AIV: A Heuristic Algorithm based on Iterated Local Search and Variable
Neighborhood Descent for Solving the Unrelated Parallel Machine
Scheduling Problem with Setup Times

Matheus Nohra HaddagdLuciano Perdigiao CotaMarcone Jamilson Freitas Sodza
and Nelson Maculan
1Depar'[amento de Computacao, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
2programa de Engenharia de Sistemas e Computago, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

Keywords: Unrelated Parallel Machine Scheduling, Iterated Local Search, Random Variable Neighborhood Descent,
Makespan.

Abstract: This paper deals with thenrelated Parallel Machine Scheduling Problem with Setup Ti(WEEMSPST). The
objective is to minimize the maximum completion time of the schedule, the so-cadlkdspanThis problem
is commonly found in industrial processes like textile manufacturing and it belong&Rd-ard class. It is
proposed an algorithm named AlV basedlmrated Local SearcKILS) andVariable Neighborhood Descent
(VND). This algorithm starts from an initial solution constructed on a greedy way bpjdaptive Shortest
Processing TIm@ASPT) rule. Then, this initial solution is refined by ILS, using as local search the Random
VND procedure, which explores neighborhoods based on swaps and multiple insertions. In this procedure,
here called RVND, there is no fixed sequence of neighborhoods, because they are sorted on each application of
the local search. In AlV each perturbation is characterized by removing a job from one machine and inserting
it into another machine. AIV was tested using benchmark instances from literature. Statistical analysis of
the computational experiments showed that AlV outperformed the algorithms of the literature, setting new
improved solutions.

1 INTRODUCTION ma. (][22]
mzl s =1
1 1 L1

This paper deals with theénrelated Parallel Machine e | I I I I
Scheduling Problem with Setup Timg@sPMSPST), 0 20 40 60 80 100 120 130140
which can be formally defined as follows. Lit= Figure 1: An example of a possible schedule.
{1,...,n} be a set of jobs and I8l = {1,....m} be

a set of unrelated machines. The UPMSPST con- unrelated machine§jk the setup times anGmax the
sists of schedulingn jobs onm machines, satisfy- makespan Figure 1 illustrates a schedule for a test
ing the following characteristics: (i) Each jgbe N problem composed by two machines and seven jobs.
must be processed exactly once by only one machineln Table 1 are presented the processing times of these
ke M. (ii) Each jobj € N has a processing timg jobs in both machines. The setup times of these jobs
which depends on the machike= M where it will in these machines are showed in Table 2 and Table 3.
be allocated. (iii) There are setup tim&g, between It can be observed that in machine M1 the jobs 2,
jobs, wherek represents the machine on which jobs 1 and 7 are allocated in this order. In machine M2 the

i and j are processed, in this order. (iv) There is a schedule of the jobs 5, 4, 6 and 3, in this order, is also
setup time to process the first job, representesoly perceived by this figure. The cross-hatched areas of
The obijective is to minimize the maximum comple- the figure represent the setup times between jobs and
tion time of the schedule, the so-callethkesparor the numbered areas the processing times. On the line
also denoted b¥max. Because of such characteris- below the schedule there is the timeline, in which the
tics, UPMSPST is defined & | Sjk | Cmax (Graham times 120 and 130 represent the completion times of
et al., 1979). In this representatidRy representthe each machine.

376 Nohra Haddad M., Perdigédo Cota L., Jamilson Freitas Souza M. and Maculan N. (2014).
AIV: A Heuristic Algorithm based on Iterated Local Search and Variable Neighborhood Descent for Solving the Unrelated Parallel Machine Scheduling
Problem with Setup Times.
In Proceedings of the 16th International Conference on Enterprise Information Systems, pages 376-383
DOI: 10.5220/0004884603760383
Copyright ¢ SCITEPRESS

AIV: A Heuristic Algorithm based on Iterated Local Search and Variable Neighborhood Descent for Solving the Unrelated
Parallel Machine Scheduling Problem with Setup Times

