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A B S T R A C T

Data collection is the most important task in wireless sensor networks (WSN). Each sensor node has to send
the sensed data to a special node called sink, which is the user interface. The sensor nodes far from the sink
send data to intermediate nodes that forward it by multi-hop data paths. This characteristic leads to higher
energy consumption in the sensor nodes close to the sink since they have to relay data from all other sensor
nodes. The literature presents several studies that use mobile sinks for data collection to reduce the number of
hops in the data paths and distributes the energy consumption, considering that the nodes close to the mobile
sink change. However, the majority of these studies consider only the network limitation, such as energy.
Furthermore, they also consider sensor nodes sending only one data packet to the mobile sink. This work
assumes a quad-copter drone as a mobile sink and sensor nodes having several data packets to send to the
sink. We propose two GRASP-based heuristics to define drone tours for data collection. Since this vehicle has
limited flight time, the primary metric analyzed here is the overall data collection time. Furthermore, they
guarantee that the mobile sink will stay a minimal time inside the radio range of each sensor node to ensure
that all of them will have enough time to send all data. The heuristics achieve this guarantee by looking for
a subset of locations, among the infinite points inside the monitored area, where the drone will hover for
data gathering. Hence, the proposed heuristics have to search for good locations to reduce the data gathering
time and define the shortest path to reduce the trip time. Simulated experiments showed that the proposed
GRASP-based heuristics outperformed the greed algorithm found as state of the art for this type of scenario,
mainly when the volume of data stored in each sensor node is high.
nodes close to the sink have more energy consumption than the others
since they have to relay packets from all the nodes in the network.
This is called hotspot problem and can lead to a complete network
1. Introduction

Wireless Sensor Network (WSN) is a computer network convention-
ally used to sense environmental data in regions where the human
presence is dangerous or impossible. It is composed of tiny devices
named sensors nodes. These devices have a set of sensors to sense data,
such as temperature, humidity, light level, and substances concentra-
tion. Sensor nodes have limited processing power and memory, radios
for short-range communication, and batteries as energy supply. The
main issue for every application of WSN is energy consumption. Since
these devices are placed in dangerous regions, replacing batteries is a
very hard or impossible operation. Hence, all applications have to save
energy to extend the network lifetime [1].

WSN has a special node called base station or sink that is the user
interface. All nodes send sensed data to the sink. Nodes out of the
radio range of the sink create multi-hop routes to forward data, i.e., the
intermediate nodes relay data packets toward the sink [2]. However,
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disconnection [3]. Fig. 1 exemplifies the topology, the multi-hop data
routes, and the hotspot problem in WSN.

Literature presents several studies that mitigate the hotspot problem
by using mobile sinks, such as Chang et al. [4], Sapre and Mini [5],
Srivastava et al. [6], Mehto et al. [7], Preetha et al. [8] and Ghorpade
and Vijaykarthik [9]. These mobile nodes can move inside the moni-
tored area to collect data from the other sensor nodes. This strategy
reduces energy consumption since it decreases the number of hops in
data paths. Furthermore, it also distributes the energy consumption
among the nodes, given that the closest nodes to the sink change with
the sink movement. However, the majority of these studies consider
only the WSN limitations. The mobile collector considered by them
has no limitations, such as trip distance or time. Moreover, they also
consider each sensor node having only a small packet to send to the
ed 4 October 2022
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Fig. 1. WSN topology — sensor nodes creating multi-hop routes to forward data to
sink node and nodes close to the sink consuming more energy than others.

mobile sink. Hence, the mobile sink needs just to pass over the region
covered by the radio of each sensor node.

Studies presented by Saxena et al. [10] and Raj et al. [11] consider
unmanned aerial vehicles (UAV) as the mobile sink. They proposed
algorithms to reduce UAV trajectories for data gathering. In their
scenarios, the wsn defines the cluster-heads, and each trajectory is a
sequence of cluster-head locations. Hence, these algorithms solve the
well-known Traveling Salesman Problem (TSP) [12]. [13,14] consider
a quad-copter drone as the mobile sink in WSN and nodes storing large
volume data. Consequently, the drone needs a minimum time inside
the radio range of each sensor node to receive all data packets. This
type of unmanned vehicle can fly and hover over all monitored areas.
They have batteries as the power supply. Therefore, it has limited flight
time. Hence, the network and drone limitations must be considered
to increase the WSN performance. These works focused on reducing
the time spent by the drone to collect data from all sensor nodes.
They proposed two algorithms to create the sequence of locations
(called tour or trajectory) that the drone has to follow and hover over
for data collection. The wsn does not create clusters. Hence, these
algorithms must first choose a subset of rendezvous points among the
infinite number of points inside the monitored area and then create
the trajectory by solving the TSP. They also define a subset of nodes
that send data to the drone over each hovering location and another
subset of nodes to send data during the drone trip between each two
consecutive hovering locations in the tour. However, these algorithms
have greedy strategies to define tours.

This work proposes two heuristic algorithms based on the Grasp
(Greedy Randomized Adaptive Search Procedures) metaheuristic, de-
fined by Resende [15], to create drone tours for data collection in WSN,
which are our main contribution. They focus on reducing the drone
flight time for data collection. We consider a quad-copter drone as the
mobile sink and sensor nodes having large volume data to be collected.
Experiments showed that the proposed heuristics overperformed all the
before mentioned greed algorithms in practically all scenarios. This
work also presents experiments to determine the best parameters to
configure the proposed heuristics to achieve better performance.

The remainder of this text is organized as follows. The next section
defines the research problem and presents a table with the notation
used here. Section 3 presents a collection of studies related to mobile
sink in WSN. We focused on studies that define tours or trajectories
to mobile sinks. Section 4 describes the proposed Grasp-based algo-
rithms. Section 5 reports the experiments. Finally, Section 6 brings the
conclusions and future works.
2

Fig. 2. Example of input: the location of a set of sensor nodes spread within a square
monitored area and the amount of data stored in each sensor node memory.

2. Problem statement

This work considers a WSN composed of a set of 𝑛 sensor nodes
𝑆 = {𝑠1, 𝑠2,… , 𝑠𝑛} uniform randomly spread over a square monitored
area with 𝑙 meter on the side. We assume that the locations of all nodes
are known since the literature presents several works addressing this
problem, as shown by the reviews [16,17]. These nodes have sensed
environmental data and saved it in their flash memories. They have
to send all content of their memories to the sink node. The amount of
bytes stored in each sensor node is 𝐷. A sensor node needs several data
packets to transmit all data since we consider 29 bytes in the payload
of each data packet, according [18], and 𝐷 ≫ 29. The radio range of
the sensor nodes is 𝑟 = 60 m. We consider a quad-copter drone as the
mobile sink, which can fly all over the monitored area and can hover
anywhere. This device has a radio similar to radios in the sensor nodes.
For simplicity, we consider a constant flight speed of 𝑣 = 2 m∕s.

The problem analyzed here is how to find a sequence of locations
(named rendezvous point) inside the monitored area, which the
mobile sink has to follow to minimize the overall data collecting
time. The mobile sink has to stay a minimal time within the radio range
of each sensor node to receive all data stored in their memories. Hence,
it has to hover over each of these rendezvous points to have enough
time to receive all the data. The mobile sink starts and ends its flight
at the Initial Location 𝑃0 = (0, 0). Fig. 2 exemplifies an input of the
research problem analyzed here. It presents the square monitored area
with 𝑙 meter of side, the initial location 𝑃0 = (0, 0) and the set of 12
sensor nodes 𝑆 = {𝑆1, 𝑆2,… , 𝑆12}. In addition, the problem input also
has the amount of data stored in each sensor node memories.

