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Abstract—In this paper, we present a framework, based
on parallel cooperative approach and concepts of Multi-agent
Systems, for solving the Vehicle Routing Problems with Time
Windows. We propose an effective way of applying metaheu-
ristics as agents, as autonomous as possible. The framework
proposed here creates an environment where interactions
between metaheuristics are carried out. As a consequence, these
agents present a cooperative behavior and exchange informa-
tion during the run. Two metaheuristic agents (Iterated Local
Search and Genetic Algorithm) were implemented. The results
show the cooperative behavior of these metaheuristics and the
influence of this behavior on improving the quality of the
solutions, once these agents have achieved better performance
on the tackled problem, when compared to the execution of
each metaheuristic agent separately.

Keywords-Framework, Multi-agent, Metaheuristics, Vehicle
Routing Problem.

I. Introduction

In the latest years, the number of researches applying two
or more metaheuristics, at same time, to improve solution
quality of algorithms has increased significantly [1], [2].
This strategy is known as hybridization of metaheuristics.
Its advantage arises from the fact that strengths of each me-
taheuristic are applied together. As a consequence, besides
obtaining better solution quality in a shorter amount of time,
its ability to deal with more complex problems increases.

Many ways of metaheuristic hybridization can be found
in the literature. Here, we emphasize the parallel cooperative
approach. Its importance lies in the fact that it adds, to the
applied metaheuristics, parallel computational resources and
possibility of information exchange. Some examples can
be cited, like a hybrid cooperative model applied to the
Tool Switching Problem [3], parallel metaheuristics for sol-
ving Dynamic Optimization Problems [4], the Capacitated
Vehicle Routing Problem [5] and the Traveling Salesman
Problem [6].

In this paper we apply the parallel cooperative approach,
managed as Multi-agent Systems (MAS) [7]. MAS can be
used as a liaison between different metaheuristics for solving
optimization problems. The advantages of using MAS is to

refine and combine the solutions built by the metaheuristics.
Each agent is responsible for performing its own task and, at
same time, for using the solutions provided by other agents
to improve their own solutions. In this approach, agents
interact and work together to achieve a pre-defined objective.

A number of papers have been proposed to show the ap-
plication of cooperative approach and multi-agent systems,
each one presenting different ways and advantages to deal
with the addressed problem [5], [6], [8]–[10]. Some of them
are highlighted below.

The MAGMA architecture [8] proposes a conceptual
framework applying a multi-agent perspective, where a
metaheuristic can be seen as a consequence of the interac-
tion between different agents. These agents work according
to pre-defined hierarchical levels, each one corresponding
to a metaheuristic action. A Multi-agent architecture for
metaheuristics (AMAM) is proposed in [9]. In this pa-
per, each metaheuristic is implemented as an agent. The
problem search space is represented as an environment in
which agents play and interact to each other. Every time
a different problem has to be tackled, just the architecture
environment has to be changed. This cooperative approach is
also used in [5] for solving the Capacitated Vehicle Routing
Problem. This proposal applies an asynchronous information
exchange between multiple cooperative tabu search threads.
Another way to coordinate agent activities in multi-agents
architectures by means of metaheuristics is through the use
of algorithms inspired by collective intelligence [6], [10]. In
these papers, the performance of the Particle Swarm Opti-
mization algorithm is measured according to hybridization
and cooperation of algorithms.

However, according to the literature review, two questions
arise. Which one is the best way to coordinate the metaheu-
ristics when the objective is to explore their potential of
hybridization? At the same time, how could be developed a
more robust structure able to deal with different problems
with minimum changes?

Our objective is to cover this lack in the literature,
presenting a framework that uses a multi-agent approach



for combining metaheuristics. Each agent acts as a specific
metaheuristic, which works simultaneously, but independen-
tly, during the run. In this paper, we have implemented two
metaheuristics as agents: Iterated Local Search – ILS [11]
and Genetic Algorithm – GA [12]. As they have different
ways to explore and exploit the search space, they are able
to help each other simultaneously to improve the solution
quality of the problem addressed in this paper, which is the
Vehicle Routing Problem with Time Windows (VRPTW).
This approach guides the search throughout promising areas
by the exchange of information during the search space
exploration.

The rest of this paper is organized as follows. Section
II describes the problem under consideration. Section III
introduces the proposed approach. Computational results
are presented in Section IV. Finally, some conclusions and
discussions are showed in Section V.

