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Abstract

Distribution planning is crucial for most companies since goods are rarely
produced and consumed at the same place. Distribution costs, in addition,
can be an important component of the final cost of the goods. In this pa-
per, we study a VRP variant inspired on a real case of a large distribution
company. In particular, we consider a VRP with a heterogeneous fleet of ve-
hicles that are allowed to perform multiple trips. The problem also includes
docking constraints in which some vehicles are unable to serve some partic-
ular customers. Given the combinatorial nature and the size of the problem,
which discard the use of efficient exact methods for its resolution, a novel
heuristic algorithm is proposed. The proposed algorithm, called GILS-VND,
combines Iterated Local Search (ILS), Greedy Randomized Adaptive Search
Procedure (GRASP) and Variable Neighborhood Descent (VND) procedures.
Our method obtains better solutions than other approaches found in the re-
lated literature, and improves the solutions used by the company leading to
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significant savings in transportation costs.

Keywords: vehicle routing, heterogeneous fleet, multiple trips, docking
constraints, iterated local search, OptFrame framework.

1. Introduction

Vehicle routing problems (VRP) seek to find routes to deliver goods from
a central depot to a set of geographically dispersed customers. These prob-
lems, faced by many companies, are crucial in distribution and logistics due
to the necessity of finding cost-effective routes that keep high customer satis-
faction. The classical routing problem, first proposed by Dantzig and Ramser
[1] and known as Capacitated VRP, has the objective of minimizing the total
distance traveled by a homogeneous fleet of vehicles to serve all customers.
Although this problem has been studied for more than five decades [2], real
applications remain a huge challenge. They feature a variety of operational
restrictions and rules that must be considered in any solution implemen-
tation. These additional considerations can affect, for example, customers,
depots, and vehicles, complicate the problem and have a significant impact
on the solution.

In this paper, we study a real VRP variant of a major distribution com-
pany in Europe that serves around 400 customers. This version of the prob-
lem addresses the following considerations:

1. Limited heterogeneous fleet of vehicles: the company owns a fleet com-
posed of different vehicle types;

2. Possibility of vehicles performing multiple trips;

3. Docking constraints that restrict certain customers to be served by
certain types of vehicles;

4. Vehicles’ fixed and variable costs.

This problem is a variant of the Heterogeneous Fleet Multitrip Vehicle
Routing Problem (HFMVRP) ([3]). In this variant, docking constraints have
been added and the goal is to minimize: 1) a fixed cost of using a vehicle, 2)
a fixed cost per customer served, and 3) a variable vehicle-dependent cost per
distance traveled. Besides minimizing total distribution costs, for managerial
reasons the company is also concerned about three other routing indicators,
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namely, the total number of routes employed, the total distance traveled and
the vehicles’ idle capacity. Their purpose, apart from saving costs, is to have
the least number of routes with full truckload vehicles.

The HFMVRP belongs to the class NP-Hard, and, as such, exact meth-
ods have restricted applicability to obtain good solutions. Heuristic meth-
ods like the one presented in this paper are the most common approach to
solve this type of problems. In particular, we use a heuristic algorithm, the
GILS-VND, that combines three different procedures: 1) an Iterated Local
Search (ILS) [4, 5, 6], 2) a Greedy Randomized Adaptive Search Procedure
(GRASP) [7, 8], and 3) a Variable Neighborhood Descent (VND) [9]. We test
our algorithm using real instances provided by the company. The algorithm
proved to be fast and reliable, and, in all cases, the solutions obtained were
better in all dimensions than those obtained and implemented by the com-
pany.

The remainder of this paper is organized as follows. Section 2 reviews the
literature on heterogeneous VRP. Section 3 defines the HFMVRP. Section 4
describes the algorithm used to solve this problem. Section 5 presents the
computational experiments, and finally Section 6 draws the final considera-
tions.

2. Heterogeneous VRPs

The VRP with heterogeneous fleet (HVRP) is gaining attention from
researchers in the past years due to its applicability in real cases. The HVRPs
can be divided according to vehicle availability (limited or unlimited) and
vehicle costs (fixed or variable) [10]. When the fleet is limited, the number of
vehicles and their capacity are known beforehand, and solution routes must
consider this availability. In the case of unlimited fleet, however, the required
number of vehicles to meet customer demands is unknown initially, and the
problem must determine the fleet composition considering the vehicles’ cost
and capacity.

