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ABSTRACT

Join query optimization has a direct impact on the perfor-
mance of a database system. This work presents an evo-
lutionary multi-agent system applied to the join ordering
problem related to database query planning. The proposed
algorithm was implemented and embedded in the core of a
database management system (DBMS). Parameters of the
algorithm were calibrated by means of a factorial design and
an analysis based on the variance. The algorithm was com-
pared with the official query planner of the H2 DBMS, using
a methodology based on benchmark tests. The results show
that the proposed evolutionary multi-agent system was able
to generate solutions associated with low execution costs in
the majority of the cases.

Categories and Subject Descriptors

H.2.4 [ DATABASE MANAGEMENT]: Systems; H.3.4
[INFORMATION STORAGE AND RETRIEVALJ:
Systems and Software; 1.2.8 [ARTIFICIAL INTELLI-
GENCE]: Problem Solving, Control Methods, and Search
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1. INTRODUCTION

Database Management Systems (DBMS) are computer
systems that have an essential role in the creation, storage
and maintenance of information. These systems are among
the most complex software systems, integrating a number
of components that must work together to guarantee the
correct operation of the whole environment.
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Query in high-level language

| Scanning, Parsing and Validation |
¥
Internal representation of the query

| Query optimization |
¥
Execution plan
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7
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v
| Query processing |
1
Result

Figure 1: Typical steps for the processing of a query.

According to [9], the processing of one query can be di-
vided into the steps shown in Figure 1. In this paper, we
focus on the query optimization step. The task of this com-
ponent is to define the execution plan for the query. The
definition of the execution plan can involve an ordination
of many types of database operations: UNION, INTER-
SECTION, DIFFERENCE, JOIN and so on. Specifically
in the case of the join operations, the most time-consuming
operation in query processing, the task can be viewed as
a combinatorial optimization problem commonly known as
join ordering problem. It consists in defining the best order
of execution of the join operations among the relations spec-
ified in the query to be processed. The joining between two
relations is an operation in relational algebra allowing the
merging of information from these relations. The join oper-
ation will be treated as a binary operation (two-way join).
However, this operation can have more than two relations as
input too (multiway-join), and in accordance with [9], the
combinations for multiway joins grow very rapidly.

Regarding query optimization, Ioannidis [16] proposes two
classes of spaces: the algebric space and the space of struc-
tures and methods. The algebric space refers to the exe-



cution order of the actions considered, using relational al-
gebra as representation (e.g. o for data selection). The
space of structures and methods, on the other hand, relates
to the implementation choices available for the DBMS in
hand. Possible choices include: sequential access method or
index-based, nested-loop join methods, hash-join methods,
or merge-join methods, among others. The different ways
of representing the solutions combined with the access and
join methods define different possibilities for join ordering,
which implies in general an NP-complete problem [15]. A
more detailed description of the join ordering problem can
be found in [15, 25, 16, 23].

According to Garcia-Molina et al. [11], the I/O operations
dominate the time spent in query processing. Given this
observation, we can estimate the cost of a given query in
terms of the number of accesses to disk and I/O operations.
In addition to the accesses to disk, the CPU operations can
also be considered in the cost model of the queries.

Query optimization and planning have a direct impact in
the response time of the system, since a good execution plan
would lead to a faster query result. In this article we present
an algorithm for query optimization based on a multi-agent
system. The main feature of the algorithm is to have a
team of intelligent agents working together in a cooperative
or competitive way to achieve the solution of the problem.
Such systems differ from other parallel systems by present-
ing interaction between agents. These agents have charac-
teristics such as reactivity, proactiveness, sociability, and so
on [29]. An application of cooperation between agents for
decision support can be found in [5].

More recently, some researchers have explored the integra-
tion between evolutionary algorithms and multi-agent sys-
tems, trying to take the best from both worlds. Evolution-
ary algorithms work with a population of structures that
encode possible solutions for the problem [4, 7]. This pop-
ulation evolves iteratively by means of heuristic operators
inspired or motivated by concepts of natural systems and
Darwinian principles. In a typical evolutionary algorithm,
the fitness of the individuals depends only on the quality of
that individual in solving the problem. The integration be-
tween multi-agent systems and evolutionary algorithms lead
to the so-called Evolutionary Multi-Agent Systems (EMAS).
In such systems, the agents have also the ability to evolve,
reproduce and adapt to the environment, competing for re-
sources, communicating with other agents, and making au-
tonomous decisions [8]. An example of EMAS is available
in [2, 1], where the authors employ the use of Memetic Al-
gorithm and Multi-Agent system.

