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Abstract—This work aims to study the operational scheduling
of hydraulic pumps in a Treated Water Lift Station (TWLS)
using computational intelligence techniques. This scheduling is
very important to reduce electricity consumption of TWLS.
For the experiments, a typical TWLS composed of two pumps
and a reservoir is simulated. The choice of operation periods
is obtained to minimize expenses with electrical energy, by
means of an optimization task. From the hydraulic power spent,
the TWLS electrical consumption is calculated. A factor λ is
used to correlate number of pumps starts and corresponding
maintenance costs. An electrical consumption function, adjusted
with this maintenance factor, is used as the objective function to
be optimized. In this context, two meta-heuristics are compared:
Simulated Annealing (SA) and a hybrid instance of Genetic
Algorithms (HGA). Both meta-heuristic approaches were chosen
because the reduction of energy and maintenance expenses can
be seen as a nonlinear optimization problem, in addition to both
techniques being used successfully to solve several real World
problems. A statistical inference based objective comparison is
done between results of both algorithms, and SA showed to
achieve better results. After optimizing the activities related to
this scheduling, it is possible to verify a reduction of up to
28.0% in electrical energy expenses, when compared to actual
non-optimized operation.

Index Terms—Metaheuristics; Simulated Annealing; Hybrid
Genetic Algorithms; Water Distribution Systems.

I. INTRODUCTION

A Water Distribution System (WDS) is a collective solution

to provide water to the community. This system is composed

by the set of pipes (main, primary and secondary networks),

lift stations, reservoirs, control valves and water meters [5]. It

is through a WDS that water is taken from nature, treated and

made available to the population. A conventional water supply

system is comprised by the collection, adduction, treatment

plant, reservation, distribution units and domiciliary networks.

Figure 1 shows the main constituent units of a WDS.

Fig. 1: Main subsystems of a WDS.

Source: [5]

Among the subsystems which belong to a WDS, Treated

Water Lift Stations (TWLS), or simply pumping stations, play

a key role in providing water to the population. Pumping

stations correspond to the places where water is pumped up,

to be distributed afterwards by gravity to consumers. Figure 2

shows an example of such a lift station. The importance of

pumping stations for the supply of water to the community

is justified by the fact that the hydrographic basin, in many

cases, is on such steep ground that water, in order to reach

some points, must be pumped up [20].

According to a survey carried out by the Brazilian National

Program for the Conservation of Electrical Energy for San-

itation (PROCEL, in Portuguese), pumping and treatment of

water and sewage represents 2.6% of the total consumption of

electricity in Brazil. From this total, 90 to 95% is consumed

by pumping systems. The remaining percentage is used for

lighting and auxiliary systems. Electricity expenditures reach,

on average, 12.2% of the total cost of water supply and sewage

systems for service providers [17]. The use of optimization

techniques in this context can help with a more rational use of

energy resources. These techniques can provide an efficient use

of electricity and, consequently, the reduction of unnecessary
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Fig. 2: A Treated Water Lift Station scheme.

Source: [13]

energy costs, ensuring that hydraulic and demand constraints

are better met.

The second major expense reported on TWLS is related to

pumps maintenance costs [16]. During a scheduled operation,

pumps are switched on and off for many times throughout

the day. This switching behavior is responsible for electrical

energy consumption reduction, but could also increase mainte-

nance costs, provided that it accelerates hydraulic pumps wear

and tear [9], [12], [16].

Due to the importance of TWLS for society, a lot of research

has been conducted in order to assist in the better use of

resources for the distribution of water to the population. [5]

uses the multi-objective evolutionary algorithm SPEA to gen-

erate operational strategies that reduce the cost of electricity,

the quantity of leaks in the water distribution network and

maintain the reliability of the water system. [6] also aims to

optimize water distribution networks with pumping stations.

However, an adaptation of the method proposed by [8] is used

to solve this problem. [4] presents a real-time optimization

strategy for pumping systems using Genetic Algorithms (GA).

GA are also used in the work of [10] to find an optimal

points of operation for TWLS. In that work, GA is used to

minimize the maintenance costs of pumps, the cost of energy

and the level variation of the reservoir. The use of nonlinear

programming techniques to optimize pump schedules and

minimize energy costs in distribution networks is the focus

of the work of [1]. [3] uses PL techniques to solve a mono-

objective version of the problem of energy costs in TWLS.