To the best of our knowledge, the first paper in the literature that involves
an unlimited fleet with fixed costs was proposed by Golden et al. [11]. The
authors propose two heuristic methods to solve the problem: one based on
best insertion and the other based on the classical Clarke and Wright Savings
– CWS heuristic [12]. The latter outperforms the former. They also develop
a mathematical formulation for the variant with dependent costs, and obtain
the first lower bounds for the VRP with unlimited fixed fleet.
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Gendreau et al. [13] suggest an algorithm based on Tabu Search (TS)
with a tour construction phase and an improvement phase that considers
variable costs. They, however, assume Euclidean problems only, where nodes
are located in the same plane. The number of vehicles is limited by an
approximation of the fleet size made when the algorithm starts its execution.
The VRP with Mix Fleet discussed by the authors mingle investment costs
in the medium term with short-term operating costs that fluctuate according
to the specific customers attended per day.

Choi and Tcha [14] obtain lower bounds for all variants of the unlimited
fleet problem using a column generation approach based on the set cover-
ing problem. Baldacci and Mingozzi [15] propose a variant based on a set
partitioning problem that uses bounds provided by a procedure based on
the Linear and Lagrangian relaxation. The procedure was applied to solve
the main variants of the problem involving limited and unlimited fleet, with
costs and dependent variables. The proposed method was able to solve in-
stances with up to 100 customers, presenting itself as the state-of-the-art
exact algorithm applied to the problem. Brandão [16] follows the basic ideas
of Gendreau et al. [13], using a deterministic TS algorithm for the Fleet Size
and Mix VRP, that consists in determining the number of vehicles of each
type, and the routes for each vehicle.

Among the heuristic approaches presented in the literature, noteworthy
are those based on Evolutionary Algorithms. Ochi et al. [17] develop an
algorithm that combines a Genetic Algorithm (GA) with Scatter Search [18]
to solve the variant of the problem with limited fleet and fixed costs. Liu et al.
[19] propose a hybrid GA with a hybrid local search procedure for the Fleet
Size and Mix VRP. Moscato [20] tackles the variant with fixed and vehicle-
dependent costs with a Memetic Algorithm (MA). Prins [21] also presents
two MA. The first approach uses a chromosome encoded as a giant tour
and a split procedure that performs the optimal distribution of vehicles and
routes. The second algorithm uses distance calculation strategies in order to
diversify the search in the solution space. More recently, Baldaccci et al.[22],
Penna et al. [10], Martinez and Amaya [23] and Pillac et al. [24] compile
different studies on the HVRP variants mentioned above. Vidal et al. [25]
introduce a new local search operator based on the combination of standard
VRP moves and swaps between trips, applied to Multi-Attribute VRP, and
find many best known solutions. Wang et al. [26] solve a VRP variant with
multiple trips and time windows, in which vehicles are allowed to perform
multiple trips during a scheduling period and each customer must be served
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within a given time interval.
Prins [3] also studies a HFMVRP applied to a large-scale real case (a

French furniture manufacturer with 775 stores), that bears some similarities
to the variant studied in this work. His objective function, however, is based
on total distance traveled while our objective includes fixed and variable
costs. He develops an algorithm based on TS with a simple bi-objective ap-
proach: minimizing the total duration of all trips and the number of vehicles.
His results outperform the solutions used by the company.

Finally, [27] present a randomized heuristic based on the well-known CWS
heuristic for a simpler version of the problem studied in this paper. As in
Prins [3], the authors aim only at minimizing distances without considering
docking constraints. They test their algorithm with the same data instances
we use in this paper, provided by a European distribution company.

3. Problem Definition

The HFMVRP described in this paper can be defined over an undirected
graph G = (V,E), where V = {0, 1, ..., n} and E = {(i, j)|i, j ∈ V, i < j}
represent the vertices and the edges of the graph, respectively. The depot
is denoted by 0 and vertices i ∈ V \ {0} represent the n customers, each
one with its nonnegative demand di. Each edge (i, j) ∈ E has an associated
nonnegative cost or distance cij. The fleet T is composed of m different types
of vehicles, i.e., T = {1, ...,m}. For each t ∈ T there are mt available vehicles
with capacity qt (in boxes), fixed cost cft per vehicle used, and variable cost
cdt per distance traveled. There is also a fixed cost cct incurred per customer
visited.