There is some work in the literature regarding the join or-
dering problem, see Section 2. Many of these papers propose
algorithms to solve the problem in an exhaustive or non-
exhaustive way. Exhaustive approaches guarantee the opti-
mal planning, while non-exhaustive methods do not. Some
well-known DBMS such as PostgreSQL' and H22, employ
exhaustive methods in query processing when the query in-
volves a small number of relations. For queries that extrap-
olate a specified limit, due to the complexity of the problem,
a non-exhaustive method is used.

The present article describes an approach that can be clas-
sified as a non-exhaustive one. As far as we know, EMAS

'PostgreSQL: www.postgresql.org
2H2 Database: www.h2database.com
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have not been applied to such a context. Therefore, the main
contribution of this article is the development of an evolu-
tionary multi-agent system included directly in the query
planner of the H2 DBMS. The agents of the system are able
to interact and evolve in parallel. Additionally, the algo-
rithm extends the behavior of purely evolutionary methods,
with the inclusion of refinement and constructive heuristics
in the set of actions of the agents. The results show that the
proposed evolutionary multi-agent system was able to gen-
erate solutions associated with low execution costs in the
majority of the cases.

The article is organized as follows. Section 2 presents
and discusses the related work. The proposed algorithm is
detailed in Section 3. Section 4 reports the calibration of the
parameters of the algorithm and the results obtained with
some benchmark tests. Section 5 presents our conclusions.

2. RELATED WORK

The join ordering problem has been studied in the lit-
erature for more than three decades. The seminal work is
presented by [21], advancing an exhaustive method based on
dynamic programming (DP) of a relational database system
called System-R. The algorithm exhibited a time complex-
ity O(N!), and became a classic approach for solving the
join ordering problem, where N stands for the number of
relations in the query.

In [15], the authors demonstrate that this problem belongs
in general to the class of NP-Complete. The authors used
the Nested-Loop-Join as the join method. They presented
two algorithms A and B, with time complexity O(N?) and
O(N?log N), respectively. The algorithm B is applicable
only to acyclic queries and guarantees the optimal solution,
while the algorithm A is not restricted only to acyclic queries
and does not guarantee the best solution.

An extension of Algorithm B [15] is presented by [19]. In
this work, the authors developed an algorithm with time
complexity O(N?) known as KBZ algorithm.

An algorithm based on the simulated annealing (SA) me-
ta-heuristic is presented in [18] for query optimization in-
volving many relations. The algorithm found some optimal
solutions in some problems and got close to the best solu-
tions in other test problems.

Many methods are compared in [25]: Perturbation Walk,
Quasi-random Sampling, Iterated Improvement(II), Sequen-
ce Heuristic and Simulated Annealing (SA4). The authors
create a test database to evaluate the heuristics, considering
cardinality, selectivity of the join predicates, distinct values
and indices. Moreover, test queries were generated with di-
rected graphs. According to the results, the heuristic IT per-
formed best. In a continuation of the work, another methods
were tested in [24], they are: II, SA, KBZ, Greedy Algorithm
and so on. According to the results, the II and the Greedy
Algorithm performed better.

Based on the algorithms /I and SA, an algorithm called
2P0 has been proposed in [17], it makes use of the two
techniques mentioned. The 2P0 showed be more efficient
than II and SA in the solutions quality and optimization
time.

A genetic algorithm applied to the join order problem is
presented in [4]. Two different strategies for crossover and
mutation methods were used. The genetic algorithm was
compared against the DP [21], and was capable to find bet-
ter solutions to more complex problems.



To solve some limitations of the KBZ, the authors in [26]
proposed a extension of the algorithm (AB) with some im-
provements and a time complexity O(N*). The computa-
tional experiments compared: AB, Greedy Algorithm, DP,
KBZ, II and 2P0O. The AB returned, on average, better so-
lutions than the non-exaustive techniques, and was able to
find solutions as good as those obtained by DP.

The meta-heuristic Tabu Search (7'S) [13] is explored in
[20]. Three methods were tested: TS, SA and II. The TS
method found better solutions in almost all test problems,
only for less complex problem the algorithm was worst than
others.

