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The GMOVNS is superior regarding the hypervolume indicator and the epsilon metric;
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ABSTRACT

This study addresses the resource-constrained project scheduling problem with precedence
relations, and aims at minimizing two criteria: the makespan and the total weighted start time
of the activities. To solve the problem, five multi-objective metaheuristic algorithms are
analyzed, based on Multi-objective GRASP (MOG), Multi-objective Variable Neighborhood
Search (MOVNS) and Pareto Iterated Local Search (PILS) methods. The proposed algorithms
use strategies based on the concept of Pareto Dominance to search for solutions and
determine the set of non-dominated solutions. The solutions obtained by the algorithms, from
a set of instances adapted from the literature, are compared using four multi-objective
performance measures: distance metrics, hypervolume indicator, epsilon metric and error
ratio. The computational tests have indicated an algorithm based on MOVNS as the most
efficient one, compared to the distance metrics; also, a combined feature of MOG and
MOVNS appears to be superior compared to the hypervolume and epsilon metrics and one
based on PILS compared to the error ratio. Statistical experiments have shown a significant
difference between some proposed algorithms compared to the distance metrics, epsilon
metric and error ratio. However, significant difference between the proposed algorithms with
respect to hypervolume indicator was not observed.

Keywords: Project Management; Resource constrained project scheduling; Multi-objective
optimization; Metaheuristics.

1. Introduction

Scheduling problems have been broadly studied in literature. Among those, the
project scheduling (PSP) has been prominent. According to Oguz and Bala [1], the PSP is an
important problem and it is challenging for those responsible for project management and for
researchers in the related field. As said by the authors, one of the reasons for its importance is
that it is a common problem in a great number of real situations of decision making, such as
problems that originate in the project management of civil construction. The PSP is
challenging, theoretically, for belonging to the class of NP-hard combinatorial optimization
problems [2]. Thomas and Salhi [3], for example, state that the optimal solution of the PSP is
hard to determine, especially for large-scale problems with resource and precedence
constraints.

Despite several authors like Slowinski [4], Martinez-Irano et al. [5] and Ballestin and
Blanco [6] consider that the resolution of the PSP involve several and conflicting objectives,
few studies have been developed using this approach. According to Ballestin and Blanco [6],
the number of possible multi-objective formulations for the PSP is very large, due to the
countless objectives found in literature. These can be combined in several forms, thus
generating new problems. Among the objectives that project managers are most interested in,
according to Ballestin and Blanco [6], we can emphasize the following:

e minimization of the project makespan;

e minimization of the project earliness or lateness;

e minimization of the total project costs;

e minimization of the resources availability costs;

e minimization of the total weighted start time of the activities;
e minimization of the number of tardy activities;

e maximization of the project net present value.

According to Martinez-Irano et al. [5], the multi-objective formulation of a problem
is particularly important when the objectives are conflicting, i.e., when the objectives may be
opposed to one another.



In this work, the PSP with resource and precedence constraints (RCPSPRP) is
addressed as a multi-objective optimization problem. Two conflicting objectives are
considered in the problem: the makespan minimization and the minimization of the total
weighted start time of the activities.

Several multi-objective optimization methods can be found in literature to solve this
class of problems. Such methods can be basically divided into two groups: the classic and the
metaheuristic methods. The classic methods consist of transforming the objective function
vector into a scalar objective function, as it is the case of the Weighted Criteria and the Global
Criterion methods. In this case the problem is treated as a mono-objective problem. The
metaheuristic methods use metaheuristics to generate and analyze several solutions, as well as
to obtain a set of non-dominated solutions. Literature revisions about the multi-objective
metaheuristic methods, as published by Jones et al. [7], show the Multi-objective Tabu Search
(MQOTS) [8], the Pareto Simulated Annealing (PSA) [9], the Non-dominated Sorting Genetic
Algorithm Il (NSGA-II) [10] and the Strength Pareto Evolutionary Algorithm Il (SPEA-II)
[11] as the most used. Due to the computational complexity of the RCPSPRP, according to
Thomas and Salhi [3], the metaheuristic methods appear as the best form to solve it.
According to Ballestin and Blanco [6], there are still few works that propose efficient
methods for solving the multi-objective RCPSPRP.

According to Ballestin and Blanco [6], Slowinski [4] was the first author to explicitly
represent the RCPSPRP as a multi-objective optimization problem. In the last years, some
authors have addressed the RCPSPRP this way, as is the case of Viana and Sousa [12],
Abbasi et al. [13], Kazemi and Tavakkoli-Moghaddam [14], Hamm et al. [15], Geyer [16],
Ballestin and Blanco [6], among others.

Slowinski [4] applied the multi-objective linear programming to solve the RCPSPRP,
allowing activities preemption. Renewable and non-renewable resources were considered.
Makespan and costs minimization were choosing as objectives. Also, goal programming and
fuzzy logic applications to the multi-objective RCPSPRP were discussed.

The PSA and MOTS algorithms were implemented by Viana and Sousa [12] to solve
the multi-objective PSP considering renewable and non-renewable resources. Three
minimizing criteria were used: makespan, mean weighted lateness of activities and sum of the
violation of resource availability. The distance metrics were used to assess the algorithms
efficiency.

