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Abstract The Maximum Diversity Problem (MDP) consists in finding a sub-
set of elements which have maximum diversity between each other. It is a very
important problem due to its general aspect, that implies many practical ap-
plications such as facility location, genetics, and product design. We propose
a method based on Evolution Strategies (ES) with Local Search and Self-
Adaptation of the parameters. For all time limits from 1 to 300 seconds as
well as for time to converge to the best solutions known, this method leads to
better results when compared to other state-of-the-art algorithms.

Keywords Maximum Diversity Problem · Metaheuristics · Memetic Self-
Adaptive Evolution Strategies · Evolutionary Algorithms

1 Introduction

The MDP consists in finding a subset of elements that have maximum diversity
according to a function that defines the diversity between any two elements
in a set. An example of this problem might be to find a subset of students
in a classroom that have maximum diversity among themselves. The diversity
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between any two students might be stored in a matrix and defined according
to parameters such as gender, age, grades and nationality (Section 2).

The contributions of this paper are (i) a Memetic Self-Adaptive Evolution
Strategy (MSES) (Section 3), (ii) an analysis of the benchmark instances and
the problem difficulty (Section 4), (iii) a comparison of results between the
MSES and the best methods available in the literature (Section 5). In Section
6, we draw conclusions from the comparison of the algorithms.

2 Maximum Diversity Problem

The MDP consists in finding a subset M (|M | = m) from a set N (|N | = n)
in a way that the sum of diversities amongst the m elements is maximized.
Many relations of diversity can be used to define diversity values dij according
to the practical application of the MDP. The problem is concisely described
[11] by Formulation (1), where xi = 1 if element i is in the subset M .

Maximize

n−1∑
i=1

n∑
j=i+1

dijxixj , subject to

n∑
i=1

xi = m

where xi ∈ {0, 1} ∀i = 1, · · · , n

(1)

Applications of the MDP [14] are location of facilities, environmental sys-
tems, medical treatments, genetics and design. The clique problem can be re-
duced to the MDP [11], justifying the interest on metaheuristics for obtaining
solutions in reasonable time. Methods for the problem include Greedy Ran-
domized Adaptive Search Procedures (GRASP) [16,19,18,8], Variable Neigh-
borhood Search (VNS) [3,6,18,9], Simulated Annealing [1], Lotfi-Cerveny-
Weitz heuristic [22], Tabu Search [20,15,7], Iterated Greedy Algorithm [12],
branch-and-bound [13,2], Hopfield Networks [21], and Scatter Search [17].

In an extensive comparison with methods for the MDP [14], even simple
heuristics achieved good results. However, for high level solutions, a VNS [6]
and an ITS [15] were the best methods for the benchmark instances. In a
more recent paper, a Learnable Tabu Search (LTS) [20] appears as the best
approach.

3 Memetic Self-Adaptive Evolution Strategies

Evolution Strategies (ES) are a class of evolutionary algorithms primarily de-
pendent on mutation [4]. The notation ES(µ, λ) stands for an ES with µ par-
ents and λ children, being each of those individuals a candidate solution to
the problem.

The algorithm is based on generations that repeat until a halting criteria
is reached. In a generation, µ parents are mutated to produce λ children.
Afterwards, the best µ new individuals become the current parents. A common
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adaptation to ES is to include a step size or mutation strength variable σi
associated with each individual i [4]. This variable is often adjusted through
self-adaptation, that is, by also applying secondary mutation operators on the
associated σi values and expecting the best configurations to survive over time.
This adjustment of the algorithm composes the self-adaptive ES.

We propose a Memetic Self-Adaptive Evolution Strategy (MSES) presented
in Figure 1 that includes local searches [20,15], self-adaptation of the σi muta-
tion parameter [4,6,15] and a low probability crossover operator. The source
code of the algorithm is available online from the authors 1 and the next para-
graphs explain all details of this pseudocode, adaptable to other problems.