Another exhaustive algorithm named blitzsplit was devel-
oped by [28]. The algorithm is based on DP and show a time
complexity O(3"). According to the authors, the proposed
algorithm found solutions in short time and little effort was
expended to eliminate very costly solutions.

A comparative between many algorithms (DP, KBZ, SA,
II, 2P0, Genetic algorithms, among other methods) is pre-
sented in [23]. The results show that exhaustive methods
fit better in less complex problems. The 2P0 presented in
general better results over solutions quality and optimization
time, while SA was capable to find better solutions spending
more optimization time. For low optimization times, the II,
Genetic and 2PO were more indicated.

Genetic algorithms have been applied again in [7]. The au-
thors conclude that the efficiency of the method is directly
related to the cost model for the queries and also the neigh-
borhood structures and operators used in the algorithm.

In [12], the authors present a multi-agent system for que-
ry optimization in distributed DBMS. The authors compare
their method with dynamic programming, showing that the-
ir approach takes less time for processing the queries. They
define the following agents: Query Distributor Agent (QD-
A), Local Optimizer Agents (LOAs) and Global Optimizer
Agent (GOA). QDA divides the query into sub-queries and
distributing them to the LOAs, that apply a local genetic
algorithm. GOA is responsible for finding the best join order
between the sites.

An extension of the algorithm proposed by [12] is given
in [30, 10]. The extension focuses on building an adaptive
system. This adaptive system presented a reduction of up to
29% in time response. A new agent called Adaptive Query
Agent (AQA) was added to the system. This agent rec-
ognizes the similarity between queries. When similarities
are identified, previously stored execution plans are re-used,
otherwise, the query is executed and the agent’s knowledge
is updated. The adaptive agent also manages stored plans.

A parallel based DP algorithm is discussed in [14]. The
algorithm was prototyped in the DBMS Postgresgl, version
8.3. The algorithm improved the optimization time over
classic DP [21] up to 547 times. Beyond that, for some
problems, it obtained a linear speedup.

In relation to some DBMS in the market, the following
strategies can be cited:

e H2 - The version 1.3.167 from 2012', uses a brute
force method for queries with up to 7 relations. For
queries with more than 7 relations, a mixed algorithm
composed by an exhaustive, greedy and random search
methods is applied;

!www.h2database.com/html/performance.html
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e Postgresql - The version 9.2 has an optimizer based
on DP [21] for ordination of queries with up to 11 re-
lations and a genetic algorithm for queries with more
than 12 relations;

e Mysql? - This DBMS has a hybrid algorithm based
on greedy and exhaustive techniques. The exhaustive
search is controlled and the greedy methodology is ap-
plied to evaluate promising solutions.

3. QUERY OPTIMIZER BASED ON EMAS

In this paper we developed an evolutionary multi-agent
system for the join ordering problem. EMAS can extend
the behavior of conventional genetic and multi-agent algo-
rithms. The agents can act in proactive and reactive way,
they can make decisions by applying differentiated interac-
tion mechanisms with the other agents and explore the solu-
tions space in a smart way by using the traditional operators
of the genetic algorithms.

The environment is composed by a set of agents, where
each agent works to find the best solution, i.e. the best join
order for the relations in the query. The system can be de-
scribed as EMA = (E, T, ), where E is the environment,
T is the set of resources, €2 contains the types of information
available for the agents in the system. The environment is
accessible, which means that the agents can obtain precise
and complete information about the state of the environ-
ment. It is also non deterministic, for there is no certainty
about the state resulting from a given action, and dynamic,
since the agents can modify the environment during execu-
tion.

The environment E can be described as E = (TF . T'F QF),
where TP represents the topography, I'® are the resources
and QF is the information. We use only one kind of resource
and information. The resource is expressed in terms of life
points of each agent. The information about the other agents
and the best current solution is represented in QF.