We let S = {(r, t) | t ∈ T, r = (v0, v1, ..., vn(r)+1)} be a set of valid routes,
where n(r) denotes the number of customers visited in route r and t is the
vehicle type associated to the route. All routes start and end at the depot,
so for each route r, we have v0 = vn(r)+1 = 0. Therefore:

• The route’s total demand is: Qt
r =

∑n(r)
i=1 dvi ;

• The route’s total cost is: Ct
r = cft + n(r)× cct + (

∑n(r)
i=0 cvi,vi+1

)× cdt;

• The route’s empty space is: Et
r = qt −Qt

r.
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This set of elements characterizes the HFMVRP. The problem seeks to
build a set S∗ that minimizes the total cost function given by:

TC =
∑

(r,t)∈S

C t
r (1)

Note that the cost of a route, Ct
r, is composed of three cost terms. For

convenience (see Section 5.3), we group the cost terms by type for all routes
and express the objective function as TC = CF + CC + CD where:

• CF =
∑

(r,t)∈S cft is the total fixed cost of the vehicles used.

• CC =
∑

(r,t)∈S n(r)× cct is the total cost of the customers visited.

• CD =
∑

(r,t)∈S(
∑n(r)

i=0 cvi,vi+1
)× cdt is the total cost of the distance trav-

eled by all vehicles.

A valid route must satisfy the following criteria:

1. Each route must start and end at the depot.

2. Each customer is assigned to exactly one route.

3. Each customer must be compatible with the vehicle type assigned to
its route, i.e., given a route (r, t), ∀vi ∈ r, comp(t, vi) = 1, where
comp(t, vi) is equal to 1 if the vehicle type t can serve customer vi,
and 0 otherwise.

4. The sum of customer demands in the route cannot exceed the maximum
capacity of the vehicle type t assigned to that route, i.e., Qt

r ≤ qt.

5. All vehicles can perform one or two routes (single- and multiple-trip
vehicles, respectively).

Figure 1 displays a solution example for a HFMVRP with 12 customers
and 2 types of vehicles with a single vehicle per type. The “Parameters”
table shows the values for all relevant parameters. The “Compatibility”
table indicates the values of comp(t, i), for t ∈ {A,B} and i ∈ V \ {0}. The
“Solution” table presents the resulting routes, with the total demand served,
distance traveled, total cost and empty space. Note that the vehicle type A
performs two routes, 1 and 3. For this example, CF = 50, CC = 17, CD = 68,
and the total cost is TC = 135.
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Figure 1: HFMVRP example

4. Methodology

4.1. The GILS-VND Algorithm

The algorithm proposed in this paper, dubbed GILS-VND, combines an
ILS, a GRASP, and a VND. The pseudocode is outlined in Algorithm 1. In this
algorithm, the inputs GRASPmax and IterMax represent the number of iter-
ations in which the GRASP construction phase is applied and the maximum
number of iterations performed at a given level of perturbation, respectively
(γ is explained below). The function f(·) is the objective function (Equation
1) defined in Section 3.

In Line 1, the initial solution is generated by applying the GRASP con-
struction phase. This procedure is called BuildInitialSavingsSolution and
uses the Clarke and Wright Savings algorithm adapted to the HFMVRP for
each type of vehicle t ∈ T . At each iteration of the GRASP procedure, the
order of vehicle types is chosen randomly. A restricted candidate list is cre-
ated by ordering the routes regarding to its empty space, that is, routes with
total demand closer to the capacity of the vehicle type t are listed first. In
this sense, routes that have its demand equal to the capacity of the vehicle
are the most coveted. The input parameter γ sets the size of this list, fol-
lowing the reasoning of the GRASP procedure. The mt best routes are added
to the current solution. If customers remain still unassigned, a new Savings
procedure is performed using the vehicles allowed to do multiple trips.