Population algorithms are used in all the stochastic strate-

gies mentioned before. In these approaches, when compared

to stochastic algorithms based on local search, they have the

disadvantage that, it is often necessary to change optimiza-

tion variables. In the process of modeling the problem for

solution by population algorithms, the understanding of the

optimization process becomes, usually, more obscure. Another

issue is the slow convergence rate of these algorithms, aside

from the computational effort being superior to non-population

strategies. Thus, a non-population strategy for the optimization

of pumping schedule can be of great value because it is

necessary to guarantee the convergence, in real time, of the

algorithm, since the service of water supply is primordial for

any community. In this work, we will develop an objective

comparison between Simulated Annealing (SA) and a hybrid

instance of GA to solve the TWLS operation scheduling

optimization problem, to verify addressability of both, non-

population and population strategies for that specific context.

SA [14], [18] and GA [7], [19] were chosen as optimization

strategies because both have been used to successfully solve

several real world nonlinear and complex problems such as

the problem addressed here.

The next sections of this paper are divided into Context

Description, Problem Formulation, Methodology, Evaluation

Function, Results and Discussion, and Final Considerations.

In the Context Description section, the scenario where the

optimization problem was used is presented. In the Problem

Formulation section, the objective function and the constraints

of the proposed optimization problem are addressed. In the

Methodology, the parameters used by the optimization algo-

rithms are discussed. The Evaluation Function section de-

scribes how the evaluation function employed in this work

was proposed. In the Results and Discussion, achieved results

are presented, aside from an statistical analysis of the results

obtained. In the last section, Final Considerations, a conclusion

about the work done is presented, as well as some suggestions

for future work.

II. CONTEXT DESCRIPTION

This work proposes a solution for a mono objective problem

of construction of the operational scheduling of pumps in

TWLS. The initial stage for the understanding of the context

corresponds to knowing the infrastructure and equipments, and

collecting the relevant operational data. These issues in this

study come from two important references: the article written

by [3] and the work done by [15]. These reports describe very

well the infrastructure, equipments and operational procedures

of actual small scale WDS and corresponding TWLS. From

there, data representing an operational application of TWLS

were extracted. Figure 3 represents a sample of data used

as hourly demand in the experiments reported below. An

illustration of that TWLS, used to the construction of the

optimization model, is shown by Figure 4. In this figure,

there are two pumps tagged as B1 and B2, and one reservoir.

This reservoir has a maximum capacity of water storage

Vmax = 400.0 m3.

Fig. 3: Sample of weekly consumption demand per hour.

0 5 10 15 20 25

Hours (h)

28

29

30

31

32

33

34

35

36

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

2018 IEEE Congress on Evolutionary Computation (CEC)



3

Fig. 4: An actual small scale TWLS plant with two pumps.

In the WDS, water is sent to the reservoir through two hy-

draulic pumps. Pump B1 has a hydraulic power of 5.516 kW ,

operating at a nominal flow rate of 21.10 m3/h and a head

height of 38.00 mca. At the pump head height, the height be-

tween the reservoir base (where the pump input is connected)

and the pressure losses in the piping line are already computed.

Pump B2 has a hydraulic power of 7.354 kW and is located at

the same height as pump B1. However, due to the difference

in pipe diameters, it has a head height of 40.00 mca. The

nominal flow rate of pump B2 is of 32.20 m3/h.
From this reservoir, by the difference of quota, the demand

of the population is supplied. Both pumps operate at constant

power during the day and can be switched on or off. The

efficiency considered for each of the pumps is of η = 75%.

In order to carry out the calculations, it is considered that the

input conduit for each of the reservoirs is located at the top,

above the maximum level. Thus, the water in the reservoirs

does not influence the holding pressure of the pumps. In

addition, the pressure relative to the level of the reservoir in

the pumps suction is disregarded.

The initial level (V0) of the reservoir, as well as the

minimum ( 13Vmax) and maximum ( 7
10Vmax), are presented in

Table I. For the calculation of electrical energy consumption,

the Brazilian seasonal green price was adopted. There are two

different rates, depending on the hours of operation of the

pumps. Table II presents the correspondent rates to off-peak

and peak periods, already discounted the 15.0%, guaranteed

by law, received by water and sewage service companies.

TABLE I: Actual TWLS Reservoir Levels.