Abbasi et al. [13] studied the multi-objective RCPSPRP considering only one
renewable resource. Two objectives, makespan minimization and robustness maximization,
were used. The authors incorporated these two objectives in a linear objective function and
applied the Simulated Annealing metaheuristic to generate different solutions to the problem.

Kazemi and Tavakkoli-Moghaddam [14] presented a mathematical model for the
multi-objective RCPSPRP considering positive and negative cash flows. The maximization of
net present value and makespan minimization were considered as objectives. The NSGA-II
was used to solve the problem.

Hamm et al. [15] have proposed an adaptation of the PSA for the multi-objective
RCPSPRP but do not presented applications. According to authors, the differential of their
algorithm is the rule of acceptance of new solutions, which depends on current temperature
and of the dominance status of the neighbor solutions.

Geyer [16] has proposed a methodology based on the Genetic Algorithm
metaheuristic for the multi-objective RCPSPRP. The author took into account economic and
environmental objectives, as well as the preferences of the decision maker (project manager).

Ballestin and Blanco [6] have presented theoretical and practical fundamentals of
multi-objective optimization applied to the RCPSPRP. A comparison between the PSA,
NSGA-II and SPEA-II was presented when the makespan and resources availability costs
minimizations were considered as objectives. Also, a study of seven multi-objective
performance measures applied to the problem and their disadvantages was presented.

Recently, new metaheuristic methods have arisen in literature. The main examples
are the Multi-objective GRASP (MOG) [17], Multi-objective Variable Neighborhood Search
(MOVNS) [18] and Pareto Iterated Local Search (PILS) [19]. Such methods have been applied



successfully in several types of problems, as have reported in [20], [21], [22], [23] and [24].

Due to the success of using these new methods, variations of the MOG, MOVNS and
PILS are analyzed in this study to solve the RCPSPRP. For this, five algorithms were
implemented: a MOG, a MOVNS, a MOG using VNS as local search, named GMOVNS, a
MOVNS with an intensification procedure based on [24], named MOVNS I, and a PILS. To
assess the efficiency of the implemented algorithms, the results obtained through the use of
instances adapted from literature were compared through four multi-objective performance
measures: distance metrics, hypervolume indicator, epsilon metric, and error ratio. Statistic
experiments were also carried out aiming at verifying, if there is a significant difference
between the algorithms regarding the used performance measures.

From our knowledge, no article was found in literature using these new multi-
objective metaheuristic methods to solve the problem addressed in this paper. Furthermore, in
terms of algorithms, no work was found using VNS as local search for the MOG, as was done
in the GMOVNS.

The rest of this paper is organized as following: in Section 2 the characteristics of the
problem addressed in this study are described and in Section 3 the concepts of the multi-
objective optimization are presented. In Section 4 the aforementioned multi-objective
metaheuristic algorithms are described, while in Section 5 the characteristics of the instances,
as well as the performance measures used to assess and compare the algorithms, are laid out.
In Section 5 the results of the conducted tests are presented and analyzed. The last section
concludes the work.

2. Problem Statement

The RCPSPRP consists of, given a set A = {1, ..., n}, with n activities, and, another R
= {1, ..., m}, with m renewable resources with predefined availabilities By, determining the
start time of execution (s;) of each one of the n activities, assuring that the resource level and
the precedence relation are not violated. The execution of each activity i € A has a duration

(processing time) pre-determined p;, a weight ¢; and demand b, units of each resourcek € R .

The precedence relations determine that some activities need to be conducted in a
particular sequence; that is, an activity cannot start while its precedent activities have not
been finished.

Two objectives have been considered in the formulation used for the problem, the
makespan minimization (fi(s)) and the minimization of the total weighted start time of the
activities (f»(s)). The values of f;(s) and f,(s) are given by the Equations (1) and (2), where
n+1 is an artificial activity (pp+1 = Cnez = 0, bk = 0 VK) that represents the last one to be
concluded and s.; represents the project’s finishing time.

f1(s) = Min Syt (1)
() = Min = @
i1 S

The choice of such objectives was based on the fact these are conflicting. The f,(s)
represents the modified minimization of the total weighted start time of the activities. This
objective was modified to become conflicting with f;(s). While in the objective f;(s) the
activities must be initiated as early as possible in the objective f,(s) is the opposite.

3. Some Definitions of Multi-objective Optimization

For the best understanding of the developed algorithms the definition of some
concepts of multi-objective optimization are primarily necessary.



Definition 1 — Pareto Dominance
Given the feasible solutions s and s, it is found:

1) if fi(s) < fi(s") forall k = 1, 2, ..., | and fi(s) < fj(s") for any j, s will be a solution
that dominates s;

2°) if fi(s") < fi(s) forall k = 1, 2, ..., | and fi(s") < fi(s) for any j, s will be a solution
dominated by s”;

39) if fj(s) < fi(s") for any j e fi(s) > fi(s") for any i, s and s” are stated non-dominated or
indifferent.

Definition 2 — Pareto Optimality

A feasible solution s is named Pareto-optimal (or efficient) if there is no other
feasible solution s” suck that s” dominates s, that is, a solution s” such as fi(s") < f(s) for all k
=1,2,.., landfj(s") <fj(s) for any j.

The set of all Pareto-optimal solutions is termed Pareto-optimal front and as a result
of the defined concepts, all the solutions that belong to the Pareto-optimal front are non-
dominated (indifferent).