The local search (Line 2 of Algorithm 1) is carried out by the VND proce-
dure (presented in Algorithm 2), using the neighborhood structures described

7



Algorithm 1: GILS-VND
Input: GRASPmax, IterMax, γ, Function f(·)
Output: Solution s

s0 ← best solution in GRASPmax iterations of the procedure1

BuildInitialSavingsSolution (γ)
s∗ ← VND(s0, f)2

p← 03

while stop criterion not satisfied do4

iter ← 05

while iter < IterMax and stop criterion not satisfied do6

s′ ← Refine(s∗, p, f)7

if s′ is better than s∗ according to f then8

s∗ ← s′;9

p ← 0;10

iter ← 011

end12

else13

iter ← iter + 114

end15

end16

p← p+ 117

end18

return s19

in Section 4.2. Line 3 initializes p, a variable that regulates the “power” of
diversification, and Lines 4–18 perform the main ILS loop as long as the
stopping condition is not satisfied. Line 19 returns the final solution.

Algorithm 2 has the role of performing the local search: Lines 16 and 22
trigger the setLocalOptimum procedure, which sets neighborhoods as “local-
optimum”; this mark is used by the Auxiliary Data Structures, described in
Section 4.3.

Within the ILS in Algorithm 1, Line 7 calls the Refine procedure presented
in Algorithm 3. In Line 2 of this algorithm, the SelectNeighborhood proce-
dure selects randomly one of the neighborhood structures rpert, described in
Section 4.2. Then, Line 3 performs a shake in the current solution according
to this selected neighborhood structure. In this proposed strategy, the Re-
fine procedure has several levels of perturbation. If a given solution is not
improved for a number of iterMax iterations (Line 6 of Algorithm 1), vari-
able p is incremented (Line 17 of Algorithm 1) so that p + 2 random moves
(shakes) will be applied to the current solution. This mechanism balances
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exploration against exploitation.

Algorithm 2: VND

Input: rIntra intra-route neighborhood structures in random order
Input: rInter inter-route neighborhood structures in random order
Input: Solution s0 and Function f(·)
Output: Solution s with possibly better quality than initial solution s0 according

to Function f(·)
s← s01

kInter ← 12

while kInter ≤ |rInter| do3

Find the best neighbor s′ ∈ N (kInter)(s)4

if f(s′) < f(s) then5

s← s′6

kInter ← 17

kIntra ← 18

while kIntra ≤ |rIntra| do9

Find the best neighbor s′ ∈ N (kIntra)(s)10

if f(s′) < f(s) then11

s← s′12

kIntra ← 113

end14

else15

setLocalOptimum(s, k)16

kIntra ← kIntra + 117

end18

end19

end20

else21

setLocalOptimum(s, k)22

kInter ← kInter + 1;23

end24

end25

return s26
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Algorithm 3: Refine

Input: rpert perturbation neighborhoods in random order
Input: Initial solution s, Level p and Function f(·)
Output: Solution s

for i← 1 To p+ 2 do1

k ← SelectNeighborhood(rpert)2

s′ ← Shake(s, k)3

end4

s← VND(s′, f)5

return s6

4.2. Neighborhood structures

Five different neighborhood structures were applied to explore the solu-
tion space of the problem. The first three are intra-route movements while
the last two are inter-route movements. It is important to note that move-
ments that lead to infeasible solutions are not allowed.

2-opt move. A 2-opt move is an intra-route neighborhood structure
that consists in removing two non-adjacent arcs and inserting two new arcs,
so that a new route is formed. Figure 2 exemplifies the movement: edges
(4, 6) and (5, 8) of Route 2 are removed and edges (4, 8) and (6, 5) are inserted
instead. Note that an inversion took place involving customers 6, 16 and 8.
For a symmetric problem, the total distance among these customers remains
unaffected.
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Figure 2: Example of 2-opt Move

Or-optk move. An Or-optk move is an intra-route neighborhood struc-
ture that consists in removing k consecutive customers from a given route
and reinserting them into another position of the same route. This move is
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a generalization of the Or-opt proposed by OR [28], in which the removal
involves up to three consecutive customers only. Figure 3 illustrates the
movement with k = 1, where customer 5 is moved to the last position of
Route 2. For this particular case when k = 1, the movement is also known
as Reinsertion in the literature [29].
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Figure 3: Example of Or-optk Move

Exchange move. An Exchange move is an intra-route neighborhood
structure that consists in exchanging two customers in the same route. Figure
4 shows an Exchange of costumers 5 and 18 in Route 2.
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Figure 4: Example of Exchange Move

Shift(1,0) move. A Shift(1,0) move is an inter-route neighborhood
structure that relocates a customer from one route to another.