Maximum Volume (m3) 400.000

Minimum Volume (m3) 133.332

Initial Volume (m3) 280.000

Nowadays, in Brazil, the most used WDS reservoir level

control scheme is the classical on-off (or bang-bang) control.

TABLE II: Adopted Energy Prices.

Time Rate ( R$
kWh

)
Peak time (18:00 to 20:59) - T2 0.7491
Off-peak times (otherwise) - T1 0.1409

This scheme uses only two binary level sensors, located

at minimum and maximum level positions. When minimum

level is detected, both pumps are switched on, and when the

maximum level is reached, both pumps are switched off. With

this simplified control scheme, neither hour-specific water

demands nor different energy rates are observed, and the level

control is not able to guarantee that daily demand will be

available. It would be desirable to use a more adequate control

system, which could take into account lo and medium-term

water demands and use of energy constraints, as it will be

proposed later in this work.

III. PROBLEM FORMULATION

As mentioned in Section I, this work aims to find the

operating points that minimize the electricity costs of the two

hydraulic pumps in the lift station showed in Figure 2. The

cost of electrical energy, adopting the green seasonal rates, can

be expressed by Equation (1). In this equation, the portions

referring to energy expenditures of pumps B1 and B2 are

shown in each of both peak and off-peak periods.

CEE =
∑18

i=1

(∑nb
b=1

γQbHb

ηb
tbiT1

)
+

+
∑21

i=19

(∑nb
b=1

γQbHb

ηb
tbiT2

)
+

+
∑24

i=22

(∑nb
b=1

γQbHb

ηb
tbiT1

)
,

(1)

where:

• Qb: water flow rate (m3/h) of pump b ∈ {B1, B2};
• Hb: head height (mca);

• γ: water specific weight;

• ηb: efficiency of pump b;

• nb: number of pumps;

• tbi: pump working state (on/off - 1/0);

• T1: off-peak rate for consumption of a unit of energy;

• T2: peak rate for consumption of a unit of energy.

Equation (1) is used to minimize the cost of energy in each

of the 24 hours of a day. To be able to estimate maintenance

costs, a factor λ is used to take into account the number

of pump switchings (off/on and on/off) during the period of

a day. As the number of switchings increase, maintenance

costs also increase. Also, as off-on switchings increase, energy

consumption as well increases, see a relationship chart at

Figure 5. The resulting decay function of λ is adjustable, as it

performs a penalization action to the increase in the number of

pump switchings. That one illustrated in the figure was used

for the experiments described in Section VI. Then, the former

Equation (1), after the correction performed by λ, takes the

final form represented by Equation (2):

Ctotal =

(
CEE

λFactor

)
. (2)

In order to ensure that the population’s demand is met

during the day, volume constraints are included, to better

formulate the problem. Inequality constraints aim to maintain

the water actual level in the tank in-between the minimum and

the maximum desired levels. Those are represented by:
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Fig. 5: Lambda factor (λFactor) - relationship between number

of switches and increase of maintenance costs.

1) Maximum reservoir volume:(
280.0 +Q1

24∑
i=1

t1i +Q2

24∑
i=1

t2i −
24∑
i=1

dn

)
≤ 400.0

(3)

2) Minimum reservoir volume:(
280.0 +Q1

24∑
i=1

t1i +Q2

24∑
i=1

t2i −
24∑
i=1

dn

)
≥ 133.3

(4)

where dn is the hourly demand.

As the day has been divided into 24 one-hour intervals,

each pump operation is limited by one hour. This explains

the formulation of the optimization problem presented in the

Equation (1). That equation, along with inequality constraints,

thoroughly represent the problem to be solved.

IV. METHODOLOGY

A. Simulated Annealing

1) Solution Representation: A solution to the problem

formulated in Section III is represented by a binary vector V ,

with 48 positions. Among these positions, the first 24 represent

the on/off state of the pump B1 during each of the 24 hours

of the day, and the other 24 positions correspond to the on/off

state of the pump B2 for the same period. Each of these

positions represents one hour of the day. Table III provides

an example solution to the problem, using the representation

just described.

The solution presented by Table III informs that pump B1

must remain switched on from 17:00 to 17:59 and off during

the interval from 18:00 to 18:59. For pump B2, it is indicated

TABLE III: Typical solution to the formulated problem.

