI Yes CPLEX 70

Alibeyg et al. (2017) UMAI, CapMAI Yes Branch-and-bound and
Lagrangian relaxation

100

Taherkhani and Alumur
(2018)

UMAI, USAI,
UrAI, UMAIDC,
USAIDC, UrAIDC

No CPLEX 40

Taherkhani et al. (2020) CapMAComp Yes Benders decomposition 500

Oliveira et al. (2022) UMAI No Benders decomposition 150

Zhang et al. (2023) UMAI, USAI,
UrAI, UMAIDC,
USAIDC, UrAIDC

No VNS algorithm 60

This study UMAI No ILS algorithm 500

Note. U/Cap=Uncapacitated/Capacitated, SA/MA/rA=Multiple/Single/r-allocation.
I/Comp=Incomplete/Complete hub network, DC=Direct connections allowed.
a
a
i
a
b
a
s
d
t

b
c

a two-level decomposition of the model, and Tiwari et al. (2021) pro-
posed different approaches, involving conical reformulation, Kelley’s
cutting plane method, and Lagrangian relaxation.

Table 2 presents a summary of the works that address profit maxi-
mization HNDPs. This table provides, for each article, the characteris-
tics of the problems addressed, whether the number of hubs in a route
is restricted, the solution method applied, and the size of the largest
instance that was solved.

Note that the only works that dealt with the problem with the
same characteristics as the one addressed in this study were Taherkhani
and Alumur (2018), Oliveira et al. (2022), and Zhang et al. (2023).
The first two works used exact methods and solved instances of the
problem with up to 40 and 150 nodes, respectively. Zhang et al. (2023)
proposed a heuristic algorithm and presented computational results
for instances with up to 60 nodes. We emphasize that this is the first
article to solve large PMHNDP instances, containing up to 500 nodes.
The heuristic algorithm based on the ILS procedure, proposed in this
study, is different from the VNS presented by Zhang et al. (2023).
There are several methodological differences between the algorithms.
For example, the construction of the initial solution, the evaluation of
the obtained solution, and the perturbation procedure used to prevent
the search from getting stuck in local minima. Furthermore, although
both studies use similar neighborhood structures, they are not identical.

3. Problem definition and characterization

The PMHNDP addressed in this paper aims to maximize the total
profit of the hub network. This value is given by the total revenue
obtained by serving the demand of the selected pairs of nodes, minus
4

the sum of the network design costs and the transportation costs. 𝑖
Network design costs refer to the fixed costs of installing hubs and
hub arcs, while transportation costs refer to the associated costs for
routing the demand flow between the origin and destination pairs. As
an advantage of a hub network, it is also assumed that a constant
discount factor is applied to the transportation cost in the hub arcs.

It is important to highlight that modeling economies of scale using
a constant factor is, in general, an over-simplification of reality, by
assuming, for instance, that economies of scale do not depend on
the amount of flow. However, problems considering flow-dependent
economies of scale are much more challenging to be tackled, often
leading to a nonlinear problem (Alumur et al., 2021). Therefore, we
assume the constant discount factor as also done by Taherkhani and
Alumur (2018), Oliveira et al. (2022), and Zhang et al. (2023). We
refer the reader to O’Kelly and Bryan (1998), Klincewicz (2002), de
Camargo et al. (2009) and Alumur et al. (2021) for studies addressing
hub location problems considering flow-dependent economies of scale.

The problem considered here has the following characteristics: (i)
non-hub node can be allocated to more than one hub; (ii) hub nodes

nd hub arcs are uncapacitated; (iii) the inter-hub network can be
ncomplete; (iv) direct connections between non-hub nodes are not
llowed; (v) the number of hub nodes and hub arcs is determined
y the model; (vi) there are fixed costs for the installation of hubs
nd hub arcs; and (vii) some origin and destination pairs can be not
erved, where the solution of the problem will define which origin and
estination pairs will be served, through the selection of those pairs
hat generate profit.

To model the problem, consider the following parameters. Let 𝑁
e the set of nodes that exchange flows and that are also potential
andidates to be hubs. The quantity of demand to be routed from node

∈ 𝑁 to node 𝑗 ∈ 𝑁 is denoted by 𝑤𝑖𝑗 . For all 𝑖, 𝑗 ∈ 𝑁 , 𝑟𝑖𝑗 represents
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a

𝐶

𝐶

the revenue obtained by serving one unit of demand from the origin
node 𝑖 to the destination node 𝑗. The unitary transportation cost on the
rc connecting nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 is denoted by 𝑐𝑖𝑗 . The fixed cost

of installing a hub at node 𝑘 ∈ 𝑁 is given by 𝑠𝑘, and the fixed cost of
installing an arc between hubs 𝑘 and 𝑚 is denoted by 𝑔𝑘𝑚, 𝑘, 𝑚 ∈ 𝑁 .
Finally, we denote the constant discount factor on the transportation
carried out through connections between hubs by 𝛼 (0 ≤ 𝛼 < 1).

Also, consider the following set of variables: (i) binary variables ℎ𝑘
indicate whether a hub is located at node 𝑘 ∈ 𝑁 ; (ii) binary variables
𝑧𝑘𝑚 indicate whether the hub arc that allows flow from hub 𝑘 ∈ 𝑁 to
hub 𝑚 ∈ 𝑁 is selected to be installed; (iii) flow variables 𝑎𝑖𝑗𝑘 represent
the fraction of demand between nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 that is served
through a path where the first hub is 𝑘 ∈ 𝑁 ; (iv) flow variables 𝑏𝑖𝑗𝑚
represent the fraction of demand between nodes 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁
that is served through a path in which the last hub is 𝑚 ∈ 𝑁 ; (v) flow
variables 𝑥𝑖𝑗𝑘𝑚 determine the fraction of demand 𝑤𝑖𝑗 that is routed in
the hub arc connecting hubs 𝑘 ∈ 𝑁 and 𝑚 ∈ 𝑁 .

Thus, a formulation for the PMHNDP, proposed by Oliveira et al.
(2022), is given by:

max
∑

𝑖∈𝑁

∑

𝑗∈𝑁

∑

𝑘∈𝑁
𝑟𝑖𝑗𝑤𝑖𝑗𝑎𝑖𝑗𝑘−

[

∑

𝑖∈𝑁

∑

𝑗∈𝑁

∑

𝑘∈𝑁
𝑐𝑖𝑘𝑤𝑖𝑗𝑎𝑖𝑗𝑘

+
∑

𝑖∈𝑁

∑

𝑗∈𝑁

∑

𝑚∈𝑁
𝑐𝑚𝑗𝑤𝑖𝑗𝑏𝑖𝑗𝑚

+
∑

𝑖∈𝑁

∑

𝑗∈𝑁

∑

𝑘∈𝑁

∑

𝑚∈𝑁
𝑚≠𝑘

𝛼𝑐𝑘𝑚𝑤𝑖𝑗𝑥𝑖𝑗𝑘𝑚

+
∑

𝑘∈𝑁
𝑠𝑘ℎ𝑘 +

∑

𝑘∈𝑁

∑

𝑚∈𝑁
𝑚≠𝑘

𝑔𝑘𝑚𝑧𝑘𝑚

]

(1)

subject to
∑

𝑘∈𝑁
𝑎𝑖𝑗𝑘 ≤ 1 𝑖, 𝑗 ∈ 𝑁 (2)

∑

𝑚∈𝑁
𝑏𝑖𝑗𝑚 ≤ 1 𝑖, 𝑗 ∈ 𝑁 (3)

𝑎𝑖𝑗𝑘 +
∑

𝑚∈𝑁
𝑚≠𝑘

𝑥𝑖𝑗𝑚𝑘 = 𝑏𝑖𝑗𝑘 +
∑

𝑚∈𝑁
𝑚≠𝑘

𝑥𝑖𝑗𝑘𝑚 𝑖, 𝑗, 𝑘 ∈ 𝑁 (4)

𝑎𝑖𝑗𝑘 ≤ ℎ𝑘 𝑖, 𝑗, 𝑘 ∈ 𝑁 (5)

𝑏𝑖𝑗𝑚 ≤ ℎ𝑚 𝑖, 𝑗, 𝑚 ∈ 𝑁 (6)

𝑥𝑖𝑗𝑘𝑚 ≤ 𝑧𝑘𝑚 𝑖, 𝑗, 𝑘, 𝑚 ∈ 𝑁, 𝑘 ≠ 𝑚 (7)

𝑧𝑘𝑚 ≤ ℎ𝑘 𝑘, 𝑚 ∈ 𝑁, 𝑘 ≠ 𝑚 (8)

𝑧𝑘𝑚 ≤ ℎ𝑚 𝑘, 𝑚 ∈ 𝑁, 𝑘 ≠ 𝑚 (9)

𝑥𝑖𝑗𝑘𝑚 ≥ 0 𝑖, 𝑗, 𝑘, 𝑚 ∈ 𝑁, 𝑘 ≠ 𝑚 (10)

𝑎𝑖𝑗𝑘 ≥ 0 𝑖, 𝑗, 𝑘 ∈ 𝑁 (11)

𝑏𝑖𝑗𝑚 ≥ 0 𝑖, 𝑗, 𝑚 ∈ 𝑁 (12)

ℎ𝑘 ∈ {0, 1} 𝑘 ∈ 𝑁 (13)

𝑧𝑘𝑚 ∈ {0, 1} 𝑘, 𝑚 ∈ 𝑁, 𝑘 ≠ 𝑚. (14)

The objective function (1) expresses the total profit of the hub
network, which is obtained by the difference between the total revenue
obtained from meeting the demand (the first term) and the total cost,
represented by the terms in square brackets. The first three terms in
parentheses represent transportation costs, composed of access, dis-
tribution, and transfer costs on the network. The last two terms in
the parentheses correspond to the fixed costs of installing hubs and
hub arcs, respectively. Constraints (2) and (3) guarantee that, for each
origin and destination pair, the fraction of demand routed through
the hub network is less than or equal to one. The set of constraints
(4) refers to the flow conservation equations. Constraints (5) and (6)
ensure that the demand of each origin and destination pair can only
be served through installed hubs. Constraints (7) ensure that demand
5

flow can only be routed through installed hub arcs. Constraints (8) and
(9) indicate that a hub arc can only be used if its two end nodes are
selected to be hubs. Constraints (10)–(14) represent the domain of the
decision variables.

4. Description of the proposed algorithms

In order to tackle large instances of the PMHNDP, this paper pro-
poses two heuristic algorithms based on local search: Iterated Local
Search (ILS) and Enhanced Iterated Local Search (E-ILS). Both al-
gorithms use the Random Variable Neighborhood Descent (RVND)
method for the local search, which performs a systematic exchanges
of neighborhood structures. These algorithms differ from each other in
the way in which the exploration of the solution space is done. While
ILS changes the search location at each iteration without improving,
E-ILS remains in the same region for a longer time, thus performing a
greater intensification.

This section is organized as follows. Section 4.1 presents how a
solution is represented and evaluated. A simple method for generating
an initial solution is presented in Section 4.2. In Section 4.3, the
neighborhood structures used to explore the solution space are detailed.
Sections 4.4 and 4.5 detail the local search method and the perturbation
procedure, respectively, applied in the algorithms. Finally, Sections 4.6
and 4.7 present the ILS and E-ILS algorithms applied to the problem.

4.1. Representation and evaluation of the solution

A solution for the PMHNDP is represented by 𝑠 = (𝐻,𝑍), where 𝐻
is the set of installed hubs and 𝑍 is the set of installed hub arcs. Fig. 2
shows a hub network and the representation of the solution associated
with this network.

Note that, in the solution representation, it is not necessary to
indicate the allocation of non-hub nodes to hubs, because the demand
flows selected to be served must be routed through the shortest path
between each pair of demand nodes. In addition to simplifying the
representation, this fact also allows the evaluation of a solution to the
problem. Given the sets of installed hubs and hub arcs, the solution
evaluation can be performed by calculating the shortest path between
all origin and destination pairs that generate profit by meeting their
demand.

The objective value of a solution 𝑠, denoted by 𝑓 (𝑠), can be deter-
mined as follows. Let 𝐶𝑖𝑗 be the minimum transportation cost to route a
flow unit from the origin 𝑖 ∈ 𝑁 to the destination 𝑗 ∈ 𝑁 . Let 𝑃𝑖𝑗 be the
unit profit associated with the pair 𝑖, 𝑗 ∈ 𝑁 , which can be calculated
as

𝑃𝑖𝑗 = max{0, 𝑟𝑖𝑗 − 𝐶𝑖𝑗}. (15)

Thus, 𝑓 (𝑠) is given by:

𝑓 (𝑠) =
∑

𝑖∈𝑁

∑

𝑗∈𝑁
𝑤𝑖𝑗𝑃𝑖𝑗 −

∑

𝑘∈𝐻
𝑠𝑘 −

∑

(𝑘,𝑚)∈𝑍
𝑔𝑘𝑚. (16)

The value of 𝐶𝑖𝑗 can be determined using the Floyd–Warshall al-
gorithm (Floyd, 1962) as follows. Let 𝑍0 ⊂ 𝑁 × 𝑁 be the set of
inactive hub arcs. Instead of applying the Floyd–Warshall algorithm to
a network composed of all nodes, the algorithm is applied to determine
the lowest transportation costs between all pairs of hubs in the inter-
hub network, assuming that the transportation cost in arcs in the set
𝑍0 is large enough to not be used in any route. Thus, letting 𝐶𝐹𝑊

𝑘𝑚 be
the lowest unit transportation cost between the pairs of hubs 𝑘, 𝑚 ∈ 𝐻 ,
𝑖𝑗 is determined by:

𝑖𝑗 = min
𝑘,𝑚∈𝐻

{

𝑐𝑖𝑘 + 𝐶𝐹𝑊
𝑘𝑚 + 𝑐𝑚𝑗

}

. (17)
Algorithm 1 outlines this procedure.
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Algorithm 1 Minimum transportation cost between all pairs of nodes
Input: 𝑁,𝐻,𝑍0, 𝛼, 𝑐𝑖𝑗
Output: 𝐶𝑖𝑗

1: for all (𝑘, 𝑚) ∈ 𝐻 ×𝐻 do
2: if (𝑘, 𝑚) ∈ 𝑍0 then
3: 𝐶𝐹𝑊

𝑘𝑚 ← ∞
4: else
5: 𝐶𝐹𝑊

𝑘𝑚 ← 𝛼𝑐𝑘𝑚
6: end if
7: end for
8: for all 𝑘 ∈ 𝐻, (𝑖, 𝑗) ∈ 𝐻 ×𝐻 do
9: 𝐶𝐹𝑊

𝑖𝑗 ← min{𝐶𝐹𝑊
𝑖𝑗 , 𝐶𝐹𝑊

𝑖𝑘 + 𝐶𝐹𝑊
𝑘𝑗 }

0: end for
1: for all (𝑖, 𝑗) ∈ 𝑁 ×𝑁 do
2: 𝐶𝑖𝑗 ← min

𝑘,𝑚∈𝐻

{

𝑐𝑖𝑘 + 𝐶𝐹𝑊
𝑘𝑚 + 𝑐𝑚𝑗

}

13: end for
14: return 𝐶𝑖𝑗

4.2. Initial solution

An initial solution for the PMHNDP was generated considering the
best solution obtained with the installation of a single hub in the
network. This procedure is described in Algorithm 2, which has as
input the parameters of the problem, except the fixed cost of installing
hub arcs (𝑔𝑘𝑚) and the constant discount factor (𝛼) since only one
hub will be installed. This algorithm returns the initial solution 𝑠0

nd its objective value, denoted by 𝜙. First, the initial solution is
initialized with the empty set, and the objective value of the solution
and an auxiliary variable are initialized to zero (lines 1–3). In the
main loop of the algorithm (lines 4–16), the total profit is calculated
iteratively considering the installation of each node as the only hub in
the network, and the best solution value found is then stored. First, the
auxiliary variable receives the fixed cost of installing the current node
as the hub (line 5). After that, for each pair (𝑖, 𝑗), the profit obtained
from meeting its demand is calculated (lines 6–11). If this profit is
positive, then its value is added to the auxiliary variable. As we are
interested in maximizing the profit value, the origin and destination
pair of nodes that generate profits less than or equal to zero is not
considered, and therefore will not be served. After this procedure, it
is verified if the profit obtained by taking the current node as the hub
node is better than the best value previously registered (lines 12–15). If
this happens, the best solution found and its value are updated. Finally,
the algorithm returns the initial solution and its value (line 17).

