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Abstract. This work treats the single machine scheduling problem in
which the setup time depends on the sequence and the job family. The
objective is to minimize the makespan and the total weighted tardi-
ness. In order to solve the problem two multi-objective algorithms are
analyzed: one based on Multi-objective Variable Neighborhood Search
(MOVNS) and another on Pareto Iterated Local Search (PILS). Two lit-
erature algorithms based on MOVNS are adapted to solve the problem,
resulting in the MOVNS_Ottoni and MOVNS_Arroyo variants. Also, a new
perturbation procedure for the PILS is proposed, yielding the PILS1 vari-
ant. Computational experiments done over randomly generated instances
show that PILS1 is statistically better than all other algorithms in rela-
tion to the cardinality, average distance, maximum distance, difference
of hypervolume and epsilon metrics.
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1 Introduction

Scheduling problems have been extensively studied in the literature. This fact
is due to at least two aspects. The first one is the practical interest, since there
are various applications on this class of problems in industry field, as for exam-
ple, textile [11], electronics [15] and iron [21]. The other aspect that interests
the study of this kind of problem is the theoretical interest, once most of the
scheduling problems belong to the class of A/P-hard problems [3].

Although the problem of scheduling jobs involves various objectives, in most
of the researches in this field only one objective is considered. When more than



one is considered, usually it is defined only one objective represented by the
linear combination of involved objectives, thus, the problem is treated normally
in a single-objective approach.

This work discusses the scheduling problem in single machines, in which the
setup time of the machine depends on the scheduling and family of the jobs. The
grouping of the jobs in the family occurs, for example, in the iron field. In [4], the
author shows a process of manufacturing iron products (corner, rebar, bar, etc)
in the lamination sector, in which jobs are grouped in families in accordance with
the similarity of the products. In this case, the products from same family are
those which differ between themselves by the thickness. On those circumstances
the setup time is so short and unimportant when compared to the processing
time of jobs that is usual to consider it equivalent to zero. The advantage of
making this grouping, thus, is that the jobs which belong to the same family,
when processed sequentially, do not need setup time.

The problem in hand takes two objectives into account: makespan and total
weighted tardiness minimization. It means that instead of looking for a solution
which satisfies one or other objective separately, the main goal is to obtain a set
of non-dominated solutions, this way each solution that belongs to this set is not
worse than any other, considering both objectives simultaneously.

Noticing the computational complexity of the scheduling problems, the most
used methods to solve them are metaheuristics. Reviews in literature show that
methods inspired by the process of natural evolution, such as Non-dominated
Sorting Genetic Algorithm IT — NSGA-II [7] and Strength Pareto Approach —
SPEA2 [25] are among the most used when multi-objective optimization is con-
cerned. On the other hand, recently it were discovered reports of successful
applications of multi-objective methods based on local search, such as Multi-
objective Variable Neighborhood Search — MOVNS [9] and Pareto Iterated Local
Search — PILS [10], as shown in the works of [1], [20] and [18]. In this last, for
example, it is observed a superiority of PILS over SPEA2.

Due to the good performance of the algorithms in similar problems, in this
work the multi-objective algorithms MOVNS and PILS are tested to solve the
scheduling problem at hand. The MOVNS algorithms of [1] and [20] were adapted to
solve the problem, giving birth to the MOVNS_Ottoni and MOVNS_Arroyo variants,
respectively. Furthermore, a new perturbation procedure is proposed for PILS,
giving birth to the PILS1 variant. Computational experiments showed that the
last algorithm outperforms the other tested algorithms.

The rest of this work is organized as follows. In Section 2 the problem char-
acteristics are described. Section 3 presents the proposed multi-objective algo-
rithms, and in Section 4 the used test instances are described as well as the
metrics used to assess and compare the developed algorithms. Also in Section 4,
the results of the accomplished experiments are presented and analyzed. Section
5 concludes the work.



2 Problem Description

The problem in focus can be defined as follows: there is a set J = {1,2,3,...,n}
with n jobs that have to be scheduled in a single machine at the starting point
zero. Each job j € J has a processing time p;, a due date d; and a weight for
tardiness ;. The jobs are grouped in families f according to their characteristics
and each family ¢ has n; jobs. A setup time s;;, is required between the execution
of two consecutive jobs of different families ¢ and k and, if they are from the same
family, no setup time is necessary. Given a sequence m, for each job j a tardiness
T; is associated. Since C; is the completion time of the job j, its tardiness is
calculated by Eq. (1):

T; = max{C; — d;,0} (1)

The objectives of the problem in focus are to minimize the makespan f;(7)
and the total weighted tardiness fo(7), simultaneously. The values of fi(7) and
f2(m) are calculated by Egs. (2) and (3):

fi(r) = max {C;} 2) fa(m)= > BT (3)

1<j<n
= 1<j<n

3 Methodology

A solution is represented by a sequence m = {my,7ma,..., T, ..., Ty} in which 7y
indicates the k-th job to be done.