In all the algorithms proposed in this work the criterion of the Pareto Dominance was
used, as described in this section, to assess the solutions generated along with its iterations
and to determine the set of non-dominated solutions, denoted by D*, to be returned by the
algorithms.

4. Methodology

In this section the multi-objective algorithms proposed to solve of the RCPSPRP are
described. In the first three sub-sections the common components of the five algorithms are
presented, such as the representation of a solution, the generation of an initial solution and the
neighborhood structures.

4.1. Representation of a Solution

A solution for the RCPSPRP is represented by a list s = {s, Sy,..., Sn}, Where s;
indicates the start time of the execution of the activity i.

To illustrate, let us consider the instance given in Table 1. The instance has ten
activities (named from 1 to 10) and two renewable resources (1 and 2). The availabilities of
the resources are, respectively, 5 and 3 units. In this table, for each activity i, the duration p;,
the weight c;, the demand for the resources 1 and 2 (b;; and b;;) and the successors activities
are presented. The instance presented on Table 1 is an adaptation of Koné et al. [25].

Table 1: Data for an instance with 10 activities
Activities 1 2 3 4 5 6 7 8 9 10

P, 7 3 5 5 6 4 5 4 3 7
C, 200 300 500 100 600 200 500 300 300 200
b., 0 2 3 3 2 1 1 1 1 3
b,, 2 1 3 2 1 0 3 1 1 1

Successors 3 6,7 4,9 11 1 1 58 10 4 9

An example of a feasible solution, not necessarily optimal, for the presented instance
is the list s = {15, 1, 22, 30, 9, 10, 4, 10, 27, 14}. The Gantt chart representing the described
solution for the instance is presented in Fig. 1.
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Fig. 1. Gantt chart for the presented solution

In the presented solution it is observed that the activity 2 is the first to be executed (s,
= 1) and the activity 4 is the last (s; = 30). For this solution the objective functions values are:
f1(s) = 35 e fy(s) = 606.44.

4.2. Initial Solution Generation

The proposed multi-objective algorithms start from an initial set of non-dominated
solutions generated through a priority rule based scheduling heuristic. According to Kolisch
[26], usually, this heuristic is composed of a priority rule and a schedule generation scheme
for the determination of feasible sequencing.

For the generation of the initial set of non-dominated solutions the serial schedule
generation scheme (S-SGS) proposed by Kelley [27] was used. In S-SGS, activities in an
activity list L are scheduled in the order in which they appear in L; they are scheduled at the
earliest clock time at which the required resources become available. An activity list L is a
precedence feasible list of all activities of the given project [32]. If more than one activity can
be assigned at a certain clock time, the activity to be scheduled is selected based on a priority
rule. In the S-SGS used, three different types of priority rules were used as mentioned later:

(1) Lower duration: a solution s is generated by sequencing activities in non-decreasing
order of the value of its duration;

(2) Bigger number of successors activities: a solution s is generated by sequencing
activities in non-increasing order of its numbers of successors activities;

(3) Lower weight: a solution s is generated by sequencing activities in non-decreasing
order of the value of its weight.

4.3. Neighborhood Structures

Local search methods usually use a neighborhood search to explore the space of
feasible solutions of the addressed problem. The methods begin with a solution s, and
generate a neighborhood of this solution. Such neighborhood is obtained by applying simple
changes on solution s.

The algorithms developed in this paper use two neighborhood structures: exchange
and insertion. For a given solution (sequence) s, the neighborhood structures are described
below:

(1) Exchange Neighborhood (Ni(s)): the neighbors of s are generated by interchanging
two activities in the sequence. The size of neighborhood Ny(s) is n(n - 1)/2.



(2) Insertion Neighborhood (Nx(s)): the neighbors of s are generated by inserting one
activity in another position of the sequence. The size of neighborhood Ny(s) is (n -
1)%

By using the described two neighborhood structures, infeasible solutions can be
generated due to resource constraints and precedence relations, but only the feasible solutions
generated are considered and assessed by the algorithms.

4.4. Multi-objective Metaheuristic Algorithms for the RCPSPRP
4.4.1. MOG Algorithm

The Multi-objective GRASP (MOG) is a multi-objective optimization algorithm
based on the metaheuristic Greedy Randomized Adaptive Search Procedure (GRASP)

proposed by Feo and Resende [28]. The MOG version proposed in this work, based on
Reynolds and Iglesia [17], is presented in the Algorithm 1.

Algorithm 1: MOG

Input: MOGa, 6

Output: D*

D* « ¢;

For (Iter = 1 to MOG;,5) do
s «— Construction_MOG(s, 6, D*);
s «— LocalSearch_MOG(s, D*);

End_for;
Return D*;

As in the method proposed by Feo and Resende [28], the MOG is composed of two
phases: construction and local search. In each one of the MOG,, iterations of Algorithm 1, a
solution s is generated in the construction phase through an adaptation of S-SGS. This
adaptation consists of the insertion of a randomization rate (0) to the method, being the
greedy function, a characteristic of GRASP, based on the priority rules described in Section
4.2. The pseudo-code of the procedure Construction_MOG is presented in Algorithm 1.1.