4.3. Neighborhood structures

In this work, the solution space is explored by applying six types
of moves from a solution 𝑠 = (𝐻,𝑍). Each move gives rise to a
6

Algorithm 2 Initial solution: best solution with a single hub
Input: 𝑁, 𝑟𝑖𝑗 , 𝑤𝑖𝑗 , 𝑐𝑖𝑗 , 𝑠𝑘
Output: Initial solution 𝑠0, Initial solution value 𝜙

1: 𝑠0 ← (∅, ∅)
2: 𝜙 ← 0
3: 𝜙aux ← 0
4: for all 𝑘 ∈ 𝑁 do
5: 𝜙aux ← −𝑠𝑘
6: for all (𝑖, 𝑗) ∈ 𝑁 ×𝑁 do
7: 𝑙𝑖𝑗 ← (𝑟𝑖𝑗 − 𝑐𝑖𝑘 − 𝑐𝑘𝑗 )𝑤𝑖𝑗
8: if 𝑙𝑖𝑗 > 0 then
9: 𝜙aux ← 𝜙aux + 𝑙𝑖𝑗
0: end if
1: end for
2: if 𝜙aux ≥ 𝜙 then
3: 𝜙 ← 𝜙aux
4: 𝑠0 ← ({𝑘}, ∅)
5: end if
6: end for
7: return 𝑠0, 𝜙

neighborhood structure 𝑖, 𝑖 = 1,… , 6. To evaluate the complexity
of each neighborhood structure, that is, the number of neighbors of
a given solution 𝑠, consider that 𝐻0 ⊂ 𝑁 and 𝑍0 ⊂ 𝑁 × 𝑁 denote
the sets of inactive hubs and inactive hub arcs, respectively. Thus, the
neighborhood structures are detailed below.

• 1(𝑠): set of solutions that can be obtained from solution 𝑠 by in-
stalling a new hub. The number of solutions in this neighborhood
is |𝐻0

|.
• 2(𝑠): set of solutions that can be obtained from solution 𝑠 by

removing an installed hub. In this case, the hub arcs incident
on that hub are also removed. The number of solutions in this
neighborhood is |𝐻|.

• 3(𝑠): set of solutions that can be obtained from solution 𝑠 by
installing a hub arc connecting installed hubs. The number of
solutions in this neighborhood is |𝑍0

|.
• 4(𝑠): set of solutions that can be obtained from solution 𝑠 by

removing a hub arc. The number of solutions in this neighborhood
is |𝑍|.

• 5(𝑠): set of solutions that can be obtained from solution 𝑠 by
installing a new hub and connecting it to all the other hubs in the
network. The number of solutions in this neighborhood is |𝐻0

|.
• 6(𝑠): set of solutions that can be obtained from solution 𝑠 by

exchanging an installed hub for an uninstalled one. In this case,
hub arcs incident on the removed hub are also removed. The

0
number of solutions in this neighborhood is |𝐻| × |𝐻 |.
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4.4. Local search

The proposed algorithms employ a local search procedure based
on a variant of the Variable Neighborhood Descent (VND) algorithm
(Hansen et al., 2017), which performs a systematic exchange of the
neighborhood structures presented in Section 4.3, using the best im-
provement strategy. Given an ordered set of neighborhood structures,
the local search procedure is performed as follows. From the first
neighborhood structure, whenever a local search in the current neigh-
borhood does not improve the best-known solution, a local search in the
next neighborhood structure is performed. In addition, when a better
solution is found, the algorithm restarts in the first neighborhood,
according to the predetermined order.

In this work, the local search uses the Random Variable Neigh-
borhood Descent (RVND) method (Souza et al., 2010; Subramanian
et al., 2010). In RVND, presented in Algorithm 3, the exploration
order of the neighborhoods is generated randomly at the beginning of
the algorithm. This strategy differs from VND, in which this order is
previously established, generally according to the order of complexity
of the neighborhoods.

The advantage of using RVND instead of the classic VND version
lies mainly in the fact that the randomness of the order of the neighbor-
hoods can be favorable in solving problem instances since they present
different characteristics; thus, different orders may be more convenient.

Algorithm 3 Random Variable Neighborhood Descent - RVND

Input: Solution 𝑠, Set of neighborhoods 
Output: Refined solution 𝑠

1:  ←  in random order
2: 𝑖 ← 1
3: while 𝑖 ≤ | | do
4: Find the best neighbor 𝑠′ ∈ 𝑖(𝑠)
5: if 𝑓 (𝑠′) > 𝑓 (𝑠) then
6: 𝑠 ← 𝑠′

7: 𝑖 ← 1
8: else
9: 𝑖 ← 𝑖 + 1

10: end if
11: end while
12: return 𝑠

4.5. Perturbation

Let 𝑘 be the level of perturbation in a given iteration. The perturba-
tion procedure carried out in the current solution consists of selecting
successively and randomly 𝑘 neighbor solutions using the neighborhood
structure 6. Algorithm 4 details this procedure. Initially, a copy of
he current solution is made in the solution 𝑠′, which will store the

perturbed solution at the end of the procedure (line 1), and the counter
𝑖 of the number of perturbations is started with the value 1 (line 2).

he perturbation in the solution 𝑠′ is performed as follows. While
the counter is less than or equal to the quantity 𝑘 of perturbations,
a solution 𝑠′′ in the neighborhood 6(𝑠′) is randomly selected (line
4). Then, the perturbed solution and the counter of the number of
perturbations are updated (lines 5–6). The procedure ends by returning
the perturbed solution (line 8).

4.6. Iterated Local Search (ILS)

Iterated Local Search (ILS) (Lourenço et al., 2001, 2003) is a simple
metaheuristic that explores the solution space through perturbations in
locally optimal solutions. Instead of exploring the entire solution space,
the main idea of this method is to perform the search in a smaller
subspace, considering only solutions that are locally optimal.
7

f

Algorithm 4 Perturbation

Input: Current solution 𝑠, Neighborhood structure 6, Perturbation
level 𝑘

Output: Perturbed solution 𝑠′

1: 𝑠′ ← 𝑠
2: 𝑖 ← 1
3: while 𝑖 ≤ 𝑘 do
4: Randomly select a neighboring solution 𝑠′′ ∈ 6(𝑠′)
5: 𝑠′ ← 𝑠′′

6: 𝑖 ← 𝑖 + 1
7: end while
8: return 𝑠′

The perturbation procedure applied by the method, which allows
obtaining a locally optimal solution from another locally optimal so-
lution, needs to be strong enough to allow the local search to explore
different regions of the solution space and weak enough to avoid ran-
dom restarts. In this way, ILS combines two very important elements:
intensification and diversification. Intensification consists of properly
exploring a particular region of the solution space, while diversification
involves altering the search region. These elements are usually obtained
according to the intensity of the perturbation applied to the solutions
so that weaker perturbations allow a region to be better explored, and
stronger perturbations favor the investigation of distinct regions.

The ILS metaheuristic has already been successfully applied to solve
hub location problems. Guan et al. (2018) proposes an ILS algorithm
to handle the uncapacitated single allocation hub location problem.
To tackle a hub location problem under congestion, Karimi-Mamaghan
et al. (2020) proposed a learning-based ILS. This algorithm incorporates
machine learning techniques with the ILS heuristic, which is a very
promising research area (Karimi-Mamaghan et al., 2022).

Algorithm 5 outlines the method named ILS-RVND, applied to the
PMHNDP. The algorithm takes as input the maximum number of iter-
ations without improvement, denoted by 𝑖𝑡𝑒𝑟𝑀𝑎𝑥. In the first step of
the algorithm, the level of perturbation, given by 𝑘, and the number
of iterations, denoted by 𝑖𝑡𝑒𝑟, are initialized (lines 2 and 1). Then,
an initial solution 𝑠0 is generated using Algorithm 2. After that, the
algorithm performs a local search on 𝑠0 using the RVND, outlined in

lgorithm 3, obtaining a refined solution 𝑠 (line 4). The remainder
f the algorithm is composed of a repetition structure to improve the
alue of the current solution until reaching the maximum number of
terations without improvement, given by 𝑖𝑡𝑒𝑟𝑀𝑎𝑥 (lines 5–16), where
he number of iterations is incremented by one unit in line 6. At
ach iteration, the perturbation procedure, presented in Algorithm 4, is
pplied to the current solution, obtaining a solution 𝑠′ (line 7). Then, a

solution 𝑠′′ is achieved by applying the RVND to 𝑠′ (line 8). After that, it
s checked if the solution 𝑠′′ is better than the solution 𝑠 (line 9). If this
s true, then the solution 𝑠 is updated to 𝑠′′ and the number of iterations
nd perturbation level counters are reset (lines 10 to 12). Otherwise,
he perturbation level 𝑘 is increased (lines 13 to 15). The algorithm
nds by returning the best solution obtained during this procedure.

.7. Enhanced Iterated Local Search (E-ILS)

The Enhanced Iterated Local Search (E-ILS) metaheuristic (Reinsma
t al., 2018) is an adaptation of the Iterated Local Search (ILS) method.
he difference between them refers to how the perturbation level is
pdated. There is an increase in the perturbation level in ILS whenever
here is no improvement in the current solution. However, this ILS
trategy can lead to a loss of solution quality due to the abrupt change
n the search region since the perturbation occurs at random. On the
ther hand, in E-ILS, the perturbation level is only increased after a

ew unsuccessful attempts at improvement. This E-ILS strategy allows a
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Algorithm 5 ILS-RVND

Input: iterMax
Output: 𝑠

1: 𝑘 ← 1
2: iter← 0
3: 𝑠0 ← InitialSolution() ⊳ According to Algorithm 2
4: 𝑠 ← RVND(𝑠0, ) ⊳ According to Algorithm 3
5: while iter ≤ iterMax do
6: iter← iter + 1
7: 𝑠′ ← Perturbation(𝑠,6, 𝑘) ⊳ According to Algorithm 4
8: 𝑠′′ ← RVND(𝑠′, ) ⊳ According to Algorithm 3
9: if 𝑓 (𝑠′′) > 𝑓 (𝑠) then

10: 𝑠 ← 𝑠′′

11: iter← 0
12: 𝑘 ← 1
13: else
14: 𝑘 ← 𝑘 + 1
15: end if
16: end while
17: return 𝑠

better investigation to be carried out in a certain region of the solution
space, enabling a more precise intensification during the algorithm’s
execution.

The E-ILS-RVND method, implemented for solving the PMHNDP, is
presented in Algorithm 6. This algorithm has, as inputs, the maximum
number of iterations without improvement, given by 𝑖𝑡𝑒𝑟𝑀𝑎𝑥, and the
maximum number of times in the same level of perturbation, given
by 𝑡𝑖𝑚𝑒𝑠𝑀𝑎𝑥. Initially, the number of iterations without improvement,
denoted by 𝑖𝑡𝑒𝑟, the perturbation level, denoted by 𝑘, and the number
of times within the same perturbation level, denoted by 𝑛𝑡𝑖𝑚𝑒𝑠, are
nitialized (lines 1–3). After that, an initial solution 𝑠0 is generated
sing Algorithm 2 (line 4). Then, a local search is performed on the
nitial solution, using RVND (Algorithm 3), and the returned solution
s then stored in 𝑠. Later, the algorithm enters a loop, with the purpose
f improving the value of the current solution until the number of
terations without improvement is equal to 𝑖𝑡𝑒𝑟𝑀𝑎𝑥 (lines 6–23). At

the beginning of the loop, the iteration count without improvement
is incremented (line 7). After that, a solution 𝑠′ is obtained through
the perturbation procedure applied to the solution 𝑠, as described in
Algorithm 4 (line 8). Then, a local search is performed on the solution
𝑠′, and the refined solution is stored in 𝑠′′ (line 9). If the solution 𝑠′′

is better than solution 𝑠, then the solution 𝑠 is updated to 𝑠′′, and the
counter of iterations without improvement, the perturbation level, and
the number of times in the same level of perturbation are reset (lines
10–14). If the objective value of 𝑠′′ is not better than the objective value
of the solution 𝑠, then it is checked if the number of times in the same
level of perturbation reached its maximum value (lines 16–21). If this
occurs, then the perturbation level is increased by one unit, and the
number of times within the same perturbation level is reset. Otherwise,
𝑛𝑡𝑖𝑚𝑒𝑠 is updated. At the end of the procedure, the algorithm returns
the best-obtained solution 𝑠.

5. Computational experiments

This section presents the results of the computational experiments
carried out using the proposed algorithms, ILS-RVND and E-ILS-RVND,
applied to the PMHNDP. The algorithms were implemented in the C++
language and executed on a computer Intel Core i7-7500U, 2.70 GHz,
with 16 GB of RAM, using the Linux environment. The parameters of
the heuristic algorithms were calibrated by the IRACE tool (Iterated
Racing for Automatic Algorithm Configuration) (López-Ibañez et al.,
2016). The IRACE tool provides an implementation of the iterated
8

F-race algorithm (Birattari et al., 2010) and other variants of the
Algorithm 6 E-ILS-RVND

Input: iterMax, timesMax
Output: 𝑠

1: 𝑘 ← 1
2: iter ← 0
3: ntimes← 1
4: 𝑠0 ← InitialSolution() ⊳ According to Algorithm 2
5: 𝑠 ← RVND(𝑠0, ) ⊳ According to Algorithm 3
6: while iter ≤ iterMax do
7: iter ← iter + 1
8: 𝑠′ ← Perturbation(𝑠,6, 𝑘) ⊳ According to Algorithm 4
9: 𝑠′′ ← RVND(𝑠′, ) ⊳ According to Algorithm 3
0: if 𝑓 (𝑠′′) > 𝑓 (𝑠) then
1: 𝑠 ← 𝑠′′

2: iter ← 0
3: 𝑘 ← 1
4: ntimes← 1
5: else
6: if ntimes ≥ timesMax then
7: 𝑘 ← 𝑘 + 1
8: ntimes ← 1
9: else
0: ntimes← ntimes + 1
1: end if
2: end if
3: end while
4: return 𝑠

algorithm, which include, for instance, mechanisms to avoid premature
convergence. This study uses the default version of the IRACE.

The computational experiments were performed using two bench-
mark instances for hub location problems: (i) the Australian Post (AP)
data set, which includes instances with up to 200 nodes, introduced
by Ernst and Krishnamoorthy (1996), and (ii) the set of instances
proposed by Contreras et al. (2011a), which have instances with up to
500 nodes and will be denoted here as the Group 2 data set. Sections 5.1
and 5.2 detail and report the experiments using the AP and the Group 2
data set, respectively.

Although the comparison of the results for the algorithms proposed
in this work with the results for the algorithm presented by Zhang et al.
(2023) is not fair, since the authors implemented their algorithm using
another programming language (python), and ran the experiments on
a machine with a different configuration, and used only small instances
of the CAB data set, Appendix C presents the results of the comparison
between the results of the two studies.

5.1. Tests with AP instances

This subsection presents the results of the computational experi-
ments using the AP instances. Initially, Section 5.1.1 details this data
set and the values of the model parameters not defined in the data set.
Section 5.1.2 presents the results of the calibration of the parameters of
the algorithms. Section 5.1.3 presents an analysis of the neighborhood
structures. To compare the performance of the algorithms, experiments
were performed in two steps. In step 1, tests were performed with in-
stances with 40, 50, 75, and 100 nodes. Meanwhile, step 2 contemplated
instances with 125, 150, 175, and 200 nodes. Section 5.1.4 presents and
discusses the results of step 1. Furthermore, Section 5.1.5 presents the
results of a statistical analysis of the performance of the algorithms
based on experiments from step 1. Finally, Section 5.1.6 shows the

results of the computational experiments regarding step 2.
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Table 3
Set of instances from AP data set submitted to IRACE.