01:00 02:00 03:00 ... 10:00 11:00 ... 23:59
0 0 0 ... 1 1 1

01:00 02:00 03:00 ... 10:00 11:00 ... 23:59
0 1 1 ... 0 1 ... 0

that it must remain on in the period from 02:00 to 03:59 and

off in the interval from 10:00 to 10:59. Thus, the initial 24

positions represent the 24 hour working time of pump B1,

and the other 24 positions of the vector V correspond to 24

hour working time of pump B2.

2) Algorithm Details: For the solution of the minimization

problem, the Simulated Annealing (SA) algorithm is used.

In SA algorithm, the metal annealing process is simulated.

The cooling of metals must occur slowly, so it is possible

to generate more stable and structurally stronger elements.

At each iteration of the algorithm, a new state is randomly

generated from the current state. If the generated state has

lower energy than the current state, it becomes the current

state of the system. However, if the new state has higher

energy than the current state, it still has a probability of

being chosen as the current state. At high temperatures, each

state has approximately the same probability of being chosen

as the current state. As the iterations pass, the temperature

is reduced and the states with lower energy become more

likely to become the current state. The method ends when

the temperature approaches zero.

At the beginning of the cooling process, the temperature

is high to increase the probability of accepting worsening

solutions and thus prevent the method from getting stuck

at unattractive local optima. As the temperature decreases,

the probability of accepting solutions that generate worsening

values is reduced. At the end of this process, the probability of

acceptance worsening solutions becomes close to zero, which

evidences the finding of an optimal solution, possibly global

one. In order to ensure that the final response of the method

corresponds to an optimal solution in relation to the given

neighborhood, the descent method with the best improvement

strategy is applied.

For the use of the SA algorithm, it is necessary to define

the input parameters (f(.), N(.), α, SAmax, T0, s), as well as

which method is used in the neighborhood calculation. The

parameter α is well studied in the literature. Some authors

indicate that the cooling rate should be small enough, so

α = 0.998 was used. The cooling used corresponds to the

geometric prescription. The maximum number of iterations

allowed for each iteration, SAmax, was chosen experimentally.

The value found was SAmax = 150. The initial solution

and the initial temperature (T0) were generated according to

Subsections IV-A3 and IV-A4, respectively.

3) Determination of Initial Solution: The initial solution is

generated here at random. This solution is used to calculate

the initial temperature in the iterative algorithm proposed by

[2] and also to initialize the SA algorithm. The initial solution

represents a random binary vector of 48 positions.

4) Determination of Initial Temperature T0: The initial

temperature is determined through an iterative algorithm pro-

posed by [2]. The parameters used by this algorithm are:

minimum acceptance rate of neighbor solutions γ = 0.95,
rate of increase of temperature β = 3, random initial solution

and initial temperature T0 = 1. In addition, the movement

used to generate a neighbor consists of exchanging one bit of

the initial vector.
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5) Neighborhood: For the exploration of the search space,

two different types of moves were used separately. The first

move consists in performing the exchange of the value of the

bit (0 or 1), of only one position of the vector. The second

move consists of changing the value of the bit of a position

by the value of the bit in another position. These moves

define, respectively, the Bit-Exchange and Position-Exchange

neighborhoods. Figure 6 illustrates the moves used. These

moves are used in order to generate new solutions for the

SA and therefore explore the search space. In order to indicate

which move will be used in SA, 30 experiments are performed

for each move. The result achieved by the SA with the use of

each movement is statistically compared. These experiments

are aimed at finding out what type of movement generates

solutions with lower energy consumption and, therefore, the

winning move will be used in SA.

Fig. 6: Moves in an example solution.

B. Hybrid Genetic Algorithm (HGA)

Genetic Algorithm (GA) is a search-based optimization

technique based on the principles of evolution and natural

selection. This approach is frequently used to find optimal or

near-optimal solutions. Unlike SA, GA is based on population

dynamics. Both techniques (SA and GA) are used to solve

the pump scheduling problem and the results obtained are

compared. Figure 7 shows how an hybrid version of GA,

here referred to as HGA, was implemented. HGA combines a

classical GA algorithm with two local search procedures exe-

cuted after crossover and mutation, for each individual at each

generation of population evolution. Its clear computational

overhead is expected to achieve better results than the classical

algorithm, by means of local searches. An example of hybrid

algorithm approach, which aims to solve a real problem, is

presented by [11].
1) Population Initialization: HGA uses the same binary

representation used by SA. The first population is chosen in

two steps. In a first step, 100 solutions are randomly chosen.

