
Improved Genetic Operators for the Multiobjective
Generalized Assignment Problem

Robert F. Subtil1, Eduardo G. Carrano1, Ricardo H. C. Takahashi2,
Marcone J. F. Souza3, Sérgio R. de Souza1

1Centro Federal de Educação Tecnológica de Minas Gerais.
Av. Amazonas, 7675

30510-000 – Belo Horizonte, MG – Brazil

2Universidade Federal de Minas Gerais
Av. Antônio Carlos, 6627

31270-901 – Belo Horizonte, MG – Brazil

3Universidade Federal de Ouro Preto
Campus Universitário

35400-000 – Ouro Preto, MG – Brazil

rsubtil@yahoo.com.br, egcarrano@dppg.cefetmg.br

taka@mat.ufmg.br, marcone@iceb.ufop.br, sergio@dppg.cefetmg.br

Abstract. The original formulation of the Generalized Assignment Problem
(GAP) consists in, given a set of n different tasks and m different agents, as-
signing each task to an agent in such a way that a cost function is minimized. A
previous work introduced the Equilibrium Function as a new objective function
in the problem formulation. The purpose of this second objective function is to
minimize the maximum difference between the amount of work assigned to the
agents. This allows better distributions of the tasks between the agents than the
results found from the original problem, with a small increase in the cost. This
paper proposes new crossover and mutation operators that produce improve-
ments in the algorithm presented in [Subtil et al. 2010], leading to consider-
ably better Pareto approximations than the ones obtained in the previous work,
within the same number of function evaluations. The proposed operators exploit
problem-specific information in a probabilistic way, performing operations that
lead to objective function enhancement or feasibility enhancement with greater
probability than operations that do not cause such enhancements. A statistical
comparison procedure is employed for supporting such conclusions.

1. Introduction
The Generalized Assignment Problem (GAP) is a classical NP-Hard problem
[Sahni and Gonzalez 1976, Chu and Beasley 1997] which is used for modeling sev-
eral practical design problems, such as job assignment in computer networks
[Balachandran 1976], parallel machine scheduling [Lenstra et al. 1990], multiprocessor
scheduling [Turek et al. 1992], facility location [Ross and Soland 1977] and vehicle rout-
ing [Fisher and Jaikumar 2006].

In its usual form, the GAP is stated as follows: given a set T of tasks, a set A of
agents, the cost of each task j when it is accomplished by each agent i and the amount of
resources required by each agent i for completing each task j, find the optimal assignment
X such that the sum of the costs spent for accomplishing all tasks is minimum, ensuring,
on the other hand, that each task is assigned to a single agent and that the total of resources
demanded from agent i is lower than its upper bound.

Therefore, if an optimization algorithm is employed to solve such problem, it
should ideally find the less expensive assignment policy, regardless the distribution of
the tasks amongst the agents. This characteristic of this optimal solution may render it
unsuitable for several practical problems, for instance:

People management: If some people of a team receives much more work than other
people, they tend to become dissatisfied and their efficiency may decline due to
the excessive workload.

Computer networks or parallel computing: A task allocation policy that concentrates
the processing in some few resources is more likely to cause bottlenecks than a
more balanced distribution policy.

In practice, a more equitable distribution of the tasks can be helpful in any situation
in which load balance can be relevant. In [Subtil et al. 2010] a multiobjective adaptation
of the original GAP (referred as Multiobjective GAP or MoGAP) is proposed. In this new
formulation, a second objective function, called Equilibrium Function, is introduced. The
purpose of this function is to guide the search in order to reach solutions which provide
better distribution of the tasks amongst the agents. Since two objective functions are
considered, the solution of this problem is a set of efficient points, in which a solution can
not be chosen without introducing any preference.

This paper proposes an extension of the integer NSGA-II proposed in
[Subtil et al. 2010]. The new algorithm employs improved versions of the crossover and
mutation operators, leading to considerably better Pareto approximations than the ones
obtained by the former algorithm. In order to support such a comparison, a detailed statis-
tical evaluation procedure is employed. Comparisons of the quality of the approximations
achieved and the quality of a deterministically chosen solution are also performed.