AP - 40 AP - 50 AP - 75 AP – 100

Inst 𝛼 Revenue Inst 𝛼 Revenue Inst 𝛼 Revenue Inst 𝛼 Revenue

40L 0.2 20 50L 0.6 20 75L 0.2 20 100L 0.6 20
40L 0.4 30 50L 0.4 30 75L 0.6 30 100L 0.2 30
40L 0.8 50 50L 0.2 50 75L 0.8 50 100L 0.4 50
40T 0.4 20 50T 0.2 20 75T 0.8 20 100T 0.4 20
40T 0.8 30 50T 0.6 30 75T 0.4 30 100T 0.2 30
40T 0.2 50 50T 0.8 50 75T 0.6 50 100T 0.8 50

5.1.1. AP data set
The Australian Post (AP) data set, introduced by Ernst and Krish-

namoorthy (1996), has instances with up to 200 nodes and provides
the distance and demand between each pair of nodes. The demand
matrix (𝑤𝑖𝑗 ) is not symmetric and the distances between nodes are
taken as the transportation costs (𝑐𝑖𝑗 ). The revenue (𝑟𝑖𝑗 ) between each
origin and destination pair is considered independent of the location
of the pair of nodes. Based on Taherkhani and Alumur (2018), three
values were considered: 20, 30 and 50. The AP data set also provides
two sets of values for fixed hub installation costs (𝑠𝑘), called loose (L)
and tight (T). It was assumed that the fixed cost of installing hubs arcs
(𝑔𝑘𝑚) corresponds to 10% of the average of all fixed costs of installing
hubs, as suggested in Taherkhani and Alumur (2018). Collection and
distribution costs per unit of demand were not considered and it is
considered the discount factor 𝛼 ∈ {0.2, 0.4, 0.6, 0.8}.

Instances with 40, 50, 100, and 200 nodes are the same as those
originally available in the AP data set. The other instances, with 75,
125, 150, and 175 nodes, were generated according to the procedure
indicated by Oliveira et al. (2022).

5.1.2. Calibration of the parameters for the AP instances
The parameter values of the two implemented algorithms were

calibrated by the IRACE tool (Iterated Racing for Automatic Algorithm
Configuration) (López-Ibañez et al., 2016). Table 3 shows the instances
used, from the AP data set, in the execution of IRACE.

For both algorithms, the maximum number of iterations without
improvement (𝑖𝑡𝑒𝑟𝑀𝑎𝑥) was calibrated and, additionally, for E-ILS-
RVND, the parameter that determines the number of times at the
same level of perturbation (𝑡𝑖𝑚𝑒𝑠𝑀𝑎𝑥) was also calibrated. For the
IRACE execution, the following ranges of values were considered for the
parameters: 𝑖𝑡𝑒𝑟𝑀𝑎𝑥 ∈ {1, 2, 3, 4, 5} and 𝑡𝑖𝑚𝑒𝑠𝑀𝑎𝑥 ∈ {2, 3, 4, 5, 6}. For
ILS-RVND, it was returned 𝑖𝑡𝑒𝑟𝑀𝑎𝑥 = 1, while the values returned for E-
ILS-RVND were 𝑖𝑡𝑒𝑟𝑀𝑎𝑥 = 4 and 𝑡𝑖𝑚𝑒𝑠𝑀𝑎𝑥 = 3. These parameter values
were adopted for the two algorithms in all computational experiments.

5.1.3. Analysis of the neighborhood structures
A set of computational experiments was carried out to analyze the

impact of the neighborhood structures, described in Section 4.3, in the
heuristic. These experiments consisted of removing each neighborhood
structure from the executions of the E-ILS-RVND algorithm, keeping the
other five neighborhoods. The version of the algorithm considering all
neighborhood structures is denoted by N+all and the version of the
algorithm without the neighborhood structure 𝑖 is denoted by N-𝑖,
𝑖 = 1,… , 6. The experiments used the AP instances with 40, 50, 75,
and 100 nodes, excluding those instances used in the calibration of the
parameters (indicated in Table 3). For each instance, were carried out
10 runs of the algorithm, using the values of the parameters indicated
by IRACE in Section 5.1.2.

Fig. 3 presents the number of times that an optimal value was
returned by each version of the algorithm. Note that, for all cases,
the greatest number of optimal values was achieved when all six
neighborhood structures are used. Furthermore, the removal of the
neighborhood 3 reduced the number of optimal values achieved for
instances with sizes 40 and 50. On the other hand, the removal of the
9

neighborhood 1 reduced the number of optimal values, for instances
with 75 and 100 nodes.

To evaluate the impact of the neighborhood structures on the qual-
ity of the solutions achieved, the average of the gaps between the opti-
mal value and the average objective values of the solutions provided by
the E-ILS-RVND algorithm, denoted by 𝐴𝑣𝑔𝑔𝑎𝑝𝑠, was calculated, which
is given by

𝐴𝑣𝑔𝑔𝑎𝑝𝑠 = 100 ×

(

1
𝑞 × 𝑟

𝑞
∑

𝑖=1

𝑟
∑

𝑗=1

𝑜𝑝𝑡𝑓 (𝑖) − 𝑓 (𝑖, 𝑗)
𝑜𝑝𝑡𝑓 (𝑖)

)

,

here 𝑞 denotes the number of instances, 𝑟 denotes the number of
xecutions of the algorithm, 𝑓 (𝑖, 𝑗) denotes the objective value of the
est solution found for the instance 𝑖 in the execution 𝑗, and 𝑜𝑝𝑡𝑓 (𝑖)
enotes the objective value of the optimal solution for the instance 𝑖.
n our case, we have 𝑞 = 18 and 𝑟 = 10. The results, in percentage, are
hown in Fig. 4.

Similar to the results previously presented, the best average gaps
ere attained when running the algorithm with all neighborhood struc-

ures. Note that, for the set of instances with 100 nodes, the smallest
nd the largest value of the average gap were obtained when con-
idering all neighborhood structures and removing the neighborhood
1, respectively. Because of the presented results, all neighborhood

tructures are used in the following computational experiments.

.1.4. Results of step 1
In Step 1, computational experiments were performed with in-

tances of 40, 50, 75, and 100 nodes. These experiments were carried
ut to obtain a preliminary analysis of the behavior and performance
f the proposed methods, as well as to compare the results achieved
ith those presented in the literature. The instances used to calibrate

he parameters of the algorithms, indicated in Table 3, were discarded
rom these experiments.

The results of these computational experiments are presented in
ables 4 and 5. Table 4 shows the results obtained with instances
ith 40 and 50 nodes, while Table 5 shows the results for instances of

ize 75 and 100. In these tables, the first column indicates the tested
nstances, represented in the format 𝑛𝐹 − 𝛼 − 𝑟, where 𝑛 represents
he number of nodes, 𝐹 represents the kind of fixed cost for installing
ubs (𝐿 for loose and 𝑇 for tight), 𝛼 represents the discount factor on
ub arcs and 𝑟 represents the revenue. The optimal value and the best
untime obtained in Oliveira et al. (2022) are presented, where the
nstances were solved using an exact algorithm based on the Benders
ecomposition method that makes insertions of non-dominated cuts in
branch-and-cut structure. The next columns of the tables show, for

ach of the proposed algorithms, the best value, the average value, the
ap associated with the best value (𝛥𝑏𝑒𝑠𝑡), the gap associated with the
verage value (𝛥𝑎𝑣𝑔) and the average runtime, in seconds, recorded in
0 executions of the algorithms. The gap associated with the best value
nd the gap associated with the average value were calculated by:

𝑏𝑒𝑠𝑡 = 100 ×
Optimal value − Best value

Optimal value (18)

and

𝛥𝑎𝑣𝑔 = 100 ×
Optimal value − Average value

Optimal value . (19)

These values represent, respectively, the percentage deviations of
the best objective value and the average objective value obtained for
each instance relative to the optimal objective value. Thus, the closer to
zero these values are, the better the results achieved by the algorithms.

Table 4 indicates that the proposed heuristic algorithms achieved
good results for instances with 40 and 50 nodes. The optimal value
was obtained for almost all instances. ILS-RVND did not attain the
optimal solution in four instances, while E-ILS-RVND did not reach the
optimal solution in only one. The average values were close to or equal
to the optimal value for most cases. This fact is reflected in the low

values recorded for the average gap of both algorithms, except for some
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Fig. 3. Number of optimal values in 10 runs of the E-ILS-RVND algorithm, considering all neighborhood structures (N+all) and removing the 𝑖th neighborhood (N− 𝑖), 𝑖 = 1,… , 6.
Fig. 4. 𝐴𝑣𝑔𝑔𝑎𝑝𝑠(%) for the versions of the E-ILS-RVND algorithm with all neighborhood structures (N+all) and removing the 𝑖th neighborhood (N − 𝑖), 𝑖 = 1,… , 6.
instances that have small values for 𝛼. In general, the instances with
lower values of 𝛼 are more challenging once a greater discount on hub
arcs encourages the installation of more hubs and arcs between hubs
in the network. We also see in this table that E-ILS-RVND had better
values for the average gap than ILS-RVND. Regarding computational
time, the values recorded by the proposed algorithms are less than the
ones recorded by the exact method.
10
The results in Table 5 show that the proposed algorithms also
achieved good performance for instances with 75 and 100 nodes. Re-
garding the quality of the solution produced, E-ILS-RVND attained the
optimal value of all tested instances, and ILS-RVND only did not reach
the optimum in two instances (100L-0.2-50 and 75L-0.4-50). Good
average values were obtained, as the small average gaps highlight. As
seen in Table 4, E-ILS-RVND recorded lower values for the average gap
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Table 4
Results for AP instances with 40 and 50 nodes — 30 runs.

Instances Benders ILS-RVND E-ILS-RVND

Optimal
value

Time
(s)

Best
value

Average
value

𝛥𝑏𝑒𝑠𝑡
(%)

𝛥𝑎𝑣𝑔
(%)

Average
time (s)

Best
value

Average
value

𝛥𝑏𝑒𝑠𝑡
(%)

𝛥𝑎𝑣𝑔
(%)

Average
time (s)

40L-0.4-20 14,635.61 34.67 14,635.61 14,543.83 0.00 0.63 0.45 14,635.61 14,593.00 0.00 0.29 2.65
40L-0.6-20 14,099.19 20.11 14,099.19 14,099.19 0.00 0.00 0.17 14,099.19 14,099.19 0.00 0.00 0.63
40L-0.8-20 14,099.19 12.22 14,099.19 14,099.19 0.00 0.00 0.15 14,099.19 14,099.19 0.00 0.00 0.59

40T-0.2-20 6,404.58 35.10 6,404.58 6,404.58 0.00 0.00 0.18 6,404.58 6,404.58 0.00 0.00 0.60
40T-0.6-20 6,404.58 16.54 6,404.58 6,404.58 0.00 0.00 0.15 6,404.58 6,404.58 0.00 0.00 0.53
40T-0.8-20 6,404.58 15.17 6,404.58 6,404.58 0.00 0.00 0.15 6,404.58 6,404.58 0.00 0.00 0.46

40L-0.2-30 52,299.43 106.70 52,299.43 51,688.43 0.00 1.17 4.62 52,299.43 52,021.38 0.00 0.53 14.45
40L-0.6-30 44,213.55 40.06 44,213.55 44,213.55 0.00 0.00 1.83 44,213.55 44,213.55 0.00 0.00 6.29
40L-0.8-30 42,990.07 27.32 42,990.07 42,990.07 0.00 0.00 1.32 42,990.07 42,981.96 0.00 0.02 4.26

40T-0.2-30 36,135.48 55.02 36,135.48 35,993.61 0.00 0.39 0.76 36,135.48 36,135.48 0.00 0.00 2.54
40T-0.4-30 33,918.82 39.19 33,918.82 33,918.82 0.00 0.00 0.55 33,918.82 33,918.82 0.00 0.00 2.00
40T-0.6-30 32,709.49 30.78 32,709.49 32,709.49 0.00 0.00 0.58 32,709.49 32,709.49 0.00 0.00 1.74

40L-0.2-50 130,906.36 74.92 130,240.82 129,053.68 0.51 1.42 5.47 130,747.04 129,880.77 0.12 0.78 37.55
40L-0.4-50 124,056.22 97.30 124,056.22 123,690.01 0.00 0.30 5.32 124,056.22 123,955.55 0.00 0.08 19.66
40L-0.6-50 120,056.17 49.27 120,056.17 119,646.85 0.00 0.34 4.60 120,056.17 119,900.24 0.00 0.13 12.76

40T-0.4-50 107,847.14 55.77 107,847.14 107,838.95 0.00 0.01 0.96 107,847.14 107,845.35 0.00 0.00 3.60
40T-0.6-50 105,857.00 49.38 105,857.00 105,857.00 0.00 0.00 0.61 105,857.00 105,857.00 0.00 0.00 2.05
40T-0.8-50 105,603.50 32.36 105,603.50 105,603.50 0.00 0.00 0.56 105,603.50 105,603.50 0.00 0.00 1.74

50L-0.2-20 17,666.95 148.99 17,666.95 17,383.42 0.00 1.60 3.63 17,666.95 17,425.21 0.00 1.37 13.67
50L-0.4-20 14,588.82 87.25 14,588.82 14,588.82 0.00 0.00 1.30 14,588.82 14,588.82 0.00 0.00 3.47
50L-0.8-20 13,920.55 29.77 13,920.55 13,920.55 0.00 0.00 0.30 13,920.55 13,920.55 0.00 0.00 1.12

50T-0.4-20 8,001.47 56.35 8,001.47 8,001.47 0.00 0.00 0.29 8,001.47 8,001.47 0.00 0.00 0.93
50T-0.6-20 8,001.47 40.85 8,001.47 8,001.47 0.00 0.00 0.31 8,001.47 8,001.47 0.00 0.00 0.93
50T-0.8-20 8,001.47 37.27 8,001.47 8,001.47 0.00 0.00 0.29 8,001.47 8,001.47 0.00 0.00 0.92

50L-0.2-30 53,200.19 334.89 53,066.89 51,896.89 0.25 2.45 16.06 53,200.19 52,854.48 0.00 0.65 62.84
50L-0.6-30 43,763.67 121.95 43,763.67 43,357.24 0.00 0.93 8.59 43,763.67 43,577.47 0.00 0.43 24.74
50L-0.8-30 42,566.95 227.77 42,566.95 42,566.95 0.00 0.00 6.13 42,566.95 42,566.95 0.00 0.00 15.28

50T-0.2-30 34,513.57 219.72 34,513.57 33,225.54 0.00 3.73 1.96 34,513.57 34,162.25 0.00 1.02 7.07
50T-0.4-30 31,911.87 114.27 31,911.87 31,681.42 0.00 0.72 1.36 31,911.87 31,750.56 0.00 0.51 4.57
50T-0.8-30 31,220.52 58.82 31,220.52 31,220.52 0.00 0.00 1.25 31,220.52 31,220.52 0.00 0.00 3.61

50L-0.4-50 124,770.82 265.10 124,770.82 124,134.13 0.00 0.51 19.35 124,770.82 124,267.84 0.00 0.40 61.06
50L-0.6-50 119,972.77 445.13 119,902.39 119,440.87 0.06 0.44 16.49 119,972.77 119,707.89 0.00 0.22 53.70
50L-0.8-50 118,299.45 82.92 118,299.45 118,214.17 0.00 0.07 8.90 118,299.45 118,287.27 0.00 0.01 21.00

50T-0.2-50 110,962.98 289.18 110,858.78 109,713.87 0.09 1.13 3.85 110,962.98 110,226.98 0.00 0.66 17.47
50T-0.4-50 106,451.33 165.83 106,451.33 106,285.12 0.00 0.16 1.71 106,451.33 106,439.17 0.00 0.01 6.04
50T-0.6-50 105,260.70 115.27 105,260.70 104,824.69 0.00 0.41 1.43 105,260.70 104,933.70 0.00 0.31 5.25

Average – 100.92 – – 0.03 0.46 3.38 – – 0.00 0.21 11.60
than ILS-RVND. For these instances, the computational times obtained
by the heuristic algorithms are much lower than the ones shown
by the Benders decomposition method, mainly for instances with a
greater economy of scale. For example, the average runtime recorded
by ILS-RVND is 145 times less than that obtained with the exact method.