Table 1: Processing times in machines M1 and M2. study of the UPMSPST. Under these circumstances,
finding the optimal solution for UPMSPST using ex-
M1 M2 act methods can be computationally infeasible for
20 4 large-sized problems. Thus, metaheuristics and local
25 21 search heuristics are usually developed to find good
28 14 near optimal solutions.
17 32 In order to find these near optimal solutions for
43 38 the UPMSPST, this paper proposes the development
9 23 of an algorithm based oiterated Local Search ILS
58 52 (Lourenco et al., 2003) andariable Neighborhood
Descent— VND (Mladenovic and Hansen, 1997).
Table 2: Setup times in machine M1. This algorithm is called AlV, it starts from an initial
solution constructed on a greedy way by fkaaptive
6 Shortest Processing TimeASPT rule. Then, this ini-
tial solution is-refined by ILS, using as local search
the Random VND procedure. In this procedure, here
called RVND, there is no fixed sequence of neighbor-
hoods, because they are sorted on each application of
the local search. In (Souza et al., 2010) the authors
showed the effectiveness of RVND over the conven-
tional VND.

AlV was tested using benchmark instances from
Table 3: Setup times in machine M2. (de Optimizacion Aplicada, 2011) and the computa-

tional results showed that it is able to produce better
M2 solutions than the algorithms found in literature, with
lower variability and setting new upper bounds for the
majority of instances.

The rest of this paper is structured as follows.
Firstly, works that inspired the development of this
paper are described. Then, the methodology used for
the deployment of this paper is presented. The com-
putational results are shown on sequence. Finally, this
paper is concluded and possible proposals to be ex-
plored are described.

\lO)U‘I-bO.)I\)I—“

M1 4

~NOoO ol WN P
= 000 W~ »~DNPF
A OWOWNERDN
QR NWwhOo ow
NNOONWPE
WN O UTWN WO
Ui~ 01N 0100 ©
P O~NNWRON

WONONPEFE WRF
NWONODNBRMDN
U1 0100 DO OW
PhA~NwWwo NS
U1 O OO N 0~ ©u
OO, NWO®
~NwWo oo

~NOoO oA~ WNPE

As the job 6 is allocated to machine M2 its pro-
cessing timepg, will be 23. Its predecessor and its
successor are the jobs 4 and 3, respectively. So, in this
example, are computed the tim®g, = 5 andSszo = 2 LITERATURE REVIEW

5. Thus, it can be calculated the completion time of

machine M1 a$o21+ P21+ S11+ P11+ Si71+ Pra = In literature are found several works that seek to ad-
120. Equivalently it is also calculated the comple- dress the UPMSPST and similar problems. These ap-
tion time of machine M2 aSos2+ P52+ Ssa2+ Pa2+ proaches were inspirations for the development of this

Su62+ Ps2+ Se32+ P32 = 130. After the calculation of paper.

the completion times of machines M1 and M2, it can (Weng et al., 2001) propose the development of
be concluded that the machine M2 is the bottleneck geyen heuristics with the objective of minimizing the
machine. In other words, M2 is the machine that has weighted mean completion time. In (Kim et al.,

the highest completion time, tieakespan 2003), a problem with common due dates is addressed
The UPMSPST appears in many practical sit- and four heuristics are implemented for minimizing
uations, one example is the textile manufacturing the total weighted tardiness. (Logendran et al., 2007)
(Pereira Lopes and de Carvalho, 2007). On the otheraim to minimize the total weighted tardiness, consid-
hand, the UPMSPST is io\P-Hard class, as it is ering dynamic releases of jobs and dynamic availabil-
a generalization of thdParallel Machine Schedul- ity of machines and they used four dispatching rules
ing Problem with Identical Machines and without in order to generate initial solutions andabu Search
Setup Time¢Karp, 1972; Garey and Johnson, 1979). as the basis for the development of six search algo-
The theoretical and practical importance instigate the rithms. This problem is also addressed in (Pereira

377

ICEIS 2014 - 16th International Conference on Enterprise Information Systems

Lopes and de Carvalho, 2007), wherBranch-and- Algorithm 1: AIV.
Price algorithm is developed.