Swap(1,1) move. A Swap(1,1) move is an inter-route neighborhood
structure that exchanges two costumers from different routes.

All neighborhood structures above are used as a perturbation strategy.
The application of these moves occurs randomly with no improvement ver-
ification in the objective function. This mechanism is key to diversify and
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explore the solution space (exploration-exploitation). After applying a given
move, the NeighborhoodStatus[j][i] vector status (described below) is up-
dated.

4.3. Auxiliary Data Structures (ADSs)

In order to intensify and optimize the search of the neighborhood struc-
tures, some Auxiliary Data Structures (ADSs) have been used. A brief de-
scription is given below. #nRoutes indicates the total number of routes and
#nNeighborhoods the number of neighborhood structures (see Section 4.2).
For i ∈ {1, . . . ,#nRoutes} and j ∈ {1, . . . ,#nNeighborhoods} the following
data structures are used:

• SumDemand[i]: it stores the sum of all customer demands assigned to
route i, e.g., SumDemand[12] = 230 implies that all customers in route
12 have a total demand of 230.

• MinDemand[i]: it stores the minimum demand among all customers
in route i, e.g., MinDemand[10] = 30 implies that the lowest demand
among all customers in route 10 is 30.

• MaxDemand[i]: it stores the maximum demand among all customers
in route i.

• NeighborhoodStatus[j][i]: it is a boolean value that indicates whether
the neighborhood j is in a local optimum. Upon a full application of all
neighboring structures by a local search method, all routes are marked
as “local-optimum”. When a solution is “shaked” (Line 3 of Algorithm
3), some “local-optimum” markers are removed from the routes that
have been changed in that disruption.

Table 1 displays the representation and the ADSs of the HFMVRP so-
lution provided in Figure 1. Note that route 2 is out of local-optimum, so
moves related to this route should be verified.

5. Computational experiments

The GILS-VND algorithm was implemented in C++ with assistance from
framework OptFrame 1.5 (Available at http://sourceforge.net/projects/optframe/)
[30, 31]. This framework has been successfully applied in the literature (see
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Table 1: HFMVRP Solution

Solution Representation
Route (r,t) Costumers visited

(1,A) (0,9,11,7,5,12,0)
(2,B) (0,4,1,2,3,6,0)
(3,A) (0,8,10,0)

Auxiliary Data Structures (ADSs)
i = (1, 2, 3)

SumDemand[i] (98, 60, 25)
MinDemand[i] (8, 5, 5)
MaxDemand[i] (35, 30, 20)
NeighborhoodStatus[j][i]

[2-opt ][i] (1, 0, 1)
[Or-optk ][i] (1, 0, 1)
[Exchange][i] (1, 0, 1)
[Shift(1,0)][i] (1, 0, 1)
[Swap(1,1)][i] (1, 0, 1)
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Coelho et al. [32]). The tests were carried out on a Pentium Core 2 Quad
(Q6600), 2.4 GHZ with 8GB of RAM, with operating system Ubuntu 10.10
Kernel 2.6.32-33, and compiled by g++ 4.5.2, using the Eclipse 3.1 IDE.

To test the algorithm performance, 14 real instances from the distribution
company were used, which correspond to 14 different days. Ten of them were
already presented in the literature by Caceres et al. [27]. The other four
instances are introduced in this paper. Since Caceres et al. [27] compared
his results to other literature benchmark multi-trip instances, we avoid to
present similiar results in this paper. So, the main focuses here is on solving
the real c These instances have up to 382 customers and are divided in single-
and multi-trip instances (HFMVRP and HFMVRP MT, respectively). In the
second group, the total demand is greater than the capacity of all vehicles,
so multiple trips are indispensable to serve all customers. The customer
demands are different in each case, and it is possible to have a customer with
0 demand in a particular instance. Table 2 shows the composition of the
fleet by vehicle type, with its capacity, the possibility of performing multiple
trips, and the corresponding costs (in e).