Fig. 5 presents a graphical visualization of the computational times
pent by the Benders decomposition method and by the developed
lgorithms. The logarithmic scale was used because of the difference
n the order of magnitude of the obtained values. As discussed earlier,
his figure shows that, in all analyzed cases, the heuristic algorithms
ecorded significantly lower runtimes compared to the exact method
nd that this difference tends to increase with the size of the instances.
LS-RVND had the shortest computational times. This behavior was
lready expected due to the result of the parameter calibration in-
icated by IRACE (𝑖𝑡𝑒𝑟𝑀𝑎𝑥 = 1) and the fact that this algorithm is

simpler than E-ILS-RVND. Fig. 5 also shows that the instances with the
lowest discount factors in the arcs hub are the ones that consume more
processing time.

As discussed by Oliveira et al. (2022), for the PMHNDP, tight
cost AP instances are less challenging than loose cost instances. Note
that the variation of 𝛼 does not influence the optimal values of these
instances since arcs between hubs are not installed in the network
in these cases. Tables 4 and 5 also show that, in general, heuristic
algorithms spend less time solving these instances.
11
Therefore, the results showed in Tables 4 and 5 suggest that the
two proposed algorithms have satisfactory performance and are very
promising since they could generate good solutions in acceptable com-
putational times (according to the dimension of the instances). Note
also that, for 58% of the instances present in these tables, both algo-
rithms reached the optimal values in all executions.

To complement the analysis of the proposed algorithms, we inves-
tigate their convergence in some instances of the AP data set. For
this analysis, we chose one instance from each size, in which the E-
ILS-RVND recorded the worst values for the average gaps reported in
Tables 4 and 5. Hence, the instances selected were 40L-0.2-50, 50L-
0.2-20, 75L-0.4-30, and 100L-0.2-20. The results are reported in Fig. 6,
which shows the gaps relative to the optimal value of the objective
function over 0–1 normalized runtimes, where 0 is the start of the
algorithms and 1 is the termination. For each instance, the results
obtained for 30 runs of the algorithms are shown. This figure allows
us to conclude that the E-ILS-RVND algorithm has a faster and more
pronounced convergence than the ILS-RVND for all analyzed instances.

In order to complement the tests carried out in this section, Ap-
pendix A presents results with the ILS-RVND algorithm considering
𝑖𝑡𝑒𝑟𝑀𝑎𝑥 = 4, that is, the same value used for the E-ILS-RVND. In
turn, Appendix B presents the results for the PMHNDP version in which
direct connections between non-hub nodes are allowed.
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Table 5
Results for AP instances with 75 and 100 nodes — 30 runs.

Instances Benders ILS-RVND E-ILS-RVND

Optimal
value

Time
(s)

Best
value

Average
value

𝛥𝑏𝑒𝑠𝑡
(%)

𝛥𝑎𝑣𝑔
(%)

Average
time (s)

Best
value

Average
value

𝛥𝑏𝑒𝑠𝑡
(%)

𝛥𝑎𝑣𝑔
(%)

Average
time (s)

75L-0.4-20 15,004.99 1,348.26 15,004.99 14,864.97 0.00 0.93 5.25 15,004.99 14,930.70 0.00 0.50 21.24
75L-0.6-20 14,058.46 732.49 14,058.46 14,058.46 0.00 0.00 1.03 14,058.46 14,058.46 0.00 0.00 4.41
75L-0.8-20 14,058.46 577.37 14,058.46 14,058.46 0.00 0.00 1.06 14,058.46 14,058.46 0.00 0.00 4.17

75T-0.2-20 1,144.13 931.39 1,144.13 1,144.13 0.00 0.00 0.83 1,144.13 1,144.13 0.00 0.00 2.91
75T-0.4-20 1,144.13 627.04 1,144.13 1,144.13 0.00 0.00 0.85 1,144.13 1,144.13 0.00 0.00 2.91
75T-0.6-20 1,144.13 545.76 1,144.13 1,144.13 0.00 0.00 0.81 1,144.13 1,144.13 0.00 0.00 2.84

75L-0.2-30 53,570.37 3,516.02 53,570.37 53,075.54 0.00 0.92 42.25 53,570.37 53,283.50 0.00 0.54 115.87
75L-0.4-30 48,097.70 1,988.41 48,097.70 47,590.01 0.00 1.06 31.17 48,097.70 47,708.07 0.00 0.81 112.47
75L-0.8-30 43,645.17 932.62 43,645.17 43,645.17 0.00 0.00 21.60 43,645.17 43,645.17 0.00 0.00 51.52

75T-0.2-30 25,999.62 2,298.20 25,999.62 25,999.62 0.00 0.00 2.72 25,999.62 25,999.62 0.00 0.00 8.91
75T-0.6-30 25,999.62 872.35 25,999.62 25,999.62 0.00 0.00 2.90 25,999.62 25,999.62 0.00 0.00 8.00
75T-0.8-30 25,999.62 644.32 25,999.62 25,999.62 0.00 0.00 2.73 25,999.62 25,999.62 0.00 0.00 8.27

75L-0.2-50 131,831.98 3,464.41 131,831.98 130,596.85 0.00 0.94 72.01 131,831.98 130,771.82 0.00 0.80 193.11
75L-0.4-50 125,133.91 2,366.14 125,097.05 124,581.66 0.03 0.44 45.30 125,133.91 124,852.08 0.00 0.23 194.81
75L-0.6-50 120,693.62 2,571.40 120,693.62 120,605.87 0.00 0.07 46.10 120,693.62 120,638.19 0.00 0.05 126.84

75T-0.2-50 99,186.32 2,374.03 99,186.32 99,186.32 0.00 0.00 6.73 99,186.32 99,186.32 0.00 0.00 19.69
75T-0.4-50 99,186.32 1,561.35 99,186.32 99,186.32 0.00 0.00 5.92 99,186.32 99,186.32 0.00 0.00 18.58
75T-0.8-50 99,186.32 818.08 99,186.32 99,186.32 0.00 0.00 5.39 99,186.32 99,186.32 0.00 0.00 15.85

100L-0.2-20 17,616.73 9,427.82 17,616.73 16,904.36 0.00 4.04 31.70 17,616.73 17,295.80 0.00 1.82 156.61
100L-0.4-20 14,211.00 6,299.13 14,211.00 14,211.00 0.00 0.00 9.23 14,211.00 14,211.00 0.00 0.00 38.13
100L-0.8-20 13,603.42 1,874.36 13,603.42 13,603.42 0.00 0.00 3.50 13,603.42 13,603.42 0.00 0.00 9.94

100T-0.2-20 2,116.57 3,470.80 2,116.57 2,116.57 0.00 0.00 2.41 2,116.57 2,116.57 0.00 0.00 6.79
100T-0.6-20 2,116.57 1,781.70 2,116.57 2,116.57 0.00 0.00 2.26 2,116.57 2,116.57 0.00 0.00 7.08
100T-0.8-20 2,116.57 1,610.26 2,116.57 2,116.57 0.00 0.00 2.12 2,116.57 2,116.57 0.00 0.00 6.59

100L-0.4-30 47,173.46 6,411.47 47,173.46 46,775.31 0.00 0.84 67.55 47,173.46 47,077.29 0.00 0.20 265.53
100L-0.6-30 43,747.51 4,758.21 43,747.51 43,728.59 0.00 0.04 63.05 43,747.51 43,741.20 0.00 0.01 182.42
100L-0.8-30 42,790.52 3,290.31 42,790.52 42,790.52 0.00 0.00 38.12 42,790.52 42,790.52 0.00 0.00 101.23

100T-0.4-30 25,271.32 3,435.93 25,271.32 25,271.32 0.00 0.00 5.96 25,271.32 25,271.32 0.00 0.00 19.78
100T-0.6-30 25,271.32 2,457.55 25,271.32 25,271.32 0.00 0.00 6.33 25,271.32 25,271.32 0.00 0.00 21.10
100T-0.8-30 25,271.32 2,059.14 25,271.32 25,271.32 0.00 0.00 6.97 25,271.32 25,271.32 0.00 0.00 17.59

100L-0.2-50 130,437.81 21,249.75 130,421.44 128,476.56 0.01 1.50 125.42 130,437.81 129,730.18 0.00 0.54 580.39
100L-0.6-50 119,319.31 6,389.96 119,319.31 119,226.65 0.00 0.08 84.75 119,319.31 119,268.86 0.00 0.04 259.29
100L-0.8-50 117,676.01 3,889.53 117,676.01 117,674.98 0.00 0.00 57.93 117,676.01 117,673.95 0.00 0.00 139.02

100T-0.2-50 98,113.77 8,729.69 98,113.77 98,113.77 0.00 0.00 15.15 98,113.77 98,113.77 0.00 0.00 49.99
100T-0.4-50 98,113.77 4,295.65 98,113.77 98,113.77 0.00 0.00 16.33 98,113.77 98,113.77 0.00 0.00 40.51
100T-0.6-50 98,113.77 3,667.19 98,113.77 98,113.77 0.00 0.00 14.63 98,113.77 98,113.77 0.00 0.00 41.91

Average – 3,424.11 – – 0.00 0.30 23.56 – – 0.00 0.15 79.34
t
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Table 6
Shapiro–Wilk normality test with 95% confidence using average gap values.

𝛥ILS
𝑎𝑣𝑔 𝛥E-ILS

𝑎𝑣𝑔 𝛥ILS
𝑎𝑣𝑔 − 𝛥E-ILS

𝑎𝑣𝑔

𝑝-values 1.951e−13 8.051e−13 1.071e−14

5.1.5. Statistical comparison of the proposed algorithms
To compare the proposed algorithms, statistical tests were per-

formed using the average gap values (𝛥𝑎𝑣𝑔) obtained for instances
elonging to set 1, with 40, 50, 75, and 100 nodes. Fig. 7 shows the
oxplot graph of these values, reported in Tables 4 and 5. Note that
he distribution of the values of 𝛥𝑎𝑣𝑔 is asymmetric for both algorithms
nd that ILS-RVND has greater variability than E-ILS-RVND.

Table 6 shows the 𝑝-values of the Shapiro–Wilk normality test
Shapiro and Wilk, 1965), with 95% confidence, applied to the average
aps obtained by each algorithm and also for the difference of these
alues. According to the results in this table, the hypothesis of data
ormality can be rejected.

Therefore, to analyze these data, the Paired Wilcoxon Signed-Rank
est (Wilcoxon, 1945) was applied, using the procedure proposed by
ratt (1959) to deal with the significant amount of zeros present in our
ata sets. A confidence level of 95% was considered and the hypotheses
12

c

ested were:

𝐻0 ∶ the median of the average gaps of ILS-RVND is equal to
the median of the average gaps of E-ILS-RVND.

𝐻1 ∶ the median of the average gaps of ILS-RVND is greater than
the median of the average gaps of E-ILS-RVND.

(20)

The 𝑝-value obtained as a result of this test was equal to 𝑝 =
.794e−09. This result means that the null hypothesis was rejected by
he hypothesis test and, therefore, we can say that there is statistical
vidence, with 95% confidence, that the median value of the gaps of
LS-RVND is greater than the median value of the gaps of E-ILS-RVND.
hus, we conclude that, for the parameters provided by IRACE, there is
significant difference between the implemented algorithms concern-

ng the average gaps and that the lowest values of this statistic, and
onsequently, the best average values, were obtained by E-ILS-RVND.

.1.6. Results of step 2
In this step, computational experiments were carried out using the

P instances with 125, 150, 175, and 200 nodes. It used the same values
f revenue, installation costs of hubs and arcs between hubs, and the
onstant discount factor indicated in Section 5.1.1. For the parameters
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Fig. 5. Time spent by the Benders decomposition method and average times recorded by the proposed heuristic algorithms with AP instances — 40 to 100 nodes.
c
of the algorithms, the values obtained in the calibration performed in
Section 5.1.2 were used. These tests were carried out to analyze the
performance of the proposed algorithms when tackling larger instances.
The results of this step, referring to a single execution of the algorithms,
are given in Tables 7 and 8.

Table 7 shows the results for instances with 125 and 150 nodes. As
before, the results obtained with the Benders decomposition, reported
in Oliveira et al. (2022), are presented for the instances that the Ben-
ders decomposition algorithm was able to solve. For both algorithms
proposed here, we reported the objective function value for the solution
obtained by the algorithm (Value obtained), the relative gap between
the value reached by the algorithm, the optimal objective function
value registered by the exact method (𝛥), calculated by:

𝛥 = 100 ×
Optimal value − Value obtained by the algorithm

Optimal value , (21)

and the CPU time spent for the tested instances (Time).
The results in Tables 7(a) and 7(b) show that the two developed

lgorithms were able to tackle all the tested instances, while the
xact method did not solve 9 of them once it exceeded the available
emory of 16 GB. Regarding the quality of the solutions produced,
e see that the gap relative to the optimal solution (calculated only

or the instances solved by the Benders algorithm) was equal to zero
or most cases. Thus, the algorithms obtained the optimal value, with

single execution, for most of these instances. For the 125L-0.6-50
nstance, both ILS-RVND and E-ILS-RVND found better results than
hose achieved by the exact method due to the optimality gap tolerance.
dditionally, we see that the computational times spent by the heuristic
lgorithms are much better than the computational times recorded by
he exact method, especially for the more complex instances. Again,
he ILS-RVND computational times were lower than the E-ILS-RVND
13
omputational times. On the other hand, the values of 𝛥 obtained by
E-ILS-RVND were better than those obtained with ILS-RVND.

Table 8 reports the results for the computational experiments using
instances with 175 and 200 nodes. The objective function values of
the solution obtained with a single execution of the algorithms (Value
obtained) and the processing time spent to solve each instance (Time)
are presented. We emphasize that the largest instance size solved in the
literature so far for the PMHNDP, with the characteristics considered
in this work, is 150 nodes and, for this reason, there are no reference
values to perform a comparison with the results here presented, as
done previously. Tables 8(a) and 8(b) show that E-ILS-RVND obtained
solutions better than or equal to those found by ILS-RVND for most
instances. This slightly better performance is in agreement with the ob-
servations made in Section 5.1.5 concerning the quality of the solutions
provided by the developed algorithms. In addition, the E-ILS version
also registered the highest computational times.

5.2. Computational experiments using Group 2 data set

For evaluating the efficiency and limitations of the proposed algo-
rithms, computational tests were performed with the second group of
instances, which contains instances with up to 500 nodes. This group
of instances, proposed by Contreras et al. (2011a), consists of three
sets of instances, called Sets I, II, and III. The composition of these
sets considers three distinct levels of the amount of demand flows
originating in the network nodes: low level (LL), medium level (ML),
and high level (HL). The total flow originated at LL, ML, and HL nodes
belonging to the ranges [1, 10], [10, 100], and [100, 1000], respectively.
Set I is composed of 2% of HL nodes, 38% of ML nodes, and 60% of LL
nodes. Set II has 30% from HL nodes, 35% from ML nodes, and 35%
from LL nodes. Finally, in Set III, the number of HL, ML, and LL nodes is
0%, 1%, and 99% of the total number of nodes, respectively. Instances
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Fig. 6. Convergence of the proposed algorithms in some instances of the AP data set.
of Set I with 50, 100, 200, 300, 400, and 500 nodes were tested, and,
from Sets II and III, instances of size 50, 100, 150, and 200 were tested.