The topography is given by T¥ = (A,l), A represents
the set of agents in the environment and [ is a function
returning the localization of a specific agent. Each agent a
can be described by the tuple a = (sol®, Z%,T'* PR?®), sol®
is the solution represented by the agent, actually encoded as
an integer vector. Each element in the vector represents a
relation in the query. The vector defines the join order for
processing the query. Z¢ is the set of actions of the agents.
T'* and PR® define the life points and profile of the agent.
The set of system actions is detailed below:

e getLife - Used to obtain life points from another agent;
e giveLife - Give life points to another agent;

e findWorse - Search for an agent with worse fitness
value;

e findPartner - Search for a partner in the set of agents
in the environment;

e crossover - Crossover operator used to generate off-
spring;

e mutation - Mutation operator;

e updateBestSolution - Update the best solution;

MySQL: www.mysql.com



e randomDescent - Random descent local search;
e bestImprovement - Best Improvement Method;

e semiGreedyBuild - Construct a solution by using a
semi-greedy heuristic;

e processRequests - Evaluate and process pending re-
quests;

e changeProfile - Change Profile of the agent;

e die - action of dying, when the life points of the agent
ends.

Each agent is associated with an execution thread. These
agents can be classified as hybrid ones, since they are re-
active with internal state and deliberative agents seeking
to update the best solution and not to die. The following
characteristics can be highlighted: Reactivity, Pro-activity,
Social ability and Veracity. The mutation and local search
operators employ swap movements as illustrated in Figure
2.

£
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Solution v

Solution v’

Figure 2: Swap movement - N°

Two crossover operators are available: Ordered Crossover
- OX [6] and Sequential Constructive Crossover - SCX [3].
When the crossover action is executed, one of these opera-
tors is selected at random. The examples described next use
as input the solutions in Figure 3.

Agent 1

Agent 2

Figure 3: Initial agents

In the crossover OX, a crossover point is selected at ran-
dom, which defines the part of Agent 1 that goes to the
descendent. The rest of the sequence is taken from Agent
2 in an ordered way avoiding repetition of elements. Con-
sidering the agents in Figure 3 and a crossover point after
the second relation, the resulting descendent is presented in
Figure 4.

Agent 1

Agent 2

Descendent 1

Figure 4: Descendent OX

In the strategy SCX, the cost of the join operations be-
tween each pair of relations is stored in a cost matrix. The

values in the cost matrix are based on the cost model cur-
rently used in H2. The method starts by adding the first
relation from Agent 1 to the descendent. After that, the de-
scendent inherits the next relation from the parent with the
smallest cost in the given cost matrix. Ties are solved ran-
domly. For the agents in Figure 3, the descendent is given
in Figure 5.

Cost Matriz

R1| R2 | R3 | R4
R1 |99 | 10 | 20 5
R2 |10 |99 | 15 | 35
R3 |20 | 15 | 99 | 45
R4 | 5 35 | 45 | 99

Ag.l Ag2 Ag.l

Descendent 2

Figure 5: Descendent SCX

The action semiGreedyBuild is based on a semi-greedy
(greedy-random) heuristic, which introduces randomness in-
to a greedy constructive heuristic. A new solution is cons-
tructed by inserting relations step by step. For each inser-
tion, the candidate elements are sorted according to a greedy
function. In this work, we adopt two different greedy func-
tions, based on two classification criteria (selected at ran-
dom). The first one is based on the number of links between
each relation to the other in the query. The relations with
less links are better classified by the greedy function. The
other approach is based on the cost of links. The relations
with the smaller costs are better classified by the greedy
function. The best elements form the restricted candidate
list (RCL). The new element to be added to the solution is
randomly taken from the RCL. When all relations have been
inserted, a new solution is returned.

In a multi-agent system, the agents can execute different
goals, which can be: survive, generate a solution together
with another agent, refine his own solution and so on. To
accomplish that, different profiles were designed to different
goals, they are:

e RESOURCE - The agent tries to increase his life
points by searching agents with worse fitness values
and requesting part of their life points;

¢ REPRODUCTION - The agent looks for partners
to produce new solutions by crossover;

e MUTANT - The agent suffers mutation;

¢ RANDOM DESCENT - The agent refines its own
solution by using random descent local search;

o SEMI-GREEDY - The agent builds new solutions
by using the semi-greedy heuristic;

The Multi-Agent Query Optimizer (MAQO) pseudo-code
is presented in the Algorithm 1. This algorithm first initial-
izes the system (line 2). Then, three agents are created
with the profiles RANDOM_DESCENT, SEMI-GREEDY



and MUTANT respectively (lines 4, 6 and 8). The initial so-
lution used by the agent RANDOM_DESCENT is the same
order given by the query, that is, the order in which the re-
lations are read during the initial parsing of the query. The
other solutions are constructed using the number of links
as greedy function. The initialization of the agents and fi-
nal refinement of the solution are done in lines 14, 16 and
18. The Best Improvement Method guarantees that the re-
turned solution will be a local optimum in relation to the
neighborhood N¥.

