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Abstract. This paper proposes an adaptation of the RINS MIP heuris-
tic which explicitly explores pre-processing techniques. The method sys-
tematically searches for the ideal number of fixations to produce sub-
problems of controlled size. These problems are explored in a Variable
Neighborhood Descent fashion until a stopping criterion is met. Prelimi-
nary experiments implemented upon the open source MIP solver COIN-
OR CBC are presented.

1 Introduction

One of the most important techniques for solving complex optimization problems
is Mixed Integer Programming (MIP). A MIP problem involves a set of variables,
a set of constraints on these variables, a set of integrality constraints and a linear
objective function to optimize.

MIPs are typically solved by branch-and-bound or branch-and-cut techniques.
These approaches explore a tree of relaxations of the original MIP, in which each
node in the tree is divided into two disjointed sets by imposing limiting restric-
tions upon an integer variable. Even tough MIP solvers can be applied to a
variety of problems, their performance in producing good feasible solutions and
strong dual bounds greatly differs for different applications and their respective
formulations. Thus, operations research practitioners often consider the use of
specifically tailored heuristics such as Tabu Search [1], Genetic Algorithms [2],
[3], Reconnect paths [4], among others, which objective is only in the produc-
tion and improvement of feasible solutions. In recent years, the application of
MIP solvers in different domains has motivated the development of many MIP
heuristics, such as Feasibility Pump [12][13], Local Branching [14] and RINS[11].

Among the solvers which have their source code available, we can highlight
the COIN-OR CBC [16] [17]. It is a solver of linear and integer programs. The
package includes features such as pre-processing, cutting planes, heuristics and
branching strategies. Although it was initially designed to be used as a library,
it includes an independent solver callable by the command line. It is possible to
use the file formats .lp and .mps. It can also run in parallel to take advantage of
multi-core computers.

In this paper we propose modifications in MIP heuristic Relaxation Induced
Neighborhood Search (RINS) proposed by [11] in the literature. The idea is to
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search for an ideal number of variables to be fixed in a specific problem. If this
number is too small, the search space may be too large to be searched efficienly.
On the other hand, a large number of fixations may restrict the search space
so much that no improved solution will be found. All our implementations were
coded using the COIN-OR CBC libraries.

The remainder of this paper is divided as follows. Section 2 presents the
literature review considering integer programming problems and metaheuris-
tics. Section 3 describes the proposed adaptive heuristics RINS(pRins) and the
methodology used. In section 4, the test instances are described, while in Sec-
tion 5 the experiments and computational results are presented. The last section
concludes the paper and suggests possible improvements.

2 Literature Review

The heuristics were originated in Operations Research and Artificial Intelligence
communities. At first, combinations of heuristics were not explored, since they
worked well separately. The motivation for hybridization emerged aiming at
exploring the benefits of the synergy between the methods. However, it is not
trivial to find good combinations [5].

[5] presents a survey on hybridization of metaheuristics with other optimiza-
tion methods for solving problems of combinatorial nature. The authors em-
phasize the importance of hybrid methods combining features of diversification
and intensification when searching for a solution. Among the methods of inte-
ger programming, we highlight those based on Lagrangian relaxation, as well as
iterative heuristic (LPA, and IIRH IRH), which fix and solve the subproblems
encountered at every stage.

For [6], the reason for using heuristics is that they must help MIP finding
good solutions earlier, thus avoiding search in regions of low quality in the tree,
and at the same time, they must enhance the search for promising regions.
In his paper it is presented a 0-1 heuristic , stand-alone implementation, in
other words, that is independent of branch-and-bound. It is built around a merit
function by measuring the completeness of the solution. The method involves
four steps: gradient-based pivoting, pivoting poll, cuts convexity/intersection
and exploration of the tree of variables blocks.

While solving a problem in a Linear Programming based branch-and-bound
algorithm, there are usually two solutions available, one that meets the require-
ments of completeness of variables, but is not optimal, and another one that
is a fractional solution which doesn’t meet the requirements of variables com-
pleteness, however has a better value. The Relaxation Induced Neighborhood
Search(RINS) method, proposed by [11], is based upon this assumption and
fixes the variables that are equal in both solutions, as they meet both criteria.
Then a cut is added, based on the current value of the objective function and
the subproblem is solved with the remaining variables. The method has charac-
teristics which are similar to Path Relinking [4], since it is also connecting two
solutions.
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In [7], the authors apply two tree search techniques to the Traveling Salesman
Problem: Local Branching (LB) and Sliced Neighborhood Search(SNS). While
LB produces intensification in the region of the incumbent solution exploring
nearby space, the SNS technique works diversifying the search. The SNS tech-
nique improves the incumbent solution by the random exploration of distant
spaces in the neighborhood. It explores the space considering the disparities
between the incumbent solution and the neighbors. At each iteration, a piece
of the neighborhood is explored by choosing a set of variables or using short
time limits. The combined result of the two techniques has proven itself to be
satisfactory, finding better quality solutions.