These data sets provide the amount of demand between the origin
and destination pairs (𝑤𝑖𝑗 ), the transportation cost in an arc connecting
a pair of nodes (𝑐𝑖𝑗 ), and the fixed costs of installing hubs (𝑠𝑘). For
revenue, the values 𝑟𝑖𝑗 ∈ {2, 3, 5} were considered. As defined for the
AP instances, the fixed costs for installing hub arcs (𝑔𝑘𝑚) were taken
to be 10% of the average of all fixed costs of installing hubs, and the
14

constant discount factor (𝛼) equal to 0.2, 0.4, 0.6, and 0.8.
5.2.1. Calibration of parameters using instances of Group 2

Since the characteristics of the Group 2 data set are different from
those presented by the AP instances, a new calibration of the parame-
ters of the algorithms was performed by IRACE, considering instances
of this new group. Table 9 shows the instances used in the calibration.
Note that only instances from Set I were submitted to IRACE, as we are
more interested in evaluating the performance of metaheuristics on the
largest available instances.
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For the IRACE execution, the following value ranges were con-
sidered for the parameters: 𝑖𝑡𝑒𝑟𝑀𝑎𝑥 ∈ {1, 2, 3, 4, 5} and 𝑡𝑖𝑚𝑒𝑠𝑀𝑎𝑥 ∈
{2, 3, 4, 5, 6}. IRACE returned 𝑖𝑡𝑒𝑟𝑀𝑎𝑥 = 1 for the ILS-RVND algorithm,
and 𝑖𝑡𝑒𝑟𝑀𝑎𝑥 = 4 and 𝑡𝑖𝑚𝑒𝑠𝑀𝑎𝑥 = 2 for the E-ILS-RVND algorithm.

5.2.2. Results for instances of Group 2 data set
The results of the computational experiments performed with the

instances of Group 2 are presented in Tables 10, 11, and 12, which
show the values obtained and the runtime of each algorithm for the
instances belonging to Sets I, II, and III, respectively. These values refer
to a single execution of the algorithms. These tables also show the
relative deviation between the objective function values of the solutions
obtained by the algorithms, given by:

𝛥𝑣𝑎𝑙 = 100 ×
𝑉𝐸−𝐼𝐿𝑆 − 𝑉𝐼𝐿𝑆

𝑉𝐸−𝐼𝐿𝑆
, (22)

here 𝑉𝐸−𝐼𝐿𝑆 and 𝑉𝐼𝐿𝑆 are the objective function values for the
est solution obtained by E-ILS-RVND and ILS-RVND, respectively. As
reviously done, the instances used in the parameter calibration were
xcluded.

In Table 10, we notice that the proposed algorithms presented
similar behavior pattern for all sizes of analyzed instances. The

alues obtained by them were relatively close for most cases, as can
e seen by the small values of 𝛥𝑣𝑎𝑙. For some instances, solutions
aving the same objective function value were obtained. E-ILS-RVND
btained the best solutions for most instances. However, there were
ases where ILS-RVND had a more satisfactory performance than E-ILS-
VND, generating negative deviation values (highlighted in bold). As
xpected, ILS-RVND recorded better computational times. Furthermore,
he difference between the computational times spent by the algorithms
ecomes more expressive as the instance size increases.

The results of the tests performed with the instances of Sets II and
II are shown, respectively, in Tables 11 and 12. Analogous remarks
egarding the performance of the algorithms in solving the instances
f Set I can be made for these two sets. The objective function values
f the best solutions found by the algorithms for each instance are
ery close. The best solutions were achieved by E-ILS-RVND, except
or those values corresponding to negative 𝛥𝑣𝑎𝑙 (highlighted in bold).
he shortest runtimes were obtained by ILS-RVND.
15
The experiments with the Group 2 data set, which include large-
cale instances, show that the two proposed algorithms have a good
omputational performance and were able to generate solutions for
ll tested instances in reasonable computational times. The results
btained are in accordance with the statistical analysis performed
reviously, in which the E-ILS-RVND stood out, generating the best
alues for the objective function.

Finally, it is worth comparing the results obtained between the AP
nstances and the Group 2 data set. In the AP data set, several instances
ad coincident objective values (notably those with tight cost and some
ith 𝛼 equal to 0.6 and 0.8). This particularity is not observed for

instances of Group 2, which suggests that instances from this group are
more challenging for PMHNDP than instances belonging to the AP data
set. In fact, these data sets present significant differences regarding the
amount of flow that is sent between the network nodes and the fixed
costs of installation of the hubs.

6. Conclusions

This paper presented two heuristic algorithms based on local search
and systematic exchanges of neighborhood structures to deal with the
uncapacitated hub network design problem with an incomplete inter-
hub network, focusing on profit maximization and also comparing the
results with those presented in the literature so far. Both are ILS-
based algorithms. The first, named ILS-RVND, is a classic version of
the ILS metaheuristic that uses RVND as the local search method. The
second, named E-ILS-RVND, is an enhanced version of ILS and performs
greater intensification. Computational experiments were performed on
two reference data sets from the hub location literature. An analysis of
the neighborhood structures used in the proposed algorithms was also
carried out.

The results of the computational experiments showed that the two
proposed algorithms have a good performance and were able to solve
instances with up to 500 nodes. For the set of instances that have
optimal values indicated in the literature by an exact method (including
instances with up to 150 nodes), it was found that both algorithms
reached optimality for most cases in much shorter times. Notably, this
difference in times is more expressive in the resolution of more complex
instances and significantly increases with the number of nodes in the

network.
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Table 7
Results for AP instances with 125 and 150 nodes in one execution of heuristic algorithms.

(a) AP - 125

Instances Benders ILS-RVND E-ILS-RVND

Optimal
value

Time (s) Value
obtained

𝛥(%) Time (s) Value
obtained

𝛥(%) Time (s)

125L-0.2-20 19,751.55 26,482.87 19,659.82 0.46 113.05 19,751.55 0.00 735.44
125L-0.4-20 16,272.93 12,272.01 16,272.93 0.00 23.34 16,272.93 0.00 601.82
125L-0.6-20 15,028.67 8,180.95 15,028.67 0.00 20.20 15,028.67 0.00 77.65
125L-0.8-20 14,966.38 5,693.27 14,966.38 0.00 24.19 14,966.38 0.00 88.84

125T-0.2-20 7,169.77 8,600.38 7,169.77 0.00 12.52 7,169.77 0.00 17.97
125T-0.4-20 7,169.77 6,907.87 7,169.77 0.00 4.83 7,169.77 0.00 11.31
125T-0.6-20 7,169.77 4,863.38 7,169.77 0.00 5.02 7,169.77 0.00 14.77
125T-0.8-20 7,169.77 4,306.39 7,169.77 0.00 11.87 7,169.77 0.00 14.57

125L-0.2-30 54,503.08 53,161.89 54,503.08 0.00 289.63 54,503.08 0.00 1,078.72
125L-0.4-30 49,301.78 21,207.46 48,996.37 0.62 103.80 49,301.78 0.00 469.95
125L-0.6-30 45,861.48 14,901.48 45,606.25 0.56 114.13 45,828.04 0.07 234.34
125L-0.8-30 44,820.26 7,325.15 44,820.26 0.00 83.20 44,820.26 0.00 175.02

125T-0.2-30 29,586.11 10,352.58 29,586.11 0.00 4.56 29,586.11 0.00 17.85
125T-0.4-30 29,586.11 8,333.74 29,586.11 0.00 3.56 29,586.11 0.00 8.43
125T-0.6-30 29,586.11 6,955.91 29,586.11 0.00 3.92 29,586.11 0.00 16.01
125T-0.8-30 29,586.11 5,645.32 29,586.11 0.00 5.75 29,586.11 0.00 14.53

125L-0.2-50 – mem 129,067.23 – 162.69 132,339.32 – 861.93
125L-0.4-50 126,103.54 28,117.28 124,072.92 1.61 246.25 125,672.24 0.34 381.05
125L-0.6-50 120,985.82 17,584.78 121,371.50 −0.32 404.60 121,250.65 −0.22 408.82
125L-0.8-50 119,696.69 10,761.85 119,696.69 0.00 61.21 119,696.69 0.00 376.70

125T-0.2-50 93,251.38 16,541.83 93,251.38 0.00 3.97 93,251.38 0.00 14.27
125T-0.4-50 93,251.38 11,164.57 93,251.38 0.00 3.60 93,251.38 0.00 21.08
125T-0.6-50 93,251.38 7,742.55 93,251.38 0.00 10.53 93,251.38 0.00 16.11
125T-0.8-50 93,251.38 6,421.03 93,251.38 0.00 3.01 93,251.38 0.00 12.47

Average – 13,196.72 – 0.13 71.64 – 0.01 236.24

(b) AP - 150

Instances Benders ILS-RVND E-ILS-RVND

Optimal
value

Time (s) Value
obtained

𝛥(%) Time (s) Value
obtained

𝛥(%) Time (s)

150L-0.2-20 – mem 18,739.29 – 285.22 18,973.30 – 729.78
150L-0.4-20 15,557.64 30,078.62 15,243.01 2.02 19.55 15,557.64 0.00 194.00
150L-0.6-20 14,446.68 29,523.28 14,446.68 0.00 29.05 14,446.68 0.00 138.36
150L-0.8-20 14,434.49 13,859.46 14,434.49 0.00 16.76 14,434.49 0.00 57.00

150T-0.2-20 10,913.35 33,412.04 10,913.35 0.00 16.62 10,913.35 0.00 54.92
150T-0.4-20 10,913.35 21,305.05 10,913.35 0.00 23.89 10,913.35 0.00 83.73
150T-0.6-20 10,913.35 16,679.75 10,913.35 0.00 15.34 10,913.35 0.00 71.19
150T-0.8-20 10,913.35 15,581.67 10,913.35 0.00 23.77 10,913.35 0.00 172.65

150L-0.2-30 – mem 53,534.30 – 493.97 53,534.30 – 1,323.67
150L-0.4-30 – mem 48,341.55 – 423.38 48,416.84 – 1,505.64
150L-0.6-30 – 43,851.14 45,095.07 – 182.24 45,095.07 – 901.81
150L-0.8-30 43,931.25 26,252.31 43,931.25 0.00 105.01 43,931.25 0.00 294.23

150T-0.2-30 – 64,565.21 38,270.84 – 36.77 38,270.84 – 118.20
150T-0.4-30 38,270.84 25,887.18 38,270.84 0.00 37.04 38,270.84 0.00 155.21
150T-0.6-30 38,270.84 17,370.94 38,270.84 0.00 42.16 38,270.84 0.00 270.40
150T-0.8-30 38,270.84 14,019.36 38,270.84 0.00 45.15 38,270.84 0.00 104.52

150L-0.2-50 – mem 131,483.79 – 322.46 131,798.37 – 2,774.00
150L-0.4-50 – mem 124,640.80 – 266.50 125,363.36 – 1,950.75
150L-0.6-50 – mem 120,622.81 – 101.43 120,720.20 – 869.58
150L-0.8-50 118,924.32 29,908.91 118,924.32 0.00 102.62 118,924.32 0.00 314.40

150T-0.2-50 – mem 112,647.50 – 46.21 112,647.50 – 261.60
150T-0.4-50 111,248.30 35,371.05 111,248.30 0.00 62.88 111,248.30 0.00 253.51
150T-0.6-50 111,248.30 25,300.32 111,248.30 0.00 96.22 111,248.30 0.00 293.66
150T-0.8-50 111,248.30 17,870.28 111,248.30 0.00 80.86 111,248.30 0.00 205.51

Average – 27,108.03 – 0.13 119.80 – 0.00 545.76

Note. mem, 16 GB memory exceeded with exact method.
16
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Table 8
Results for the AP instances with 175 and 200 nodes in one execution of heuristic algorithms.

(a) AP - 175

Instances ILS-RVND E-ILS-RVND

Value obtained Time (s) Value obtained Time (s)

175L-0.2-20 19,167.00 259.14 19,210.26 1,276.93
175L-0.4-20 15,657.97 278.95 15,144.71 117.81
175L-0.6-20 14,551.17 12.91 14,551.17 44.10
175L-0.8-20 14,551.17 29.92 14,551.17 51.17

175T-0.2-20 14,054.94 92.60 14,054.94 341.65
175T-0.4-20 14,054.94 83.84 14,054.94 543.05
175T-0.6-20 14,054.94 89.37 14,054.94 263.83
175T-0.8-20 14,054.94 159.46 14,054.94 238.73

175L-0.2-30 53,748.27 381.50 53,589.90 1,250.67
175L-0.4-30 48,493.12 372.78 48,493.12 698.45
175L-0.6-30 45,583.63 113.52 45,583.63 1,088.18
175L-0.8-30 44,655.02 412.45 44,655.02 952.29

175T-0.2-30 42,592.04 271.12 42,592.04 259.47
175T-0.4-30 42,592.04 91.71 42,592.04 186.74
175T-0.6-30 42,592.04 86.88 42,592.04 221.34
175T-0.8-30 42,592.04 137.67 42,592.04 207.10

175L-0.2-50 130,316.46 794.28 131,500.97 4,964.69
175L-0.4-50 124,929.44 555.34 125,049.72 1,806.91
175L-0.6-50 119,295.45 351.52 121,181.71 2,158.86
175L-0.8-50 119,621.18 218.36 119,621.18 804.21

175T-0.2-50 117,120.33 307.13 117,120.33 387.83
175T-0.4-50 116,629.93 274.11 116,629.93 665.10
175T-0.6-50 116,629.93 288.14 116,629.93 762.75
175T-0.8-50 116,629.93 261.31 116,629.93 735.57

Average – 246.83 – 834.48

(b) AP - 200

Instances ILS-RVND E-ILS-RVND

Value obtained Time (s) Value obtained Time (s)

200L-0.2-20 17,821.16 623.40 17,821.16 969.42
200L-0.4-20 14,046.07 44.28 14,046.07 110.22
200L-0.6-20 13,529.70 37.66 13,529.70 86.63
200L-0.8-20 13,529.70 13.53 13,529.70 45.33

200T-0.2-20 7,392.64 39.48 7,392.64 167.61
200T-0.4-20 7,392.64 35.58 7,392.64 250.60
200T-0.6-20 7,392.64 39.36 7,392.64 209.99
200T-0.8-20 7,392.64 37.10 7,392.64 257.03

200L-0.2-30 52,407.80 1,521.70 51,673.85 2,169.97
200L-0.4-30 47,196.18 384.77 47,342.11 3,458.44
200L-0.6-30 43,723.12 308.19 44,199.47 2,211.10
200L-0.8-30 43,210.86 327.22 43,210.86 586.86

200T-0.2-30 35,317.26 435.97 35,317.26 949.72
200T-0.4-30 35,317.26 300.23 35,317.26 810.99
200T-0.6-30 35,317.26 246.19 35,317.26 559.84
200T-0.8-30 35,317.26 267.67 35,317.26 694.00

200L-0.2-50 128,770.70 565.30 130,289.39 7,211.59
200L-0.4-50 123,258.31 993.45 123,693.40 4,064.11
200L-0.6-50 119,353.97 156.95 119,353.97 921.04
200L-0.8-50 118,105.97 364.34 118,105.97 1,141.47

200T-0.2-50 109,833.88 442.85 109,833.88 890.81
200T-0.4-50 109,676.37 442.92 109,676.37 935.93
200T-0.6-50 109,676.37 357.82 109,676.37 1,545.97
200T-0.8-50 109,676.37 904.77 109,676.37 1,449.05

Average – 370.45 – 1,320.74
Table 9
Set of instances from Group 2 data set submitted to
IRACE.

Instances 𝛼 Revenue

50-I 0.2 2
50-I 0.4 3
50-I 0.8 5

100-I 0.2 2
100-I 0.6 3
100-I 0.4 5

Considering the parameters indicated in calibration with IRACE,
-ILS-RVND generally obtained better solutions than ILS-RVND, as
ndicated by the presented statistical analysis. In addition, as showed
n Fig. 6, it proved to be faster in the convergence tests. On the other
and, ILS-RVND achieved the shortest computational times.