Table 2: Company’s fleet composition

Veh. type Cap. Avail. MT Costs (in e)
(t) (qt) (mt) cft cct cdt

A 222 8 No 88.30 8 0.2446
B 414 5 No 115.70 8 0.3195
C 482 139 Yes 123.29 8 0.3315
D 550 3 No 148.87 8 0.3315
E 616 6 No 172.23 8 0.364
F 676 3 No 178.92 8 0.364
G 752 4 No 187.39 8 0.364
H 1,210 1 No 238.46 8 0.364

After some preliminary experiments with different parameter values, the
input parameters adopted were: γ = 0.4, GRASPmax = 100 and IterMax =
1000. The next three sections describe the computational experiments con-
ducted to measure the efficiency of the algorithm. Section 5.1 evaluates the
neighborhood structure efficiency. Section 5.2 measures the time required to
reach the solution currently used by the company, based on run time distri-
butions. Finally, Section 5.3 computes the results with all costs involved.
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5.1. Detailed results on algorithm implementation

The first experiment aims at verifying the quality and efficiency of the
neighborhood structures implemented in the GILS-VND algorithm. Tables 3
and 4 exhibit a typical indicators output from checkModule of the OptFrame
framework. The first column in Table 3 indicates the OptFrame component.
All five neighborhood structures are implemented in OptFrame core as se-
quential neighborhoods. In this application, only a few basic method imple-
mentations were needed. The “Optimized” neighborhood structures have an
efficient reimplementation that discards inter-route moves that violate max-
imum capacities of a given vehicle (vectors SumDemand[i], MinDemand[i]
and MaxDemand[i] helped in this task). The number of tests for each com-
ponent and the average time spent in each experiment are displayed in the
second and third columns of Table 3, respectively.

Tests 1 and 2 display the computational time to build an initial solution
and the ADS, respectively. Test 3 indicates the average time spent to evaluate
a solution. Test 4 shows the time required to apply each move generated by
the neighborhood structures. Shift(1,0) move is the most costly to apply,
requiring 0.0074ms. This result is consistent since this move changes the
size of routes. Test 5 shows the computational time spent to calculate the
cost of the move, i.e., the impact of changing to the selected neighbor on the
evaluation function. In the “Optimized” version of each neighborhood, the
cost calculation benefits from ADSs, not needing to perform the change in
the solution and to recalculate the objective function value. This strategy
improved the execution time up to 57.6 times for the neighborhood Shift(1,0),
reducing the average time from 0.0921 to 0.0016ms.

On the other hand, Table 4 shows the average number of solutions gener-
ated by each neighborhood structure in 30 tests. The “Valid Neighborhood
moves” column indicates the average number of moves that lead to other
feasible solutions; columns “Standard” and “Optimized” indicate the aver-
age number of moves generated by the standard OptFrame implementation
and the implementation using the ADS, respectively. Note the percentage
reduction of ineffective moves in the “Improvement” column calculated using
Equation 2. The results indicate that, from the use of some standard neigh-
borhood structures provided by OptFrame and through the implementation
of an efficient ADS, it was possible to find the same number of valid solu-
tions with a reduced number of moves: 98.90% and 76.60% less moves for the
neighborhood structures Shift(1,0) and Swap(1,1), respectively. Using ADS
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Table 3: CheckModule Output - Computational times

Component #Tests average(ms)

Test 1: building an initial solution

Constructive 30 40,568

Test 2: update cost of the ADS

ADSManager 94,885 0.1222

Test 3: complete evaluation of a solution

Evaluator 94,885 0.0385

Test 4: cost of apply method

2-Opt 256 0.0039
Or-opt1 708 0.0039
Exchange 1,144 0.0035
Shift(1,0) 12,986 0.0074
Swap(1,1) 33,402 0.0071

Test 5: calculating the cost of a move

2-Opt 128 0.0783
2-Opt-Optimized 128 0.0014
Or-opt1 354 0.0799
Or-opt1-Optimized 354 0.0014
Exchange 572 0.0790
Exchange-Optimized 572 0.0015
Shift(1,0) 6,493 0.0921
Shift(1,0)-Optimized 6,493 0.0016
Swap(1,1) 16,701 0.0917
Swap(1,1)-Optimized 16,701 0.0016

Table 4: CheckModule Output - Efficiency of the Neighborhood Structures

Average number of moves from neighborhood in 30 tests
Neighborhood Valid neigh. moves Standard Optimized Imp. (%)

2-Opt 154 869 869 0.00
Or-opt1 426 3,030 3,030 0.00
Exchange 688 3,030 3,030 0.00
Shift(1,0) 7,813 738,630 8,106 -98.90
Swap(1,1) 20,097 296,258 69,307 -76.60
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in the intra-route neighborhoods does not reduce the number of moves, since
the vehicle loads do not change with these moves.