This paper has the following structure: the formulation of the MoGAP is shown
in section 2; the improved algorithm, which is proposed for dealing with MoGAP, is
presented in section 3; finally, a statistical comparison of the two algorithms which have
been considered is performed on section 4.

2. The Multiobjective Generalized Assignment Problem
Let A be the set of agents, T be the set of tasks, ci,j be the cost of assigning the task
j ∈ T to the agent i ∈ A, ai,j be the amount of resources required by the agent i ∈ A
for performing the task j ∈ T , bi be the total resource capacity of agent i ∈ A and xi,j

be a binary decision variable, which assumes value “1” if the task j ∈ T is assigned to
agent i ∈ A or value “0”, otherwise. The MoGAP can be stated as [Subtil et al. 2010,
Yagiura et al. 2006]:

X ∗ = arg min
x

[
fC(x)
fE(x)

]
(1)

subject to :


(G1) :

∑
j∈T

ai,j · xi,j − bi ≤ 0 , ∀i ∈ A

(G2) :
∑
i∈A

xi,j − 1 = 0 , ∀j ∈ T

(G3) : xi,j ∈ {0, 1} , ∀i ∈ A, ∀j ∈ T

(2)

in which:
fC(x) =

∑
i∈A

∑
j∈T

ci,j · xi,j (3)

fE(x) = max
i∈A

(∑
j∈T

ai,j · xi,j

)
−min

i∈A

(∑
j∈T

ai,j · xi,j

)
(4)

In this formulation, the equations (3) and (4) are the cost and equilibrium func-
tions, respectively. The equilibrium is modeled as the difference between the most busy
agent and the most vacant one. This difference should be minimized. In (2), the constraint
g1(x) ensures that the maximum resource capacity of each agent is not violated, the con-
straint g2(x) ensures that each task is assigned to a single agent and the constraint g3(x)
defines that each variable xi,j is binary. An important feature of this formulation is that it
cannot be solved by an integer linear programming method, since fE(·) is not linear.

3. Proposed Algorithm
The characteristics of the problem, which is combinatorial, multiobjective and has a
non-linear objective function, preclude the employment of most part of the determin-
istic optimization methods. The genetic algorithms are particularly adequate for deal-
ing with the MoGAP, since they are suitable for handling with multiobjective opti-
mization problems with rather arbitrary objective and constraint functions [Coello 2000,
Fonseca and Fleming 1995]. The algorithm proposed here is an improved version of the
one described in [Subtil et al. 2010]. It is based on the NSGA-II [Deb et al. 2002], and
includes also some problem-specific solution encoding, crossover and mutation mecha-
nisms. A general scheme for this algorithm can be seen in Algorithm 1.

In this algorithm:

• P ← new population(N) generates a random population with N feasible indi-
viduals;
• A← non dominated(P) returns the individuals which lie in the first front of the

population P ;
• F ← fast non dominated sorting(P) employs fast non-dominated sorting

[Deb et al. 2002] to find the front of each solution in the population P ;
• Ci ← crowding distance assignment(Fi) employs crowding distance assign-

ment [Deb et al. 2002] to estimate how the solutions of front i are spread in the
objective space;
• Fi ← sort(Fi, Ci, ‘descending’) sorts the solutions of front i in descending order

of Ci;

Algorithm 1 Pseudocode for NSGAII
1: procedure NSGAII(N ,NA)
2: t← 0
3: Pt ← new population(N)
4: Qt ← ∅
5: A← non dominated(Pt)
6: while not stop criterion do
7: Rt ← Pt ∪Qt

8: F ← fast non dominated sorting(Rt)
9: Pt+1 ← ∅

10: i← 1
11: while |Pt+1|+ |Fi| ≤ N do
12: Ci ← crowding distance assignment(Fi)
13: Pt+1 ← Pt ∪ Fi

14: i← i+ 1
15: end while
16: Fi ← sort(Fi, Ci, ‘descending’)
17: Pt+1 ← Pt+1 ∪ Fi[1 : (N − |Pt+1|)]
18: Qt+1 ← selection(Pt+1, N)
19: Qt+1 ← GAPCrossover(Qt+1)
20: Qt+1 ← GAPMutation(Qt+1)
21: t← t+ 1
22: A← non dominated(A ∪Qt)
23: end while
24: end procedure

• Q← selection(P,N) uses binary stochastic tournaments for performing selection
of the population P . The outcome of this procedure is a population Q, with N
individuals which have been selected from P with replacement.