After that, in step two, in 30% of these random solutions, a

local search with the best improvement strategy is applied. The

purpose of these two steps is to generate a diversified initial

population that contains individuals of good quality.
2) Parent Selection: Parent selection is a process of se-

lecting parents which combine and recombine to create new

solutions for the next generation. This work uses a process

called Roulette Wheel Selection (RWS). In RWS, parents are

Fig. 7: Steps used to implement HGA.

divided into n pies, where n is the number of individuals

in the population. The length of each piece of these pies is

proportional an individual fitness value. So, parents with large

pieces of pie represent better solutions, and then have greater

probability to be chosen as a parent.

3) Crossover and Mutation: After choosing two parents, we

must decide if they will generate two new individuals or not.

The crossover probability is chosen to be 85%. This operator is

performed with two points-crossover, as presented by Figure 8.

Fig. 8: Two points crossover.

Mutation occurs at a rate of 5%. When this happens, one

position of the solution is, randomly, chosen and your bit value

is changed.

4) Survivor Selection and Termination Condition: Survivor

selection determines which individuals are to be kicked out

and which are to be kept in the next generation. Therefore,

the Fitness Based Selection (FBS) is used, where children
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replace the worst fit individuals in the population. FBS works

as follows: first, 5 individuals are randomly selected. After

that, a tournament is performed with these 5 individuals, and

the 2 worst fit are kicked out. Then two children, obtained by

crossover, replace the individuals that were removed.

The stopping condition occurs when the generation number

is greater than 1000 or when the difference between best

solutions fit, obtained after two consecutive generations, is less

than 0.01.

V. EVALUATION FUNCTION

Since the formulated problem presents inequality con-

straints, a penalization technique is used. Thus, in the objective

function, expressed by Equation (1), the minimum and max-

imum volume restrictions for the tank are added. Equation 5

presents the evaluation function used by SA algorithm.

fa = Ctotal + ρ1 × Eqvmax + ρ2 × Eqvmin, (5)

where:

• C: total cost, in Brazilian Reais, for system operation

[Eq. ( 1)];

• Eqvmax: represents the quantity exceeding the capacity

of the reservoir [see Eq. (3)];

• Eqvmin: represents the volume of water that is missing

to reach the minimum volume of the reservoir [see Eq.

(4)];

• ρ1(R$/m3): penalization, in Brazilian Reais, for each m3

of water above the maximum limit;

• ρ2(R$/m3): penalization, in Brazilian Reais, for each m3

of water below the minimum limit.

As the penalization technique is used, the values to be

applied for ρ1 and ρ2 must be chosen. The choice of these

values was performed experimentally, because if high values

are chosen, for the evaluation function, it can cause the

reduction of the search space. On the other hand, if the values

are small, it is possible that infeasible solutions to the problem

are generated. Thus, it is necessary to find a trade-off for

choosing the values of ρ1 and ρ2.

VI. RESULTS AND DISCUSSION

For all the experiments following, the hypothesis of nor-

mality of the data was verified by means of the Kol-

mogorov–Smirnov test. Firstly, Equation (5) was tested with

two different types of weights. In this test, 30 results obtained

with ρ1 = 20 and ρ2 = 10 were compared with other 30 tests

performed with ρ1 = 2 and ρ2 = 1. As it can be seen at

Table IV, the choice of these weights can directly influence

the performance of SA and HGA algorithms.

Table IV displays an Analysis of Variance (ANOVA) for

SA test. As it can be seen, the performance of the algorithm

is influenced by different values of weights. A Tukey test

(not shown here) demonstrated that, with smaller values for

weights, SA and HGA present better performance for pump

operational scheduling problem solution.

The performances of SA and HGA are compared using the

configuration of smaller weights. Both algorithms are executed

TABLE IV: ANOVA test for different ρ in SA and HGA.

SA HGA
Ftest 15.41 6.29
Pvalue 0.0002 0.0152

30 times and the results are presented in Table V, showing

that there is statistical evidence to reject the hypothesis of

equality of performances for the two algorithms. Then, a

Tukey Test result (see Figure 10) demonstrates that SA is a

better option to find the optimized pump scheduling, for the

TWLS in question. Despite the longer runtime, the algorithm

chosen as the best to solve the pump operational scheduling

was SA, because its best result reduces in 16% the pumping

costs. Table VI summarizes the performance obtained by both

approaches (SA and HGA). As can be seen, for all chosen

metrics, SA algorithm presents better results than HGA.