We called the output of this problem as 𝑅 = {𝑇 ,𝐻, 𝐹 }. A tour
𝑇 = (𝑃0, 𝑃1,… , 𝑃𝑧, 𝑃0) is composed of a sequence of rendezvous points
within the monitored area, which the drone has to follow and hover
over each of them for data collection. The drone always starts and
ends its flight at the Initial Location 𝑃0 = (0, 0). Per rendezvous point
in 𝑇 there is a subset of sensor nodes, such that all sensor nodes in
the subset 𝐻𝑖 have to send data to the drone when it is hovering over
the rendezvous point 𝑃𝑖. 𝐻 is the union of these subsets, consequently
𝐻 = 𝐻 ∪ 𝐻 ∪ ⋯ ∪ 𝐻 . It is important to mention that we assume
0 1 𝑧
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Fig. 3. Example of output: a tour (which is composed of a sequence of rendezvous
points) that has to be followed by the drone, a subset of sensor nodes for each
rendezvous point (all nodes in a subset have to send data to drone when it is hovering
over the same rendezvous point) and a subset of sensor nodes for each par of two
consecutive rendezvous points in the tour (all nodes in a subset have to send data to
the drone when it is flying between these two rendezvous points).

possible multi-hop communication between any sensor node and the
drone over any rendezvous point. Per sequence of two rendezvous
points 𝑃𝑖 and 𝑃𝑖+1 in 𝑇 , there is a subset of sensor nodes 𝐹𝑖 that has
to send data to the drone during its movement between 𝑃𝑖 and 𝑃𝑖+1. 𝐹
is the union of these subsets, such that 𝐹 = 𝐹0∪𝐹1∪⋯∪𝐹𝑧. We assume
only direct communication between any sensor node and the drone in
movement. The drone collects data during its movement to reduce its
time hovering, according to Rezende et al. [13]. In this way, the union
of 𝐻 and 𝐹 contains all sensor nodes, i.e., 𝑆 = 𝐻 ∪𝐹 . Furthermore, the
intersection of them is an empty set, that is, 𝐻 ∩𝐹 = ∅. We assume the
drone with low processing power. Hence, a conventional computer has
to receive the input, calculate the output and transfer it to the drone.
It will follow the tour and gather data from the sensor nodes.

Fig. 3 shows an example of output. The tour 𝑇 = (𝑃0, 𝑃1, 𝑃2, 𝑃3, 𝑃0)
is the sequence of rendezvous points. The subset of sensor nodes that
have to send data to the drone hovering over 𝑃1 is 𝐻1 = {𝑆1, 𝑆4, 𝑆5}.
The same goes for 𝐻2 = {𝑆2, 𝑆3, 𝑆7} and 𝐻3 = {𝑆8, 𝑆9, 𝑆12}. Notice that
the sensor nodes 𝑆3 and 𝑆9 use multi-hop communication to send their
data to the drone. The subset of sensor nodes that has to send data to
the drone flying between the rendezvous points 𝑃1 and 𝑃2 is 𝐹1 = {𝑆6},
the same for 𝐹2 = {𝑆10, 𝑆11}. In this example 𝐹0 = ∅ and 𝐹3 = ∅.

Table 1 summarizes all notations presented in this section.

2.1. Calculating the Drone’s flight time

The drone has to follow the tour and hover over each rendezvous
point. The total time spent by the drone to start flying in 𝑃0 and return
to the same location is called Overall Time and receives the notation
𝑇𝑡𝑜𝑡𝑎𝑙. This is the main metric analyzed here, which we intend to reduce.
The following equation calculates this time:

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑓𝑙𝑦𝑖𝑛𝑔 + 𝑇ℎ𝑜𝑣𝑒𝑟𝑖𝑛𝑔 − 𝑇𝑚𝑜𝑣𝑖𝑛𝑔 (1)

𝑇𝑓𝑙𝑦𝑖𝑛𝑔 is the time spent by the drone in movement, 𝑇ℎ𝑜𝑣𝑒𝑟𝑖𝑛𝑔 is the
time the drone has to stay hovering over all rendezvous points for data
collection and 𝑇 is the time the drone collect data when is moving.
3

𝑚𝑜𝑣𝑖𝑛𝑔
Table 1
Problem notation.

Notation Description

𝐶 Number of hops used by all sensor nodes to send data to the drone
when it is hovering.

𝐷 Amount of data storage in each sensor node memory.

𝑑 Minimal distance among the rendezvous points in the RCL and the
rendezvous points in the previous solution.

𝐹 The union of subsets of nodes, such that each subset is composed of
the sensor nodes that have to send data to the drone flying
between two rendezvous points in the tour.

𝐹𝑖 Subset of sensor nodes that have to send data to the drone when it
is flying between the rendezvous points 𝑃𝑖 and 𝑃𝑖+1.

𝐻 The union of subsets of nodes, such that each subset is composed of
the sensor nodes that have to send data to the drone hovering a
specific rendezvous point in the tour.

𝐻𝑖 Subset of sensor nodes that have to send data to the drone when it
is hovering over the rendezvous point 𝑃𝑖.

𝐾 Number of candidates in the restricted candidate list (RCL).

𝐿 Data transfer rate of the links between each par of two sensor
nodes or a sensor node and the drone.

𝑙 Side of the monitored area.
𝑙𝑒𝑛𝑔𝑡ℎ(𝑇 ) Tour’s length, i.e., distance traveled by the drone.
𝑛 Number of sensor nodes in the monitored area.
𝑃0 Initial and final location of the tour.

𝑃𝑖 Rendezvous point 𝑖, which is a location inside the monitored area
and part of a tour.

𝑅 Output of the problem analyzed here, such as 𝑅 = {𝑇 ,𝐻, 𝐹 }.
𝑟 Radio range of the sensor nodes and mobile sink.

𝑅𝐶𝐿 Restricted Candidate List, subset of 𝐾 rendezvous points in which
one of them will be chosen be part of a new tour.

𝑆 Set of all sensor nodes.
𝑠𝑖 Sensor node 𝑖.

𝑇 Sequence of locations inside the monitored area, called tour, which
the drone has to follow and hover over for data collection.

𝑇𝑖 Tour created in the 𝑖th iteration of the heuristics.
𝑇𝑓𝑙𝑦𝑖𝑛𝑔 Time spent by the drone to follow the tour.

𝑇ℎ𝑜𝑣𝑒𝑟𝑖𝑛𝑔 Overall time spent by the drone hovering over all rendezvous
points for data collection.

𝑇𝑚𝑜𝑣𝑖𝑛𝑔 Time spent by the drone flying between two rendezvous points and
receiving data at the same time.

𝑇𝑡𝑜𝑡𝑎𝑙 Overall time spent by the drone to follow a tour and hover for data
collection over each rendezvous point. It is the main metric this
work try to minimize.

𝑈 Finite subset of possible rendezvous points inside the monitored
area.

𝑢𝑗 The rendezvous point 𝑗.
𝑣 Drone’s speed.

𝑤𝑗 The score of the rendezvous point 𝑢𝑗 in the Incremental heuristic,
according to Formula (4).

𝑧 Number of rendezvous points in a tour.

𝑇𝑓𝑙𝑦𝑖𝑛𝑔 is the required time for the drone leaves 𝑃0, flies between
each two consecutive rendezvous points, and returns to 𝑃0. Hence,
𝑇𝑓𝑙𝑦𝑖𝑛𝑔 depends on the drone speed 𝑣 and the length of the tour
(𝑙𝑒𝑛𝑔𝑡ℎ(𝑇 )). However, the length of the tour depends on the sequence
of rendezvous points, which is obtained by solving the well-known
Traveling Salesman Problem [12]. The following equation calculates
𝑇𝑓𝑙𝑦𝑖𝑛𝑔 :

𝑇𝑓𝑙𝑦𝑖𝑛𝑔 =
𝑙𝑒𝑛𝑔𝑡ℎ(𝑇 )

𝑣
(2)

𝑇ℎ𝑜𝑣𝑒𝑟𝑖𝑛𝑔 is the sum of the time spent by the drone hovering over
each rendezvous point for data collection. This time depends on the
link speed (𝐿), the volume of data stored in each sensor node memory
(𝐷), and the number of hops (named here as 𝐶) in the data paths used
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by all sensor nodes to send data to the drone when it is hovering. In
this case, we assume possible multi-hop communications. The following
equation calculates 𝑇ℎ𝑜𝑣𝑒𝑟𝑖𝑛𝑔 :

𝑇ℎ𝑜𝑣𝑒𝑟𝑖𝑛𝑔 =
(𝐶 ×𝐷)

𝐿
(3)

An algorithm proposed by da Silva and Nascimento [14] calculates
the value of 𝐶. This algorithm receives the location of all sensor
nodes in 𝐻 (those nodes that have to send data when the drone is
hovering), the radio range (r) and a tour 𝑇 . Hence, it calculates the
shortest path between each sensor node and the drone over one of
the rendezvous points. Then, 𝐶 is obtained by summing the number
of hops used by each sensor node to transmit data to the drone.
This algorithm creates a graph considering the sensor nodes and the
rendezvous points as vertices and the possible direct communications
as edges. It also creates edges connecting the sequence of rendezvous
points. The edges connecting two sensor nodes or connecting a sensor
node and a rendezvous point receive a weight equal to 1 (one). The
edges connecting the rendezvous points receive a weight 0 (zero).