Improvement (%) =
Optimized− Standard

Standard
∗ 100 (2)

5.2. Time-to-Target plot results

In the second experiment, time-to-target plots (TTTplots) [33] were per-
formed to check the efficiency of the GILS-VND algorithm in reaching the
solution currently used by the company. TTTplots display the probability
(the ordinate) that an algorithm will find a solution at least as good as a
given target value within some given running time (the abscissa). TTTplots
have been also used in Ribeiro and Resende [34] as a way to characterize the
running times of stochastic algorithms for combinatorial optimization.

Aiex et al. [35] describe a Perl program to create TTTplots for mea-
sured times that are assumed to fit a shifted exponential distribution, closely
following Aiex et al. [36]. Such plots are very useful to compare different
algorithms or strategies for solving a given problem and have been widely
used as a tool for algorithm design and comparison.

A set of 100 executions applying the GILS-VND algorithm were made to
solve HFMVRP 1 instance, with a target equal to e32, 472.37 (the company
cost for this instance). The performance ended once the algorithm found the
target value. Figure 5 shows the empirical probability curve. Note that our
algorithm was able to find the company solution in all experiments in less
than 8.65 seconds. Based on this, we adopted a maximum computational
time of 5 minutes in the experiments of Section 5.3.

5.3. Benchmark results

First, the GILS-VND algorithm was run 10 times with different seeds for
the set of instances introduced by Caceres et al. [27]. It should be noticed
that the maximum computational time here was set to 5 minutes instead of
10 minutes as in Table 5 our results are compared to the ones obtained with
the Rand-MER algorithm by Caceres et al. [27].

The table shows the best and the average total distance-based cost (in
km) for each algorithm. Our GILS-VND algorithm finds better solutions in
all instances reducing up to 9% the toal distance traveled by all vehicles.
The differences between both algorithms in the average results are smaller,
although GILS-VND beats Rand-MER in 6 out of 10 instances.
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Figure 5: Time-to-Target Plot - HFMVRP 1

Table 5: Results for real multi-trip instances: GILS-VND vs. Rand-MER

Rand-MER GILS-VND

Instance #nStores best average best average gap (%) gap (%)
(1) (2) (3) (4) (3-1) (4-2)

A 372 39534 39841 38995 39572 -1.36 -0.68
B 366 41072 41399 40670 41243 -0.98 -0.38
C 371 49669 50082 46116 49639 -7.15 -0.89
D 364 31378 31543 31300 31600 -0.25 0.18
E 372 45485 45836 45300 46206 -0.41 0.80
F 373 45275 45681 42100 44942 -7.01 -1.64
G 372 45165 45493 44983 45883 -0.40 0.85
H 374 44386 44909 44230 45114 -0.35 0.46
I 370 49053 49354 47345 48292 -3.48 -2.20
J 372 38973 39252 35366 38074 -9.25 -3.10
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The last experiment compares the solutions obtained by the GILS-VND

algorithm and those used by the company, in four new real instances (K,
L, M, N) plus the instance H. The GILS-VND algorithm was run 30 times
per instance with 5 minutes per run. Tables 6 and 7 show the results of
the best solution obtained for each instance. Table 6 reports the total costs
(TC) for five instances decomposed into three cost categories: 1) the fixed
vehicle cost, CF , 2) the store cost, CC , and 3) the distance cost, CD. The
table also displays the gap between both solutions. The store cost may seem
independent of the solution employed since all customers must be served. In
fact, this is not necessarily true in the solution presented by the company in
which it was possible that a customer was served using two different trips,
incurring a double cost per customer visited. Table 7 presents the routing
indicators that the company uses for managerial reasons: the total number
of routes employed (#nRoutes), the total distance traveled in kilometers
(#nKm), and the total vehicles’ idle capacity in boxes (#nE). For the multi-
trip instances, the second number in the “#nRoutes” column represents the
number of vehicles that performed two trips.