II. The Vehicle Routing Problem with TimeWindows

The problem to be dealt with the MAS approach is the
Vehicle Routing Problem with Time Windows (VRPTW).
In this problem there is a depot, a set of costumers and a
set of vehicles. Each costumer has a demand to be attended
by a vehicle into a time window. Each vehicle should arrive
before the opening of the time window and wait until the
service becomes available, but it is not permitted to arrive
after its ending. The routes must start and end at a depot. The
objective of this problem is to achieve a minimum number
of routes that are able to attend a set of customers with
minimum distance respecting their time windows. Figure 1
illustrates a solution example involving a depot, seven clients
and three routes.
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Figure 1. A solution of VRPTW.

A solution for the VRPTW is computationally represented
by a vector of positions. Each position represents a route
and each route is represented by another vector, with the
identification of the customer attendance order. The se-
quence of customers to be attended is defined by the position
that each one has at the route vector. Figure 2 illustrates
its representation. In this figure, for example, the Route 2
contains the clients 2 and 6.

The solution’s quality is given by (i) the number of
vehicles used and, after that, (ii) the total distance travelled.

III. The proposed approach

The framework we have proposed here is based on the
multi-agent approach and it is presented in Figure 3. It
is inspired by the work presented in [9]. In this latter
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Figure 2. Computational representation of a Solution.

work, a multi-agent conceptual model was proposed by
the application of several metaheuristics at one generalized
structure. Each agent represents a metaheuristic, responsible
to build and improve solutions for a specific problem. In
the search solution process, the agents must scroll through
the multi-agent system environment. In this case, the multi-
agent system environment is defined by the search space
of the tackled problem, seeking a predetermined goal. The
ability to move the agent in the search space of the problem
is defined by the neighborhood structures (movements) that
he has. The agents can, then, move through the environment,
from one solution to another one.
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Figure 3. Multi-agent Framework for VRPTW.

In the current proposal, our multi-agent framework is
composed by four main elements, as shown in Figure 3:
(i) Environmental Stimulus Pool; (ii) Pool of Solutions; (iii)
Constructor Agent; and (iv) Metaheuristic Agents.

The Constructor Agent is the element responsible for
building the initial solutions for the problem. These solutions
are improved by metaheuristic agents separately and simul-
taneously. Solutions are stored in the Pool of Solutions. One
important characteristic of this structure is the autonomy
of the agents: one agent should not directly interfere in
the decisions of other agents of the structure. This is the
main difference between this current proposal and the one
presented in [9]. In order to guarantee this autonomy, from
the initial proposal we have removed the coordinator agent,
as well as the solution analysis agent. Both are responsible
for intermediating communication and making decisions
inside the framework; however, they limit the autonomy of
the agents in the search space. They have been replaced by
an Environmental Stimulus Pool, which is responsible for



managing all information exchange between agents, without
any interference with concern to their autonomy.

Any information exchange concerning the search space
occurs by means of stimulus. A stimulus can be a provision
or a request of a solution. The available solutions to be
requested are stored in the Pool of Solutions. However, only
each metaheuristic agent can decide when is necessary to
include or to remove these solutions.

In this paper, we have implemented a construction agent
and two metaheuristic agents to solve the VRPTW. Note
that each metaheuristic agent plays on its own thread, both
executed in parallel. In this way, each metaheuristic agent
works independently at the same time. The time spent to
improve the solution’s quality is, consequently, decreased.

A. Constructor agent

The constructor agent is the element responsible for
building the initial solution that is going to be improved
by metaheuristic agents. The initial solution is built by a
variation of the Push-Forward Insertion Heuristic – PFIH
[13]. This heuristic is largely applied to problems that
deal with customers/tasks allocation with time windows
constraints. More specifically, the PFIH defines to each
customer a solution insertion cost related to its final time
window, distance and polar angle between it and the depot.
This insertion cost defines the attendance order of inserted
customers at the solution.

We have added a probabilistic component, which allows
the diversification of the PFIH initial solutions. Thus, custo-
mers are ordered according to their cost of insertion, as pro-
posed by Solomon [13]. The customers with lowest insertion
cost are inserted in a restrict candidate list, as the one used at
construct phase of GRASP (Greedy Randomized Adaptive
Search Procedures) metaheuristic [14]. Nevertheless, at each
iteration, the choice of next customer to be attended is
randomly taken from this set. Solutions that have been built
here are stored in the Environmental Stimulus Pool, where
they are available to be used by other metaheuristic agents.

B. Metaheuristic agents

The ILS and GA metaheuristics work as metaheuristic
agents. They are responsible for improving the solution’s
quality by the use of strategies specifically used to escape
from local optimum traps .

1) ILS Agent:The ILS agent is an implementation of ILS
metaheuristic [11]. It mainly consists in applying perturbati-
ons in the local optimum solutions and refine these perturbed
solutions.