Algorithm 1: MAQO

Data: QueryRelations
Result: sol*

1 begin
2 Environment E < initializeEnvironment();
3 //Create at least one agent with the profile

RANDOM_DESCENT;

createAgent(E, RANDOM_DESCENT);

5 //Create at least one agent with the profile
SEMI-GREEDY;

6 createAgent(E, SEMI-GREEDY);

7 //Create at least one agent with the profile
MUTANT;

8 createAgent(E, MUTANT);

9 //Create the other agents with the profile
REPRODUCTION;

10 for i=4 to E - MAXAGENTS do

11 | createAgent(E, REPRODUCTION);

12 end

13 //Initialize threads;

14 initializeAgents(E);

15 //Wait threads to finish;

16 waitAgents(F);

17 //Best Improvement on Best Agent;

18 E —bestAgent—bestImprovement();

19 return E —bestSolution;

20 end

Once the agents have been initialized, the evolutionary
process will also start, since agents may evolve through the
execution of the related actions, which can be individual or
joint actions. Each agent executes the goal of each profile
by performing actions associated to that profile. We present
next how the set of actions is distributed in each profile:

¢ RESOURCE - findWorse, processRequest, getLife,
changeProfile and die;

¢ REPRODUCTION - findPartner, processRequest,
crossover, updateBestSolution, changeProfile and die;

e MUTANT - mutation, processRequest, updateBest-
Solution, changeProfile and die;

¢ RANDOM_DESCENT - randomDescent, process-
Request, updateBestSolution, changeProfile and die;

¢ SEMI-GREEDY - semiGreedyBuild,processRequest,
updateBestSolution, changeProfile and die;

At every iteration of the agent in a given profile, its life
points decrease. When an agent has no more life points,
it executes the action die. When all agents have died, the
algorithm stops. The action processRequests depends on
the kind of request made. For instance, if an agent requests
life points from another agent, the action processRequest
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will execute the action giveLife in response to the request.
Changing profile is allowed only after a minimum number of
iterations in the current profile or when the life level gets to
a predetermined critical limit. In this case, the new profile
becomes RESOURCE.

4. EXPERIMENTS

The computational experiments were performed in a Core
17-2600 CPU 3.40GHz, with 16 GB RAM, operational sys-
tem Ubuntu 10.10-x86_64. The algorithm was developed in
Java and IDE Netbeans. The DBMS H2 version 1.3.167 was
used in the implementation. In the literature, determinis-
tic evaluation methodologies are found in [28, 22] and ran-
dom methodologies in [25, 24]. Benchmarks for evaluation
of database systems were made available by the corpora-
tion Transaction Processing Performance Council' (TPC).
The design of experiments proposed here is based on [25,
24]. The database was created and loaded according to the
following information:

e Cardinality distribution of tuples- [10, 100) - 20%,
[100, 1000) - 64%, [1000, 10000] - 16%;

e Distribution of distinct values of the tuples -
[0, 0.2) - 75%, [0.2, 1) - 5%, 1 - 20%;

e Relations Columns - three per relation, being one
reserved for primary key;

e Percentage of indices and foreign keys - 25% and
25%, respectively.

The number of relations presented in the queries was fixed
in: 30, 50, 80 and 100 relations. Besides, the generation of
the test queries was guided by four different graph shapes:
chain, grid, star and multi-star. Actually, 150 relations were
built using different values by selecting them randomly in the
intervals described previously, but all test queries involve
100 relations maximum. The test queries were generated at
random, varying the selection of relations and the selection
of columns to form the join predicate. In all cases, a set of 10
queries in graph shape was created. It is worth noting that
a series of sanity checks are executed to allow the creation
of the foreign keys correctly. An example of a query in chain
format is presented as follow:

Listing 1: Chain - SQL query
SELECT *« FROM R;, R7, Ra, Ri0, Ri50, Rs0 WHERE
Rj.coly = R7.cols AND Rr7.cols = Ra.colo AND
Ra.coly = Ryp.cols AND Rjig.coly = Ri50.cols AND
Ri50.cola = Rsg.coly