An additional set of experiments was performed to run the ILS-
VND algorithm with the same number of iterations indicated by

RACE for the E-ILS-RVND algorithm. According to the results of this
xperiment, presented in Appendix A, there was an improvement in the
verage quality of the obtained solutions provided by this algorithm,
espite increasing the runtime. However, as the PMHNDP is a strategic
lanning problem, the most significant criterion for selecting a solution
rocedure is to obtain good-quality solutions. Therefore, considering
hat, in a real application, a greater number of iterations can be
erformed to improve the quality of the solutions, we concluded that
oth algorithms are equally promising for solving instances of the
MHNDP that cannot be solved via exact methods. The analysis of the
eighborhood structures demonstrated that the use together of the six
eighborhoods, as implemented in the proposed algorithms, allowed
hem to obtain better results.

In future works, a heuristic hybrid algorithm can be developed,
ombining one of the heuristic algorithms with an exact method. An-
ther promising research direction is to incorporate machine learning
echniques with the proposed algorithms to make them more efficient.
17
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Appendix A. Additional tests with ILS-RVND

In order to complement the analysis between the proposed al-
gorithms, we performed additional experiments with the ILS-RVND
algorithm, considering the maximum number of iterations equal to 4
(𝑖𝑡𝑒𝑟𝑀𝑎𝑥 = 4), which is the same value used for the algorithm E-ILS-
RVND (indicated in parameter calibration with IRACE). The results for
30 runs are shown in Tables A.13 and A.14.

According to the two tables, we can conclude that by increasing the
maximum number of iterations of the ILS-RVND, it presented values for
the mean gaps lower than those obtained by the E-ILS-RVND algorithm.
On the other hand, the times spent by E-ILS-RVND to solve the instances
were, in general, better than the times recorded by ILS-RVND.

Appendix B. Supplementary tests allowing direct connections be-
tween non-hub nodes

In this section, we present the results for supplementary computa-
tional experiments, considering the PMHNDP version in which direct
connections between non-hub nodes are allowed. To present a formu-
lation for the problem in this case, consider the flow variables 𝑒 ≥ 0,
𝑖𝑗
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Table 10
Results for instances of Set I with one execution of the heuristic algorithms.

(a) 50 nodes — Set I

Instances ILS-RVND E-ILS-RVND 𝛥𝑣𝑎𝑙

Value obtained Time (s) Value obtained Time (s)

50I-0.4-2 77,217.69 12.50 77,732.47 26.11 0.66
50I-0.6-2 75,114.36 9.44 75,309.05 35.56 0.26
50I-0.8-2 74,523.89 2.44 74,523.89 7.94 0.00

50I-0.2-3 137,623.85 3.62 138,232.96 91.80 0.44
50I-0.6-3 131,793.36 9.23 131,690.02 10.08 −0.08
50I-0.8-3 131,008.19 2.02 131,128.35 29.06 0.09

50I-0.2-5 250,906.19 30.14 251,181.08 48.05 0.11
50I-0.4-5 246,669.11 10.23 247,185.38 28.90 0.21
50I-0.6-5 244,292.56 7.43 244,761.96 43.12 0.19

Average – 9.67 – 35.62 0.21

(b) 100 nodes — Set I

Instances ILS-RVND E-ILS-RVND 𝛥𝑣𝑎𝑙

Value obtained Time (s) Value obtained Time (s)

100I-0.4-2 790,670.17 96.63 802,917.07 217.16 1.53
100I-0.6-2 763,608.46 23.26 767,157.51 54.24 0.46
100I-0.8-2 745,225.66 26.45 744,299.04 33.10 −0.12

100I-0.2-3 1,423,583.81 148.74 1,423,583.81 255.96 0.00
100I-0.4-3 1,373,862.17 59.13 1,377,298.93 581.56 0.25
100I-0.8-3 1,318,680.89 48.65 1,321,552.28 114.17 0.22

100I-0.2-5 2,572,347.52 66.58 2,572,347.52 324.51 0.00
100I-0.6-5 2,490,303.08 98.75 2,490,303.08 130.72 0.00
100I-0.8-5 2,467,444.60 11.91 2,468,371.23 78.70 0.04

Average – 64.46 – 198.90 0.26

(c) 200 nodes — Set I

Instances ILS-RVND E-ILS-RVND 𝛥𝑣𝑎𝑙

Value obtained Time (s) Value obtained Time (s)

200I-0.2-2 4,631,395.48 1,529.50 4,666,588.74 5,018.50 0.75
200I-0.4-2 4,421,528.73 707.08 4,422,849.27 4,981.46 0.03
200I-0.6-2 4,298,026.62 821.67 4,298,026.62 2,072.66 0.00
200I-0.8-2 4,243,732.28 272.03 4,243,732.28 714.44 0.00

200I-0.2-3 7,720,479.41 1,149.81 7,751,553.83 9,681.17 0.40
200I-0.4-3 7,515,014.17 830.14 7,536,319.93 5,664.98 0.28
200I-0.6-3 7,409,976.78 1,520.70 7,399,117.69 1,229.63 −0.15
200I-0.8-3 7,355,682.44 591.09 7,355,682.44 927.59 0.00

200I-0.2-5 13,909,304.25 939.88 13,999,838.74 5,683.88 0.65
200I-0.4-5 13,746,009.64 1,705.43 13,752,003.98 7,757.97 0.04
200I-0.6-5 13,622,747.37 597.73 13,633,877.10 2,492.49 0.08
200I-0.8-5 13,579,582.75 256.31 13,579,582.75 1,203.51 0.00

Average – 910.11 – 3,952.36 0.17

(d) 300 nodes — Set I

Instances ILS-RVND E-ILS-RVND 𝛥𝑣𝑎𝑙

Value obtained Time (s) Value obtained Time (s)

300I-0.2-2 3,526,706.83 1,509.78 3,524,133.20 8,780.41 −0.07
300I-0.4-2 3,353,065.27 960.52 3,377,016.49 16,822.64 0.71
300I-0.6-2 3,272,038.48 3,787.93 3,277,996.23 8,675.06 0.18
300I-0.8-2 3,241,783.16 596.07 3,241,783.16 2,786.03 0.00

300I-0.2-3 5,985,630.44 6,375.69 6,007,718.34 25,574.22 0.37
300I-0.4-3 5,829,035.93 1,710.54 5,855,920.97 23,611.59 0.46
300I-0.6-3 5,731,890.56 2,727.01 5,735,910.27 11,872.46 0.07
300I-0.8-3 5,710,595.42 712.84 5,710,595.42 10,149.97 0.00

300I-0.2-5 10,933,143.60 6,475.64 10,936,100.20 15,935.69 0.03
300I-0.4-5 10,778,553.38 2,060.72 10,771,288.78 17,978.79 −0.07
300I-0.6-5 10,668,308.95 1,207.74 10,677,969.98 7,973.00 0.09
300I-0.8-5 10,643,731.41 4,286.06 10,648,219.93 5,029.38 0.04

Average – 2,700.88 – 12,932.44 0.15

(e) 400 nodes — Set I

Instances ILS-RVND E-ILS-RVND 𝛥𝑣𝑎𝑙

Value obtained Time (s) Value obtained Time (s)

400I-0.2-2 10,989,150.28 50,772.17 11,086,081.53 88,276.80 0.87
400I-0.4-2 10,393,134.66 24,761.86 10,452,267.96 34,680.14 0.57
400I-0.6-2 10,135,089.81 23,951.83 10,142,039.10 15,850.21 0.07
400I-0.8-2 10,026,350.29 4,844.62 10,026,350.29 8,737.47 0.00

400I-0.2-3 18,502,620.72 15,377.89 18,469,380.75 50,390.81 −0.18
400I-0.4-3 17,838,839.26 2,116.92 17,983,702.96 79,472.15 0.81
400I-0.6-3 17,614,319.97 19,848.56 17,635,370.90 29,278.07 0.12
400I-0.8-3 17,550,611.66 2,903.55 17,529,294.36 10,064.29 −0.12

400I-0.2-5 33,515,907.53 16,914.60 33,584,583.49 177,312.48 0.20
400I-0.4-5 32,973,773.25 17,349.76 32,994,369.21 30,014.38 0.06
400I-0.6-5 32,608,910.67 9,712.87 32,650,871.30 26,434.39 0.13
400I-0.8-5 32,556,499.79 4,766.40 32,556,499.79 9,751.93 0.00

Average – 16,110.09 – 46,688.59 0.21

(f) 500 nodes — Set I

Instances ILS-RVND E-ILS-RVND 𝛥𝑣𝑎𝑙

Value obtained Time (s) Value obtained Time (s)

500I-0.2-2 18,188,071.64 13,011.14 18,272,245.67 34,574.73 0.46
500I-0.4-2 17,462,617.99 32,533.31 17,449,106.51 32,974.28 −0.08
500I-0.6-2 16,867,449.69 14,447.20 16,890,954.22 37,708.11 0.14
500I-0.8-2 16,714,075.60 4,167.47 16,745,516.47 22,799.63 0.19

500I-0.2-3 30,587,171.24 25,850.80 30,654,613.37 71,533.96 0.22
500I-0.4-3 29,836,179.86 36,600.85 29,804,132.93 50,084.30 −0.11
500I-0.6-3 29,253,593.32 11,410.05 29,273,321.92 46,675.58 0.07
500I-0.8-3 29,127,884.17 7,334.69 29,127,884.17 19,586.55 0.00

500I-0.2-5 55,419,348.77 3,564.65 55,505,871.34 122,510.53 0.16
500I-0.4-5 54,596,209.60 26,141.31 54,596,209.60 60,603.05 0.00
500I-0.6-5 54,014,552.79 19,699.53 54,058,234.26 110,677.72 0.08
500I-0.8-5 53,892,619.56 10,684.33 53,892,619.56 18,532.87 0.00

Average – 17,120.44 – 52,355.11 0.09
which represent the fraction of the demand that is routed through
the direct connection between non-hub nodes with origin 𝑖 ∈ 𝑁 and
destination 𝑗 ∈ 𝑁 . A formulation for this version of the problem is
given by

max
∑

𝑖∈𝑁

∑

𝑗∈𝑁
𝑤𝑖𝑗

[

∑

𝑘∈𝑁
(𝑟𝑖𝑗 − 𝑐𝑖𝑘)𝑎𝑖𝑗𝑘 + (𝑟𝑖𝑗 − 𝑐𝑖𝑗 )𝑒𝑖𝑗 −

∑

𝑚∈𝑁
𝑐𝑚𝑗𝑏𝑖𝑗𝑚

−
∑

𝑘∈𝑁

∑

𝑚∈𝑁
𝑚≠𝑘

𝛼𝑐𝑘𝑚𝑥𝑖𝑗𝑘𝑚

]

−
∑

𝑘∈𝑁
𝑠𝑘ℎ𝑘 −

∑

𝑘∈𝑁

∑

𝑚∈𝑁

𝑔𝑘𝑚𝑧𝑘𝑚 (B.1)
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𝑚≠𝑘
s. t. (4)–(14) (B.2)
∑

𝑘∈𝑁
𝑎𝑖𝑗𝑘 + 𝑒𝑖𝑗 ≤ 1 ∀ 𝑖, 𝑗 ∈ 𝑁 (B.3)

∑

𝑚∈𝑁
𝑏𝑖𝑗𝑚 + 𝑒𝑖𝑗 ≤ 1 ∀ 𝑖, 𝑗 ∈ 𝑁 (B.4)

𝑒𝑖𝑗 + ℎ𝑖 ≤ 1 ∀ 𝑖, 𝑗 ∈ 𝑁 (B.5)

𝑒𝑖𝑗 + ℎ𝑗 ≤ 1 ∀ 𝑖, 𝑗 ∈ 𝑁 (B.6)

𝑒𝑖𝑗 ≥ 0 ∀ 𝑖, 𝑗 ∈ 𝑁. (B.7)

The objective function (B.1) minimizes the profit of the hub net-
work, given by the difference between the revenue (obtained from
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Table 11
Results for instances of Set II with one execution of the heuristic algorithms.

(a) 50 nodes — Set II

Instances ILS-RVND E-ILS-RVND 𝛥𝑣𝑎𝑙

Value obtained Time (s) Value obtained Time (s)

50II-0.2-2 1,078,493.97 15.90 1,096,305.43 142.03 1.62
50II-0.4-2 1,044,987.43 10.18 1,043,044.74 21.37 −0.19
50II-0.6-2 1,010,804.75 22.66 1,011,266.51 44.23 0.05
50II-0.8-2 997,795.36 9.58 997,795.36 19.40 0.00

50II-0.2-3 1,820,504.31 125.74 1,823,909.08 210.25 0.19
50II-0.4-3 1,769,953.82 35.24 1,766,775.85 101.03 −0.18
50II-0.6-3 1,734,535.86 27.18 1,734,997.62 35.12 0.03
50II-0.8-3 1,721,526.47 6.98 1,721,526.47 12.68 0.00

50II-0.2-5 3,270,816.56 77.16 3,267,966.53 93.45 −0.09
50II-0.4-5 3,216,180.76 14.38 3,217,416.05 67.02 0.04
50II-0.6-5 3,178,256.69 8.13 3,181,998.08 50.90 0.12
50II-0.8-5 3,168,988.70 6.14 3,168,988.70 12.65 0.00

Average – 29.94 – 67.51 0.13

(b) 100 nodes — Set II

Instances ILS-RVND E-ILS-RVND 𝛥𝑣𝑎𝑙

Value obtained Time (s) Value obtained Time (s)

100II-0.2-2 6,032,852.76 276.26 6,062,719.60 1,458.89 0.49
100II-0.4-2 5,700,582.26 287.03 5,731,602.73 531.37 0.54
100II-0.6-2 5,513,735.77 143.62 5,503,613.22 288.17 −0.18
100II-0.8-2 5,410,472.43 41.46 5,410,472.43 133.43 0.00

100II-0.2-3 10,115,922.05 419.81 10,153,544.95 471.66 0.37
100II-0.4-3 9,790,236.13 192.09 9,857,119.23 671.12 0.68
100II-0.6-3 9,589,165.47 43.62 9,618,581.28 464.94 0.31
100II-0.8-3 9,520,971.77 52.79 9,520,971.77 111.78 0.00

100II-0.2-5 18,378,814.61 164.11 18,404,782.60 1,011.73 0.14
100II-0.4-5 18,031,300.81 82.64 18,051,863.15 223.52 0.11
100II-0.6-5 17,821,888.65 139.92 17,835,111.24 582.99 0.07
100II-0.8-5 17,722,352.97 97.61 17,741,970.45 268.55 0.11

Average – 161.75 – 518.18 0.22

(c) 150 nodes — Set II

Instances ILS-RVND E-ILS-RVND 𝛥𝑣𝑎𝑙

Value obtained Time (s) Value obtained Time (s)

150II-0.2-2 12,993,821.36 438.22 13,143,130.27 1,106.36 1.14
150II-0.4-2 12,395,244.13 260.83 12,512,091.88 1,307.95 0.93
150II-0.6-2 11,959,400.21 266.65 11,959,400.21 147.94 0.00
150II-0.8-2 11,747,054.03 110.24 11,766,006.72 163.22 0.16

150II-0.2-3 22,039,402.89 755.68 22,157,343.46 2,837.30 0.53
150II-0.4-3 21,519,169.05 1,543.64 21,511,651.27 1,618.10 −0.03
150II-0.6-3 20,931,032.34 164.82 21,049,480.90 1,087.10 0.56
150II-0.8-3 20,833,281.45 402.06 20,833,281.45 626.38 0.00

150II-0.2-5 40,122,708.87 477.42 40,228,677.37 2,947.76 0.26
150II-0.4-5 39,383,521.04 216.89 39,567,597.54 1,102.17 0.47
150II-0.6-5 39,032,042.94 177.78 39,097,909.39 751.96 0.17
150II-0.8-5 38,819,696.76 113.87 38,881,709.94 903.16 0.16

Average – 410.68 – 1,216.62 0.36

(d) 200 nodes — Set II

Instances ILS-RVND E-ILS-RVND 𝛥𝑣𝑎𝑙

Value obtained Time (s) Value obtained Time (s)

200II-0.2-2 27,259,702.02 703.09 27,482,530.69 7,053.16 0.81
200II-0.4-2 26,215,802.33 1,717.40 26,234,968.77 5,831.13 0.07
200II-0.6-2 25,408,802.54 623.38 25,543,771.95 2,102.02 0.53
200II-0.8-2 25,335,140.22 831.89 25,335,140.22 1,427.59 0.00

200II-0.2-3 46,052,260.84 1,177.19 46,087,937.66 1,603.46 0.08
200II-0.4-3 44,874,854.65 635.49 45,028,459.52 14,027.97 0.34
200II-0.6-3 44,260,313.73 871.73 44,215,871.55 4,852.86 −0.10
200II-0.8-3 44,094,798.10 540.85 44,094,798.10 1,434.80 0.00

200II-0.2-5 83,639,643.44 4,908.87 83,738,733.15 3,459.27 0.12
200II-0.4-5 82,365,303.87 1,647.57 82,542,766.58 4,133.30 0.21
200II-0.6-5 81,785,397.85 2,101.31 81,730,036.45 2,804.91 −0.07
200II-0.8-5 81,610,893.36 464.84 81,614,113.85 881.48 0.00

Average – 410.68 – 4,134.33 0.17
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pairs served through the hubs and also from those served through
direct connections) and the costs associated with the network design.
Constraints (B.3) and (B.4) ensure that the demand flow between a
given origin and destination pair will be sent through hubs or direct
connections. The set of constraints (B.5) and (B.6) guarantee that the
demand between a pair of nodes will be served through a direct con-
nection only when these nodes are not hubs installed in the network.
Finally, the constraints (B.7) represent the domain of the variables 𝑒𝑖𝑗 .