Another important feature of using SA to find a pumping

schedule is the lowest variance obtained. This feature, shown

by Figure 9, is essential for real applications, because it is

necessary that the algorithm always generate results, as close

as possible to an average value. The best value found with

HGA is only 2% higher than the best result obtained with

SA, but this value is 16% lower than the average result found

by HGA. Therefore, using SA increases the chances that, at

each execution, the final pumping costs are lower.

Fig. 9: Boxplot for performance comparison between SA and

HGA.

TABLE V: ANOVA test for performance comparison between

SA and HGA.

Value
Ftest 56.16

Pvalue 4.326−10

Figure 11 presents a pump operational scheduling for one

day, obtained by SA. In the interval between 19:00 and 21:00,

TABLE VI: Performance comparison between SA and HGA.

SA HGA
Lowest Pumping Cost Found R$ 34.89 R$ 35.40

Pump Switches 7 10
λFactor 0.900 0.849

2018 IEEE Congress on Evolutionary Computation (CEC)
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Fig. 10: Tukey test for performance comparison between SA

and HGA.

both pumps are kept off. This happens because this interval

represents the most expensive energy rates.

Fig. 11: Result of pump operational scheduling applying SA.

(a) Pump B1 scheduling.

(b) Pump B2 scheduling.

To better understand the scenario, the daily total pumping

cost, using the schedule presented by Figure 11 and the Brazil-

ian seasonal green price of electric power, reaches R$34.89.

When using a bang-bang control scheme with a simple logic

that reduces the expenses with electricity, for the same system,

without any optimization algorithm, a value of R$48.70 is

found. Thus, with the use of SA, it is possible to reduce

consumption by up to 28%. It is important to note that the

TWLS used in the experiments is considered to be of very

small factor, so this consumption economy can become very

expressive in the case of big city stations.

VII. FINAL DISCUSSION

The operational scheduling of hydraulic pumps in a TWLS

was studied in this work. Through the use of two different

metaheuristics, it was possible to reduce the costs of electric

energy spent in such pumping systems and to achieve, for

the described scenario, a saving of up to 28% of energy. In

large urban centers such as capitals and metropolitan areas,

there are a large number of TWLS. As energy costs account

for a relevant part of all water and sewage service providers’

expenditures, this reduction can generate significant savings

for these companies. Therefore, with the adoption of the

strategy described in this paper, it is possible to reduce energy

expenditures and, nonetheless, to guarantee an efficient and

cheaper water supply for the population. The main contribution

of this approach is to provide a complete solution for a relevant

problem in the area of water distribution, a more comprehen-

sive and efficient approach than similar ones published before,

reducing expenditures on energy and maintenance through the

adoption of metaheuristic techniques.

As can be seen, some simplifications in the construction

of the model, present in section II, were adopted. Constant

pumping rates throughout the operating period, no change

in load losses during pumping and preventive maintenance

schedule are not considered in the model. The introduction of

these variables can be explored in future approaches in order

to make the problem closer to a real scenario.

ACKNOWLEDGEMENT

Authors would like to thank CEFET-MG, through its Grad-

uate Scholarship Program, and FINEP, through PRO-INFRA

call and CT-INFRA grant name DECOM-Lab, for the infras-

tructure use and financial support to this work, along with

FAPEMIG and CNPq, for the financial support.

REFERENCES

[1] A. M. Bagirov, A. Barton, H. Mala-Jetmarova, A. Al Nuaimat,
S. Ahmed, N. Sultanova, and J. Yearwood. An algorithm for mini-
mization of pumping costs in water distribution systems using a novel
approach to pump scheduling. Mathematical and Computer Modelling,
57(3):873–886, 2013. pages 2

[2] W. Ben-Ameur. Computing the initial temperature of simulated an-
nealing. Computational Optimization and Applications, 29(3):369–385,
2004. pages 4

[3] M. Bouzon, A. S. Coelho, and C. M. T. Rodriguez. Determinação do
padrão de operação ótimo para o custo energético de um sistema de
distribuição de água. Revista Produção Online, 13(2):500–519, 2013.
pages 2