Algorithm 1.1: Construction_MOG
Input: s, 6, D*
Output: s
S<—¢;
Initialize the candidate list CL;
Determine randomly the value 6 € [0, 1] ;
Determine randomly a priority rule;
While (CL= ¢) do
Determine RCL with the first 6 % elements of CL which are based on the selected
priority rule;
Select randomly an element te RCL,;
s<s U{t};
Update CL;
End_while;
D* <« non-dominated solutions of D* U {s};
Returns;




In Algorithm 1.1 the construction of a solution s starts with the generation of a list of
activities CL that are candidates to be included in the sequencing. The CL is determined by
the available activities to the execution, at the time instant considered, and with its precedent
activities already being sequenced. From the CL, the value of 6, will define the restricted
candidates list (RCL), where the greedy function is determined by the priority rule selected in
Section 4.2, that is, the activity that has the biggest priority will be the one that will bring the
biggest benefit by being included in the sequencing. Once the RCL is defined, an activity
teRCL is randomly selected and inserted in s, thus being the CL updated. Finally, the
solution s generated is assessed to be part or not of D*. Aiming at the generation of different
solutions over the Pareto front, the value of 8 [0, 1] and the priority rule to be used are
randomly determined by each Construction_MOG procedure call.

In the local search phase, the solution s generated by the Algorithm 1.1 is modified
by the exchange movement (Ny(s)), described in Section 4.3, in a way that new solutions are
generated. The pseudo-code of the procedure LocalSearch_ MOG is presented in Algorithm
1.2.

Algorithm 1.2: LocalSearch_MOG
Input: s, D*
Output: D*
Determine randomly a neighbor solution s” € Ny(s);
For (each neighbor s € Ny(s")) do
D* «— non-dominated solutions of D* v {s"'};
End_for;
Return D*;

The Algorithm 1.2 starts with a random determination of a solution s € Ny(s). Then
the D* set is updated through the evaluation of all the neighbors solutions s”" € Ny(s”).

4.4.2. MOVNS Algorithm

The Multi-objective Variable Neighborhood Search (MOVNS) is an algorithm of
multi-objective optimization presented by Geiger [18]. Its structure is based on metaheuristic
Variable Neighborhood Search (VNS), delineated by Mladenovic and Hansen [29]. In
Algorithm 2 the proposed version of MOVNS, based on Ottoni et al. [24], is presented.

Algorithm 2: MOVNS
Input: r, StoppingCriterion
Output: D*
{s1, S2, 83} < solutions (sequencing) constructed by using 3 different priority rules;
D* <« non-dominated solutions of {s;, S, S3};
While (StoppingCriterion = False) do
Select randomly an unvisited solution se D*;
Mark(s) <— True;

Determine randomly a neighborhood structure N; € {N;, . N.};
Determine randomly a solution s” € N;(s);
For (each neighbor s € N;(s")) do
D* «— non-dominated solutions of D* U {s"'};
End_for;
If (all the solutions of D* are marked as visited) then
All marks must be removed,;
End_if;
End_while;
Return D*;




Algorithm 2 starts with the generation of three solutions (s, S,, S3) using the S-SGS
described in Section 4.2. Each of these was attained using a different priority rule. These
solutions are, then, inter-assessed and, the non-dominated ones are stored in the D* set.
Accordingly with Geiger [18], from each local search iteration a non-visited solution se D* is
randomly selected and marked as visited (Mark(s) <— True). A neighborhood structure

Nie{N., .. N/} is also randomly selected. Two neighborhood structures (r = 2) were used in
Algorithm 2, as described in Section 4.3. After that, a solution s"eN;j(s) is randomly
determined and the set D* is updated through the assessment of all neighbors solutions
s eN;(s"). Finally, it is checked whether all solutions belonging to D* are marked as visited.
If they are, the marking is removed from all solutions. This procedure is repeated until the
stopping criterion is fulfilled.

4.4.3. GMOVNS algorithm

The GMOVNS proposed in this study is a hybrid algorithm that combines MOG
features with MOVNS features, described in Sections 4.4.1 and 4.4.2, respectively. The
algorithm follows the structure described in Algorithm 1, but has modifications on the
construction and on local search phases. The pseudo-code of GMOVNS is presented in
Algorithm 3.

Algorithm 3: GMOVNS

Input: GMOVNS., 0, B

Output: D*

D*« ¢;

For (Iter = 1 to GMOVNS;;5) do
D; <« Construction_GMOVNS(6, B, Dy);
D; < LocalSearch GMOVNS(D,, D*, r);

End_for;
Return D*;

As it is observed in Algorithm 3, the GMOVNS - just like the MOG - is composed of
two phases: construction and local search. Algorithm 3.1 describes the
Construction_GMOVNS procedure, in which a set of non-dominated solutions Dy is generated
on each algorithm iteration.

Algorithm 3.1: Construction_GMOVNS
Input: 6, B
Output: D
D, < ¢,
For (Iter =1 to ) do
S<—¢;
Initialize the candidate list CL;
Determine randomly the value 6 < [0, 1];
Determine randomly a priority rule;
While (CL# ¢) do
Let RCL be a list with the 8 % first elements of CL based on the selected priority
rule;
Select randomly an element t € RCL;
s<«s U {t};
Update CL;
End_while;
D; < non-dominated solutions of D, {s};




End_for;
Return Dq;

In each one of the GMOVNS,,4 iterations of Algorithm 3, B solutions are generated
during the construction phase described in Algorithm 3.1. These solutions are assessed and
the non-dominated ones are stored in the D; set. All the solutions of this phase are generated
through the same adaptation of S-SGS used in MOG. For the different solutions to be
generated, a value for 6 [0, 1] and a priority rule are randomly determined during the
construction of each solution.