In order to save computational cost in line 1, indices mark which indi-
viduals are the parents and which ones are the children. Thus, when new µ
individuals are defined as parents, only the indices need to change. In line 2,
the crossover probability cp, the number of parents per crossover ρ,and the
range of perturbation in the strong local search α are initialized.

The initial µ parent individuals are generated in line 3 as uniformly dis-
tributed random solutions. Each individual represents a solution to the prob-
lem as a vector of n elements xi where

∑n
i=1 xi = m, as in Equation 1. All

initial individuals already undergo a weak local search in line 4. Given that
we can get to a neighbor of a solution by exchanging one element from M to
N\M , the weak local search is a first-improvement local search [10] that tests
all neighbors in random order and moves to any neighbor that improves the
current solution until no neighbor is able to improve the current solution.

For a more efficient local search, only the benefit ∆ of each neighbor over
the current solution is analyzed [15]. The ∆qr of removing the element q and
including the element r is dr. − dq. − dqr, where dx. =

∑n
i=1 dxi for all i ∈M .

The values di. of all elements can be calculated only once every iteration.

The initial solutions i receive their σi in line 5. The range of possible σ
values is from σmin = 1 to σmax = min(m,n−m), but all individuals have σmin

at this point. Those values are later self-adapted to determine the mutation
strength. Iterative evolution begins in line 6 until certain halting criteria are
met. In this work, the only criterion considered is elapsed time.

At each generation beginning in line 7, a second loop generates each of the
new λ children. In line 8, it defines if the new child is going to be created from
only a mutation applied to a parent, with probability 1− cp, or a crossover of
ρ parents followed by mutation, with probability cp. If the new child will be
produced through crossover we have a new process from line 9: ρ = 2 parents
are randomly chosen with uniform distribution and their indices are stored in
z. The child i is then generated through crossover on the ρ parents in z.

In the crossover operator, given that each parent j represents a subset Mj ,
the child’s Mi is initially formed by the intersection ∩Mρ of all Mj for which
j ∈ z. At this point, if | ∩Mρ| = |Mi| = m, the child is returned. Otherwise,

1 All additional information mentioned in this paper, such as source codes and results,
is available from the authors on www.alandefreitas.com/downloads/problem-instances/

maximum-diversity-problem.php
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Parent p indices← [1 . . . µ]; Children c indices← [µ+ 1 . . . µ+ λ];1

cp ← 0.05; ρ← 2; αmin = 1; αmax ← min(10, b0.1nc);2

Initial Population Xi ← µ random solutions where i ∈ p indices;3

X ← Weak Local Search(X) ;4

σmin ← 1; σmax ← min(m,n−m); σi for i ∈ [1 . . . µ+ λ]← σmin;5

while a certain criterion is not met do6

for i ← each of the λ children indices in c indices do7

if Random number in [0,1] < cp then Crossover ← true;8

if Crossover then9

z← ρ different parents randomly chosen from p indices;10

Xi ← Crossover(Xz);11

σi ← b(mean(σz) + 0.5c ;12

else13

z ← 1 parent randomly chosen from p indices ;14

Xi ← Xz ;15

σi ← σz ;16

end17

Xi ← Mutation(Xi, σi);18

Xi ← Weak Local Search(Xi);19

if Crossover then20

if f(Xi) > min(f(Xz)) then21

σi ← σmin ;22

end23

else24

if f(Xi) > f(Xz) then25

σi ← σmin ;26

else27

σi ← σi%σmax + 1; σz ← σi ;28

end29

end30

if f(Xi) > f(best solution known) then Xi ← Fast Strong Local31

Search(Xi);
end32

p indices← µ best unique individuals; c indices← the λ other individuals;33

j ← 1 parent randomly chosen from p indices;34

α← random integer in [αmin, αmax];35

Xi ← Intensive Strong Local Search(Perturbation(Xi,α));36

end37

return The best solution seen by the algorithm;38

Fig. 1 Memetic Self-Adaptive Evolution Strategy - MSES(µ+ λ)

if | ∩Mρ| = |Mi| < m, the operator selects m − |Mi| random elements from
∪Mρ\ ∩Mρ to include in Mi, being ∪Mρ the union of all Mj for which j ∈ z.