The ILS agent has been implemented using different levels
of perturbations. These levels consist in different pertur-
bation techniques applied after a number of pre-defined
iterations without any solution’s quality improvement. The
perturbation levels are applied in an ascending order and
according to their degree of intensity, that is, the number

of modifications in the current solution. Six levels of per-
turbation have been implemented: (i) the random exchange
of two consecutive customers; (ii) the relocation of two
random customers; (iii) the relocation of three consecutive
customers; (iv) the removal of the shortest route; (v) the
removal of a random route; and (vi) the random choice of
a solution in the pool.

The interaction between the ILS agent and the envi-
ronment can happen as follows: (i) an initial solution is
received; (ii) a solution from the perturbation method is
received; and (iii) a complete solution at the end of an
iteration is added, only if it is the best so far solution.

2) GA Agent:The GA agent represents the GA metaheu-
ristic [12]. The solutions are converted to chromosomes,
i.e., an individual in the population, as shown in Figure 4.
Because a solution for the VRPTW is defined as a set of
routes, when GA is applied it is represented by an individual.
In addition, each gene represents a customer to be attended.
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Figure 4. A GA solution representation to the solution presented at
Figure 1.

Similarly to the ILS agent, all initial solutions need to be
built using the Constructor Agent. After that, a crossover
operator is applied to generate an offspring. Characteristics
like the order of customers attendance, number of routes, and
number of customers per route are transferred to next indivi-
duals. Later, a mutation procedure may be applied following
a probabilistic rule. It consists in the elimination of the
shortest route from selected individuals from the offspring.
Finally, a new population is generated. Part of it is formed
by parents and descendants from the old population, which
are chosen by applying a binary tournament procedure. The
remaining individuals of the new population are taken from
the other agents at the framework. They are randomly taken
from the pool of solutions.

C. Multi-agent Environment

The multi-agent environment is mainly defined by the
search space of the tackled problem. Therefore, it provides
all information that is needed for solving the problem
eg.: number of customers to be attended, distance between
customers, number of vehicles, and so on. Besides that, the
multi-agent environment is the element responsible for al-
lowing the construction of new solutions, their modification
or combination. It is composed by following elements: (i)
Problem data: the element responsible for storing specific
information of the tackled problem; (ii ) Stimulus Pool: it
stores the stimulus sent by agents, that can be the delivery
of solutions that have been built or the request of new ones. It
is the way of interaction and information exchange between
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Figure 5. Environment for VRPTW.

agents; (iii ) Pool of solutions: it is a vector responsible for
storing solutions generated by agents.

D. Information Exchange and Cooperation

The cooperation between agents takes place by the ex-
change of information from the search space. After each
iteration the pool of solutions is updated with the solution
obtained for each agent.

The main objective of this cooperative structure is to guide
agents through the search space, by diversifying the search
and, at the same time, guiding the exploitation to possible
promising search areas in a shorter computation time.

In order to guarantee the autonomy of each agent, all
information exchange is mediated by stimulus exchange,
through the environmental Stimulus Pool. Whenever an
agent builds a solution or needs to request one (like the
requirement of an initial solution), it sends a stimulus to the
Environmental Stimulus Pool. Figure 6 shows the interaction
procedure between agents in the framework. The maximum
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Figure 6. Cooperation between agents.

size of the Pool of Solutions is static. Firstly, every time
a new solution is generated, it is inserted in the Pool of
Solutions. Whenever the pool is full, the insertion of a new

solution is managed by a function based on the “distance”
between solutions. The solution with the worst solution’s
quality is replaced by a new one.

The evaluation function is given by the sum of distances
from a solutioni to all other solutions at the Pool, as Eq. (2):

si =

N
∑

j=1

s(di j ) (1)

wheredi j is the distance between two solutionsi and j from
the Pool of Solutions. As smaller as the distance betweeni
and j, the biggest is the similarity of their solutions. Thus,
we consider a ratior as the limit of closeness of the solutions
to be accepted. This ratio is calculated by:

s(di j ) =

{

1− di j

r di j ≤ r
0 di j > r

(2)

The main objective of Eq. (2) is to keep the diversity of
solutions in the Environmental Stimulus Pool. At the same
time, the best so far solution from the Pool is always stored
with a specific environment attribute and updated at each
solution’s quality insertion. This procedure avoids to remove
the best so far solution when the above procedure is applied.

IV. Computational results

In this section we describe all instances, algorithms and
computational experiments. The proposed framework here
was implemented in Java, with JDK 1.6. Each agent runs in
its own thread. The elements of the environment are shared
between the agents. In order to guarantee this sharing, the
environment is passed through reference to agents.