In the local search phase of the GMOVNS, the metaheuristic VNS was proposed with
two neighborhood structures, described in Section 4.3 and used in Algorithm 2. The VNS is
better capable of exploring the space of feasible solutions to this problem due to its systematic
swap of the neighborhood structure. With this, the quality of set D* can be improved. The
pseudo-code of the procedure LocalSearch_ GMOVNS is presented in Algorithm 3.2.

Algorithm 3.2: LocalSearch. GMOVNS

Input: D,, D*, r, StoppingCriterion

Output: D*

While (StoppingCriterion = False) do
Select randomly an unvisited solution se Dy;
Mark(s) <— True;

Determine randomly a neighborhood structure N; € {N;, . N;};
Determine randomly a solution s" € N;(s);
For (each neighbor s € Ni(s")) do
D; < non-dominated solutions of D; U {s"'};
End_for;
If (all the solutions of D, are marked as visited) then
All marks must be removed;
End_if;
End_while;
D* <~ non-dominated solutions of D* U Dy;
Return D*;

On each iteration of Algorithm 3.2 the solution s to be explored is determined
randomly within the non-visited ones that belong to set D; generated in the construction
phase. Then, a neighborhood structure N;e {N;, .. N,} and a neighbor solution s e Nj(s) are
chosen randomly. The D; set is then updated through the assessment of all the neighbors
solutions s e Ni(s"). Finally, it is checked, if all the solutions that belong to D, are marked as
visited, and, if they are, the marking is removed from all solutions. This procedure is repeated
until the stopping criterion is fulfilled. From D; on each iteration the D* set is updated with
the assessment of all solutions of D*uU D;.

4.4.4. MOVNS_I Algorithm

Two variants of algorithm MOVNS are found in literature. One is proposed by Ottoni
et al. [24] and another by Arroyo et al. [23]. These variants consist of adding an
intensification procedure to the algorithm. The intensification of the search around the best
solution is obtained, for example by the application of small perturbations on it. The MOVNS
with intensification, denominated MOVNS_I, proposed in this work is based on the variant
proposed by Ottoni et al. [24] and it is described in Algorithm 4.

Algorithm 4: MOVNS |

Input: r, StoppingCriterion
Output: D*




{s1, S2, S3} <« solutions (sequencing) constructed by using 3 different priority rules;
D* <« non-dominated solutions of {si, S, S3};
While (StoppingCriterion = False) do

Select randomly an unvisited solution s e D*;

Mark(s) < True;

Determine randomly a neighborhood structure N; € {N; .. N;};
Determine randomly a solution s” € Ni(s);
For (each neighbor s e Ni(s")) do
D* «— non-dominated solutions of D* U {s""};
End_for;
If (all the solutions of D* are marked as visited) then
All marks must be removed,;
End_if;
Select randomly a solution se D*;
D; <~ INTENSIFICATION(s, d);

D* <« non-dominated solutions of D* U Dy;

End_while;
Return D*;

According to Ottoni et al. [24], the intensification procedure is composed by two
stages: destruction and reconstruction, as presented in Algorithm 4.1.

Algorithm 4.1: INTENSIFICATION
Input: s, d
Output: Dy
S, < &,
S, < S;
Define randomly the weights w; and w, € [0, 1], such that w; + w, = 1;
For (i=1tod) do
Let sp(j) the j-th activity of s, randomly selected;
Remove s,(j) from sp;
Insert s,(j) in sy;
End_for;
For (i=1to(d-1))do
f, <« oo;
For(j=1to(n-d+i))do
S <« result of the insertion of the i-th activity from s in the j-th position from s,;
If (f(s") < f,") then
S, <S;
f, < f(s);
End_if;
End_for;
S, €S,
End_for;
For (j=1ton)do
S"« result of the insertion of the last activity from s, in the j-th position from sy;
D; < non-dominated solutions of D; U {s'};

End_for;
Return Dq;




The intensification procedure starts with the destruction stage, in which d activities
are removed from a solution se D* randomly selected. In out experiments, d was fixed at 4.
This strategy results in the generation of a partial solution s,, composed by (n — d) activities,
and of a set s, with the d activities removed from s. Then the solution s is reconstructed
inserting (d - 1) activities of s, in s,. To do this, an activity belonging to s, is inserted in all
possible positions of s,. The position that offers the best partial solution is selected. The
assessment of the partial solutions is done through a weighted function given by the equation
f = wyf; + wyf,, where w; and w;, are associated weights with the objective functions and w; +
w, = 1. This procedure is made until (d — 1) activities of s, are inserted in s,. Finally, the last
activity of s, is inserted in the partial solution s, in all its possible positions. All solutions
generated by this last insertion process are assessed and the non-dominated ones are stored in
Dl-

After the intensification procedure, the set D* is updated through the assessment of
all D*u D; solutions.