This algorithm considers any rendezvous point as the root and
generates the minimal Spanning Tree of this graph. Since the edges
connecting the rendezvous points have weights equal to zero, the sensor
nodes will be connected to the closest rendezvous point, according to
the number of hops. The Prim’s or Kruskal’s algorithms [12] create
the minimal spanning tree. These algorithms have a time complexity
of 𝑂(𝑚 log 𝑛) (where 𝑚 is the number of edges and 𝑛 is the number of
vertices).

Fig. 4 exemplifies the calculation of 𝐶. Fig. 4(A) presents the graph
representing a WSN and the rendezvous points that form a tour. The
nodes that have to send data to the drone in movement are not
considered here. Fig. 4(B) presents the Spanning Tree created by using
the previous graph. In this example, the data paths used by the sensor
nodes 𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆7, 𝑆9, 𝑆10 and 𝑆11 have only one hop, and the
data paths used by the sensor nodes 𝑆6, 𝑆8 and 𝑆12 have two hops,
hence 𝐶 = 15.

𝑇𝑚𝑜𝑣𝑖𝑛𝑔 is the time spent by the drone flying and receiving data.
Rezende et al. [13] presented an algorithm to define which subset of
sensor nodes has to send data to the drone when it is traveling between
each par of consecutive rendezvous points in a tour. Section 4.1.4
presents more details about it. Notice that this algorithm does not
change 𝑇𝑓𝑙𝑦𝑖𝑛𝑔 . It only decreases 𝑇ℎ𝑜𝑣𝑒𝑟𝑖𝑛𝑔 since it reduces the number of
sensor nodes that have to send data to the drone when it is hovering.
Fig. 4(C) exemplifies the result of this algorithm. The sensor nodes 𝑆1,
2, 𝑆4 and 𝑆7 have to send data to the drone in movement.

.2. Analyzing the problem

This work aims to find a tour 𝑇 that minimizes the value of 𝑇𝑡𝑜𝑡𝑎𝑙.
onsider a brute force algorithm that always finds the best tour, that is,
n algorithm that finds the tour that provides the most minor 𝑇𝑡𝑜𝑡𝑎𝑙. The
irst task of this algorithm is to define a finite set of possible rendezvous
oints. Each monitored area has an infinite number of points inside
hem. Hence the algorithm must define a finite set of points (called
) to limit possible tours. Then, if 𝑈 has 𝑛 possible rendezvous points,

here will be 2𝑛 − 1 possible subsets of 𝑈 . In other words, there will
e 2𝑛 − 1 possible tours to analyze. This algorithm has to calculate the
alue of 𝑇𝑡𝑜𝑡𝑎𝑙 for all tours to find the smallest. According to Eq. (1),
𝑡𝑜𝑡𝑎𝑙 is the sum of 𝑇𝑓𝑙𝑦𝑖𝑛𝑔 and 𝑇ℎ𝑜𝑣𝑒𝑟𝑖𝑛𝑔 , less 𝑇𝑚𝑜𝑣𝑖𝑛𝑔 . An algorithm to
alculate 𝑇𝑓𝑙𝑦𝑖𝑛𝑔 for a given subset of rendezvous points is the same
o solve the well-known Travelling Salesman Problem (TSP), which is
P-hard according to Cormen et al. [12]. Moreover, for each possible

our, the value of 𝑇ℎ𝑜𝑣𝑒𝑟𝑖𝑛𝑔 varies according to the network topology. It
epends on the number of hops used by all sensor nodes to send data
o the drone. 𝑇ℎ𝑜𝑣𝑒𝑟𝑖𝑛𝑔 tends to be longer when the rendezvous points
re far from the sensor nodes, and it tends to be shorter when they are
lose. Notice that the TSP is part of the problem analyzed here since the
endezvous points that compose the trajectory must also be defined.
4

According to Rezende et al. [13], tours with many rendezvous
oints tend to decrease 𝑇ℎ𝑜𝑣𝑒𝑟𝑖𝑛𝑔 since it reduces the number of hops in
he data paths. Furthermore, the number of sensor nodes sending data
o the drone in movement tends to increase on long tours. However,
ong tours increase the value of 𝑇𝑓𝑙𝑦𝑖𝑛𝑔 . Hence, there is a trade-off
etween 𝑇𝑓𝑙𝑦𝑖𝑛𝑔 and 𝑇ℎ𝑜𝑣𝑒𝑟𝑖𝑛𝑔 . These characteristics justify the definition
f a heuristic that must find a balance between the flight time and the
overing time.

An important issue that must be clear here is the focus of the
esearch. This work focuses on drone limitations. The proposals try to
educe the overall data gathering time by finding the best rendezvous
oints and defining when each sensor node has to send data. However,
he data gathering problem in wsn is a huge problem with several
haracteristics that contribute to the network performance. For these
haracteristics, we considered definitions made in related works. For
nstance, we assume the channel allocation proposed by da Silva et al.
19], the network energy consumption is not our focus (we analyze
t in Section 5.3), and we consider the sensor node geolocations as
nown according [16,17]. Furthermore, we made some simplifications.
or example, we do not consider obstacle avoidance, do not perform
any data collection turns, and the drone has a constant speed. If we

onsider all these characteristics or at least part of them, the number
f variables would be impractical.

. Related works

The literature presents several works that describe techniques to
ollect data from sensor nodes by mobile sinks. Some define protocols
o gather data, which are executed by the sensor nodes to create data
aths and forward the sensed data. Other works present algorithms
o create tours (or trajectories) that the mobile sink has to follow to
ollect data. This is the focus of this work. The works that consider sinks
ollowing a random or predefined movement pattern are not analyzed
ere.

He et al. [20] proposed an algorithm to define the trajectory of mo-
ile sinks to reduce the delay for data delivery and extend the network
ifetime. This algorithm is based on multi-objective particle swarm
ptimization. The authors proposed a mechanism to select potential
endezvous points within the sensor nodes’ radio range to reduce the
obile sink’s trajectory length. Hung et al. [21] also proposed a mobile

ink trajectory algorithm to reduce the network energy consumption for
ata collection. This algorithm randomly defines a percentage of sensor
odes as cluster heads and uses the Dijkstra algorithm to create the
obile sink trajectory. Srivastava et al. [6] followed the same strategy.
owever, they defined a heuristic based on the Genetic Algorithm
etaheuristic to choose 10% of the sensor node positions to form a

equence of rendezvous points followed by the mobile sink. The fitness
unction defined by them uses the trajectory length, the number of
ensor nodes that have to send data to the mobile sink over each
endezvous point, and the sum of hops of all data paths. Preetha et al.
8] proposed a fuzzy-based algorithm for the cluster head selection
nd mobile sink trajectory definition passing over each cluster head
ocation. The algorithm proposed by Yalçin and Erdem [22] does the
ame, but the cluster head’s selection occurs according to a predefined
riority and the energy level. Ghorpade and Vijaykarthik [9] also
efined an algorithm to define the mobile sink trajectory according to
he location of the cluster heads. The cluster head selection algorithm
as a multiple-objective function with several parameters, such as radio
trength, connection time, and connectivity.

Hou et al. [23] created a virtual grid to divide the nodes into clusters
nd select a cluster head. The proposed algorithm defines where the
ink has to go after each data gathering in each cluster. The author
entioned that one of the major problems is the mobile sink’s slow

peed, which demands too much time to collect all data. They consider
sink with no trip distance limitation. Sapre and Mini [5] defined

he mobile sink trajectory according to the deployment of relay nodes.
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Fig. 4. (A) Graph representing a tour and every possible direct communications between two nodes and between a sensor node and the drone over a rendezvous point. (B)
Minimal spanning tree created to calculate the smallest number of hops used by each sensor node to send data to drone. (C) Representation of the sensor nodes (𝑆1, 𝑆2, 𝑆4 and
𝑆7) that have to send data to the drone in movement.
These nodes have more resources than the other sensor nodes, such as
radio range and memory. The WSN is divided into clusters, with the
relay nodes as cluster heads. Hence, all nodes forward data to a relay
node. The proposed algorithm is based on the metaheuristic Differential
Moth Flame Optimization and provides tours in which the mobile sink
enter the radio range of all relay node. That is, they consider only direct
communication.