More recent references are found when deal-
ing with the UPMSPST. (Al-Salem, 2004) created

1 input :timesLevelexecutionTime
2 currentTime— 0;

a Three-phase Partitioning Heuristicalled PH. In 3 Solution s, s., bestSol;
_ L - 4 s+ ASPT();
(Rabadi et al., 2006) it is proposedMetaheuristic 5 s« RIN(S)
for Randomized Priority SeardiMeta-RaPS). (Helal 5 E £Sol 7
et al., 2006) bet in Tabu Search for solving the 7 Iesl ° 1 S
UPMSPST. (Arnaout et al., 2010) implement thiet evel < L, .
8 UpdatecurrentTime

Colony OptimizatiofACO), considering its applica-
tion to problems wherein the ratio of jobs to machines 9 while currentTime< executionTimelo
is large. In (Ying et al., 2012) it is implemented a 10 s «s;

Restricted Simulated Annealif®SA), which aims 11 times < 0;

to reduce the computational effort by only perform- 12 maxPerturb <— level + 1;

ing movements that the algorithm consider effective. 13 | while times < timesLevel do

In (Chang and Chen, 2011) is defined and proved a 14 perturb < 0;
set of proprieties for the UPMSPST and also imple- 15 s ¢ s;
mented anGenetic Algorithmand aSimulated An- 16 while perturb < maxPerturb do

perturb ++;
s’ < perturbation(s’);

nealingusing these proprieties. A hybridization that 17
joins theMultistart algorithm, the VND and a mathe- - 18

matical programming modelis made in (Fleszar etal., 19 end
2011). (Vallada and Ruiz, 2011) solve the UPMSPST 20 s’ < RUND(s));
using Genetic Algorithmswith two sets of parame- 21 if f(s") < f(s) then
ters, the authors implemented two algorithms, GA1 22 s+ s
and GA2. In (Vallada and Ruiz, 2011), the authors 23 updat eBest ('s, bestSol) ;
created and provided test problems for the UPMSPST 24 times < O;
(de Optimizacién Aplicada, 2011). Also in (de Op- 25 end
timizacion Aplicada, 2011) are presented the best 26 times ++;
known solutions to the UPMSPST so far. 27 UpdatecurrentTime
28 end
29 level ++;
3 METHODOLOGY 30 | if level > 4then
31 | level < 1;
: 32 end
3.1 The AIV Algorithm 33 end

The proposed algorithm, named AlV, combines the 34 return bestSol;

heuristic proceduregerated Local Searc(ILS) and

Random Variable Neighborhood DesceiiRVND). in each level of perturbation; ZxecutionTimethe
The main structure of AlV is based on ILS, using the time in milliseconds that limits the execution of the
RVND procedure to perform the local searches. algorithm.

A solutionsin AlV is represented as a vector of First of all, AlV begins initializing the variable
lists. In this representation there is a veatawhose that controls the time limitcurrentTime(line 2).
size is the number of machinas)(Each position of ~ Next, it initializes three empty solutions: the current
this vector contains a number that represents a ma-solutions, the modified solutiors’ and the solution
chine. The schedule of the jobs on each machine isthat will store the best solution fourtéstSo(line 3).
represented by a list of numbers, where each number In line 4 a new solution is created based on
represents one job. the Adaptive Shortest Processing Tir(®SPT) rule

In AlV, a solutionsis evaluated by the completion (see subsection 3.2). Then, this new solution passes
time of the machine that will be the last to conclude through local searches at line 5, using the RVND

their jobs, the so-callechakespan module (see subsection 3.4).
The pseudo-code of AlV is presented in Algo- In the next step, the current best known solution,
rithm 1. bestSolis updated (line 6) and the level of perturba-
The Algorithm 1 has only two input parameters: tionsis setto 1 (line 7).
1)timesLevelwhich represents the number of times After all these steps, the execution time is recalcu-

378

AIV: A Heuristic Algorithm based on Iterated Local Search and Variable Neighborhood Descent for Solving the Unrelated

lated in line 8.

The iterative process of ILS is situated in lines 9 to
33 and it finishes when the time limit is exceeded. A
copy of the current solution to the modified solution
is made in line 10.

In lines 11 and 12 the variable that controls
the number of times in each level of perturbation
(timeg is initialized, as well as the variable that limits
the maximum number of perturbatiomagxPertur.
The following loop is responsible to control the num-
ber of times in each level of perturbation (lines 13-
28).