Our GILS-VND algorithm was able to obtain better solutions in all in-
stances. These solutions represent savings on the operational costs of up
to e6, 127 (e.g., in HFMVRP MT1). Considering that each instance cor-
responds to the distribution planning of a single day, the potential annual
savings are considerable. Our solutions also improve all other routing indica-
tors, that is, less trips were needed, less distance was traveled, and vehicles
traveled with less empty space. These results consider only the best solution
obtained by our algorithm in all the runs. Next, we provide some statistical
results on the total cost obtained by the algorithm for all 30 runs performed
for the new set of four instances. Table 8 shows these figures. The last col-
umn displays the percentage gap between the average algorithm solution and
the company solution, calculated as:

gapGILS−V ND
i =

TC
GILS−V ND

i − TCCOMPANY
i

TCCOMPANY
i

(3)

where TC
GILS−V ND

i is the average algorithm solution and TCCOMPANY
i is

the company solution for instance i. In the worst case, the average cost is
almost 6% better than the company solution.
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Table 7: Comparison of results II: GILS-VND vs. Company

GILS-VND Company GILS-VND Company GILS-VND Company
Instance #nRoutes #nRoutes #nKm #nKm #nE #nE

SINGLE TRIP

K 134 134 33,403 36,733 1,871 4,533
L 66 71 17,601 22,185 894 4,325
M 75 80 19,334 23,351 1,003 3,658

MULTITRIP

N 203/34 234/86 50,244 57,388 5,420 19,164
H 181/12 205/56 44,639 50,423 3,350 14,667

Table 8: Statistical results for the new set of instances: GILS-VND vs. Com-
pany

GILS-VND

Instance company best average std. dev. gap (%)

K 32,472 30,507 30,692 70 -5.48
L 18,997 16,327 16,427 42 -13.53
M 20,266 18,017 18,146 43 -10.46
N 51,609 45,523 45,813 100 -11.23
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6. Conclusions and extensions

Real vehicle routing problems present a variety of constraints that are
sometimes disregarded in model formulations. These realistic constraints
may have a significant impact on the solution implementation. This study
analyzed a Heterogeneous Fleet Multitrip VRP (HFMVRP) faced by a dis-
tribution company in Europe that serves around 400 customers. This real
VRP variant considers a fleet of heterogeneous vehicles (i.e., vehicles with dif-
ferent capacities and costs) with the possibility of performing multiple trips
or being unable to serve particular customers (for maneuverability reasons,
for example). The objective function included the company’s set of costs: a
fixed cost per vehicle used, a variable vehicle cost per distance traveled and a
fixed cost per customer served. Due to the difficulty of the problem, we pro-
posed a heuristic algorithm, the GILS-VND, that combines an ILS, a GRASP,
and a VND. The algorithm uses the power of the GRASP to build a feasible
initial solution, then within the ILS structure, it uses the VND as local search
combined with the Refine method based on several levels of perturbation.
The algorithm was implemented adapting the OptFrame components (which
are publicly available). The quality and efficiency verification of the neigh-
borhood structures showed that it was possible to enhance the efficiency up
to 98.91%.

To test the performance of our algorithm, we experimented with a set of
real instances provided by the company. These instances correspond to 14
business days with all customers demands. First, our algorithm was com-
pared to the Rand-MER algorithm ([27]) to see that it could obtain bet-
ter solutions in all instances reported. Computational results pointed that
GILS-VND algorithm could obtain better quality solution in all instances pre-
sented by the literature. Furthermore, the computational results obtained
by the GILS-VND algorithm represent significant cost savings (estimate yearly
savings are over e70, 000) but also outperform the other routing indicators
used by the company: the total number of routes employed, the total dis-
tance traveled and the vehicles’ idle capacity. Besides minimizing costs, the
company is also concerned about using the least number of routes with full
truckload vehicles. Another benefit of the algorithm is its speed and reliabil-
ity. It is able to find good quality solutions with low variability in reduced
time. This is particularly interesting since routing decisions must be made
daily after receiving all customer demands in less than 30 minutes. In addi-
tion, the algorithm calibration is relatively simple and requires no complex
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fine-tuning processes. Overall, the method proposed is a powerful tool that
can support distribution planners in their decision making.

As future extensions for this work, we could consider including time win-
dows in the deliveries. Due to traffic constraints, for instance, it is possible
that certain customers cannot be served during some business hours. Al-
gorithmically, new neighborhood structures related to the consecutive cus-
tomers relocation can be also incorporated. Finally, we also propose the
implementation of a parallel version of the GILS-VND algorithm to benefit
from the multi-core technology present in current machines.
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