Chang et al. [24] proposed an algorithm to define the shortest
possible path to be followed by the mobile sink to collect data from
the WSN. They consider a square monitored area with 5 kilometers
on each side, single-hop communication, and obstacles that the mobile
sink must avoid. Anwit et al. [25] proposed two algorithms to define
the trajectory of a group of mobile sinks. The first algorithm defines
the optimal number of rendezvous points in the trajectory, and the
second optimizes the number of mobile sinks to reduce the trajectory’s
length. Chen and Tang [26] proposed a framework for UAV-assisted
data collection. The wsn has a cluster-head selection algorithm. The
proposed algorithm calculates the UAV trajectory to reduce this path by
considering that the UAV only has to pass over the cluster-head radio
range, not exactly over the cluster-heads.

All these works have an important characteristic: each sensor node
has only one data packet to transmit to the mobile sink. Hence, these
algorithms do not consider a minimum time that the mobile sink
has to stay inside the radio range of each sensor node. To the best
of our efforts, we found only two groups of articles that consider
sensor nodes that need many data packets to deliver to the mobile
sink all data stored in their memories. The first group is composed
of Li et al. [27,28,29]. They proposed algorithms to define the drone’s
flight trajectory and data collection protocols for ground sensors. The
drone has a constant speed, and it decides the next waypoint of its
trajectory on the flight, according to Markov-Chain-based decision
algorithms. The authors also proposed data collection protocols that
make each sensor node use the transmission channel alone to avoid
collisions. However, they focused on reducing the data packet loss and
the network energy consumption. They did not evaluate the drone’s
flight time. Furthermore, these articles consider scenarios where the
sensor nodes produce data continuously, and the proposed algorithms
do not guarantee that the drone will stay enough time inside the radio
range of each sensor node to receive all stored data. For this reason,
the drone has to perform its trajectory several times.
5

Also in this group of articles, Mehto et al. [7] proposed an algorithm
to select rendezvous points for data gathering in wsn. They consider
non-uniform data generation and buffer limitations in the sensor nodes.
The proposed algorithm minimizes the mobile sink trajectory while
visiting the rendezvous points. However, the amount of packets to send
to the mobile sink is not big. The mobile sink can only pass over the
rendezvous points to receive all data. If the amount of data increases,
the algorithm does not guarantee that the sensor nodes will send all
stored data. Saxena et al. [10] proposed a polynomial algorithm to
define the drone trajectory. Their research problem is a version of TSP.
Raj et al. [11] proposed a genetic algorithm for the same problem,
including obstacle avoidance. These two algorithms do not select the
rendezvous points for data collection. The network defines them. They
only have to calculate the shortest path. This problem differs from the
research problem analyzed here. Our research problem also includes
the search for the best rendezvous points. Hence, our problem has
higher complexity.

The second group is da Silva and Nascimento [14] and Rezende
et al. [13]. They consider sensor nodes with several data packets to
transmit. Furthermore, they also consider a quadcopter as a mobile
sink with a limited flight time. To the best of our efforts, these works
are the only ones considering the mobile sink limitations and proposed
algorithm to look for the rendezvous points to compose the tour. Since
the second work is an evolution of the first, we consider the algorithms
proposed by Rezende et al. [13] as state-of-the-art for data collection
in WSN with sensor nodes storing a large volume of data. We have
implemented these algorithms and compared them against the GRASP-
based algorithms we are proposing here. In the original article, these
algorithms are called Incremental-Move and Decremental-Move, but for
simplicity, we call them only Incremental and Decremental.

4. The proposed algorithms

This work proposes two GRASP-based heuristics to define the ren-
dezvous points and create tours to reduce the overall time for data
collection in WSN by drone. GRASP is a metaheuristic that constructs
the solution iteratively. Each iteration is divided into two phases called
Construction and Local Search. The Construction phase creates a new
solution by adding a new element to the previous solution by using a
greedy randomized algorithm. This new element is randomly chosen
from a ranked restricted candidate list (RCL), which is composed of 𝐾
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Fig. 5. Subset of possible rendezvous point (𝑈 = {𝑃0 , 𝑃1 ,… , 𝑃9}) forming a grid. The
distance between each par is 𝑟

√

2, where 𝑟 is the radio range.

elements. The Local Search phase improves a solution to find a local
minimum. The result of a Grasp-based algorithm is the best overall
solution. The number of iterations is defined according to the size of
the instance of the analyzed problem [15].

The heuristics proposed here are called Incremental-Grasp and
Decremental-Grasp. These heuristics define a limited set of rendezvous
points, classify them according to scores and create new solutions in
each iteration by adding or removing a rendezvous point from the
previous solution. We assume the set of possible rendezvous points
forming a grid, such as presented by Fig. 5. The distance between
neighbor rendezvous points in the monitored area is 𝑟

√

2 (left, right, up,
and down). Using this distance, we guarantee that if the drone hovers
over all rendezvous points, all points inside this area will be covered
by the drone’s radio at least once. This means that every sensor node
will be able to directly transmit data packets to the drone over at least
one rendezvous point. In the following, these heuristics are detailed.

4.1. Incremental-Grasp Heuristic

The Incremental-Grasp Heuristic creates a new solution on each iter-
ation by adding a new rendezvous point to the previous solution, which
created in the previous iteration. Algorithm 1 illustrates its operation.
This heuristic starts calculating a score for each rendezvous point in
𝑈 (line 2) and defining both the current solution (line 3) and the best
solution (line 4) as empty sets. In every iteration, the heuristic first
saves the current solution as the previous (line 6). Then, it performs
the Construction phase by creating a new solution with the insertion of
a new rendezvous point to the current solution (line 7). The function
𝑁𝑒𝑥𝑡𝑅𝑒𝑛𝑑𝑒𝑧𝑣𝑜𝑢𝑠𝑃 𝑜𝑖𝑛𝑡() chooses this rendezvous point. It creates the re-
stricted candidate list (RCL) composed of the 𝐾 rendezvous points with
the highest scores. Furthermore, the rendezvous points in the RCL must
be at least 2 × 𝑟 away from the others in the previous solution. Thus, it
executes the Local Search phase by calling the function 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(),
which looks for a local minimum and saves the result as the current
solution (line 8). Section 4.1.3 presents more details about the Local
Search phase. The function 𝐷𝑟𝑜𝑛𝑒𝑀𝑜𝑣𝑖𝑛𝑔(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛), in the line
9, verifies which sensors will send data when the drone is in movement.
It reduces the value of 𝑇ℎ𝑜𝑣𝑒𝑟𝑖𝑛𝑔 . Section 4.1.4 describes more details
about this algorithm. Finally, the function 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒() returns which
solution provides the smallest 𝑇𝑡𝑜𝑡𝑎𝑙. This result is saved as the best
solution (line 10). The number of iterations is the number of rendezvous
points in 𝑈 . It is essential to mention that every solution, created on
each iteration, is evaluated to verify the value of 𝑇𝑡𝑜𝑡𝑎𝑙, which occurs
according to Eq. (1).
6

4.1.1. Defining the Restricted Candidate List (RCL)
The RCL is composed of 𝐾 rendezvous points with the highest

scores, and it is created on each iteration. One of these rendezvous
points is chosen to be added to (by the Incremental-Grasp) or removed
from (by the Decremental-Grasp) the previous solution to create the
current solution. Section 4.1.2 presents how the Incremental-Grasp
heuristic calculates the scores. Moreover, the RCL is created only with
the rendezvous points at least a minimal distance (𝑑) away from the
rendezvous points in the previous solution. Initially, we defined the
minimal distance as 𝑑 = 2 × 𝑟. However, 𝑑 is divided by 2 if less than
𝐾 rendezvous points are distant enough from the rendezvous points in
the previous solution. This means that this heuristic divides 𝑑 by 2 until
the RCL has 𝐾 elements.

4.1.2. Defining the scores in the Incremental-Grasp
In the Incremental-Grasp heuristic, each iteration calculates the

score of all rendezvous points. This heuristic creates a graph with
vertices representing the sensor nodes and the rendezvous points in the
previous solution. It also has the edges representing direct communica-
tion between two sensor nodes or between sensor nodes and the drone
hovering over a rendezvous point. Fig. 4(A) exemplifies this graph. The
following equation calculates the score:

𝑤𝑗 =
𝑦
∑

ℎ=1

ℎ𝑜𝑝ℎ
ℎ

(4)

where 𝑤𝑗 is the score of the rendezvous point 𝑢𝑗 , ℎ𝑜𝑝ℎ is the number
of sensor nodes that will send data to the drone for a data path with ℎ
hops, and 𝑦 is the number of hops of the longest data path. Using this
formula, the rendezvous points that are close to several sensor nodes
receive higher scores.