The next loop, lines 16 to 19, executes the pertur-
bations (line 18) in the modified solution. The num-
ber of times this loop is executed depends on the level
of perturbation. With the perturbations accomplished,
the new solution obtained is evaluated and the RVND
procedure is applied in this new solution until a local
optimum is reached, in relation to all neighborhoods
adopted in RVND.

In lines (21-25) it is verified if the changes made
in the current solution were good enough to continue
the search from it. When the time is up, bestSol
will be stored the best solution found by AlV.

The following subsections present details of the
each module of AIV.

3.2 Adaptive Shortest Processing Time

The Adaptive Shortest Processing Tirg&SPT) rule
is an extension of th&hortest Processing Tinrele
(Baker, 1974).

In ASPT, firstly, it is created a s& = {1,...,n}
containing all jobs and a s&t = {1,...,m} that con-
tains all machines.

From the seN, the jobs are classified according to
an evaluation functiogg. This function is responsible
to obtain the completion time of the machieGiven
aCandidate Lis{CL) of jobs, it is evaluated, based on
the gk function, the insertion of each of these jobs in
all positions of all machines. The aim is to obtain in
which position of what machine that the candidate job
will produce the lowest completion time, that is, the
Omin-

If the machine with the lowest completion time
has not allocated any job yet, its new completion time
will be the sum of the processing time of the job to be
inserted with the initial setup time for such job.

If this machine has some job, its new completion

Parallel Machine Scheduling Problem with Setup Times

This allocation process ends when all jobs are as-
signed to some machine, thus producing a feasible
solution,s. This solution is returned by the heuris-
tic. The algorithm is said to be adaptive because the
choice of a job to be inserted depends on the preexist-
ing allocation.

3.3 Neighborhood Structures

Three neighborhood structures are used to explore the
solution space. These structures are based on swap
and insertion movements of the jobs.

e The first neighborhood\?, is analyzed with mul-
tiple insertions movements, which are character-
ized by removing a job from a machine and insert
it into a position on another machine, including
the machine to which the job was already allo-
cated.

The search in the second neighborhobﬂ, is
made by swap movements of the jobs between dif-
ferent machines.

The third and final neighborhooN2, is based on
swap movements of the jobs on the same machine.

3.4 Random Variable Neighborhood
Descent

The Random Variable Neighborhood Descent
RVND procedure (Souza et al., 2010; Subramanian
et al., 2010) is a variant of the VND procedure
(Mladenovic and Hansen, 1997).

Each neighborhood of the séN' N2, N3} de-
scribed in section 3.3 defines one local search. Un-
like VND, the RVND explores the solution space us-
ing these three neighborhoods in a random order. The
RVND is finished when it is found on a local optimum
with relation to the three considered neighborhoods.

Following are described the local searches proce-
dures used in RVND.

3.4.1 Local Search with Multiple Insertion

The first local search uses multiple insertions move-
ments with the strategffirst Improvement In this
search, each job of each machine is inserted in all po-
sitions of all machines.

The selection of the jobs to be removed respects
the allocation order in the machines. That is, initially,

time will be the previous completion time plus the the first job is selected to be removed, then the second
processing time of the job to be inserted and the setupjob until all jobs from a machine are chosen. The ma-
times involved, if it has sequenced jobs before or af- chines that will have their jobs removed are selected
ter. based on their completion times. The search starts

379

ICEIS 2014 - 16th International Conference on Enterprise Information Systems

with machines with higher completion times to ma- This local search only ends when no improve-
chines with lower completion times. ments is found in 30% of the machines.

By contrast, the insertions are made from ma-
chines with lower completion times to machines with 3.5 Efficient Evaluation of The
_hlgher complguon times. The jobs are inserted start- Objective Function
ing from the first position and stopping at the last po-
sition.

The movement is accepted if the completion times
of the machines involved are reduced. If the comple- .
tion time of a machine is reduced and the completion t|ona_l e_ffort. _ o .
time of another machine is added, the movement is AiMing to avoid this situation, it was created a
also accepted. However, in this case, it is only ac- procedure that evaluates only the processing and setup

cepted if the value of reduced time is greater than the fimes involved in the movements. In this way, in order
value of time increased. to obtain the new completmn time of ea_ch machine it

It is noteworthy that even in the absence of im- 'S necessary few additions and subtractions.
provement in the value ahakespanthe movement
can be accepted. Upon such acceptance of a move-
ment, the search is restarted and only ends when it
is found a local optimum, that is, when there is no
movement that can be accepted in the neighborhood rime ")
of multiple insertion.