The results were obtained using an PC with an Intel i7-
4500U processor, 1.8 GHz, 16 GB of DDR3 RAM, running
Windows 8 operational system. Table I shows the used
parameter values in the experiments. All used instances were

Table I
Parameter Values

Parameters Setup
Population size (GA) 20 individuals
Number of generations (GA) 100
Crossover rate (GA) 0.8
Mutation rate (GA) 0.05
Maximum number of iterations (ILS) 500
Perturbation levels (ILS) 6
Maximum number of iterations
without improvement (ILS)

5% of the maximum num-
ber of iterations

RCL size (PFIH) 20% of the total number
of customers

Maximum size of the pool of solutions Number of clients.

proposed by [13]. They are separated into 3 different sets
(C, R and RC) according to geographical distribution of the
clients. From the 56 available instances, we have chosen 8
from each group, all of them with 100 clients.

In order to evaluate the multi-agent framework, we have
compared our approach with ILS and GA metaheuristics



executed separately. In this way, the evaluation of coopera-
tion between agents and how strong are their cooperation on
the solution’s quality is also possible. Nevertheless, besides
comparing the solution’s quality, the number of access of
each metaheuristic to the pool of solutions during the run is
also measured. As already mentioned, the solution’s quality
is obtained according to the total distance traveled and to
the number of generated routes. Therefore, both of them are
taken into account in the following.

The obtained results are shown in Tables II, III and IV.
Each table presents achieved results from one instance of
each set (C, R and RC). The first column describes the
framework scenario. The second column (BKS) presents the
best known value in the literature and its respective number
of routes/vehicles (V) and traveled distance (D). The column
“Results” presents the average values found in 30 executions
of each algorithm (AD); their respective number of vehicles
(V); the best value found (BS) and the associated number
of vehicles (V).

Table II
Results from the three tested scenarios on instance C101

Instance: C101
Scenario BKS Results

D V AD V BS V
ILS 827.29 10 935.16 10.9 827.29 10
AG 827.29 10 977.5 12.3 958.09 11

ILS+AG 827.29 10 869.83 10.2 827.29 10

Table III
Results from the three tested scenarios on instance R101

Instance: R101
Scenario BKS Results

D V AD V BS V
ILS 1650.8 19 1722 20 1674.79 19
AG 1650.8 19 1745.7 21 1717.6 20

ILS+AG 1650.8 19 1675.3 18.6 1662.79 18

Table IV
Results from the three tested scenarios on instance RC101

Instance: RC101
Scenario BKS Results

D V AD V BS V
ILS 1696.94 14 1813.7 17.8 1688.9 17
AG 1696.94 14 1948.6 19 1757 18

ILS+AG 1696.94 14 1720.6 16.1 1674.9 15

According to the tables above, we can see that the best
values are achieved by the multi-agent approach (ILS+AG),
for all used instances. This better performance of the multi-
agent approach, in comparison to GA and ILS working
separately, is also confirmed by the execution of the ANOVA
test (see the box plots presented in Figures 7 and 12).

For the Vehicle Routing Problem, the cost generated by
the number of vehicles is the first objective to be satisfied.

This objective is harder to improve than total distance
travelled. With concern to our approach, it is also minimized,
as shown in Figures 7, 9 and 11.
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Figure 7. Boxplot regarding the number of used vehicles on instance
C101.
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Figure 8. Boxplot regarding the obtained solution values oninstance C101.
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Figure 9. Boxplot regarding the number of used vehicles on instance
R101.

V. Conclusions and perspectives

In this paper, a multi-agent framework for solving the
Vehicle Routing Problems with Time Windows was presen-
ted. The proposed approach implements each metaheuristic
as a parallel cooperative autonomous agent. Each agent is
responsible for building solutions to the tackled problem
at the same time. In addition, they can communicate to
each other by their ability of sending and receiving stimulus
to/from the environment, which generates a parallel coope-
rative behavior.
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Figure 11. Boxplot regarding the number of used vehicles on instance
RC101.
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Figure 12. Boxplot regarding the obtained solution values on instance
RC101.

The pool of solutions is responsible for storing solutions
sent throughout the stimulus. The number of solutions inside
the pool is managed by an evaluation function. This function
is also responsible for diversifying the solutions inside
the pool. From the presented results, the ability of agent
cooperation and its influence in the solution’s quality is
confirmed. The use of two metaheuristic agents (ILS and
GA) allowed the reduction of both costs, that is, the number
of routes and total traveled distance.
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