4.1.3. The local search
Local Search is one of the phases defined by the Grasp metaheuris-

tic. It looks for the best solution in the neighborhood of the solution
created on the current iteration. The Local Search in the heuristics
proposed here tries to improve the current solution by changing the
last added or removed rendezvous point. Each of its four neighbors
(up, down, left, and right) replaces this rendezvous point. This strategy
creates four new solutions and returns the one that provides the small-
est 𝑇𝑡𝑜𝑡𝑎𝑙. For example, let’s consider the rendezvous point 𝑃5 presented
by Fig. 5. Assuming that it was the last rendezvous point added to or
removed from the current solution, it is replaced by 𝑃2, 𝑃4, 𝑃6, and 𝑃8.
Each new tour is evaluated and that one which provides the smallest
𝑇𝑡𝑜𝑡𝑎𝑙 is the result of the Local Search.

4.1.4. Sensor nodes sending data to the drone in movement
After the Local Search, an algorithm proposed by Rezende et al. [13]

evaluates the current solution to find which sensor nodes can send data
to the drone when it is moving. It looks for a subset of sensor nodes
for each pair of rendezvous points in the tour. The sensor nodes in a
subset have to send their data when the drone is flying between these
rendezvous points. However, the algorithm guarantees that each node
will transmit alone to avoid the collision of packets in the drone. This
algorithm reduces 𝑇ℎ𝑜𝑣𝑒𝑟𝑖𝑛𝑔 , and consequently also reduces 𝑇𝑡𝑜𝑡𝑎𝑙 since
it decreases the number of sensor nodes that have to send data to the
drone hovering.

4.1.5. Example of Incremental-Grasp execution
This section presents an example of the Incremental-Grasp opera-

tion. The input is presented by Fig. 6(A), which shows all rendezvous
points (𝑈 = {𝑃0, 𝑃1,… , 𝑃9}), all sensor nodes (𝑆 = {𝑠1, 𝑠2,… , 𝑠6}) and
the connections among them. This heuristic starts calculating the score
of each rendezvous point, such as presented by Table 2.

Fig. 6(B) presents all data paths and the tour created after the first
iteration. We consider the RCL with 𝑘 = 2 elements, hence it was
composed of 𝑃 and 𝑃 , which had the highest scores (𝑤 = 4.33 and
5 6 5
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Table 2
Calculating the score of each rendezvous point for Incremental-Grasp example.

Score Value Calculus

𝑤1 0
𝑤2 0
𝑤3 2.45 1

1
+ 1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6

𝑤4 2.42 1
1
+ 2

2
+ 2

3
+ 1

4

𝑤5 4.33 3
1
+ 2

2
+ 1

3

𝑤6 3.67 2
1
+ 2

2
+ 2

3
𝑤7 0
𝑤8 2.45 1

1
+ 1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6

𝑤9 3.28 2
1
+ 1

2
+ 1

3
+ 1

4
+ 1

5

Algorithm 1 Incremental-Grasp Heuristic
1: procedure IncrementalGrasp(𝑆,𝑈)

2: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑆𝑐𝑜𝑟𝑒𝑠(𝑆,𝑈 )

3: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ⟵ ∅

4: 𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ⟵ ∅

5: for 𝑖 = 0 𝑡𝑜 𝑖 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝑈 ) do

6: 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ⟵ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

7: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ⟵ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 𝐴𝑑𝑑𝑅𝑒𝑛𝑑𝑒𝑧𝑣𝑜𝑢𝑠𝑃 𝑜𝑖𝑛𝑡()

8: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ⟵ 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛)

9: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ⟵ 𝐷𝑟𝑜𝑛𝑒𝑀𝑜𝑣𝑖𝑛𝑔(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛)

10: 𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ⟵ 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛)

11: end for

12: 𝑟𝑒𝑡𝑢𝑟𝑛 𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

13: end procedure

𝑤6 = 3.67). The rendezvous point 𝑃5 was randomly chosen to create
the first tour. After this, the Local Search was performed to find the
local minimum. It replaced 𝑃5 for 𝑃2, 𝑃4, 𝑃6 and 𝑃8. Since the tour
omposed by 𝑃0 and 𝑃5 provided the smallest 𝑇𝑡𝑜𝑡𝑎𝑙, the Local Search
id not change the current answer. Then, the heuristic found 𝑆2 as a
ode able to send data when the drone was flying between 𝑃0 and 𝑃1.

Fig. 6(C) presents the tour created after the second iteration. 𝑃9 was
andomly chosen from the RCL composed of 𝑃3 and 𝑃9. Notice that 𝑃4,
6, and 𝑃8 could not be part of the RCL because they are less than
= 2 × 𝑟 close to 𝑃5. In this iteration, the local search replaced 𝑃9

y 𝑃6 and 𝑃8, but this replacement does not decrease 𝑇𝑡𝑜𝑡𝑎𝑙. The sensor
ode 𝑆6 was chosen to send data to the drone when it is flying between
5 and 𝑃9.

Fig. 6(D) presents the tour created in the third iteration by adding
6. This rendezvous point was randomly chosen from the RCL com-
osed of 𝑃4 and 𝑃6. Notice that the minimal distance (𝑑) must be
ivided by 2 (𝑑 = 2×𝑟

2 = 𝑟) to create the RCL with two elements. The
ocal Search replaced 𝑃6 with 𝑃3, but it did not create a better tour.
ince 𝑃5 and 𝑃9 were part of the current solution, the Local Search did
ot consider them. The algorithm proceeded adding to the tour all the
ther rendezvous points. However, for simplicity, we do not present it.
he result is the best solution so far.

.2. Decremental-Grasp Heuristic

The Decremental-Grasp Heuristic creates a new solution on each
teration by removing a rendezvous point from the tour created in
he previous solution. Algorithm 2 illustrates this heuristics. We also
ssume all the possible rendezvous points forming a grid, such as
7

t

resented by Fig. 5. This heuristic starts creating the first tour com-
osed of all rendezvous points that have at least one sensor node
onnected to it, i.e., all locations where the drone has to hover to
eceive data from at least a sensor node (line 2). The first tour is saved
s the best solution so far (line 3). At the begin of each iteration, the
ecremental-Grasp heuristic creates the score for each sensor node by
alling the function ListRemovalImpact(S, U) (line 5). The score used
y the Decremental-Grasp is called Impact of Removal, which is better
xplained in Section 4.2.1. Then, it saves the current solution as the
revious solution (line 6). After this, it performs the Construction phase
y executing the function RemoveRendezvousPoint(), which choose the
endezvous point that will be removed from the current solution (line
). This function creates the RCL with the 𝐾 rendezvous points in the
urrent solution with the smallest Impact of Removal. Then, it ran-
omly chooses one of them to be removed from the previous solution.
onsequently, it creates the new current solution. The Local Search
hase is performed by calling the function LocalSearch() to find the
ocal minimum (line 8). Section 4.1.3 presents more details of this
hase, which performs in the same way as the Local Search of the
ncremental-Grasp. The function 𝐷𝑟𝑜𝑛𝑒𝑀𝑜𝑣𝑖𝑛𝑔(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛), in the
ine 9, verifies which sensors will send data when the drone is moving.
his algorithm is described Section 4.1.4. Finally, the current solution

s compared with the best solution so far by the function Evaluate and
he best of them is saved (line 10).

Notice that, according to Section 2.1, in each iteration, this heuristic
lso creates a graph, which has the sensor nodes and the rendezvous
oints as vertices. The edges are the possible direct communication
etween each par of sensor nodes (respecting the radio range) or
etween a sensor node and the drone hovering over a rendezvous
oint. The heuristic creates the spanning tree from this graph, which
as the smallest data path (in hops) between each sensor node and a
endezvous point.