[4] A. A. R. d. Cunha. Otimização energética em tempo real da operação
de sistemas de abastecimento de água. PhD thesis, Universidade de São
Paulo, 2009. pages 2

[5] A. C. de Sousa and A. K. Soares. Modelo para otimização da operação
de sistemas de distribuição de água utilizando o algoritmo genético
multiobjetivo spea. Exacta, 12(3), 2014. pages 1, 2

2018 IEEE Congress on Evolutionary Computation (CEC)



8

[6] C. Dias and F. Gomes. Otimização de redes de distribuição de água
com estaçõoes de bombeamento. Trends in Applied and Computational
Mathematics, 8(3):391–400, 2007. pages 2

[7] K. Gallagher and M. Sambridge. Genetic algorithms: a powerful tool for
large-scale nonlinear optimization problems. Computers & Geosciences,
20(7-8):1229–1236, 1994. pages 2

[8] C. T. Hansen, K. Madsen, and H. B. Nielsen. Optimization of pipe
networks. Mathematical Programming, 52(1-3):45–58, 1991. pages 2

[9] K. E. Lansey and K. Awumah. Optimal pump operations considering
pump switches. Journal of Water Resources Planning and Management,
120(1):17–35, 1994. pages 2

[10] E. C. Machado, C. A. Cruz, M. G. Rêgo, M. W. Carvalho, I. S. Lacerda,
and C. O. Galvão. Operação multi-objetivo de sistemas de abastecimento
de água: Algoritmo genético. Seminário Iberoamericano sobre Sistemas
de Abastecimento Urbano de Água, 8, 2008. pages 2

[11] C. G. Marcelino, P. E. Almeida, E. F. Wanner, M. Baumann, M. Weil,
L. M. Carvalho, and V. Miranda. Solving security constrained optimal
power flow problems: a hybrid evolutionary approach. Applied Intelli-
gence, pages 1–19, 2018. pages 5

[12] G. McCormick and R. Powell. Derivation of near-optimal pump
schedules for water distribution by simulated annealing. Journal of the
Operational Research Society, 55(7):728–736, 2004. pages 2

[13] A. M. Righetto. Operação ótima de sistema urbano de distribuição
de água. Seminário-Planejamento, Projeto e Operação de Redes de
Abastecimento de Água. O Estado da Arte e Questões Avançadas, João
Pessoa, Brasil, CD-Rom, 16p, 2002. pages 2

[14] R. Salcedo, R. Lima, and M. Cardoso. Simulated annealing for the
global optimization of chemical processes. Proceedings-Indian National
Science Academy Part A, 69(3/4):359–402, 2003. pages 2

[15] C. C. d. Santos. Previsão de demanda de água na Região Metropoli-
tana de São Paulo com redes neurais e artificiais e condições sócio-
ambientais e meteorológicas. PhD thesis, Universidade de São Paulo,
2011. pages 2

[16] M. Tabesh and M. Dini. Fuzzy and neuro-fuzzy models for short-term
water demand forecasting in tehran. Iranian Journal of Science and
Technology, 33(B1):61, 2009. pages 2

[17] M. T. Tsutiya. Abastecimento de água. Departamento de Engenharia
Hidráulica e Sanitária da Escola Politécnica da Universidade de São
Paulo, 2004. pages 1

[18] B. W. Wah, Y. Chen, and T. Wang. Simulated annealing with asymptotic
convergence for nonlinear constrained optimization. Journal of Global
Optimization, 39(1):1–37, 2007. pages 2

[19] R. Wardlaw and M. Sharif. Evaluation of genetic algorithms for optimal
reservoir system operation. Journal of water resources planning and
management, 125(1):25–33, 1999. pages 2

[20] V. M. Zanta, J. E. R. Matos, C. S. Rodrigues, A. L. Loureiro, N. S.
Conceição, et al. Rede nacional de capacitação e extensão tecnológica
em saneamento ambiental: diagnóstico sobre demanda por capacitação
dos serviços de saneamento do estado da bahia. In Congreso Inter-
americano de Ingeniería Sanitaria y Ambiental, 30, pages 1–14. AIDIS,
2006. pages 1

2018 IEEE Congress on Evolutionary Computation (CEC)


		2018-09-27T10:41:58-0400
	Preflight Ticket Signature