4.4.5. PILS Algorithm
The Pareto Iterated Local Search (PILS) is a multi-objective optimization algorithm

proposed by Geiger [19]. It is based on metaheuristic Iterated Local Search (ILS) delineated
by Lourenco et al. [30]. The basic pseudo-code of PILS is presented in Algorithm 5.

Algorithm 5: PILS

Input: r, StoppingCriterion
Output: D*
Determine the initial set of non-dominated solutions D*;
Select randomly a solution se D*;
While (StoppingCriterion = False) do
i« 1;
While (i <r A StoppingCriterion = False) do
For (each neighbor s” € N;(s)) do
D* «— non-dominated solutions of D* U {s'};
End_for;
If (3 "€ Nji(s)| s” dominates s) then
S<5S';
Rearrange the neighborhood structures Ny, ..., N, in some random order;
i<« 1;
End_if;
Else
i++;
End_else;
End_while;
Mark(s) <— True;
If (3 s"eD*/ s has not yet been visited) then
S<«S;
End_if;
Else
Select randomly a solution s” € D*;
s« PERTURBATION(S');
S<«S;
End_else;
End_while;
Return D*;




Algorithm 5 starts with the generation of an initial set of non-dominated solutions D*,
using the procedure S-SGS and the priority rules from Section 4.2. After that, a solution
se D* is randomly selected, that starts to be the current solution and all its neighborhood is
explored. The neighborhood structures used are presented on Section 4.3 (r = 2). In case any
neighbor solution s” e N;(s) dominates the current solution s, then s~ starts to be the new
current solution, the neighborhood structures are then randomly reordered and the procedure
returns to its first neighborhood structure of the new generated order. This procedure is
repeated until all solutions belonging to D* are visited, that is, until the algorithm arrives in a
local optimum in the explored neighborhood. Once this is done, a solution s”  D* is randomly
selected on which a perturbation is applied. The objective on perturbation a solution is to
explore other local optimums. The perturbation used here is proposed originally by Geiger
[19] and works as follows: after the selection of solution s” < D*, one position j <n—4 is

randomly determined along with four consecutive activities of s~ on the positions j, j+1, j+2
and j+3. A solution s is then generated by applying the activities swap movement on
positions j and j+3, and on the activities from positions j+1 and j+2. Thus, the activities
before the activity on position j and those before the activity on position j+3, stay on the same
position after the perturbation. After that the solution s™" starts to be the current solution and
its neighborhood is explored. In case all neighbors solutions from the one generated by the
perturbation are dominated by any solution that belongs to D*, then the perturbation
procedure is repeated. This procedure is repeated until the stopping criterion is fulfilled.

5. Computational Experiments

The five algorithms presented in this study were coded in C++ and executed on an
AMD Turion Il Dual-Core with a 2.20GHz and 4.0GB of RAM.

The algorithms were run with the same stopping criterion (StoppingCriterion) based
on the limit of the generated solutions. In literature, this stopping criterion is extensively used
for performance comparison of mono and multi-objective algorithms for the PSP, as
illustrated in [31], [6], [32] and others. Several values are found in literature, but in this work
the limit of generated solutions equal to 5000 was used as the stopping criterion for the
algorithms.

In the execution of the MOG algorithm the value 100 for the MOG..x parameter was
empirically defined. For the execution of GMOVNS, the value 10 to  and the value 100 to the
GMOVNS;5 also were empirically defined.

5.1. Problems Instances

According to Viana and Sousa [12] the study of multi-objective RCPSPRP involves
some difficulties, specially related to the availability of instances shown in literature. Several
mono-objective problems can be found, like the Project Scheduling Problem Library
(PSPLIB), developed by Kolisch and Sprecher [33], but nothing was found by the authors
regarding multi-objective instances.

Due to this, 160 instances from the PSPLIB, available in [34], were used to test the
algorithms. These instances have the numbers of activities n = 30, 60, 90 and 120. For each
value of n, 40 instances were used, from which 4 different types of renewable resources are
available. As the instances were used for the mono-objective RCPSPRP and they do not
present associated weights to the activities. Thus, such weights were then generated randomly
and uniformly distributed over the interval [1, 500].

Due to the fact the proposed algorithms using random choices, in the same way
which [23] and [24], the five algorithms were run five times independently (replicates), with
five different seeds randomly generated, for all the 160 instances. From the solutions attained
on the five runs of an algorithm, a set of non-dominated solutions is determined for each
instance.



5.2. Performance Measures

The comparison between non-dominated solution sets attained by multi-objective
optimization algorithms is not a trivial task. Several performance measures (metrics) of multi-
objective algorithms can be found in literature, such as in [35], [36], [37], [38] and [39].

In this work, to assess the quality of the non-dominated solutions attained by the
proposed algorithms, four multi-objective performance measures were used: distance metrics,
hypervolume indicator, epsilon metric and error ratio.