The evaluation of an entire solution after every move-
ment, insertion or swap, demands a large computa-

3.4.2" Local Search with- Swaps Between M1

Different Machines
mz[5] EN
| | 11

The second local search makes swap movements be-. | | | L 11
tween different machines. For each pair of existing =~ ° 20 4 €0 80 93100 120 134140
machines are made every possible swap of jobs be- e ample of an insertion movement.
tween them.

Exchanges are made from machines that have
higher completion times to machines with lower com-
pletion times. The acceptance criteria are the same

as those applied in the first local search. If there are The new completion time of machine M2 is obtained

reductions in completion times on two machines in- bv subiracting from its previous value the process-
volved, then the movement is accepted. If the reduced. y 9 P P

value of the completion time of a machine is larger M9 time of job 6 ps> and also subtracting the setup
than the completion time plus another machine, the times involved.Syez and Ses2. The addition of a the
movement is also accepted. Once a movement is ac-setUp.t'meS‘32 IS made_ fo the completion time .Of
cepted, the search stops. mgchlne M2. In machine Ml, the processing time
’ of job 6 ps1 and the setup tim&g1 are included in
3.4.3 Local Search with Swaps on the Same the new completion time. It is not necessary to do
Machine a subtraction from the completion time of machine
M1, because job 7 is the last to be processed and

no setup time is required. Then, the new comple-

Figure 2 represent an example of an insertion
movement, based on Fig. 1 and tables 1, 2 and 3.
Figure 2 shows the removal of the job 6 from ma-
chine M2 and its insertion after job 7 on machine M1.

The third local search applies swap movements on '™~ >°))

the same machine and uses the strafest Improve- 10N time of machine M1 i1 =120+9+5=134

ment and the new completion time of machine MM =
The machines are ordered from the machine that 130~ 23— 10— 5+_1: 93.)))

has the highest value of completion time to the ma- Although the given example is for an insertion

chine that has the lowest value of completion time. movement, it is trivial to apply the same procedure
For each machine, starting from the first, all pos- [0 & Swap movement.

sible swaps between their jobs are made. The best]

movement is accepted if the completion time of the 3.6 Perturbations

machine is reduced and, in this case, the local search

is repeated from this solution; otherwise, the next ma- A perturbation is characterized by applying an inser-

chine is analyzed. tion movementin a local optimum, but this movement

380

AIV: A Heuristic Algorithm based on Iterated Local Search and Variable Neighborhood Descent for Solving the Unrelated

differs when inserting the job in another machine. The
job will be inserted into its best position, that is, in the
position that will produce the lowest completion time.
Doing so, sub parts of the problem are optimized after
each perturbation. The machines and the job involved
are chosen randomly.

In AlV, the number of perturbations applied to a
solution is controlled by the level of perturbation. A
level | of perturbation consists in the application of
| + 1 insertion movements. The maximum level al-
lowed for the perturbations is set to 3.

If AIV generatestimeslevelperturbed solutions
without an improvement in the current solution the
perturbation level is increased. If an improvement of
the current solution is found, the level of perturbation
is set to its lowest level (= 1).

4 COMPUTATIONAL RESULTS

Using a set of 360 test problems from (de Opti-
mizacion Aplicada, 2011) the computational tests
were performed. This set of test problems involves
combinations of 50, 100 and 150 jobs with 10, 15 and

Parallel Machine Scheduling Problem with Setup Times

RPDF'? of the RPD values found. In (Vallada and
Ruiz, 2011) the algorithms were executed 5 times for
each instance and for each value of
¢Alg *
RPD = -t o f (2
|
In Table 4 are presented, for each set of instances,
the RPOF"? values obtained for each value bf=
10,30,50 by AlV and also it contains thePDf''9 val-
ues obtained by GA1 and GA2, both proposed in (Val-
lada and Ruiz, 2011). To our knowledge, the results
reported in the literature for this set of test problems
are only presented in (Vallada and Ruiz, 2011) and
the best algorithms tested by the authors were GA1
and GA2.
There are three values &P separated by a
‘I’ for each set of instances in the table. Each sepa-
ration represents tests results with different values of
t, 10/30/50. If a negative value is found, it means
that the result reached by AIV outperformed the best
value found in (Vallada and Ruiz, 2011) on their ex-
periments.