The proposed algorithms begin with a set of non-dominated solutions gen-
erated by four different heuristics based on the following dispatching rules [22]:
Earliest Due Date (EDD) rule, generating a scheduling of jobs in a non-decreasing
order of their due dates; Shortest Processing Time (SPT) rule, generating a
scheduling of jobs in a non-decreasing order of their processing time; Longest
Processing Time (LPT) rule, generating a scheduling of jobs in a non-increasing
order of their processing time; Minimum Slack Time (MST) rule, generating a
scheduling of jobs in a non-decreasing order of the difference between the due
date and processing time.

In order to explore the solution space of the problem, insertion and exchange
movements are applied changing the scheduling of the jobs, as follows.

Given a sequence m = {my, 72, ..., 7, }, the insertion move of a job m,, consists
in moving this job to a position y (y # x e y # x — 1). The group of insertion
movements in a sequence 7 defines the neighborhood N’ (7) which is composed
by (n — 1)? solutions.

Given a sequence m = {my,ma,..., Ty}, the exchanging move between two
jobs m; and m, consists in moving the job 7, to the position y and the job
to the position z. The group of exchanging movements in a sequence 7 defines

J(n—1
the neighborhood N7 (), formed by % solutions.



3.1 Algorithms based on MOVNS

The Multi-objective Variable Neighborhood Search (MOVNS) is an optimization
multi-objective algorithm proposed in [9] and the metaheuristic Variable Neigh-
borhood Search — VNS [19].

Variants of MOVNS Algorithm In literature there are two variants of the
MOVNS algorithm. The first one, named as MOVNS_Ottoni, was proposed by [20]
and consists in adding an intensification procedure to the original MOVNS. The
second variant of MOVNS, named MOVNS_Arroyo, was proposed by [1] and consists
in adding another different intensification.

3.2 Algorithms based on PILS

Pareto Iterated Local Search — PILS is an optimization multi-objective algorithm
proposed by [10], with a structure based on the meta-heuristic Iterated Local
Search — ILS [17]. PILS basic pseudo-code is presented in Algorithm 1.

In Algorithm 1, initially it is obtained a set of non-dominated solutions (N D)
(line 1), using four different heuristics described previously. After this, one of the
solutions of the set ND is selected randomly (line 2). In each iteration of the
external loop (lines 3 — 27) all neighbors of the current solution are explored
(lines 5 — 17). If a neighbor solution dominates the current solution, then this
neighbor solution becomes the new current solution, the neighborhoods are ran-
domly reordered and the procedure returns to the first neighborhood of the new
generated order. This procedure is repeated while there are non-visited solutions
in set ND. After all solutions of set N D are visited — when the algorithm is in
an local optimum concerning the explored neighborhood — is a solution is ran-
domly selected from set ND (line 23) and a perturbation is applied (line 24),
as described as follows. After this, all neighborhood of the current solution is
explored (lines 5 — 17). In the case that all neighbors of the solution generated
through the perturbation are dominated by any solution of set ND, then the
perturbation procedure is repeated. The most external loop (lines 3 — 27) is
repeated while the stopping criterion is not met.

A solution is perturbed in order to explore other local optima. The original
perturbation strategy of PILS, from [10], works in the following way: initially a
solution 7 from the set N D is randomly selected. Then, a position j < n—4 and
its four consecutively jobs of 7 are randomly chosen, i.e., positions j, j+1, j+2
and j + 3. A perturbed solution s is then generated by applying an exchanging
move on the jobs in the positions j and j + 3, as well as the jobs in the positions
j—+1 and j+ 2. This way, the jobs before j and the jobs ahead of j + 3 are kept
in their respective positions after the perturbation application.

In this work, the perturbation procedure of a solution (line 24 from Algorithm
1) has been modified when concerning the proposal of [10]. The perturbation is
applied in levels, varying from 1 to (n/2 —1). In each level p, p+ 1 modifications
are made on the solution. This way, on the lowest pertubation level two exchanges
are applied while on the highest level n/2 exchanges are made.