For each instance D; is the non-dominated solutions set found by the algorithm i, for i
=1, 2, ..., h,and h is the number of assessed algorithms. From these sets a reference set,
denoted by Ref, where Ref = {s € D;uD, U....uDy| s is a hon-dominated solution}, is
determined. The Ref set is the best known Pareto-optimal front. The performance of an
algorithm is then measured in terms of the quality of the solution obtained by this algorithm
regarding the solutions in Ref. Based on the Ref set, the definition of the used performance
measures are presented as follows:

Distance metrics: measures the proximity between the solutions of set D; and the
solutions of set Ref. It also measures the solutions spreading on set D;. The closer to zero the
distances are, the better the quality of the solutions found by the algorithm will be. The
formulas used to calculate the average (Da) and maximum (Dp.) distances from the D;
solutions compared to the Ref set are:

1 .
D, (D;) =100x —— min d(s, s’
(D) =100 ZR:f min d(s, s) ®)
D, (D)) = Enggf({gnelg d(s, s)}x100 (4)
in which |Ref] is the cardinality of set Ref and:
05, §) = max {(n(s)— () (F(9)=f,(s ))} ©
A1 AZ

A; is the difference between the biggest and the smallest value of the objective function f;,

considering the solutions of set Ref.
The distances D,, and Dy are broadly used as performance measure of multi-
objective algorithms such as in [9], [12] and [24].

Hypervolume indicator: measures the covered or dominated area by set D;. For the
minimization of two objectives, a reference point (x, y) is used to limit this coverage, denoted
by H(D;), where x and y are upper bounds for f; and f,, respectively. A larger dominance area
indicates that the solutions attained by the algorithm generated a good coverage on the Pareto-

optimal front. The value of the hypervolume difference (H (D,)) is calculated by the
Equation (6):
H™(D;) = H(Ref) - H(D)) (6)
As H(Ref) > H(D;), the smaller the value of H ™ (D,), the better the quality of set D;
will be. In Fig. 2, the covered area by the solution sets D, and D, are illustrated.
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Fig. 2. Examples of areas covered by two sets of solutions

As it is shown on Fig. 2, H(D;) > H(D.), therefore H™ (D) <H (D,), which
indicates the solutions from the D; set are “better” than the ones from the D, set.

Epsilon metric: given a set D; and z°=(z;,...2%) and 2°=(z;,...2.), two
solutions belonging to the sets D; and Ref, respectively, the epsilon metric denoted by
I1(D,), measures the maximum normalized distance from set D; in relation to set Ref, and is
calculated by Equation (7):

a

11(D,)= max{mln{maxz—}} (7

cRef z%eD; I<j<r Z

Therefore, the quality of a non-dominated solutions set D; attained by an algorithm to
a determined instance is assessed in relation to set Refand as 1} (D;) measures the maximum

distance of D; in relation to Ref, thus a value close to zero of I} (D;) indicates a good quality
of set D;, To use the epsilon metric to assess a D; set, the values of the objective functions
must be normalized according to the following equation:
f (S) f min
f. “(s)= ( i x100 (8)
| i

f_min f_max

where and are, respectively, the smallest and the biggest value found to the i-th
objective considering the solutions belonging to set Ref. Hence, the values of the objective
function f(s) calculated by Equation (8) are in the interval [0, 100].

Error ratio: indicates the percentage of the solutions that belong to set D; that don’t
belong to set Ref. The metric based on Veldhuizen [36] and denoted by TE;, is calculated by
Equation (9):

ID,|~|Ref ~D||

il
where |Dj| corresponds to the cardinality of set D; and |Ref Dj| to the number of reference
solutions originating from the set D;. According to Coello and Lamont [40], TE; = 0 indicates
that all solutions belonging to D; are part of Ref. On the other hand, TE; = 100 indicates that
no solutions from D; are part of Ref. Thus, the nearest to zero the value of the TE; the better is
the performance of the algorithm.

TE, =

x100 )



5.3. Computational Results

For each group of 40 instances of size n, Table 2 shows the average values (in
seconds) of the computational time spent by each algorithm to obtain the non-dominated
solutions sets.

Table 2: Average Computational Time

N Algorithm
MOG MOVNS GMOVNS MOVNS | PILS
30 0.19 0.41 0.41 0.56 1.16
60 0.88 3.99 2.98 4.08 11.09
90 2.72 12.91 10.96 15.82 52.95
120 7.73 53.75 36.46 57.62 154.71

Table 2 shows that all algorithms presented low computational effort, i.e., obtained
the sets of non-dominated solutions in an acceptable time.

Except Table 5, all following tables in this section presents, for each group of 40
instances of size n, the average values of the performance measure attained by each
algorithm.

On Tables 3 and 4 the results attained by the algorithms in relation to the distance
metrics are presented. On Table 3 the results regarding the average distance and on Table 4
the results regarding the maximum distance are presented.

Table 3: Distance Metrics Results — Average Distance (%)

N Algorithm
MOG MOVNS GMOVNS MOVNS | PILS
30 15.90 18.29 13.89 3.68 6.20
60 92.82 19.15 19.07 13.64 5.83
90 14.59 14.50 15.14 6.52 9.81
120 32.69 16.87 26.44 3.49 12.57
Average 39.00 17.20 18.63 6.83 8.60

Table 4: Distance Metrics Results — Maximum Distance (%)

n Algorithm
MOG MOVNS GMOVNS MOVNS | PILS
30 64.70 49.15 55.77 12.53 20.23
60 297.51 62.79 78.53 35.48 21.04
90 47.53 40.66 38.35 14.86 29.85
120 88.30 44.42 107.61 14.18 37.20
Average 124.51 49.26 70.06 19.26 27.08

Through Tables 3 and 4, it is verified that the MOVNS_I algorithm is the one that
produces lower average values, that is, closer to zero, from the average and maximum
distances to the majority set of instances. The MOVNS_I didn’t attain lower average values to
the set of instances with n = 60 only where PILS showed better results.