The computational experiments were performed with the E-ILS-
VND algorithm, applied to solve AP instances of 25 nodes. The al-
orithm uses the same parameters presented in Section 5.1.2. The
valuation of the objective function requires the profit obtained by the
airs of nodes served through direct connections. Hence, the value of
he minimum transportation cost to route a flow unit between the pair
𝑖, 𝑗) (Eq. (17)) was replaced by

𝑖𝑗 = min
{

𝑐𝑖𝑗 , min
𝑘,𝑚∈𝐻

{

𝑐𝑖𝑘 + 𝐶𝐹𝑊
𝑘𝑚 + 𝑐𝑚𝑗

}

}

. (B.8)

Table B.15 presents the results of this set of experiments. The first
art of the table shows the results with CPLEX. The column ‘‘Total
airs served’ shows, in percentage, the total amount of pairs of nodes
hat were served, while the column ‘‘Pairs served - DC’ displays the
ercentage of pairs that were served through direct connections. Then,
he nodes selected to be hubs and the runtime, in seconds, are informed.
he second part of the table presents the results for 30 executions of the
-ILS-RVND.
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The results from Table B.15 illustrate some impacts in solving the
roblem by allowing direct connections between non-hub nodes. Note
hat for instances with cost Tight and revenue equal to 20, no hub
s installed in the network, and consequently demand from serviced
airs is sent exclusively through direct connections. For these cases, the
rade-off between cost and revenue showed that it is more profitable to
onsider a network without hubs and hub arcs. Also, note that for these
nstances the lowest percentage of served pairs was obtained (30.88%).

As expected, for each type of fixed cost for installing hubs and
iscount factor in the hub arcs, the increase in revenue causes an
ncrease in the number of pairs served and also in the value of the
bjective function. Note that even with the higher values for revenue
30 and 50), the number of pairs served through direct connections is
uch lower than the number of pairs served with hubs. For example,

or the instance 25L-0.2-50, we have 100% of node pairs served, with
nly 11% for direct connections.

Regarding the performance of the E-ILS-RVND algorithm applied to
he problem with direct connections, Table B.15 shows that it obtained
good performance for most instances, except for those instances in
hich no hub is installed on the network. This is because the imple-
ented algorithm admits solutions that necessarily have at least one
ub installed in the network. During the execution of the algorithm, if
ll hubs are removed from the network, a node is randomly chosen and
nstalled as a hub. This mechanism was adopted considering the prob-
em originally discussed in this study, where direct connections were
ot allowed. In addition, this mechanism contributes to the success of
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Table 12
Results for instances of Set III with one execution of the heuristic algorithms.

(a) 50 nodes — Set III

Instances ILS-RVND E-ILS-RVND 𝛥𝑣𝑎𝑙

Value obtained Time (s) Value obtained Time (s)

50III-0.2-2 206,070.12 54.53 204,814.51 108.80 −0.61
50III-0.4-2 195,110.04 24.23 194,643.67 30.84 −0.24
50III-0.6-2 186,661.14 3.03 187,467.18 25.07 0.43
50III-0.8-2 185,035.52 4.65 185,237.56 28.02 0.11

50III-0.2-3 344,245.94 33.31 344,245.94 125.87 0.00
50III-0.4-3 333,285.86 32.42 332,290.02 31.02 −0.30
50III-0.6-3 324,882.00 6.16 325,653.38 57.37 0.24
50III-0.8-3 323,413.39 7.94 323,413.39 34.36 0.00

50III-0.2-5 620,597.59 22.33 620,597.59 90.41 0.00
50III-0.4-5 608,641.66 6.02 609,637.50 113.92 0.16
50III-0.6-5 601,994.65 4.97 602,025.73 119.05 0.01
50III-0.8-5 599,765.03 8.29 599,562.99 16.90 −0.03

Average – 17.32 – 65.14 −0.02

(b) 100 nodes — Set III

Instances ILS-RVND E-ILS-RVND 𝛥𝑣𝑎𝑙

Value obtained Time (s) Value obtained Time (s)

100III-0.2-2 821,985.68 190.02 821,985.68 764.54 0.00
100III-0.4-2 766,259.28 40.87 778,776.32 853.59 1.61
100III-0.6-2 744,751.66 102.20 744,751.66 398.01 0.00
100III-0.8-2 736,015.82 42.63 737,607.81 85.90 0.22

100III-0.2-3 1,384,128.42 169.92 1,384,128.42 344.65 0.00
100III-0.4-3 1,339,705.40 255.55 1,340,919.06 2,097.45 0.09
100III-0.6-3 1,308,783.64 98.69 1,310,031.95 430.14 0.10
100III-0.8-3 1,300,454.66 237.65 1,300,454.66 191.14 0.00

100III-0.2-5 2,501,885.36 230.74 2,508,413.88 380.90 0.26
100III-0.4-5 2,463,321.44 170.61 2,465,204.52 592.98 0.08
100III-0.6-5 2,428,706.43 96.73 2,433,069.11 432.40 0.18
100III-0.8-5 2,424,036.00 43.10 2,422,444.01 99.13 −0.07

Average – 139.89 – 555.90 0.20

(c) 150 nodes — Set III

Instances ILS-RVND E-ILS-RVND 𝛥𝑣𝑎𝑙

Value obtained Time (s) Value obtained Time (s)

150III-0.2-2 1,816,108.28 198.68 1,837,952.93 1,435.73 1.19
150III-0.4-2 1,742,566.28 199.00 1,741,313.53 802.50 −0.07
150III-0.6-2 1,691,635.18 406.03 1,688,475.83 496.41 −0.19
150III-0.8-2 1,672,855.05 165.68 1,672,855.05 386.76 0.00

150III-0.2-3 3,105,575.58 191.46 3,104,569.82 5,193.47 −0.03
150III-0.4-3 3,009,834.15 492.85 3,005,651.07 1,005.43 −0.14
150III-0.6-3 2,938,302.93 695.78 2,951,480.04 1,194.76 0.45
150III-0.8-3 2,935,859.26 157.95 2,935,859.26 980.58 0.00

150III-0.2-5 5,605,120.90 186.33 5,635,617.46 4,395.90 0.54
150III-0.4-5 5,504,566.90 150.13 5,537,871.05 3,130.22 0.60
150III-0.6-5 5,469,178.02 142.88 5,476,281.28 2,127.86 0.13
150III-0.8-5 5,461,867.67 355.42 5,461,867.67 512.64 0.00

Average – 278.52 – 1,805.19 0.21

(d) 200 nodes — Set III

Instances ILS-RVND E-ILS-RVND 𝛥𝑣𝑎𝑙

Value obtained Time (s) Value obtained Time (s)

200III-0.2-2 3,287,020.50 3,891.22 3,296,392.35 5,347.91 0.28
200III-0.4-2 3,115,130.24 1,388.61 3,128,868.02 4,515.90 0.44
200III-0.6-2 3,027,751.46 2,238.30 3,038,468.03 3,228.81 0.35
200III-0.8-2 3,015,236.04 677.83 3,015,236.04 1,445.20 0.00

200III-0.2-3 5,528,795.05 3,428.22 5,559,956.49 10,774.30 0.56
200III-0.4-3 5,356,800.18 548.25 5,375,750.42 2,331.35 0.35
200III-0.6-3 5,275,152.19 286.75 5,276,216.22 3,563.94 0.02
200III-0.8-3 5,271,114.82 1,306.36 5,271,114.82 674.14 0.00

200III-0.2-5 10,027,239.89 2,960.32 10,036,025.67 5,887.79 0.09
200III-0.4-5 9,898,139.41 2,384.27 9,896,954.40 29,780.17 −0.01
200III-0.6-5 9,794,379.70 2,065.62 9,806,104.38 3,180.40 0.12
200III-0.8-5 9,782,872.38 376.98 9,782,872.38 893.87 0.00

Average – 1,796.06 – 5,968.65 0.18
the perturbation procedure, since it replaces an installed hub with a
non-installed one. Finally, it is noted that the runtimes of the proposed
algorithm are significantly smaller than the runtimes of CPLEX.

Appendix C. Comparison with the literature

We present in this section a comparison between the E-ILS-RVND
algorithm and the results indicated by Zhang et al. (2023), obtained
with a VNS algorithm with CAB data set. It is important to highlight
that this comparison has some limitations since Zhang et al. (2023)
ran the experiments on a machine with a different configuration from
the machine used in this work and they implemented the algorithm
using another programming language (python). Furthermore, Zhang
et al. (2023) ran computational experiments using only instances from
the CAB data set, which are smaller-sized instances compared to the
set of instances from AP data set and the set of instances proposed
by Contreras et al. (2011a).

The tests were performed with the CAB data set with 25 nodes.
The parameter settings were the same parameters used by Zhang
et al. (2023). For the revenue, three values were considered 𝑟𝑖𝑗 ∈
{1, 000; 1, 500, 2, 000}, respectively referred to as low revenue, medium
evenue, and high revenue. Hub installation costs were assumed to be
𝑘 ∈ {50; 100; 150}, also referred to as low (L), medium (M), and high
H) costs, respectively. The cost for installing hub arcs was taken to
20
be 0.10 ⋅ 𝑠𝑘, for each type of cost considered. The values of 𝛼 were
0.2, 0.4, 0.6, and 0.8.

Since this study and the study developed by Zhang et al. (2023)
used different machines, we adjusted the runtime presented by Zhang
et al. (2023) using the PassmarMark software, available at https://
www.cpubenchmark.net/singleCompare.php, which provides the CPU
Mark of each machine. The adjusted time is obtained by multiplying the
runtime presented by Zhang et al. (2023) by an adjustment factor given
by the ratio between the CPU Mark value of the computer that they
used by the CPU Mark value of the computer used in our computational
experiments. We found an adjustment factor of 0.896.

Table C.16 shows the results indicated by Zhang et al. (2023),
including the adjusted runtimes, and those obtained with E-ILS-RVND,
referring to 20 runs. In Zhang et al. (2023), instead of presenting the
mean values, as was done in other sections of this article, the authors
present the results of the median values for the gaps. This table presents
the median gap (𝛥𝑚𝑒𝑑), the average runtime, and the adjusted average
runtime for the VNS of Zhang et al. (2023). For the E-ILS-RVND, this
table presents the gap associated with the best value found (𝛥𝑏𝑒𝑠𝑡), the
median gap (𝛥𝑚𝑒𝑑), and the average runtime. The values in this table
show that, although the median gaps of the E-ILS-RVND are not all
zero, as obtained by the VNS, it reached the optimal value in all cases.
In addition, the runtimes recorded by the E-ILS-RVND were notably

lower compared to the other method.

https://www.cpubenchmark.net/singleCompare.php
https://www.cpubenchmark.net/singleCompare.php
https://www.cpubenchmark.net/singleCompare.php
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Table A.13
Results for AP instances with 40 and 50 nodes (30 runs).

Instances Optimal
value

ILS-RVND (𝑖𝑡𝑒𝑟𝑀𝑎𝑥 = 4) E-ILS-RVND

Best
value

Average
value

𝛥𝑏𝑒𝑠𝑡
(%)

𝛥𝑎𝑣𝑔
(%)

Average
time (s)

Best
value

Average
value

𝛥𝑏𝑒𝑠𝑡
(%)

𝛥𝑎𝑣𝑔
(%)

Average
time (s)

40L-0.4-20 14,635.61 14,635.61 14,573.33 0.00 0.43 2.79 14,635.61 14,593.00 0.00 0.29 2.65
40L-0.6-20 14,099.19 14,099.19 14,099.19 0.00 0.00 0.67 14,099.19 14,099.19 0.00 0.00 0.63
40L-0.8-20 14,099.19 14,099.19 14,099.19 0.00 0.00 0.57 14,099.19 14,099.19 0.00 0.00 0.59

40T-0.2-20 6,404.58 6,404.58 6,404.58 0.00 0.00 0.65 6,404.58 6,404.58 0.00 0.00 0.60
40T-0.6-20 6,404.58 6,404.58 6,404.58 0.00 0.00 0.49 6,404.58 6,404.58 0.00 0.00 0.53
40T-0.8-20 6,404.58 6,404.58 6,404.58 0.00 0.00 0.49 6,404.58 6,404.58 0.00 0.00 0.46

40L-0.2-30 52,299.43 52,299.43 52,134.67 0.00 0.32 20.03 52,299.43 52,021.38 0.00 0.53 14.45
40L-0.6-30 44,213.55 44,213.55 44,213.55 0.00 0.00 7.84 44,213.55 44,213.55 0.00 0.00 6.29
40L-0.8-30 42,990.07 42,990.07 42,990.07 0.00 0.00 6.58 42,990.07 42,981.96 0.00 0.02 4.26

40T-0.2-30 36,135.48 36,135.48 36,135.48 0.00 0.00 3.14 36,135.48 36,135.48 0.00 0.00 2.54
40T-0.4-30 33,918.82 33,918.82 33,918.82 0.00 0.00 2.67 33,918.82 33,918.82 0.00 0.00 2.00
40T-0.6-30 32,709.49 32,709.49 32,709.49 0.00 0.00 1.91 32,709.49 32,709.49 0.00 0.00 1.74

40L-0.2-50 130,906.36 130,906.36 129,817.67 0.00 0.83 42.16 130,747.04 129,880.77 0.12 0.78 37.55
40L-0.4-50 124,056.22 124,056.22 123,896.66 0.00 0.13 25.86 124,056.22 123,955.55 0.00 0.08 19.66
40L-0.6-50 120,056.17 120,056.17 119,997.31 0.00 0.05 20.13 120,056.17 119,900.24 0.00 0.13 12.76

40T-0.4-50 107,847.14 107,847.14 107,847.14 0.00 0.00 3.36 107,847.14 107,845.35 0.00 0.00 3.60
40T-0.6-50 105,857.00 105,857.00 105,857.00 0.00 0.00 2.48 105,857.00 105,857.00 0.00 0.00 2.05
40T-0.8-50 105,603.50 105,603.50 105,603.50 0.00 0.00 2.48 105,603.50 105,603.50 0.00 0.00 1.74