Table 4. Average Relative Percentage Deviation of the al-

20 machines. There are 40 instances for each combi-gorithms AlV, GA1 and GA2 witht = 10/30/50.

nation of jobs and machines. The best known solu-
tions for each of these test problems are also provided
in (de Optimizacion Aplicada, 2011).

AlV was developed in C++ language and all ex-
periments were executed in a computer wiititel
Core i5 3.0 GHzprocessor, 8 GB of RAM memory
and inUbuntu 12.0%perational system.

The input parameters used in AIV were: the
number of iterations on each level of perturbation:
timeslevel= 15 and the stop criterion:Tim@anax,
which is the maximum time of execution, in millisec-
onds, obtained by Eq. 1. In this equation repre-
sents the number of machinesthe number of jobs
andt is a parameter that was tested with three values
for each instance: 10, 30 and 50. It is observed that
the stop criterion, with these valuestofvas the same
adopted in (Vallada and Ruiz, 2011).

Timenax=nx (M/2) xt ms Q)

With the objective to verify the variability of fi-
nal solutions produced by AlV it was used the metric
given by Eq. 2. This metric is used to compare algo-
rithms. For each algorithrAlg applied to a test prob-
lemi is calculated th&kelative Percentage Deviation
RPD of the solution found‘_iAlg in relation to the best
known solutionf;*.

In this paper, the algorithm AlV was executed 30
times, for each instance and for each value, afal-
culating theAverage Relative Percentage Deviation

GA22
7.7916.92/6.49
12.25/8.92/9.20
11.08/8.04/9.57
15.72/6.76/5.54
22.15/8.36/7.32
22.02/9.79/8.59
18.40/5.75/5.28
24.89/8.09/6.80

GA12
13.56/12.31/11.66
13.87/13.95/12.74
12.92/12.58/13.44
13.11/10.46/9.68
15.41/13.95/12.94
15.34/13.65/13.60
10.95/8.19/7.69
14.51/11.93/11.78

150 x 20 -1.04/-3.10/-4.00 13.82/12.66/12.49 22.63/9.53/7.40

RPD™Y 2.49/0.29/-0.50 13.72/12.19/11.78 17.44/8.02/7.35
1Executed on Intel Core i5 3.0 GHz, 8 GB of RAM, 30 runs for eadtance

2Executed on Intel Core 2 Duo 2.4 GHz, 2 GB of RAM, 5 runs for eiashance

Alv1
3.69/1.83/1.30
1.52/-0.77/-1.33
5.26/2.01/1.65
5.06/2.93/2.00
1.80/-0.40/-1.29
0.52/-1.64/-2.89
3.77/1.99/1.07
1.83/-0.24/-1.04

Instances
50 x 10
50 x 15
50 x 20
100 x 10
100 x 15
100 x 20
150 x 10
150 x 15

The best values oRPD*® are highlighted in
bold. It is remarkable that AIV is the algorithm
that found the best results. Not only it has im-
proved the majority of best known solutions, but
also it wins in all sets of instances. A table with
all the results found by AIV and also the previous
best know values for the UPMSPST can be found
in http://Aww.decom.ufop.br/prof/marcone/projects/
upmsp/TableAlV.ods.

The box plot, Figure 3, contains all tHeP?V9
values for each algorithm. It is notable that 100% of
the RPD values encountered by AlV outperform the
ones obtained by both GA1 and GA2 algorithms. By
the way, it is observed that 75% of solutions found by
AlV are near the best known solutions.

In order to verify if exist statistical differences
between theRPD values it was applied an analysis
of variance (ANOVA) (Montgomery, 2007). This
analysis returned, with 95% of confidence level and

381

ICEIS 2014 - 16th International Conference on Enterprise Information Systems

m

RPD_av,
10
|

T T T
AlV GAl GA2

Algorithms

Figure 3: Box plot showing thRPD?9 of the algorithms.

threshold= 0.05, thatF (2,78) = 76.01 andp = 2 x
10718, As p < threshold exist statistical differences
between thé&kPDvalues.