Algorithm 1: PILS
Input : Non-dominated set ND, k neighborhoods, stopping criterion

1 ND «+ InitialSolution();
2 Select a solution s € ND ;
3 while stopping criterion is not satisfied do
4 i+ 1;
5 while ¢ < k A stopping criterion is not satisfied do
6 foreach s’ € N'(s) do
7 ND « non-dominated set of ND U {s'} ;
8 end
9 if 3s’ € N'(s)| s’ dominates s then
10 s— s ;
11 Reorder the neighborhoods N, ..., N* ;
12 71— 1;
13 end
14 else
15 | i+
16 end
17 end
18 Mark s as visited ;
19 if 35" € ND | s'not yet been visited then
20 ‘ 5« s';
21 end
22 else
23 Select a solution s’ € ND ;
24 s"” « Perturbation(s’) ;
25 s«— s
26 end
27 end

28 return ND ;

The level p of perturbation increases as the perturbation is not able to gen-
erate a non-dominated solution related to the set ND. The increasing is made
by adding a unit of value to the current level of perturbation. When a non-
dominated solution related to the set N D is found, the perturbation level returns
to its lowest value, 1 in this case. If the perturbation level reaches its maximum
value — (n/2 — 1) — and it is still not possible to generate a non-dominated solu-
tion in relation to the set N D, the perturbation level returns to its lowest value.
The proposed procedure works as follows. A solution 7 from the set N D is ran-
domly selected. Then it is chosen, also randomly, a subset of consecutive jobs of
7 on the positions j,7+ 1,...,7 + 2p + 1. Then, exchanges are applied between
the pairs of jobs (j,7+2p+1),(j+ 1,5+ 2p),...,(j + p,j +p+ 1). This way,
the procedure makes p + 1 exchanging moves on each call from the perturbation
procedure. The PILS algorithm modified as such was named PILS1.



4 Computational Experiments

All algorithms were coded on C++ language and the tests were done in a Intel®
Core™ 2 Quad 2.4 GHz with 6GB RAM.

The stopping criterion of each algorithm is a maximum CPU time proportional
to the size of the instance. This criterion is common in literature and it has been
established as 1000 x n milliseconds, in which n is the number of jobs of the
instance. For each instance 30 tests were performed, each one with a different
random seed.

4.1 Instances

To assess the algorithms, instances were generated in a random way and with
uniform distribution. As in [14], the number of jobs is a integer number n €
{60, 80,100}, the number of families f € {2,3,4,5} and the processing time is
an integer number in the interval [1,99]. The due date of the jobs was generated
as in [2], being defined in the interval (0,h ) p;), with A € {0.5;1.5;2.5;3.5}.
Finally, the setup time between jobs families are integer numbers whose values
belong to three classes of intervals: class S [10, 20]; class M [51,100] and class L
101, 200].

The formation of such setup time intervals is a suggestion proposed in [13].
The class S setup time is relatively smaller than the average processing time.
The class M setup time is close to the average processing time while the class
L setup time is relatively bigger than the average processing time.

By combining the parameters of the number of jobs, number of families,
number of intervals to the due dates and the number of classes of intervals to
the setup time, an amount of 144 different instances were generated.Note that,
for each n, 48 instances were generated.

4.2 Performance Assessment Metrics

The comparison of two sets of non-dominated points, A and B, obtained re-
spectively through two optimization multi-objective algorithms is not a trivial
task. Many performance assessment metrics have been proposed on literature
[12,23,6,8]. However, these metrics must be chosen in a proper way to make a
fair comparison of algorithms.

In this work, five performance assessment metrics are used and they are
called: cardinality [12], average distance [5], maximum distance [16], hypervol-
ume [24] and epsilon [8]. In [8] it is shown that the hypervolume and epsilon
metrics provide trustworthy measures, especially when two algorithms have sim-
ilar performances.

The quality of a set of non-dominated points obtained by an algorithm, in a
given instance, is assessed in relation to the set composed by all non-dominated
points found during all experiments. This is called the set of reference points R.



4.3 Results

The results presented on the following tables were obtained by the developed
algorithms with different evaluation metrics. In the first column of these ta-
bles is indicated the group n of 48 instances (with number of jobs m). In the
other columns the results of each algorithm are presented, with 30 algorithm
executions. For each metric the average and best results are presented so as the
average of the results in all instances.

Tables 1 presents the average and best results obtained in 30 runs of the
algorithms considering the cardinality metric.

Table 1. Cardinality Metric Results
Algorithm

n MOVNS MOVNS_Ottoni MOVNS_Arroyo PILS PILS1
Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best
60 2.18 1289 279 1540 3.21 17.24 278 10.08 32.82 61.07
80 0.25 341 056 867 054 986 036 4.61 11.64 50.10
100 0.07 213 015 397 037 836 015 255 4.40 53.87
Average 083 6.15 1.17 935 1.37 11.82 1.10 5.74 16.29 55.02

As can be seen from Table 1, PILS1 algorithm is able to generate a superior
number of non-dominated solutions compared to the other algorithms. Besides
this, the number of reference solutions generated by the PILS1 algorithm is,
in average, at least seven times higher than the one generated by any other
algorithm.