[8] presents the heuristic Distance Induced Neighborhood Search (DINS). The
idea of this heuristic is to use a metric distance between the linear relaxation
solution and the current integer solution, exploring the nodes generated by the
search. The DINS method incorporates hard-fixating and soft-fixating, rounding
variables according to the metric defined. It follows the intuition that good
solutions are close to the relaxed solution. The method also considers a criterion
to avoid excessive fixations, in case many integer variables are fixed.

[15] describes an evolutionary approach to improve solutions to mixed integer
programming (MIP) models. Evolutionary algorithms adopt a natural-selection
analogy, exploring concepts such as population, combination, mutation, and se-
lection to explore a diverse space of possible solutions to combinatorial opti-
mization problems while, at the same time, retaining desirable properties from
known solutions. The proposed method maintains a fixed-size pool of the P best
distinct solutions found so far, to perform the operations of combination and
mutation. For mutation, a solution is chosen, and then a percentage of variables
are fixed. The resulting sub-MIP is solved, the best solution is added to the pool
and the percentage of fixation is updated. The combination chooses a pair of
solutions, fix variables whose values agree in all of the chosen solutions. Then
the sub-MIP is solved and adds the best solution found to the solution pool. The
experiments showed satisfactory results.

The heuristic Relaxation Enforced Neighborhood Search (RENS) presented
in [9], works with large neighborhood search. The method builds a sub-problem
considering the viable rounding of some fractional point - usually the optimal
LP relaxation of the original MIP. The current solution is the starting point and
neighborhoods are defined by using fixations and adding restrictions. The RENS
idea is fixing variables with integer value in the relaxed solution and searching
the remaining solutions, rounding to the nearest integer.

In [10] a beverage production plant is modeled using mixed-integer program-
ming, and it involves lot sizing, decisions planning and dependent time machine
preparation. It proposes a fixation and relaxation heuristic to explore the prob-
lem, since CPLEX does not satisfactorily resolve instances of the problem. In
this procedure, the set of integer variables is divided into disjunctive sets. At
each iteration, the variables of one of the sets are fixed, while the others are re-
laxed, and the resulting submodel is resolved. The sets were divided considering
the production periods.
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3 The pRINS MIP heuristic

The heuristic developed in this work is based on the method RINS. In this
method, the following steps are taken at each node in the branch-and-cut tree:

1. fix the variables with the same value of the incumbent solution and the
relaxed solution;

2. set a cut based on the value of the objective function in the current incum-
bent solution;

3. solve the sub-MIP with the remaining variables.

The RINS sets all the variables that are equal in both solutions. Depending
on how many fractional variables appear on the fractional solution, the number
of the fixes in the resulting neighborhood can be too small or too large. The
proposed method explores existing pre-processing techniques to quickly gen-
erate sub-problems of controled size. These sub-problems are are solved in a
VND(Variable Neighborhood Descend) [18].

Algorithm 1: pRINS

Input: Solf , Soli,mip,Reqsize, Natpmax, Difp
Output: Sol∗

Sol∗ ← Soli;
Xp receives the sort of the variables according to their priority for fixing
considering the integer and fractional solution (Soli, Solf );
repeat

fixsize ← buildSizes(Xi, Xp, Natpmax, Reqsize, Difp, LimRel);
mip′′ ← createProblem(Xi, Xp, fixsize,mip);
if mip′′ relaxation cost indicates possible improvement then

Solrins ← solve mip′′;
if found better solution then

Sol∗ ← Solrins;
Recalculate the vector of priorities (Xp) considering Sol∗, Solf ;

else
Increase the required size Reqsize;

end

else
Increase the required size Reqsize;

end

until the required size is smaller than the total number of variables and
time limit not exceeded ;
return Sol∗;