50L-0.2-20 17,666.95 17,366.52 17,366.52 1.70 1.70 10.36 17,666.95 17,425.21 0.00 1.37 13.67
50L-0.4-20 14,588.82 14,588.82 14,588.82 0.00 0.00 4.26 14,588.82 14,588.82 0.00 0.00 3.47
50L-0.8-20 13,920.55 13,920.55 13,920.55 0.00 0.00 1.16 13,920.55 13,920.55 0.00 0.00 1.12

50T-0.4-20 8,001.47 8,001.47 8,001.47 0.00 0.00 1.07 8,001.47 8,001.47 0.00 0.00 0.93
50T-0.6-20 8,001.47 8,001.47 8,001.47 0.00 0.00 0.95 8,001.47 8,001.47 0.00 0.00 0.93
50T-0.8-20 8,001.47 8,001.47 8,001.47 0.00 0.00 1.03 8,001.47 8,001.47 0.00 0.00 0.92

50L-0.2-30 53,200.19 53,200.19 52,731.78 0.00 0.88 69.71 53,200.19 52,854.48 0.00 0.65 62.84
50L-0.6-30 43,763.67 43,763.67 43,700.59 0.00 0.14 47.56 43,763.67 43,577.47 0.00 0.43 24.74
50L-0.8-30 42,566.95 42,566.95 42,566.95 0.00 0.00 22.06 42,566.95 42,566.95 0.00 0.00 15.28

50T-0.2-30 34,513.57 34,513.57 34,080.34 0.00 1.26 9.60 34,513.57 34,162.25 0.00 1.02 7.07
50T-0.4-30 31,911.87 31,911.87 31,842.74 0.00 0.22 5.18 31,911.87 31,750.56 0.00 0.51 4.57
50T-0.8-30 31,220.52 31,220.52 31,220.52 0.00 0.00 3.93 31,220.52 31,220.52 0.00 0.00 3.61

50L-0.4-50 124,770.82 124,770.82 124,520.43 0.00 0.20 81.15 124,770.82 124,267.84 0.00 0.40 61.06
50L-0.6-50 119,972.77 119,972.77 119,829.88 0.00 0.12 83.82 119,972.77 119,707.89 0.00 0.22 53.70
50L-0.8-50 118,299.45 118,299.45 118,299.45 0.00 0.00 29.41 118,299.45 118,287.27 0.00 0.01 21.00

50T-0.2-50 110,962.98 110,858.78 110,580.05 0.09 0.35 28.39 110,962.98 110,226.98 0.00 0.66 17.47
50T-0.4-50 106,451.33 106,451.33 106,439.17 0.00 0.01 7.94 106,451.33 106,439.17 0.00 0.01 6.04
50T-0.6-50 105,260.70 105,260.70 105,011.55 0.00 0.24 7.53 105,260.70 104,933.70 0.00 0.31 5.25

Average – – – 0.05 0.19 15.54 – – 0.00 0.21 11.60
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Table A.14
Results for AP instances with 75 and 100 nodes (30 runs).

Instances Optimal
value

ILS-RVND (𝑖𝑡𝑒𝑟𝑀𝑎𝑥 = 4) E-ILS-RVND

Best
value

Average
value

𝛥𝑏𝑒𝑠𝑡
(%)

𝛥𝑎𝑣𝑔
(%)

Average
time (s)

Best
value

Average
value

𝛥𝑏𝑒𝑠𝑡
(%)

𝛥𝑎𝑣𝑔
(%)

Average
time (s)

75L-0.4-20 15,004.99 15,004.99 14,948.20 0.00 0.38 26.17 15,004.99 14,930.70 0.00 0.50 21.24
75L-0.6-20 14,058.46 14,058.46 14,058.46 0.00 0.00 4.07 14,058.46 14,058.46 0.00 0.00 4.41
75L-0.8-20 14,058.46 14,058.46 14,058.46 0.00 0.00 4.13 14,058.46 14,058.46 0.00 0.00 4.17

75T-0.2-20 1,144.13 1,144.13 1,144.13 0.00 0.00 3.26 1,144.13 1,144.13 0.00 0.00 2.91
75T-0.4-20 1,144.13 1,144.13 1,144.13 0.00 0.00 2.86 1,144.13 1,144.13 0.00 0.00 2.91
75T-0.6-20 1,144.13 1,144.13 1,144.13 0.00 0.00 3.01 1,144.13 1,144.13 0.00 0.00 2.84

75L-0.2-30 53,570.37 53,570.37 53,289.72 0.00 0.52 178.32 53,570.37 53,283.50 0.00 0.54 115.87
75L-0.4-30 48,097.70 48,097.70 48,024.68 0.00 0.15 188.45 48,097.70 47,708.07 0.00 0.81 112.47
75L-0.8-30 43,645.17 43,645.17 43,645.17 0.00 0.00 80.36 43,645.17 43,645.17 0.00 0.00 51.52

75T-0.2-30 25,999.62 25,999.62 25,999.62 0.00 0.00 10.76 25,999.62 25,999.62 0.00 0.00 8.91
75T-0.6-30 25,999.62 25,999.62 25,999.62 0.00 0.00 11.30 25,999.62 25,999.62 0.00 0.00 8.00
75T-0.8-30 25,999.62 25,999.62 25,999.62 0.00 0.00 10.96 25,999.62 25,999.62 0.00 0.00 8.27

75L-0.2-50 131,831.98 131,831.98 131,015.40 0.00 0.62 280.48 131,831.98 130,771.82 0.00 0.80 193.11
75L-0.4-50 125,133.91 125,133.91 124,975.94 0.00 0.13 246.75 125,133.91 124,852.08 0.00 0.23 194.81
75L-0.6-50 120,693.62 120,693.62 120,647.48 0.00 0.04 172.75 120,693.62 120,638.19 0.00 0.05 126.84

75T-0.2-50 99,186.32 99,186.32 99,186.32 0.00 0.00 24.01 99,186.32 99,186.32 0.00 0.00 19.69
75T-0.4-50 99,186.32 99,186.32 99,186.32 0.00 0.00 23.73 99,186.32 99,186.32 0.00 0.00 18.58
75T-0.8-50 99,186.32 99,186.32 99,186.32 0.00 0.00 23.35 99,186.32 99,186.32 0.00 0.00 15.85

100L-0.2-20 17,616.73 17,616.73 17,333.28 0.00 1.61 204.87 17,616.73 17,295.80 0.00 1.82 156.61
100L-0.4-20 14,211.00 14,211.00 14,211.00 0.00 0.00 42.89 14,211.00 14,211.00 0.00 0.00 38.13
100L-0.8-20 13,603.42 13,603.42 13,603.42 0.00 0.00 9.92 13,603.42 13,603.42 0.00 0.00 9.94

100T-0.2-20 2,116.57 2,116.57 2,116.57 0.00 0.00 6.25 2,116.57 2,116.57 0.00 0.00 6.79
100T-0.6-20 2,116.57 2,116.57 2,116.57 0.00 0.00 6.59 2,116.57 2,116.57 0.00 0.00 7.08
100T-0.8-20 2,116.57 2,116.57 2,116.57 0.00 0.00 8.33 2,116.57 2,116.57 0.00 0.00 6.59

100L-0.4-30 47,173.46 47,173.46 47,083.85 0.00 0.19 333.71 47,173.46 47,077.29 0.00 0.20 265.53
100L-0.6-30 43,747.51 43,747.51 43,744.36 0.00 0.01 241.59 43,747.51 43,741.20 0.00 0.01 182.42
100L-0.8-30 42,790.52 42,790.52 42,790.52 0.00 0.00 123.83 42,790.52 42,790.52 0.00 0.00 101.23

100T-0.4-30 25,271.32 25,271.32 25,271.32 0.00 0.00 22.74 25,271.32 25,271.32 0.00 0.00 19.78
100T-0.6-30 25,271.32 25,271.32 25,271.32 0.00 0.00 28.93 25,271.32 25,271.32 0.00 0.00 21.10
100T-0.8-30 25,271.32 25,271.32 25,271.32 0.00 0.00 24.79 25,271.32 25,271.32 0.00 0.00 17.59

100L-0.2-50 130,437.81 130,437.81 129,382.70 0.00 0.81 497.93 130,437.81 129,730.18 0.00 0.54 580.39
100L-0.6-50 119,319.31 119,319.31 119,283.14 0.00 0.03 346.62 119,319.31 119,268.86 0.00 0.04 259.29
100L-0.8-50 117,676.01 117,676.01 117,674.98 0.00 0.00 197.42 117,676.01 117,673.95 0.00 0.00 139.02

100T-0.2-50 98,113.77 98,113.77 98,113.77 0.00 0.00 53.27 98,113.77 98,113.77 0.00 0.00 49.99
100T-0.4-50 98,113.77 98,113.77 98,113.77 0.00 0.00 58.27 98,113.77 98,113.77 0.00 0.00 40.51
100T-0.6-50 98,113.77 98,113.77 98,113.77 0.00 0.00 66.09 98,113.77 98,113.77 0.00 0.00 41.91

Average – – – 0.00 0.12 99.13 – – 0.00 0.15 79.34
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Table B.15
Results for AP instances with 25 nodes allowing direct connections.

Instances CPLEX E-ILS-RVND (30 runs)

Optimal
value

Total
pairs
served
(%)

Pairs
served -
DC (%)

Hubs Time (s) Best
value

Average
value

𝛥𝑏𝑒𝑠𝑡
(%)

𝛥𝑎𝑣𝑔
(%)

Average
time (s)

25L-0.2-20 22,957.90 57.76 14.72 8, 15, 18 4,856.34 22,957.90 22,919.79 0.00 0.17 0.89
25L-0.4-20 21,500.18 38.88 21.12 18 998.46 21,500.18 21,500.18 0.00 0.00 0.17
25L-0.6-20 21,500.18 38.88 21.12 18 248.01 21,500.18 21,500.18 0.00 0.00 0.16
25L-0.8-20 21,500.18 38.88 21.12 18 47.36 21,500.18 21,500.18 0.00 0.00 0.14

25T-0.2-20 20,791.17 30.88 30.88 – 1,431.53 18,862.83 18,862.83 9.27 9.27 0.10
25T-0.4-20 20,791.17 30.88 30.88 – 262.59 18,862.83 18,862.83 9.27 9.27 0.11
25T-0.6-20 20,791.17 30.88 30.88 – 37.21 18,862.83 18,862.83 9.27 9.27 0.11
25T-0.8-20 20,791.17 30.88 30.88 – 29.21 18,862.83 18,862.83 9.27 9.27 0.11

25L-0.2-30 60,058.61 99.36 11.04 2, 5, 8, 15, 16,18 5,060.12 59,894.50 59,502.97 0.27 0.93 5.12
25L-0.4-30 53,674.25 88.00 14.88 2, 8, 14, 18 2,568.79 53,674.25 53,501.89 0.00 0.32 1.67
25L-0.6-30 51,372.13 75.36 22.24 8,18 654.81 51,372.13 51,372.13 0.00 0.00 0.44
25L-0.8-30 50,544.37 65.76 32.00 18 270.61 50,544.37 50,544.37 0.00 0.00 0.17

25T-0.2-30 47,099.69 70.56 32.96 13 7,402.95 47,099.69 47,099.69 0.00 0.00 0.20
25T-0.4-30 47,099.69 70.56 32.96 13 1,977.48 47,099.69 47,099.69 0.00 0.00 0.19
25T-0.6-30 47,099.69 70.56 32.96 13 691.68 47,099.69 47,099.69 0.00 0.00 0.17
25T-0.8-30 47,099.69 70.56 32.96 13 175.41 47,099.69 47,099.69 0.00 0.00 0.15

25L-0.2-50 139,622.88 100.00 11.04 2, 5, 8, 15, 16,18 5,352.58 139,380.16 138,470.32 0.17 0.83 5.96
25L-0.4-50 131,997.39 99.68 15.84 2, 8, 14, 18 3,615.80 131,997.39 131,997.39 0.00 0.00 2.80
25L-0.6-50 128,096.89 98.72 24.16 8,18 1,133.26 128,096.89 128,096.89 0.00 0.00 0.71
25L-0.8-50 126,482.64 98.40 24.16 8,18 554.55 126,482.64 126,482.64 0.00 0.00 0.47

25T-0.2-50 123,489.06 99.20 21.44 8, 14, 24 15,539.26 123,489.06 122,855.28 0.00 0.51 0.79
25T-0.4-50 121,961.45 98.08 38.72 13 3,409.59 121,961.45 121,942.97 0.00 0.02 0.16
25T-0.6-50 121,961.45 98.08 38.72 13 1,120.00 121,961.45 121,924.49 0.00 0.03 0.17
25T-0.8-50 121,961.45 98.08 38.72 13 387.24 121,961.45 121,924.49 0.00 0.03 0.16

Average – – – – 2,409.37 – – 1.56 1.66 0.88
23
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Table C.16
Results for the instances with 25 nodes from the CAB data set considering 20 runs.

Costs 𝛼 Optimal
value

VNS - Zhang et al. (2023) E-ILS-RVND

𝛥𝑚𝑒𝑑 (%) Average
time (s)

Adjus.
time (s)

𝛥𝑏𝑒𝑠𝑡 (%) 𝛥𝑚𝑒𝑑 (%) Average
time (s)

High revenue

L 0.2 1,162.92 0.00 250.24 224.22 0.00 0.00 10.62
0.4 1,008.46 0.00 179.21 160.57 0.00 0.99 9.69
0.6 898.24 0.00 115.65 103.62 0.00 0.00 5.73
0.8 839.40 0.00 80.50 72.13 0.00 0.01 2.79

M 0.2 911.27 0.00 66.07 59.20 0.00 0.35 2.87
0.4 803.73 0.00 32.35 28.99 0.00 0.52 2.46
0.6 717.73 0.00 30.15 27.01 0.00 0.18 2.33
0.8 690.90 0.00 28.91 25.90 0.00 0.00 0.52

H 0.2 738.08 0.00 28.35 25.40 0.00 0.73 2.00
0.4 633.73 0.00 26.53 23.77 0.00 0.42 1.79
0.6 599.18 0.00 36.64 32.83 0.00 0.00 0.22
0.8 599.18 0.00 34.56 30.97 0.00 0.00 0.23

Medium revenue

L 0.2 665.79 0.00 140.74 126.10 0.00 2.54 7.78
0.4 520.25 0.00 74.89 67.10 0.00 0.11 5.28
0.6 439.14 0.00 48.80 43.72 0.00 0.00 1.10
0.8 424.73 0.00 59.04 52.90 0.00 0.00 0.73

M 0.2 426.89 0.00 58.24 52.18 0.00 0.00 2.03
0.4 348.40 0.00 25.47 22.82 0.00 0.00 0.73
0.6 327.82 0.00 24.73 22.16 0.00 0.00 0.73
0.8 324.73 0.00 40.03 35.87 0.00 0.00 0.42

H 0.2 266.41 0.00 19.41 17.39 0.00 1.71 0.43
0.4 259.89 0.00 26.28 23.55 0.00 0.00 0.22
0.6 259.89 0.00 15.64 14.01 0.00 0.00 0.19
0.8 259.89 0.00 12.33 11.05 0.00 0.00 0.21

Low revenue

L 0.2 197.97 0.00 60.58 54.28 0.00 2.77 2.45
0.4 156.90 0.00 20.35 18.23 0.00 0.00 0.48
0.6 141.69 0.00 22.11 19.81 0.00 0.00 0.54
0.8 132.16 0.00 37.03 33.18 0.00 0.00 0.49

M 0.2 69.02 0.00 22.04 19.75 0.00 0.00 0.39
0.4 65.28 0.00 8.75 7.84 0.00 0.00 0.17
0.6 65.28 0.00 8.07 7.23 0.00 0.00 0.16
0.8 65.28 0.00 7.91 7.09 0.00 0.00 0.15

H 0.2 15.28 0.00 10.45 9.36 0.00 0.00 0.20
0.4 15.28 0.00 9.14 8.19 0.00 0.00 0.17
0.6 15.28 0.00 9.83 8.81 0.00 0.00 0.16
0.8 15.28 0.00 11.30 10.12 0.00 0.00 0.15
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