Algorithm 2 Decremental-Grasp Heuristic
1: procedure DecrementalGrasp(𝑆,𝑈)

2: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ⟵ 𝑈 −𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑈 )

3: 𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ⟵ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

4: for 𝑖 = 1 𝑡𝑜𝑖 < 𝑙𝑒𝑛(𝑈 ) do

5: 𝐿𝑖𝑠𝑡𝑅𝑒𝑚𝑜𝑣𝑎𝑙𝐼𝑚𝑝𝑎𝑐𝑡(𝑆,𝑈 )

6: 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ⟵ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

7: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ⟵ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝑅𝑒𝑚𝑜𝑣𝑒𝑅𝑒𝑛𝑑𝑒𝑧𝑣𝑜𝑢𝑠𝑃 𝑜𝑖𝑛𝑡()

8: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ⟵ 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛)

9: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ⟵ 𝐷𝑟𝑜𝑛𝑒𝑀𝑜𝑣𝑖𝑛𝑔(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛)

0: 𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ⟵ 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛)

1: end for

2: 𝑟𝑒𝑡𝑢𝑟𝑛 𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

3: end procedure

4.2.1. Calculating the Impact of Removal
The Impact of Removal is the score used by the Decremental-Grasp

euristic to classify the rendezvous points. The RCL is composed of
he 𝐾 rendezvous points with the smallest Impact of Removal. This
euristic defines the same graph created by the previous heuristics
nd its spanning tree to create the shortest path between every sensor
ode and the drone hovering over one of the rendezvous points in
he tour. However, it removes a rendezvous point on each iteration.
onsequently, the edges connected to this rendezvous point also have
o be removed, and new edges have to be added to define data paths
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Fig. 6. Example of the Incremental-Grasp operation: (A) Problem input, a set of 9 possible rendezvous points, 6 sensor nodes, and the connection among them. (B) The tour that
was created after the first iteration; the RCL was composed of 𝑃5 and 𝑃6, since they had the highest scores; 𝑃5 was randomly chosen to create the first solution; 𝑆2 was chosen
to send data during the drone movement. (C) The tour that was created after the second iteration; 𝑃9 was randomly chosen to be added to the tour since the RCL was composed
of 𝑃3 and 𝑃9; The rendezvous points 𝑃6, 𝑃4 and 𝑃8 were not considered here because they were less than the minimal distance 𝑑 = 2 × 𝑟 close to the rendezvous points in the
previous tour; 𝑆6 was chosen to send data during the drone movement. (D) The tour that was created after the third iteration; the minimal distance was divided by 2, hence the
RCL was composed of 𝑃4 and 𝑃6; 𝑃6 was randomly chosen; 𝑆3 was chosen to send data during the drone movement.
for all sensor nodes. The Impact of Removal is the difference between
the number of hops added by the number of hops removed.

For example, given a tour with the rendezvous point 𝑢𝑗 and only
a sensor node 𝑠𝑖 directly connected to it (one hop). The sensor node
𝑠𝑖 can also send data to the drone hovering over another rendezvous
point 𝑢𝑒 in the same tour. However, it uses a data path with two hops.
In this case, the Impact of Removal of 𝑢𝑗 is one since a data path with
one hop is removed and another with two hops is added.

4.2.2. Example of Decremental-Grasp execution
This subsection exemplifies the operation of the proposed

Decremental-Grasp heuristic. Fig. 7(A) presents an input, which is
composed of a monitored area, a set of sensor nodes 𝑆 = {𝑠1, 𝑠2,… , 𝑠6}
and a set of possible rendezvous points 𝑈 = {𝑃0, 𝑃1,… , 𝑃9}. In the
beginning, the heuristic creates an initial tour 𝑇0 = (𝑃0, 𝑃4, 𝑃5, 𝑃9, 𝑃3, 𝑃0)
with the rendezvous points where the drone will hover over for data
collection.

In the first iteration, the heuristic calculates the Impact of Removal
for each rendezvous point, according to Section 4.2.1. For example,
the rendezvous point 𝑃5 has the Impact of Removal 𝑤5 = 2. If 𝑃5 was
removed, the data path of the sensor nodes 𝑆2 and 𝑆3 (both with one
hop) have to be replaced. 𝑆2 will send data to 𝑠4, that will relay all
data packets to the drone over 𝑃4 (two hops). 𝑠3 has to send their
data to 𝑠1, which will relay to 𝑃3 (two hops). Hence, two hops will be
removed and four hops will be added, i.e., 𝑤5 = 4 − 2 = 2. The Impact
of Removal of all rendezvous points are: 𝑤3 = 1, 𝑤4 = 0, 𝑤5 = 2,
𝑤6 = 0 and 𝑤9 = 1. Hence, the RCL is composed of 𝑃4 and 𝑃6, which
are the rendezvous points with the smallest scores. In this example,
𝑃4 is chosen to be removed from the tour. Furthermore, the function
𝐷𝑟𝑜𝑛𝑒𝑀𝑜𝑣𝑖𝑛𝑔() verifies that 𝑆 , 𝑆 and 𝑆 will send data while the
8

1 2 5
drone is in movement. The result of the first iteration is presented by
Fig. 7(C).

The scores in the second iteration are 𝑤3 = 1, 𝑤5 = 3, 𝑤6 = 0
and 𝑤9 = 1. The RCL is composed of 𝑤3 = 1 and 𝑤6 = 0, hence
𝑃3 is randomly chosen to be removed from the previous solution. The
function 𝐷𝑟𝑜𝑛𝑒𝑀𝑜𝑣𝑖𝑛𝑔() inform that 𝑠1, 𝑠2 and 𝑠6 can send data to the
drone in movement. Fig. 7(D) presents the result of the second iteration.
After this, the heuristic continues removing rendezvous points from the
tour. It stops only when the tour is composed of 𝑃0.

5. Computational results

This section compares the heuristics Incremental-Grasp and
Decremental-Grasp proposed here against the heuristics Incremental
and Decremental proposed by Rezende et al. [13], which represent state
of the art for this type of scenario.

5.1. Scenario description

This subsection describes the four scenarios used by the experi-
ments. Since the algorithms proposed in [13] represent state of the
art for this type of scenario, we implemented the Incremental and
the Decremental heuristics proposed in this work. Furthermore, we
performed the experiments in the same scenarios. We created the four
heuristics in Java 8, 64 bits. The computer used to run the experiments
has an Intel Core I7-8565U, 1.8 GHz, and 8 GiB of RAM. However, it
is essential to mention that the metric execution time is not analyzed,
and every computer would present the same results.

We consider a drone with hovering capability as the mobile sink,
such as a quadcopter. It can fly and hover over any point in the
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Fig. 7. Example of the Decremental-Grasp operation: (A) Input of the problem, a set of
9 rendezvous points, 6 sensor nodes, and the connection among them. (B) The initial
tour created with all rendezvous points that have sensor nodes connected to them. (C)
The tour created after the first iteration; 𝑃4 was randomly chosen from the RCL to be
removed from the tour and the sensor nodes 𝑠1, 𝑠2 and 𝑠6 will send data during the
drone movement. (D) The tour created after the second iteration; 𝑃3 was removed and
𝑠1, 𝑠2 and 𝑠6 continues sending data during the drone movement.

Table 3
Characteristics of the scenarios.

Scenario Monitored
area (m2)

Number of
sensor
nodes

Drone
speed
(m/s)

Data in each
sensor node
(kb)

1 200 30 2 20 to 120
2 400 150 2 20 to 120
3 400 100 to 250 2 60
4 400 150 0.5 to 3.0 60

monitored area. The mobile sink has a radio like the sensor nodes,
with the same range (r = 60 m). The transmission rate of every link
of the WSN is 20 kbps, the same as the drone. Each node transmits
separately to avoid packet collision, according to da Silva et al. [19].
In all scenarios, 𝑈 is composed of rendezvous points with 𝑟 ×

√

2 = 84
m of distance between two of them (up, down, left, and right). In this
way, every point inside the monitored area is less than 60 m far from a
rendezvous point. The time to propagate queries is not considered here.
The drone moves at a constant speed (𝑣) and collects data when it is
hovering and when it is moving.

Table 3 summarizes all characteristics of the four scenarios.
We used 35 different network topologies in all scenarios presented

by Table 3. In Scenario 1, there is a small square monitored area
with 200 m of side and 30 fixed sensor nodes. The drone speed is
2 m/s, and the data stored in each sensor node varies in the set
{20, 40, 60, 80, 100, 120} kb. Since there are 35 WSN topologies and 6 dif-
ferent amounts of drone storage, there are 210 instances in Scenario 1.

Scenarios 2 to 4 consider a larger monitored area and a larger num-
ber of sensor nodes to evaluate the heuristics’ performance in WSN with
data routes longer than in the first scenario. All of them have a square
monitored area with 400 m of side. As in the previous scenario, Sce-
nario 2 also varies the amount of data stored in each sensor node mem-
ory from 20 to 120 kb. In Scenario 3, the number of sensor nodes varies
from 100 to 250 with step 50, i.e., 100, 150, 200, 250. In Scenario 4, the
9

Table 4
Comparison between Incremental and Incremental-GRASP in relation to the 𝑇𝑡𝑜𝑡𝑎𝑙
value.