After the application of crossover to the individuals, the σi of the new child
i is also inherited from the σ of its parents in line 12. The new σi is the mean
σ of the parents rounded to the closest integer. On the other hand, if only
mutation is used to generate the new individual, a different process begins in
line 14: only one individual z is chosen as parent of the child i, which will be
a copy of the parent z. The σi will also be a simple copy of σz.

Independently of the application of crossover, all generated individuals
undergo mutation in line 18. The mutation operator consists of randomly ex-
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changing σi elements in Mi for elements in Ni\Mi. Each generated individual
undergoes the weak local search in line 19. The weak local search avoids un-
derestimating the potential of solutions mutated with high σ. From this point,
the σ values also have to be adjusted. If crossover was applied and the child is
better than any of its parents, its σi returns to the minimum value σmin in line
22. If crossover was applied and there was no improvement, nothing happens
and σi is left as it was with the mean σ of its parents.

On the other hand, if only mutation was applied and the child is better
than its parent, its σi also returns to σmin in line 26. However, if there is no
improvement over the parent, as in line 28, σi is adjusted to σi + 1 in the next
generation, or returned to σmin if σi was already equal to σmax.

In any case, a child that improves the best solution known undergoes the
fast strong local search [20] in line 31. The strong local search used at this point
is a Tabu Search, a local search algorithm that accepts movements to worse
solutions as long as they are not in the Tabu list, differently from the search
used as weak local search in line 19. This Tabu Search includes or removes
only one element in M to find neighbor solutions also based on ∆ values. The
contribution ∆j of each neighbor j in this algorithm is ∆j =

∑n
i=1 dji for all

i ∈M if j /∈M or ∆j = −
∑n
i=1 dji for all i ∈M if j ∈M .

This Tabu Search has tenure t =
√
m. This means that once a movement

to a neighbor is applied, this movement is marked as Tabu for t iterations
and cannot be performed unless it has better objective value than the best
feasible solution known so far. The algorithm has the limit of n iterations. At
every iteration one movement towards the best neighbor is performed. If the
current solution has less than m elements in M , only neighbors with more
elements are considered. If the current solution has more than m elements in
M , only neighbors with less elements are considered. If the current solution
has m elements in M , the solution is feasible and all neighbors are considered.

After generating all children, the indices of the parents become the µ best
unique individuals in line 33. In lines 34–36, a randomly chosen parent is per-
turbed and undergoes an intensive strong local search [15]. The perturbation
alters α elements in the solution. At every iteration, each of those α elements
is chosen from a list of the best 5 neighbor candidates. The neighbor structure
and their measure of ∆ are the same as in the weak local search.

Afterwards, this perturbed solution undergoes a second strong local search
in line 36. This strong local search is a Tabu Search with the halting crite-
rion of max(10000, 1000n) tested neighbors and tenure t = n/4. It uses the
same neighbor structure and calculation of ∆ as the weak local search. The
neighbors are explored in random order and every time a better solution is
found, it becomes the current solution and the algorithm goes to the next
iteration. Solutions in the Tabu list are only considered if they improve the
best solution known. If the best solution known has been improved by the
end of the iteration, the new current solution undergoes the weak local search
with a best-improvement approach instead of the ordinary first-improvement
algorithm.
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4 MDP Instances

The 315 instances from the MDPLib [14] were used to test the proposed al-
gorithm. The maintenance of the MDPLib is a valuable contribution from
OPTSICOM 2. A contingency table with the configuration of all the instances
in the MDPLib is available online from the authors.