The method pRINS(pre-processing aware RINS), algorithm 1, establishes
a stopping criterion when applying this adapted heuristic. Given an integer
solution (Soli), fractional solution (Solf ), a required size to created problem
(Reqsize), maximum number of attempts for building a subproblem with the de-
sired size(Natpmax), acceptable percentage difference between desired and founded
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size (Difp) and the original problem MIP (mip). Initially an ordered array in-
dicating the priorities of variables for fixation is created. To define them, these
vector variables are ordered according to the difference in magnitude between
the value in the integer solution and fractional solution. The variables whose
difference in (Sol∗) and (Solf ) is zero are the first ones of this vector and the
others are placed in this array in ascending order of difference. Then the method
buildSizes, defined in algorithm 2, is used to determine the number of fixa-
tions (fixsize) necessary to achieve the required size problem. It is created a
new problem(mip′′) which is pre-processed, considering the number of fixations
determined previously. If the relaxation cost does not indicates possible improve-
ment, then the size of the problem increases. Otherwise, the problem is solved, if
the best solution is found, the integer solution is updated, priorities recalculated,
trying to solve the new problem. If the solution is worse, the size of the problem
increases (Reqsize) in percentage to consider a larger search space.

Algorithm 2: buildSizes

Input: Xi, Xp, Natpmax, Ndes, Difp, LimRel

Output: Nfix

Na ← 0 ;
Ll ← 0 ;
Lu ← maxSizelast ;
Nfix ← (Ll + Lu)/2 ;
Difmax ← 0 ;
repeat

Na + +;
mip′′ ← createProblem(Xi, Xp, Nfix,mip);
Probsize ← nvars(mip′′);
if |Ndes − Probsize| ≤ Ndes ∗Difp then

return Nfix;
end
if Probsize == 0 or Probsize < Ndes or LimRel ≥ 0.99 ∗ cost(Si)
then

Lu ← Nfix ;
Ll ← Nfix/2 ;
Nfix ← (Ll + Lu)/2 ;

else
Ll ← Nfix ;
Nfix ← (Ll + Lu)/2 ;

end

until Na < Natpmax or Ll < Lu ;
return Nfix;

The method buildSizes, is used to determine the ideal number of fixations.
Given the desired size of the problem (Ndes), which in the beginning is the size
of a mip that is small enough to be quickly solved, the total number of vari-
ables (size(Xi)), maximum number of retries (Natpmax), the vector of priorities
fixation (Xp), vector of integer variables (Xi), the MIPs are created and the
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number of fixations is found. To reach the desired size, the number of fixations
is changed according to a binary search until the number of attempts is ex-
hausted, the binary search ends or size is achieved. Initially, the upper limit
of fixation is the total number of variables in the problem. This upper limit
is changed at the end of each binary search, being upgraded to the number of
fixations used in the last sub-problem solved. This control is made through the
variable (maxSizelast). This method calls another one (createProblem, defined
in algorithm 3) which checks the feasibility of the resulting subproblem. After the
problem is built, nvars function returns the number of free variables of the prob-
lem. The search ends when the number of free variables(Probsize) approaches
the desired size(Ndes), taking a percentage of tolerance(Difp). Otherwise, the
search terminates if the maximum number of attempts(Natpmax) is reached, or
the upper limit(Lu) is less than or equal to lower limit(Ll).

Algorithm 3: createProblem

Input: Xi, Xp, Nfix,mip

Output: mip
′

mip′ ← fix(mip,Nfix, Xp, Xi) ;
mip′′ ← preprocessed(mip′) ;
if mip′′notfeasible then

mip′′ ← null ;
end
return mip′′;

The method createProblem, in algorithm 3, will build mip problems, con-
sidering a number of variables to be fixed (Nfix), the vector of priorities (Xp).
The function fix(mip,Nfix, Xp, Xi) will create a new problem, from the fixing
of (Nfix) first variables of vector (Xp), through the definition of upper and lower
limits of each one by the value in Xi. Next, the created problem is preprocessed,
generating another (mip′′). If the mip (mip′′) is viable, the method returns the
size of the new problem. However if unfeasible, returns 0 as the size.

4 Characterization of Instances

The models (instances) to be used in this work are all related to binary problems.
They were obtained from two groups:

– 25 MIPLIB library problems http://miplib.zib.de/ [20].
– 12 nurse scheduling problems used in the International Nurse Rostering Com-

petition 2010 [19]

A detailed description of the instances, containing the number of binary vari-
ables, the number of constraints and number of non-zero values in constraints,
is available in table 1.