The selection, fitness assignment, niche and elitism procedures employed in
the proposed algorithm are identical to the canonical ones of NSGA-II, presented in
[Deb et al. 2002]. The encoding scheme, crossover and mutation operators have been
chosen in order to adapt to the problem structure. These components are described in the
sequel.

3 4 4 2 1 4 3 2 2 4

Figure 1. Example of the encoding scheme. In this candidate solution, the task 5
is assigned to agent A1, the tasks 4, 8 and 9 are assigned to agent A2, the tasks 1
and 7 are assigned to agent A3 and the tasks 2, 3, 6 and 10 are assigned to agent
A4.

3.1. Encoding Scheme
The encoding scheme adopted here was the same proposed in [Subtil et al. 2010]. In this
representation, each candidate solution is represent by a 1 × |T | integer vector. Each
position of this vector can assume any integer value in {1, |A|}. An example of encoding
for an instance with 4 agents and 10 tasks is shown in Figure 1.

3.2. GAPCrossover

The crossover operator introduced in this paper, called GAPCrossover, is a modification
of the original uniform crossover, commonly employed in binary GAs. However, it carries
some knowledge about the problem, performing the steps described in Algorithm 2.

Algorithm 2 GAPCrossover
Input: parent solutions p1 and p2

Output: offspring solutions o1 and o2

1: generate a random binary word (ref) of length |T |;
2: generate a scalar dT , at random, following an uniform distribution;
3: o1 ← p1

4: o2 ← p2

5: for each position j in which ref 6= 0 do
6: if dT < 0.50 then
7: swap o1(i) and o2(i);
8: else
9: o′1 ← o1

10: o′2 ← o2

11: swap o1(i)
′ and o2(i)

′;
12: if g1(o

′
1) ≤ 0 and g1(o

′
2) ≤ 0 then

13: if co1(i)′,j < co2(i)′,j then
14: o1 ← o′1
15: o2 ← o′2
16: end if
17: else if g1(o

′
1) ≤ g1(p1) and g1(o

′
2) ≤ g1(p2) then

18: o1 ← o′1
19: o2 ← o′2
20: end if
21: end if
22: end for

From this scheme, it is possible to note that the algorithm has 50% of probability of
performing the recombination, and 50% of probability of swapping the selected positions
only in the case of a improvement condition is verified. In the first case, the operator is
identical to the original uniform crossover, while, in the second case, the operator only
swaps the values which provide one of the following improvements:

• the solution o1 improves the cost of parent p1; or
• the two new solutions inflict the constraint g1(·) less than their respective parents.

If none of these conditions are not observed, then the positions are kept unchanged. An
example of this operator, when it reduces to the uniform crossover case, can be seen in
Figure 2.

It should be noticed that this operator generates less unfeasible individuals than
the original uniform crossover, since a “feasibility-oriented” mechanism is included in
some conditions. In some tests, this mechanism was executed in all situations, in order to
completely avoid the generation of unfeasible solutions. This version of the operator was

p1 3 4 4 2 1 4 3 2 2 4
p2 1 3 4 1 1 2 2 3 2 3
ref 0 1 0 0 1 1 1 0 0 1
o1 3 3 4 2 1 2 2 2 2 3
o2 1 4 4 1 1 4 3 3 2 4

Figure 2. Example of uniform crossover: Let dT < 0.50. p1 is copied to o1 and p2 is
copied to o2. Then, the values of o1 and o2 are swapped in the positions in which
the ref(i) = 1 (gray columns).

discarded, because it presented lower performance than the one shown here. The authors
believe that the degradation of performance can be credited to the loss of population
diversity caused by such an operator.

3.3. GAPMutation2

The GAPMutation2 proposed in this paper is a small variation of the GAPMutation pro-
posed in [Subtil et al. 2010]. Both operators are based on the flip mutation, and employ
some kind of additional procedure for incorporating problem knowledge, as shown in
Algorithm 3.