A Tukey HSD test, with 95% of confidence level
andthreshold= 0.05, was used for checking where

within the considered instances, that AlV is the best
algorithm on obtaining solutions for UPMSPST.

95% family-wise confidence level

]

GA1-AIV

~ o

GA2-AIV

o e =

0 5 10

GA2-GA1

15

Differences in mean levels of Algorithm

Figure 4: Graphical results from Tukey HSD test.

are these differences. Table 5 contains the differences

in the average values &PD (diff), the lower end
point (lwr), the upper end point (upr) and thevalue
(p) for each pair of algorithms.

The p-valueshows that when comparing AlV to
GAL there is a statistical difference between them,
because it was less than thiereshold The same
conclusion can be achieved when comparing AlV to
GA2. However, when GAL is compared to GA2 they
are not statistically different from each other, since
thep-valuewas greater than théreshold

Table 5: Results from Tukey HSD test.

Algorithms diff Iwr upr p

GA1-AlV 11.803704 9.324312 14.2830956 0.00000p0
GA2-AlV 10.177407 7.698016 12.6567993 0.00000p0
GA2-GAl | -1.626296 -4.105688 0.8530956 0.26591p4

By plotting the results from the Tukey HSD test
(Fig. 4) it is more noticeable that AlV is statistically
different from both GA1 and GA2, as their graphs do

5 CONCLUSIONS

TheUnrelated Parallel Machine Scheduling Problem
with Setup Time$UPMSPST) is an important prob-
lem that is practical and theoretical. Because of that,
this paper studied the UPMSPST, aiming to the min-
imization of the maximum completion time of the
schedule, thenakespan

In order to solve the UPMSPST it was proposed
an algorithm based oherated Local Searcl{ILS)
andVariable Neighborhood Desce({ND). This al-
gorithm was named AIV. This algorithm implements
the Adaptive Shortest Processing Tir®SPT) rule
in order to create an initial solution. THeandom
Variable Neighborhood DesceRVND) procedure
was used to perform the local searches, randomly ex-
ploring the solution space with multiple insertions and
swap movements. A perturbation in AlV is an appli-
cation of an insertion movement.

AlV was used in test problems from literature and

not pass through zero. The largest difference appearshe results were compared to two genetic algorithms,

when comparing AlV with GA1, where AIV remark-
ably wins. Also when making a comparison between
AlV and GAZ2 the results show a better performance
of AIV.

Comparing algorithms GA1 and GA2 it can be
perceived that they are not statistically different from

GA1 and GA2, both developed in (Vallada and Ruiz,
2011). Statistical analysis of the computational re-
sults showed that AlV is able to produce, in aver-
age, 100% of better solutions than both genetic al-
gorithms. AIV was also able to generate new lower
bounds for these test problems. Thus, it can be con-

each other, because the graph passes through zercluded that AlV is a great choice when dealing with

Thus, with a statistical basis it can be concluded,

382

the UPMSPST.

AIV: A Heuristic Algorithm based on Iterated Local Search and Variable Neighborhood Descent for Solving the Unrelated

It is proposed for future works that AIV will be

tested on the entire set of test problems available in

(de Optimizacion Aplicada, 2011). An improvement
that will be studied is an incorporation of a Mixed
Integer Programming (MIP) model to AlV for solving

related sub problems.

ACKNOWLEDGEMENTS

The authors thank the Brazilian agencies FAPEMIG
and CNPq, and the Universidade Federal de Ouro

Parallel Machine Scheduling Problem with Setup Times

Kim, D. W., Na, D. G., and Frank Chen, F. (2003). Un-
related parallel machine scheduling with setup times
and a total weighted tardiness objecti®obotics and
Computer-Integrated Manufacturing9:173-181.

Logendran, R., McDonell, B., and Smucker, B. (2007).
Scheduling unrelated parallel machines with
sequence-dependent setupsComputers & Oper-
ations research34(11):3420-3438.