The cost model adopted is the same defined by the DBMS
H2. For this reason, we considered only the method Nested-
Loop-Join. We remark that the DBMS H2 considers only
the 1/O operations in its cost model. Moreover, the possi-
ble representations for the solutions in the search space is
restricted to left-depth tree. H2 also does not include in
its model values related to intermediate results of the join
operations, as presented in [27]. Therefore, the cost of a
given join depends on the cardinality of the relations in the

'TPC: http://www.tpc.org




join operation, neglecting the intermediate results. More in-
formation about common restrictions adopted to limit the
exploration of the solutions space are available in [17, 23,
11].

4.1 Calibration of the algorithm

In order to calibrate the parameters of the algorithm, we
have selected 5 test queries with 30 relations in the form
multi-star graph. We have used a factorial design of fixed
effects. The factors analyzed are: the maximum number of
agents and initial life percentage. The life of the agents is
given by this percentage times the number of relations in
the query. Table 1 describes the levels for each factor.

Table 1: Factors and levels
Factor Level
Maximum number of agents | 8, 16, 32, 64
Initial life 1,2,3,4

We have considered two complete replications, totaling
160 observations. The number of observations is determined
as follows: Ny = N. X Ny X N, = 42 x5%x2= 160, where N,
is the number of possible combinations, Ny is the number of
queries, and N, is the number of replications. The response
variables are the cost of the generated plan and the setup
time. The confidence interval was set as 95%, implying a sig-
nificance level @ = 0.05. All observations were randomized.
The test hypotheses are:

1. Ho: 71 =72 = ... = 74 = 0 (no effects for the factor
Maximum number of agents);
H;i: at least one 7; # 0.

2. Ho: 1 = P2 =...= [ = 0 (no effects for the factor
Initial life percentage);
Hi: at least one §; # 0.

3. Ho: (78)11 = (78)12 =... =
tion effect for the factors);

H;: at least one (78):; # 0.

(78)ab = 0 (no interac-

The statistical analysis was done with (ANOVA - Analy-
sis of Variance). According to the results obtained in this
experiment, there was no significant factors with respect to
the setup computational time and the cost of the generated
plans. Regarding the cost, all generated plans achieved the
same cost. The parameters chosen were the ones associated
with the minimum setup time. A summary of the results
generated by the statistical software Minitab with respect
to the setup times is given in Table 2. In this table, DF
represents the Degrees of Freedom, SS represents the Sum of
Squares, MS means Mean Square, F and P refer to the type
and p-value of the statistical test.

The selection of values for the parameters was based on
Figure 6. Based on this experiment we have chosen 32 agents
and life equal to 1. The generated model did not violate any
of the established assumptions.

From the experiments, we note that some plans considered
better with respect to the cost, actually took more time to
process the query than other plans with higher costs. This
behavior shows that the cost model of the DBMS H2 does
not fit well with the real costs.
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Table 2: ANOVA - Setup time of the generated plan

Source DF SS MS Fo P
agents 3 22239 7413 0,62 0,613
life 3 21532 7177 0,60 0,625
agentsxlife 9 114160 12684 1,06 0,441
Error 16 191915 11995
Total 31 349847
Interaction Plot for Setup Time
Data Means
500 Agents
—— 8
=2
—A- #@

4004

3504

Mean

3004

2504

2004

Life

Figure 6: Setup time - Interaction of factors

4.2 Results

For the analysis of the results, we have used again a fac-
torial design of fixed effects. Two different algorithms were
tested, the default algorithm in H2 (H2 Query Optimizer
- H2QO) and the developed evolutionary multi-agent algo-
rithm (MAQO). Another factor studied was the format of
the generated queries. Moreover, 3 complete replications
were executed, giving a total of 480 executions to each plan-
ner. The output variable for data analysis was the cost of
the generated plans. The confidence interval was set as 95%.

The total of executions of each algorithm is given by the
following equation: Ny = N, X Ny X N, = 16 x 10 x 3 = 480,
where N, is the number of possible combinations, Ny is the
number of grouped queries and N, is the total of replications.
The hypotheses are:

1. Ho: no effect for the main factors and his interactions
for all levels;
H;: effect for the main factors and/or his interactions
for at least one of the levels.