Algorithm 3 GAPMutation2
Input: parent solution p
Output: offspring solution o

1: choose a position j ∈ {1, |T |}, at random;
2: generate a scalar rD, at random, following uniform distribution;
3: o← p
4: if rD ≤ 0.20 then
5: replace o(j) by a new agent a 6= p(j), at random;
6: else if rD > 0.20 and rD ≤ 0.50 then
7: replace o(j) by the agent a with the highest contribution fE(m) (least required

agent) and a∗ 6= p(j);
8: else
9: replace o(j) by the agent a∗ in which a∗ = arg min

a
ca,j with a∗ 6= p(j), ensuring

that g1(o) ≤ 0;
10: end if

p 3 4 4 2 1 4 3 2 2 4
⇓

o 3 4 4 2 1 1 3 2 2 4

Figure 3. Example of GAPMutation2. Let j = 6 and 0.20 < rD < 0.50 and assume
that all tasks demand the same amount of resources of all agents. The task 6 has
been re-assigned to the least required agent, which is A1.

Such as for GAPCrossover, a version of GAPMutation which ensures the feasibil-
ity of all obtained solutions had been tested. This version was not considered on further

implementations of the algorithm since it reduced the global efficiency of the method. An
example of the GAPMutation2 can be found in Figure 3.

3.4. Constraint Handling

The solution encoding and the operators described earlier in this section ensure that (G2)
and (G3) constraints (see equation 2) are always valid. However, some additional mech-
anism is necessary to employ for handling (G1), since it is not possible to a priori en-
sure that this constraint is valid for all individuals of the algorithm. Following the same
methodology proposed in [Subtil et al. 2010], an exponential penalty function was em-
ployed in order to penalize the solutions which do not comply with such a constraint.
The main difference between this approach and the previous one is that, here, the penalty
function is applied to both objective functions simultaneously. These modified objective
functions are given by:

fm
C (x) = fC(x) · εrind (5)

fm
E (x) = fE(x) · εrind (6)

in which

rind =
∑
i∈A

max

{
0,
∑
j∈T

(aij · xij)− bi

}

4. Numerical Results
In reference [Subtil et al. 2010], it has been proposed an integer enhanced NSGA-II for
solving the MoGAP. That algorithm was compared with a basic NSGA-II and with an
exact method for the mono-objective problem. The comparison, in [Subtil et al. 2010],
was guided by visual inspection, based on five independent runs of each algorithm. It was
noticed that the algorithm proposed there clearly dominated the basic one, and was able
to provide good approximations to the exact optimal cost solution in five of six instances.
Besides, it was always possible to choose a solution which provided favorable ratio % gain
in equilibrium vs. % loss in cost. The algorithm of [Subtil et al. 2010] will be referred in
the remainder of this paper as A1.

The current work proposes an enhancement of that previous algorithm, in order
to improve its convergence. This new algorithm, denoted by A2, is compared with the
previous version, A1. The comparison with the basic GA is not performed here, since
this algorithm is clearly dominated byA1. Before presenting the results, it is important to
explain how the comparisons were conducted.

Comparison scheme

The algorithm comparison methodology which is considered here is inspired on the eval-
uation schemes proposed in [Carrano et al. 2008, Carrano et al. 2011]. It can be summa-
rized as follows:

• Each algorithm is executed k times, for a fixed number of function evaluations
(stop criterion).

• For each algorithm i:
– For each run j:

∗ Evaluate a merit criterion, mcrit(i, j), of the final archive achieved
in the run j of the algorithm i.

– Perform bootstrapping [Efron 1979] with the valuesmcrit(i, :). Each boot-
strapping iteration delivers a sample of the mean of the merit function for
the algorithm i. The whole set provided by the bootstrapping is an empiri-
cal approximation of the probability distribution function (PDF) of such a
mean.

• Compare the empirical PDF’s of the algorithms using One-Way ANOVA
[Lindman 1974], for a significance level α = 0.05.

Comparison criteria
Two independent merit criteria have been considered in the comparison:

• Hyper-volume indicator: the hyper-volume indicator [Zitzler 1999] is used to es-
timate the quality of the final Pareto approximation achieved in each run;
• Decision-making: a solution is automatically chosen for each algorithm run. Such

a solution is the one which maximizes:

i∗ = arg min
i

f ∗CE − f i
E

f i
C − f ∗CC

· f
∗C
C

f ∗CE

subject to:
{
f i

C 6= f ∗CC

f i
E 6= f ∗CE

in which [f i
C f i

E]′ is the function vector assigned to the solution i and [f ∗CC f ∗CE]′

is the function vector of the optimal cost solution (known a priori).
The rule for decision-making has been chosen arbitrarily and, therefore, it could

be replaced by any other reasonable rule. The main goal of considering these two criteria
is to estimate the quality of the global Pareto approximation found and the quality of a
particular solution picked from such approximations.