Lourenco, H. R., Martin, O., and Stitzle, T. (2003). Iter-
ated local search. In Glover, F. and Kochenberger, G.,
editors,Handbook of Metaheuristicgolume 57 ofin-
ternational Series in Operations Research & Manage-
ment Sciencepages 321-353. Kluwer Academic Pub-
lishers, Norwell, MA.

Preto (UFOP) for the financial support on the devel- Mladenovic, N. and Hansen, P. (1997). Variable neighbor-

opment of this work.

REFERENCES

Al-Salem, A. (2004). Scheduling to minimize makespan on
unrelated parallel machines with sequence dependent

setup timesEngineering Journal of the University of
Qatar, 17(1):177-187.

Arnaout, J., Rabadi, G., and Musa, R. (2010). A two-
stage ant colony optimization algorithm to minimize

the makespan on unrelated parallel machines with

sequence-dependent setup time&urnal of Intelli-
gent Manufacturing21(6):693—701.

Baker, K. R. (1974). Introduction to Sequencing and
Scheduling John Wiley & Sons.

Chang, P. and Chen, S. (2011). Integrating dominance prop-

erties with genetic algorithms for parallel machine
scheduling problems with setup time#épplied Soft
Computing 11(1):1263-1274.

de Optimizacion Aplicada, S. (2011). A web site

that includes benchmark problem data sets and

solutions for scheduling problems. Available at
http://soa.iti.es/problem-instances.

Fleszar, K., Charalambous, C., and Hindi, K. (2011).
A variable neighborhood descent heuristic for
the problem of makespan minimisation on unre-
lated parallel machines with setup times.Jour-
nal of Intelligent Manufacturing 23(5):1949-1958.
doi:10.1007/s10845-011-0522-8.

Garey, M. and Johnson, D. (1979).
tractability: A guide to the theory of np-completeness.
WH Freeman & Co., San Francisca74.

Graham, R., Lawler, E., Lenstra, J., and Kan, A. (1979).
Optimization and approximation in deterministic se-
guencing and scheduling: a survéynnals of discrete
Mathematics5(2):287-326.

Helal, M., Rabadi, G., and Al-Salem, A. (2006). A tabu
search algorithm to minimize the makespan for the
unrelated parallel machines scheduling problem with
setup times.International Journal of Operations Re-
search 3(3):182-192.

Karp, R. M. (1972). Reducibility among combinatorial
problems. Complexity of Computer Computations
40(4):85-103.

Computers and in-

hood search. Computers and Operations Research
24(11):1097-1100.

Montgomery, D. (2007).Design and Analysis of Experi-
ments John Wiley & Sons, New York, NY, fifth edi-
tion.

Pereira Lopes, M. J. and de Carvalho, J. M. (2007). A
branch-and-price algorithm for scheduling parallel
machines with sequence dependent setup tinkes.
ropean Journal of Operational Research76:1508—
1527.

Rabadi, G., Moraga, R. J., and Al-Salem, A. (2006). Heuris-
tics for the unrelated parallel machine scheduling
problem with setup timeslournal of Intelligent Man-
ufacturing 17(1):85-97.

Souza, M., Coelho, I., Ribas, S., Santos, H., and Mer-
schmann, L. (2010). A hybrid heuristic algorithm
for the open-pit-mining operational planning prob-
lem. European Journal of Operational Research
207(2):1041-1051.

Subramanian, A., Drummond, L., Bentes, C., Ochi, L., and
Farias, R. (2010). A parallel heuristic for the vehicle
routing problem with simultaneous pickup and deliv-
ery. Computers & Operations Resear@v(11):1899—
1911.

Vallada, E. and Ruiz, R. (2011). A genetic algorithm for the
unrelated parallel machine scheduling problem with
sequence dependent setup tim&gropean Journal of
Operational Researgt?211(3):612—622.

Weng, M. X,, Lu, J., and Ren, H. (2001). Unrelated parallel
machine scheduling with setup consideration and a to-
tal weighted completion time objectivénternational
Journal of Production Economic30:215-226.

Ying, K.-C., Lee, Z.-J., and Lin, S.-W. (2012). Makespan
minimisation for scheduling unrelated parallel ma-
chines with setup timeslournal of Intelligent Manu-
facturing 23(5):1795-1803.

383