The instances in the MDPLib have 10 < n < 3000; 0.08 < n/m < 0.8; and
values dij not defined as a function of n or m, which can make instances with
a high value of n become easier as dij become small in relation to the problem,
similarly to what happens to other optimization problems [5]. To demonstrate
this, Figure 2(a) shows the average gaps between the objective function values
found by the constructive heuristic KLD [19] and the best values known for
the 20 instances from the library SOM-b [14]. We see that the greater n is and
the closer m/n is to 1/2, the smaller the gap we obtain for those instances.

Increasing the value of n, however, does not necessarily mean that the
probability of finding the optimal solution is higher. The number of solutions
in the search space is Cnm = n!

m!(n−m)! . Thus, the number of possible solutions

increases when n increases or m gets closer to n/2 so it does not make sense
to define the complexity of the problem only in terms of n.

As for all instances in the MDPLib, the values dij are not defined as a
function of n or m. Given that the search space increases with n and decreases
with |m− n/2|, the most complex instances in the MDPLib are the ones with
n = 3000;m/n = 0.2, n = 2000;m/n = 0.1, and n = 500;m/n = 0.4, which
represent 46 (14%) of the 315 instances. All other instances have either smaller
n or a m/n (or m) more distant from 0.5 (or n/2).

Thus, an increase in n may lead to higher probability of getting a solution
with a small gap from the optimum. However, in the search space, it is more
difficult to achieve the global optimum. Thus, simple algorithms are likely
to have good results if the objective gap is used as reference, as shown in
Figure2(a). However, even when it is easy to find solutions with quality similar
to the optimal, the size of the search space is always the same Cnm, and the
difficulty to find the global optimum does not necessarily change.

5 Experiments

In an extensive comparison among the best methods for the MDP [14], VNS
[6] had the best results for the problem except for the largest instances, where
the ITS [15] is the method with the best rank. The LTS [20] is a more recent
approach that showed better results on 50 instances with size 2000 < n < 5000.

LTS [20]: An evolutionary strategy involving a k-means clustering algorithm
for probability vectors identifies points likely to be good initial solutions for
a Tabu Search. At each iteration, the Tabu Search updates an individual
in the population and the probability vectors are also updated.

2 http://www.optsicom.es/mdp
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VNS [6]: Perturbations on the best solution generate new solutions. Those
new solutions undergo a local search and are compared to the best solution.
Perturbation strength increases when better solutions are found.

ITS [15]: A Tabu search is applied to an initial solution until the limit of
evaluated neighbors is reached. Then, the current solution undergoes a
change operator of random intensity and the Tabu Search restarts.

Three versions of MSES with minor adjustments are considered in the
comparison. Having the algorithm in Figure 1 as reference, MSES1 has the
intensive strong local of lines 34–36 removed, MSES2 is exactly the same as
described in Figure 1, and MSES3 has a supplementary fast strong local search,
such as the one in line 31, applied to the parent resultant from intensive strong
local search in line 36 if it improves the best solution known.

In order to have relevant results, the performance of all the mentioned
algorithms is compared for all the 300 time limits possible from 1 to 300
seconds and all MDPLib instances. Besides, in order to remove any factor
that could influence the performance of the algorithms’ concepts themselves,
(i) the order of all replicates of all experiments were randomized, (ii) the tests
were run in computers with the same configurations for the 300 different time
limits, and (iii) all the algorithms were implemented in the same language.

The computers used were Intel R© Core i5-650 / 4M Cache / 3.20 GHz /
4GB 1333Mhz DDR3 / 500GB (7200 RPM) SATA 3.0Gb/s HD with 16MB
DataBurst Cache running Windows R© 7 SP1 Professional (32Bit OS). For fair
comparison of the algorithms, all of them were implemented in MATLAB and
the source codes were made available from our website.