For the test queries, the cost increases as the complexity of
the problem increases. For this reason we study the behavior
of each algorithm in each dimension separately. The average
costs were calculated in logarithmic scale. This was done to
avoid that the results recorded in the DBMS get greater than
the maximum limit in H2. The query timeout was set to
30 minutes. It is noteworthy that normality, independence
and homoscedasticity assumptions were not violated by the
generated models. The results were similar for 30, 50, 80
and 100 relations. Due to limited space, only the results



for 100 relations will be presented. All the results will be
available from the authors !.

4.3 Queries with 100 relations

Table 3 shows that the factors (and their interaction) have
significance on data variability. The difference in the costs
is caused by the algorithms and the shape of the queries.
Consequently, the null hypothesis can be reject with 95%
degree of confidence. Besides, the determination coefficient
R—Sq(adj) means that the generated model totally explains
of the variability.

Table 3: ANOVA - 100 relations

Source DF SS MS Fo P
Blocks 2 0,1 0,0 1,27 0,3
Alg. 1 3430,4 3430,4 96798,87 0,0
Shape 3 33301,8 11100,6 313239,46 0,0
Alg.Shap. 3 1697,3 565,8 15965,38 0,0
Error 14 0,5 0,0
Total 23 38430,1

S = 0,188250 R-Sq = 100,00% R-Sq(adj) = 100,00%

Based on Figure 7, we can verify that the average cost of
the factor Algorithm in the level MAQO is lower than in the
level H2QO. This results shows the superiority of the devel-
oped algorithm. Regarding the format of the queries, the
GRID shape returned lower costs, while the MULTI-STAR
shape was the most difficult to solve. It is also observed
in Figure 8, that the evolutionary algorithm reached lower
costs in all shapes.

Main Effects Plot for Cost
Data Maans
Algorithn Shape

640
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600 ‘\
=
g
g s \\.
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540
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H200 MAQOD CHAIN GRID STAR MULTISTAR

Figure 7: Main Effects - 100 relations

4.4 Discussion

It is possible to observe that the developed algorithm is
able to obtain better results in terms of the execution cost
of the plans in all cases. Additionally, out of 480 executed
queries, only 1% of plans generated by the default planner
in H2 were better than the ones generated by MAQO.

Table 4 presents an overview of the results obtained by
both algorithms. It is clear that the multi-agent algorithm
performed better in all test problems.
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Interaction Plot for Cost
Data Means
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Figure 8: Interaction Effects - 100 relations

Table 4: Best Plans Overview

Query MAQO(%) - H2QO(%)
Shape 30 50 80 100
Chain 93-7 [ 100-0 | 100-0 | 100 -0
Grid 100-0 | 100-0 | 100-0 | 90 - 10
Star 100-0 | 100-0 | 100-0 | 100 -0
Multi-star | 97 -3 | 100-0 | 100 -0 | 100- 0

S. CONCLUSIONS

This article presented an algorithm based on evolutionary
multi-agent systems. A number of actions and profiles for
the agents were defined. We developed a benchmark of test
queries following ideas from [25, 24] to evaluate and compare
the developed algorithm and the default planner available in
the DBMS H2. The test problems involve queries with 30,
50, 80 and 100 relations. The shapes of the representations
adopted for the queries were graphs of the following types:
chain, grid, star and multi-star.

The proposed algorithm was implemented in the optimiza-
tion core of the DBMS H2. Another factorial design was
used to compare MAQO and the official planner H2QO.
Based on the results of the experiments, it is possible to say
that MAQO was able to find low cost plans in 99% of the
cases. The results suggest the superiority of the proposed
approach and the benefit of using an evolutionary multi-
agent system for query optimization and planning. However,
it was observed that the cost model in H2 does not fit well
with real costs of the plan. For this reason, the algorithm
proposed has achieved longer execution times in some prob-
lems, even though the estimated cost was lower. Because of
this fact, only the costs of the plans were considered.

We believe that the inclusion of the intermediate results
in the join operations and the use of statistical information
might improve the coherence of the cost model with the real
cost of the queries.

Given the results reported, one can conclude that the de-
veloped algorithm is better than the official planner in H2.
By using a more accurate cost model, the efficiency of the
proposed query optimizer would be self-evident, represent-
ing real reduction in execution times.
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