Table 2 presents the average and best results in 30 runs of the algorithms
considering the average distance metric.

Table 2. Average Distance Metric
Algorithm

n MOVNS MOVNS_Ottoni MOVNS_Arroyo PILS PILS1
Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best
60 418 244 390 222 378 218 472 327 1.20 0.25
80 555 2.62 492 232 483 227 6.22 382 1.74 0.35
100 712 334 6.08 268 592 242 7.19 414 2.85 0.39
Average 5.62 280 497 241 485 229 6.04 374 1.93 0.33

From Table 2 we can conclude that the set of non-dominated solutions pro-
duced by the algorithm PILS1 is closer to the reference set than the other algo-
rithms.

Table 3 presents the results obtained by the implemented algorithms consid-
ering the maximum distance metric. In this table, both average and best results
are presented.

As noticed in Table 3, the set of non-dominated solutions produced by the
algorithm PILS1 is in a shorter distance from the reference set.

Table 4 presents the average and best results for the algorithms considering
the hypervolume difference metric.



Table 3. Maximum Distance Metric

Algorithm
n MOVNS MOVNS_Ottoni MOVNS_Arroyo PILS PILS1
Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best
60 10.22 7.57 10.05 7.73 9.86 7.53 11.07 9.38 5.43 1.03
80 9.16 6.20 868 6.01 858 580 10.00 7.80 5.23 1.05
100 8.71 477 785 403 767 387 9.05 589 4.68 1.04

Average 9.36 6.18 8.86 5.92 8.70 5.73 10.04 7.69 5.11 1.04

Table 4. Hypervolume Difference Metric

Algorithm
n MOVNS MOVNS_Ottoni MOVNS_Arroyo PILS PILS1
Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best
60 1060.92 556.08 996.74 498.32 969.70 482.68 1205.04 806.87 267.09 14.74
80 1375.61 660.69 1239.66 568.42 1212.16 534.70 1548.32 968.64 433.27 33.90
100 1618.76 767.46 1406.73 601.10 1367.94 527.21 1677.25 1015.85 705.22 45.01
Average 1351.76 661.41 1214.37 555.95 1183.26 514.86 1476.87 930.45 468.53 31.22

On the Table 4 it is verified that the formed area between the points from the
PILS1 algorithm solution set and the points from the non-dominated set are the
smallest ones in comparison to the other algorithms. It means that the PILS1
algorithm produces a better cover of the reference set R.

Table 5 presents the average and best results obtained by the algorithms
related to the epsilon metric.

Table 5. Epsilon Metric

Algorithm
n MOVNS MOVNS_Ottoni MOVNS_Arroyo PILS PILS1
Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best
60 140 1.21 137 1.19 1.36  1.18 1.45 130 1.11 1.03
80 1.20 1.10 1.18 1.08 1.18 1.08 1.21 1.14 1.07 1.02
100 1.16 1.07 1.13 1.06 1.13  1.05 1.14 1.09 1.06 1.01
Average 125 1.13 1.23 1.11 1.22  1.11 1.27 1.18 1.08 1.02

From Table 5 it is noticed that the algorithm PILS1 is the one which produces
the smallest values to the epsilon metric, indicating that the non-dominated
solutions generated by this algorithm are closer to the reference set R.

We also apply the non-parametrical Kruskal-Wallis test in order to verify the
statistical superiority of the PILS1 algorithm. According to this test, there is sta-
tistical difference between the pairs of algorithms: MOVNS x PILS1, MOVNS_Ottoni
x PILS1, MOVNS_Arroyo x PILS1 and PILS x PILS1.

5 Conclusions

This work dealt with the scheduling problem in single machine where the setup
time of the jobs depends on the sequence and on the family, and there are
two optimization criteria to be satisfied: makespan and total weight tardiness
minimization.



To solve this problem, five multi-objective algorithms based on Pareto It-
erated Local Search (PILS) and Multi-objective Variable Neighborhood Search
(MOVNS) were implemented. Of these algorithms, three are based on the MOVNS;
one of them is the original algorithm and the other two variants of this one
found in the literature. And on the other two remaining algorithms, one is the
original PILS and the second is a variant proposed in this work, named PILS1.
This variant consists in changing the perturbation strategy of PILS.

The algorithms were compared considering Cardinality, Average Distance,
Maximum Distance, Hypervolume Difference and Epsilon metrics. The compu-
tational results performed in generated instances for the problem were validated
by statistical analysis, thus showing that the PILS1 variant is superior to ev-
ery other algorithm considering the assessed metrics. This way, it is clear the
contribution of the perturbation procedure proposed in this work.
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