Combinations of MSES(µ+λ) with µ = 1, 10, 30, 50 and λ/µ = 1, 2, 5, 10
were tested for time limits of 1, 2, 3 . . . 300 seconds. For each time limit, the
efficiency of the algorithms on the MDPLib is compared with a Friedman test,
appropriate to compare different treatments (16 combinations for each MSES
+ 3 algorithms from the literature) on blocks (315 instances) by ranking data
within blocks. In this, p-values close to 0 indicate that the treatments do not
have the same performance and the ranks indicate the performance of each
method. As usual, we declare a result significant if the p-value < 0.05.

For all time limits, the maximum p-value obtained is 7.02× 10−108 < 0.05,
indicating with confidence that the algorithms do not have the same perfor-
mance for any time limit. The configurations of MSES with best rank for most
time limits are MSES1(1+1), MSES1(10+20), MSES2(10+100), MSES2(30-
+150), MSES2(30+300), MSES3(10+100), MSES3(30,150). Figures with the
comparison of the MSES were made available online by the authors. Figure
2(b) shows the performance of each algorithm measured by their mean rank
in the Friedman test for all time limits from 1 to 300 seconds.

The two lines with best rank for all time limits are MSES1(1+1) when the
time limit is less than 154 seconds and MSES1(10+20) when the time limit is
greater than 153 seconds. The other version of MSES are represented in dotted
lines. The best ranks among the other algorithms belong to VNS, LTS, and
ITS, respectively. The range of possible mean ranks in this graph goes from
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Fig. 2 Performance of the algorithms

10.91 to 34.80 and the confidence intervals, which keep the p-values < 0.05,
between the methods are in the range from 12.61 to 14.55.

We also use the data to analyze the methods in relation to goals. That is,
for a given goal, which algorithm takes less time to achieve it. In this case, in
each Friedman test, the treatments are the algorithms and the blocks are the
time spent to achieve a certain goal. Figure 2(c) shows the mean ranks of the
algorithms for each goal. The lower the mean rank, the less time was spent to
achieve the goal. Most methods have similar performance for goals lower than
70%. For goals under 95%, MSES2(10+100) has the best performance. For
goals over 95%, LTS becomes the best algorithm. However, for goals closest
to the best values known, MSES1(1+1) is again the best algorithm.

In addition to those comparisons in terms of goal achievements and abso-
lute performance, Figure 2(d) shows the gap between the solutions found by
the algorithms and the best solutions known. Each line represents a method
and each column represents an instance. The Figure shows the how most solu-
tions are close to the best solutions and it also demonstrates the importance of
using ranks to cognitively perceive the difference between the algorithms. As
supplementary material, comparisons of the algorithms for different subsets,
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the absolute results of all tests, the best solutions known, and the gap between
the best solutions and the results on the instances are also available online.

6 Conclusion and Future Work

All the heuristics considered in previous works [14,20], VNS, LTS, and ITS,
are smart approaches that consider specificities of the MDP. Based on their
results, we propose here an MSES algorithm for the MDP with three variations
in relation to its local search and variation of the parameters µ and λ.

MSES1(1+1) and MSES1(10+20) have the best results for time limits be-
low 154 and above 153 seconds, respectively. MSES1(1+1) presented the best
time to achieve the best results known. For easier goals, LTS and MSES2(10+
100) have the best results. The fact that the best algorithms for easier goals
do not have good results in the first test can be explained by the discussion
in Section 4, where we show how simple heuristics may be preferred for the
MDP when the goal is not to achieve the optimal results.

For the extension of this work, we propose (i) comparing other instances in
which dij is defined in function of n and m is closer to n/2, making the prob-
lems in fact more difficult; (ii) more tests on the adjustment of λ and µ; (iii)
testing MSES(µ, λ), where all parents would be replaced by their children (as
opposed to MSES(µ+ λ)); and (iv) taking advantage of the population-based
algorithm to evolve the individuals in parallel and accelerate convergence.
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