Instance # Data Incremental Incremental-GRASP

(kb) Best Avg. RPD (%)

1 20 155.17 149.12 151.68 −2.24
2 40 208.27 201.67 206.57 −0.81
3 60 249.52 243.31 248.29 −0.49
4 80 287.14 282.39 284.77 −0.82
5 100 321.82 312.51 320.34 −0.45
6 120 351.55 349.61 350.45 −0.31

Table 5
Comparison between Decremental and Decremental-GRASP concerning the 𝑇𝑡𝑜𝑡𝑎𝑙
value.

Instance # Data Decremental Decremental-GRASP

(kb) Best Avg. RPD (%)

1 20 245.72 241.24 243.95 −0.72
2 40 269.91 244.77 253.57 −6.05
3 60 284.14 234.02 255.12 −10.21
4 80 295.87 220.11 246.88 −16.55
5 100 307.35 230.37 246.44 −19.81
6 120 317.74 207.38 243.15 −23.47

drone speed varies from 0.5 to 3.0 m/s. i.e., 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 m∕s.
So, there are 210, 180, and 210 instances in Scenarios 2, 3, and 4,
respectively.

5.2. Experiments

In this section, we compare the results of Incremental and Decre-
mental heuristics proposed by Rezende et al. [13] against Incremental-
GRASP and Decremental-GRASP heuristics proposed here. Initially, we
applied the irace package [30] for calibrating the parameter 𝐾 of the
proposed GRASP-based heuristics. It determines the number of ren-
dezvous points in the restricted candidate list (RCL) at each iteration of
the Incremental-GRASP and Decremental-GRASP. We tested the values
𝑘 ∈ {2, 3, 4} in a subset of 18 instances of the Scenario 1 varying the
amount of data stored in each sensor node. The irace package returned
that the best value is 𝑘 = 2. In the next two Sections 5.2.1 and 5.2.2, we
tested these methods in small and large monitored areas, respectively.

5.2.1. Small monitored area
In this subsection, we report the results of the Incremental-GRASP

and the Decremental-GRASP heuristics in Scenario 1 that involves small
monitored areas. Table 4 reports the results found for 30 runs of the
Incremental-GRASP heuristic. The first column indicates the number of
the instance, the second shows the amount of data stored in each sensor
node in kb, and the third column shows the values of 𝑇𝑡𝑜𝑡𝑎𝑙 returned by
the Incremental. The following three columns report, respectively, the
best and the average value of 𝑇𝑡𝑜𝑡𝑎𝑙 presented by the Incremental-GRASP
heuristic and the Relative Percentage Deviation (RPD).

The RPD is evaluated according to Eq. (5):

𝑅𝑃𝐷𝑖 =
(𝑇𝑡𝑜𝑡𝑎𝑙)𝑀𝑒𝑡ℎ𝑜𝑑

𝑖 − (𝑇𝑡𝑜𝑡𝑎𝑙)⋆𝑖
(𝑇𝑡𝑜𝑡𝑎𝑙)⋆𝑖

(5)

in which (𝑇𝑡𝑜𝑡𝑎𝑙)𝑀𝑒𝑡ℎ𝑜𝑑
𝑖 is the average 𝑇𝑡𝑜𝑡𝑎𝑙 demanded by the method

(Incremental-GRASP or Decremental-GRASP) in 30 executions and
(𝑇𝑡𝑜𝑡𝑎𝑙)⋆𝑖 is the value found by the Incremental (or Decremental) for the
instance 𝑖.

In turn, Table 5 reports the results of the Decremental-GRASP
heuristic.

As can be seen from Tables 4 and 5, the proposed GRASP-based
heuristics outperformed the performance of the Incremental and Decre-
mental. The improvement is more significant for the Decremental-
GRASP method. This behavior of the Decremental-GRASP method oc-
curs due to the following reason. Decremental chooses the hovering
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Fig. 8. Best results generated by the methods concerning the overall data gathering time (𝑇𝑡𝑜𝑡𝑎𝑙) in a small monitored area (Scenario 1).
Fig. 9. Average results generated by the methods concerning the overall data gathering time (𝑇𝑡𝑜𝑡𝑎𝑙) in a small monitored area (Scenario 1).
point with the smallest Impact of Removal to be removed from the
tour at each iteration. In turn, at each iteration, Decremental-GRASP
removes from the tour a hovering point between the 𝐾 rendezvous
points with the smallest Impact of Removal. As Decremental tends to
have larger tours than Incremental, the value of 𝐾 = 2 is relatively
small concerning the tour’s size. As a result, the rendezvous point
removed has a low Impact of Removal; consequently, the collection
time 𝑇ℎ𝑜𝑣𝑒𝑟𝑖𝑛𝑔 is less affected.

On the other hand, Decremental-GRASP tends to have tours com-
posed of more rendezvous points than Incremental-GRASP due to its
strategy of reducing the tour’s size in each iteration. This fact occurs
mainly when the amount of data stored in the sensor nodes’ memories
is greater. In this situation, the more rendezvous points, the smaller
the data routes’ size and, consequently, the shorter the collection time.
Besides, with larger tours, more sensor nodes can send their data to the
drone in movement.

Fig. 8 illustrates the heuristics’ comparison results, considering the
best results produced by them. In turn, Fig. 9 illustrates the heuristics’
comparison results, considering the average results generated by them.
Notice that, Decremental-GRASP outperforms all other methods when
the amount of data stored in the sensor nodes is greater than or equal
to 60 kb.
10
Table 6
Comparison between Incremental and Incremental-GRASP in relation to the 𝑇𝑡𝑜𝑡𝑎𝑙 value
for the Scenario 2.

Instance # Data Incremental Incremental-GRASP

(kb) Best Avg. RPD (%)

1 20 723.14 704.56 720.67 −0.34
2 40 1008.39 987.78 1001.13 −0.71
3 60 1178.64 1146.87 1156.21 −1.9
4 80 1297.71 1246.89 1256.43 −3.18
5 100 1452.67 1398.98 1403.71 −3.37
6 120 1593.93 1556.98 1545.26 −3.05

5.2.2. Large monitored area
Similar to Section 5.2.1, Tables 6–11 report the results found by the

Incremental-GRASP and Decremental-GRASP heuristics within a large
monitored area (Scenarios 2, 3 and 4) concerning the 𝑇𝑡𝑜𝑡𝑎𝑙. As before,
each heuristic was executed 30 times.

Like in the previous subsection, the GRASP-based heuristics pre-
sented better performance than the Incremental and Decremental
heuristics. Figs. 10, 12 and 14 illustrate the heuristics’ comparison
results, considering the best results produced by them. In turn, Figs. 11,
13, and 15 illustrate the heuristics’ comparison results, considering the
average results generated by them.
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Fig. 10. Best results generated by the methods concerning the overall data gathering time (𝑇𝑡𝑜𝑡𝑎𝑙) in a large monitored area (Scenario 2).

Fig. 11. Average results generated by the methods concerning the overall data gathering time (𝑇𝑡𝑜𝑡𝑎𝑙) in a large monitored area (Scenario 2).

Fig. 12. Best results generated by the heuristics according to the number of nodes in the WSN: large monitored area (Scenario 3).
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Fig. 13. Average results generated by the methods according to the number of nodes in the WSN: large monitored area (Scenario 3).

Fig. 14. Best results generated by the methods according to the drone speed in a large monitored area (Scenario 4).

Fig. 15. Average results generated by the methods according to the drone speed in a large monitored area (Scenario 4).
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Table 7
Comparison between Decremental and Decremental-GRASP in relation to the 𝑇𝑡𝑜𝑡𝑎𝑙 value
or the Scenario 2.
Instance # Data Decremental Decremental-GRASP

(kb) Best Avg. RPD (%)

1 20 744.41 611.98 636.9 −14.43
2 40 929.49 767.45 813.11 −12.52
3 60 1070.94 817.56 856.3 −20.04
4 80 1198.6 921.87 945.67 −21.10
5 100 1325.16 1056.78 1118.74 −15.57
6 120 1450.66 1078.98 1125.16 −22.43

Table 8
Comparison between Incremental and Incremental-GRASP according to to the number
of nodes in the WSN.