We can see the diversity of binary problems that will be used, with this
number of constraints and variables quite different.
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Table 1. Nurse Scheduling and MIPLIB Library Instances

instance binary variables constraints non-zero

long01 51,695 17,241 1,011,556
long-hidden01 61,950 28,370 1,064,380
long-hint01 61,550 27,480 1,061,430
long-late01 61,750 27,875 1,062,795
medium01 29,605 8,668 621,829
medium-hidden01 36,690 16,070 635,220
medium-hint01 34,050 14,062 622,800
medium-late01 34,050 14,062 622,800
sprint01 3,522 10,230 204,000
sprint-hidden01 10,308 3,332 202,420
sprint-hint01 11,630 5,032 208,410
sprint-late01 11,630 5,032 208,410

air04 8,904 823 72,965
bley-xl1 5,831 175,620 869,391
cov1075 120 637 14,280
eil33-2 4,516 32 44,243
eilB101 2,818 100 24,120
iis-100-0-cov 100 3,831 22,986
iis-bupa-cov 345 4,803 38,392
iss-pima-cov 768 7,201 71,941
macrophage 2,260 3,164 9,492
mine-166-5 830 8,429 19,412
mine-90-10 900 6,270 15,407
n3div36 22,120 4,484 340,740
n3seq24 119,856 6,044 3,232,340
neos-1109824 1,520 28,979 89,528
neos-1337307 2,840 5,687 30,799
neos18 3,312 11,402 24,614
netdiversion 129,180 119,589 615,282
ns1688347 2,685 4,191 66,908
opm2-z7-s2 2,023 31,798 79,762
reblock67 670 2,523 7,495
rmine6 1,096 7,078 18,084
sp98ic 10,894 825 316,317
tanglegram1 34,759 68,342 205,026
tanglegram2 4,714 8,980 26,940
vpphard 51,471 47,280 372,305
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5 Experiments and Results

The proposed heuristic in this work reads a series of test instances (initially
applied to binary problems, as described in the previous section), the fractional
solution and an initial integer feasible solution to the problem. This initial so-
lution was generated using Feasibility Pump and is informed as initial solution
for all tested MIP heuristics.

For most of the practical operations research applications, solution methods
are only useful if they are able to produce satisfatory solutions in short periods
of time. Thus, we imposed a time limit of 300 seconds. The initial size parameter
of the problem to be solved in these tests was defined as 100 (the number of free
variables). Another parameter is the percentage of increase in the size of the
problem(in this case, it was used 50). The tests were run using the following
hardware configuration: Intel (R) Core (TM) i7 CPU, 1.90GHz, 6 GB RAM.

Preliminary results described below, consider the implementation of the method
RINS adapted as proposed in this work. The instances used in the tests are de-
scribed in Table 1.

We compare our results with the standalone CBC solver as well, with an
implementation method RINS in original form. Both CBC and RINS use the
same initial solution that our method uses.

In Table 2 the values found for each instances are described, considering the
implementations used. For each instance, the best value found is highlighted in
bold. Comparing the values obtained, we can notice that the proposed method
achieves better results on 14 instances when compared to CBC and is better in
18 instances when compared to the original form of RINS. In 15 instances, the
method obtains the same value achieved when the problem is solved using the
CBC, while the result is the same in 15 cases when compared to the original
RINS.

Tables 3 and 4 present the results considering the number of wins, draws
and defeats comparing the implementations tested. In all groups of instances,
the proposed method has achieved good results, reaching better solutions than
or equal to the comparison method. For example, the group of MIPLib instance,
the pRINS obtains 76% of equal or better values when compared to CBC, and
88% compared to RINS.

Table 5 shows the results for each tested implementation considering the sum
and the average of gaps (percentage difference between the obtained value and
the best known value). The proposed method was the one that was closest, on
average, to the best values. The metric gap solution was calculated according to
the following expression: min(100, (z − best)÷ best× 100).
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Table 3. Number of victories and defeats for each group of instances

Group Best Value
pRINS Equal CBC

MIPLIB library 8 11 6
nurse scheduling 6 4 2

Table 4. Number of victories and defeats for each group of instances

Group Best Value
pRINS Equal RINS

MIPLIB library 11 11 3
nurse scheduling 7 4 1

Table 5. Sum and average of gaps

p-RINS CBC RINS

Sum 1,082.10 1,103.52 1,475.70
Average 29.24 29.82 39.88

6 Final Remarks

Even tough this work is still being developed, encouraging results were obtained
for the proposed RINS variant, denoted here as pRINS. Adjustments are being
made in the algorithm to speed up the execution of multiple pre-processing
phases, which can produce further speedups. Our computational results show
that pRINS is already better or equal to other methods (using only CBC or
original RINS) in most cases, considering the production good feasible solutions
in a restricted period of time.
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