Computational procedures
The algorithms A1 and A2 have been tested in six instances, which have been taken from
the OR-Library [Beasley 2010]:

• A05× 100: 5 agents and 100 tasks;
• A05× 200: 5 agents and 200 tasks;
• A10× 100: 10 agents and 100 tasks;
• A10× 200: 10 agents and 200 tasks;
• A20× 100: 20 agents and 100 tasks;
• A20× 200: 20 agents and 200 tasks.

Both algorithms have been set with the following parameters:
• Number of runs: 100 runs per algorithm;
• Population size: 50 individuals;
• Stop criterion: maximum number of generations;
• Maximum number of generations: 300 generations;
• Crossover probability: 0.90 per pair;
• Mutation probability: 0.03 per integer.

The analysis of the results observed in the six instances has been divided in two
sections, one for each merit criterion.

Table 1. Hyper-volume indicator - 95% confidence interval
95% confidence interval

instance A1 A2

A05× 100 [32333 ; 33711] [32788 ; 34105]
A05× 200 [295322 ; 305575] [307332 ; 311554]
A10× 100 [103116 ; 111013] [106169 ; 112955]
A10× 200 [279897 ; 301474] [308347 ; 322609]
A20× 100 [88885 ; 100839] [95353 ; 106252]
A20× 200 [226007 ; 254017] [263840 ; 290605]

4.1. Hyper-volume indicator

After running the algorithms 100 times each, the Pareto approximations have been used
for finding the values of the hyper-volume associated to each algorithm. These values
have been used for finding 95% confidence intervals, which are shown in Table 1.

From Table 1, the bounds of the intervals observed for A2 are always higher than
the ones noticed for A1. Since higher values of hyper-volume indicate better Pareto ap-
proximations, this analysis suggests that the algorithm A2 has found better results than
A1. This hypothesis is supported by the ANOVA tests, which have indicated that there
are significant differences between A1 and A2 in all instances1.

In order to perform an evaluation of the amount of the difference that was found,
a visual comparison of the Pareto approximations has been performed. Three Pareto ap-
proximations have been chosen: the approximation with lower hyper-volume, the median
and the approximation with higher hyper-volume. These comparisons have shown that
the Pareto approximations achieved by A2 always dominate most part of the A1 solu-
tions. This can be noticed in Figure 4, which illustrates such a comparison for a median
run.

4.2. Decision-making

A deterministic rule for choosing a solution from each Pareto approximation has been
adopted: the solution which provides better ratio gain in equilibrium vs. loss in cost.
Therefore, a value of maximum ratio is assigned to each algorithm run and these values
are used in the statistical comparison scheme discussed earlier in this section. The 95%
confidence intervals for these ratios are shown in Table 2.

These intervals indicate that the algorithmA2 is considerably better thanA1 in this
merit criterion, since it is able to provide solutions with better ratios in all instances con-
sidered here. Such a conclusion was corroborated by the ANOVA tests, which detected
significant differences between the algorithms in the six instances2.

Considering both the Pareto approximation quality and the decision-making step,
it can be concluded that the new proposed algorithm is better than the former one, at least
for the instances considered.

1The higher p-value observed was lower than 1× 10−16.
2All p-values were lower than 1× 10−16.