Instance Number of Incremental Incremental-GRASP

sensor nodes Best Avg. RPD (%)

1 100 1005.21 976.22 988.56 −1.65
2 150 1178.64 1157.94 1160.78 −1.51
3 200 1389.43 1353.45 1362.64 −1.92
4 250 1568.17 1532.87 1547.97 −1.28

Table 9
Comparison between Decremental and Decremental-GRASP according to the number of
nodes in the WSN.

Instance Number of Decremental Decremental-GRASP

sensor nodes Best Avg. RPD (%)

1 100 867.27 798.98 816.19 −5.88
2 150 1070.94 913.76 929.30 −13.22
3 200 1265.16 1067.15 1098.10 −13.2
4 250 1479.89 1287.49 1319.36 −10.84

Table 10
Comparison between Incremental and Incremental-GRASP in relation to drone speed
(m/s).

Instance Drone speed Incremental Incremental-GRASP

(m/s) Best Avg. RPD (%)

1 0.5 2483.17 2407.23 2467.11 −0.64
2 1.0 1785.97 1703.34 1756.17 −1.66
3 1.5 1400.19 1315.56 1387.70 −0.89
4 2.0 1178.64 1098.24 1145.21 −2.83
5 2.5 1015.83 904.84 986.87 −2.85
6 3.0 915.06 856.56 901.43 −1.48

Table 11
Comparison between Decremental and Decremental-GRASP in relation to drone speed
(m/s).

Instance Drone speed Decremental Decremental-GRASP

(m/s) Best Avg. RPD (%)

1 0.5 2756.83 2512.238 2598.14 −5.75
2 1.0 1689.49 1434.56 1503.86 −10.98
3 1.5 1288.91 1067.44 1111.33 −13.62
4 2.0 1070.94 856.55 907.30 −15.28
5 2.5 938.61 1056.78 812.71 −13.41
6 3.0 841.73 1078.98 708.64 −15.81

As shown in all the previous figures of this subsection (Figs. 10–
5), Decremental-GRASP outperforms all other methods within a large
onitored area.

.2.3. Statistical analysis
This subsection analyzes whether there is a statistical difference

n the results presented here. We initially applied the Shapiro–Wilk
est [31] on each sample that generated a mean result. According to
his test, we verify that all samples have a normal distribution. So, we
pplied the paired 𝑡-test [32] on all topologies to the method pairs,
13
Table 12
Paired 𝑡-test results involving the proposed methods in Scenario 1.

Methods Data stored in each sensor node

20 40 60 80 100 120

Incremental × Incremental-GRASP 0.98 0.58 0.68 0.93 0.09 0.79
Decremental × Decremental-GRASP 1.96 2.45 3.12 5.00 6.03 4.11
Incremental-GRASP × Decremental-GRASP 7.66 6.99 2.43 2.80 5.32 5.52

Table 13
Paired 𝑡-test results involving the proposed methods in Scenario 2.

Methods Data stored in each sensor node

20 40 60 80 100 120

Incremental × Incremental-GRASP 0.45 0.67 0.98 1.54 2.01 2.04
Decremental × Decremental-GRASP 2.31 2.57 4.12 5.78 5.04 6.13
Incremental-GRASP × Decremental-GRASP 2.76 3.96 5.85 5.79 5.87 6.92

Table 14
Paired 𝑡-test results involving the proposed methods in Scenario 3.

Methods Number of sensor nodes

100 150 200 250

Incremental × Incremental-GRASP 0.73 0.81 0.93 1.29
Decremental × Decremental-GRASP 2.05 2.94 3.11 3.09
Incremental-GRASP × Decremental-GRASP 3.21 3.83 3.87 3.94

Table 15
Paired 𝑡-test results involving the proposed methods in Scenario 4.

Methods Drone speed (m/s)

0.5 1.0 1.5 2.0 2.5 3.0

Incremental × Incremental-GRASP 0.49 0.58 0.69 0.92 0.95 0.81
Decremental × Decremental-GRASP 2.06 2.31 2.42 2.49 2.35 2.28
Incremental-GRASP × Decremental-GRASP 1.93 3.45 3.92 3.67 3.23 3.01

i.e., Incremental × Incremental-GRASP, Decremental × Decremental-
GRASP, and Incremental-GRASP × Decremental-GRASP. Tables 12–15
report the observed values for 𝑡 in these comparisons. As before, column
‘Methods’ represents the pair of methods being compared, and column
‘Data stored in each sensor node’ informs the amount of data stored in
each sensor node, in kb. We set the significance level to 0.05 (5%). At
this significance level, the critical value for 𝑡 is 2.045.

We note that there is no proven statistical difference between the
Incremental and Incremental-GRASP since all the values observed for 𝑡
in line 1 of Tables 12, 13, 14, and 15 are less than the critical 𝑡 value.

On the other hand, we can verify a statistical difference between
he Decremental and Decremental-GRASP methods in instances whose
ensor nodes have 40 kb or more of stored data in the Scenario 1.
e can make this statement because the observed value for 𝑡 in line

2 of Table 12 is greater than the critical value for 𝑡 when sensor
nodes have 40 kb or more of stored data. In the Scenarios 2, 3, and
4, we can verify a statistical difference between the Decremental and
Decremental-GRASP methods in all instances, as shown in Tables 13,
14, and 15.

In turn, we prove a statistical difference with a 95% confidence
interval between the Incremental-GRASP and the Decremental-GRASP
methods. This statement can be affirmed since all the values observed
for 𝑡 in line 3 of Tables 12, 13, 14, and 15 are greater than the critical
𝑡 value. Thus, given the results of Tables 12 to 15, involving both
small and large monitored areas, we can statistically assure that the
Decremental-GRASP method is better than all the other methods in the
Scenarios 1, 2, 3, and 4.

5.3. Network energy consumption analysis

This work focused on drone limitations. Hence the main metric
analyzed here is the overall data gathering time. We do not examine



Ad Hoc Networks 138 (2023) 103017R.I. da Silva et al.

d
P
T
J

the network energy consumption. To perform this analysis, we would
create or simulate the network infrastructure. Furthermore, we also
would have to define the network routing protocol to receive queries
from the drone and send back the required data. da Silva et al. [19]
proposed algorithms for sensor nodes to answer queries issued by
drones. They verified that reducing the overall data gathering time also
reduces energy consumption. The overall data gathering time is closely
related to the number of hops used to receive data from the sensor
nodes. Hence, heuristics that presents shorter data gathering times tend
to provide smaller energy consumption.

6. Conclusion and future works

This work proposed two GRASP-based heuristics to solve the prob-
lem of finding a tour to be followed by a mobile sink for data collection
in WSN to minimize the overall data gathering time. The heuristics are
called Incremental-GRASP and Decremental-GRASP. We considered a
quadcopter drone as a mobile sink, which can fly and hover over any
point inside the monitored area. However, it has a flight time limita-
tion. Furthermore, we consider sensor nodes storing a large volume of
data to be collected by the drone. Consequently, the proposed heuristic
must guarantee that the drone will stay at least a minimal time inside
the radio range of the sensor nodes to receive all data. We compared
the proposed heuristics against the heuristics described by Rezende
et al. [13], here called Incremental and Decremental. These algorithms
represent state of art for this type of scenario.

In the simulated experiments, the proposed Incremental-Grasp out-
performed the Incremental heuristic in practically all experiments.
The same goes for Decremental-Grasp and Decremental. Moreover,
Decremental-Grasp outperformed all the other heuristics in the majority
of the scenarios. Its good performance has to be highlighted in scenarios
where the sensor nodes have the largest volume of data to transmit to
the drone. This performance happens because Decremental-Grasp (also
Decremental) tends to provide more long tours than Incremental. This
type of tour enables more sensor nodes to send data during the drone
movement. Finally, notice that the Grasp-based heuristics provided
better results than the greed heuristics found in the literature.

In future works, we intend to improve and evaluate the perfor-
mance of the proposed heuristics in environments with more complex
requirements, such as Large-scale Wireless Sensor Networks (LSWSN).
These networks are composed of sensor nodes spread on a large region.
Since the density of nodes is low, they can be organized into groups so
that some groups have no connection with others. In this situation, the
mobile sink must pass over each group to collect all available data.
Furthermore, we intend to change the proposed heuristics to define
tours for drones in disaster situations, such as after earthquakes and
flooding. These situations can have some nodes’ mobility and different
types of nodes.
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