(a) A05× 100 (b) A05× 200

(c) A10× 100 (d) A10× 200

(e) A20× 100 (f) A20× 200

Figure 4. Comparison of the Pareto approximations (for medians)

Table 2. Decision-making - 95% confidence interval
95% confidence interval

instance A1 A2

A05× 100 [80.1 ; 341.7] [245.6 ; 400.5]
A05× 200 [43.2 ; 2280.0] [518.4 ; 3135.0]
A10× 100 [23.5 ; 70.9] [50.6 ; 115.7]
A10× 200 [9.5 ; 25.6] [43.3 ; 275.4]
A20× 100 [5.3 ; 21.2] [18.2 ; 61.6]
A20× 200 [4.0 ; 9.9] [18.2 ; 81.1]

5. Conclusion

An enhanced version of an integer NSGA-II algorithm, specialized for the multiobjec-
tive generalized assignment problem (MoGAP), is proposed in this paper. This algorithm
introduces two new specific genetic operators for improving the search for efficient solu-
tions which perform with a higher probability operations that enhance the cost function or
which enhance the solution feasibility. It is interesting to notice that these operators still
perform stochastic operations that may still perform operations that do not immediately
enhance the solutions. This has been found to be much better than deterministic local
searches.

A statistical comparison of the proposed algorithm and the original version indi-
cates that the new algorithm is more efficient for solving the considered problem. With
identical computational cost, the new algorithm was able to find Pareto approximations
which dominate the ones achieved by the former algorithm. Besides, the employment
of a decision-making procedure has shown that the new approach delivers solutions with
more favorable trade-offs, which allow significant gains in the task homogeneity assign-
ment with small losses in the cost.

Acknowledgments

The authors acknowledge the support from the Brazilian agencies FAPEMIG, CAPES
and CNPq.

References

Balachandran, V. (1976). An integer generalized transportation model for optimal job
assignment in computer networks. Operations Research, 24:742–759.

Beasley, J. E. (2010). Or-library. http://www.brunel.ac.uk/depts/ma/
research/jeb/orlib/gapinfo.html. Last accessed in 2010-Feb-01.

Carrano, E. G., Takahashi, R. H. C., and Wanner, E. F. (2008). An enhanced statistical
approach for evolutionary algorithm comparison. In Proceedings of the Genetic and
Evolutionary Computation Conference - GECCO’08, Atlanta, USA.

Carrano, E. G., Wanner, E. F., and Takahashi, R. H. C. (2011). A multi-criteria statistical
based comparison methodology for evaluating evolutionary algorithms. IEEE Trans-
actions on Evolutionary Computation. to appear.

Chu, P. C. and Beasley, J. E. (1997). A genetic algorithm for the generalised assignment
problem. Computers and Operations Research, 24:17–23.

Coello, C. A. C. (2000). An updated survey of GA-based multiobjective optimization
techniques. ACM Computing Surveys, 32(2):109–143.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,
6(2):182–197.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of
Statistics, 7:1–26.

Fisher, M. L. and Jaikumar, R. (2006). A generalized assignment heuristic for vehicle
routing. Networks, 11:109–124.

Fonseca, C. M. and Fleming, P. (1995). An overview of evolutionary algorithms in mul-
tiobjective optimization. Evolutionary Computation, 3(1):1–16.

Lenstra, J. K., Shmoys, D. B., and Tardos, E. (1990). Approximation algorithms for
scheduling unrelated parallel machines. Mathematical Programming: Series A and B,
46:259–271.

Lindman, H. R. (1974). Analysis of Variance in Complex Experimental Designs. W. H.
Freeman & Co., San Francisco, USA.

Ross, G. T. and Soland, R. M. (1977). Modeling facility location problems as generalized
assignment problems. Management Science, 24:345–357.

Sahni, S. and Gonzalez, T. (1976). P-complete approximation problems. Journal of the
ACM, 23:555–565.

Subtil, R. F., Carrano, E. G., Souza, M. J. F., and Takahashi, R. H. C. (2010). Using
an enhanced integer NSGA-II for solving the Multiobjective Generalized Assignment
Problem. In Proc. IEEE World Congress on Computational Intelligence, Barcelona.

Turek, J., Wolf, J. L., and Yu, P. S. (1992). Approximate algorithms scheduling paralleliz-
able tasks. In Proc. ACM Symposium on Parallel Algorithms and Architectures, San
Diego, USA.

Yagiura, M., Glover, F., and Ibaraki, T. (2006). A path relinking approach with ejec-
tion chains for the generalized assignment problem. European Journal of Operational
Research, 169:548–569.

Zitzler, E. (1999). Evolutionary algorithms for multiobjective optimization: Methods and
applications. PhD thesis, Computer Engineering and Networks Laboratory - Swiss
Federal Institute of Technology, Zurich.