As presented in Section 5.2, the distance metrics measures the proximity between the
solutions of a set D; and the solutions of set Ref. Therefore, the higher the percentage of
solutions of D; in the Ref set, the lower tends to be the values of the distance metrics. The
values of the distance metrics tend to be smaller, but those values also depend of the distance
between D; solutions and solutions belonging to Ref set obtained by other algorithms. For
each group of 40 instances of size n, Table 5 shows average percentages of solutions obtained
by the MOVNS_I and PILS algorithms which are part of Ref set.



Table 5: Average Percentages of Solutions of the MOVNS | and PILS in the Ref Set
Algorithm

n MOVNS | PILS Difference
30 56.75 59.79 3.04

60 27.08 55.48 28.48
90 36.70 38.64 1.94
120 4211 44.16 2.05

Table 5 shows that algorithms had presented very close values for the average
percentage except for the set with n = 60. In this case the percentage difference was 28.48%.
For the groups of instances in which the difference between the average percentages was
small, the MOVNS I algorithm had presented better results for D,, and Dy, even the PILS
showing higher percentage. However, when the difference between these average percentages
was large, as in the case of the instances set with n = 60, better values for the distances was
obtained by the PILS. Therefore, the MOVNS_ | had presented in most cases a better
performance regarding the distance metrics.

On Table 6 the values attained by the proposed algorithms regarding the hypervolume
indicator are presented.

Table 6: Hypervolume Indicator Results

N Algorithm
MOG MOVNS GMOVNS MOVNS_| PILS
30 927.60 485.50 360.20 386.90 369.10
60 1803.00 747.20 501.50 1249.30 739.00
90 2712.60 2420.60 2021.00 2275.60 2399.30
120 5358.00 5841.00 3654.40 3727.40 3881.40
Average  2700.30 2373.58 1634.28 1909.80 1847.20

Through Table 6 it is verified that the GMOVNS algorithm presented lower average
values, compared with the other algorithms, from the hypervolume indicator for all sets of
instances.

On Table 7 the results attained by the proposed algorithms are shown regarding the
epsilon metric.

Table 7: Epsilon Metric Results

N Algorithm
MOG MOVNS GMOVNS MOVNS | PILS
30 1.45 1.91 1.22 1.85 1.24
60 1.41 1.72 1.30 151 1.46
90 191 1.87 1.59 1.93 1.84
120 1.34 1.68 1.24 1.94 1.49
Average 1.53 1.80 1.34 1.81 151

Through Table 7 it is verified that the GMOVNS is the algorithm that produces lower
average values for the epsilon metric for all sets of instances.

On Table 8, the values attained by the algorithms proposed regarding the error ratio
are presented.

Table 8: Error Ratio Results (%)

N Algorithm

MOG MOVNS GMOVNS MOVNS | PILS
30 77.14 40.74 59.60 43.25 40.21
60 86.13 74.70 66.89 72.92 44.52

90 89.67 62.13 75.10 63.30 61.36




120 91.42 90.50 67.09 57.89 55.84

Average 86.09 67.02 67.17 59.34 50.48

As it can be observed on Table 8, the PILS algorithms presented, in all sets of
instances, a lower average value for the error ratio. This means that, based on error ratio, the
algorithm PILS was superior to the others.

5.3.1. Analysis of the Results

Based on the average values of the computational time spent by each algorithm to
obtain the non-dominated solutions sets, we can see that all the algorithms were
computationally eficeintes, obtaining sets of solutions in an acceptable time. For all the
instances sets, the MOG and PILS algorithms had presented the lowest and highest average
computational time, respectively.

Results attained from the computational experiments, showed that the GMOVNS
algorithm had best performance. The GMOVNS has generated better results for two of the
four multi-objective performance measures assessed: hypervolume indicator and epsilon. This
means that the GMOVNS algorithm produces a better coverage for the Pareto-optimal front
and that the non-dominated solutions generated by this algorithm are closer to the Ref set.

Regarding the distance metrics, in general, the MOVNS_I algorithm has obtained the
lowest average values for this metric. Therefore, the MOVNS_1I has achieved better distributed
solutions throughout the Ref set.

For all the instances sets, the PILS algorithm had obtained the better results for the
error ratio. The PILS had presented, on average, the higher percentage of solutions belonging
to the Ref set.

5.4. Statistical Analysis

The experiments that follow aim at verifying, if there is a significant difference
between the algorithms proposed in this paper, concerning the multi-objective performance
measures used. These experiments were conducted with the assistance of the Minitab®
computational package on its 16™ version. It is emphasized here that this experimentation
enables the researchers to make inferences to the population of all instances.

To conduct the experiments, the statistical technique Analysis of Variance (ANOVA)
was chosen, as described by Montgomery [41]. The interest is then to test the equality of the
population means () to the five implemented algorithms against the inequality of the means.

In the ANOVA application two hypotheses were tested:

Ho o=y =ty =11, = s (1)
H, 1 # p; for at least one pair (i, j), withi, j=1, 2,3, 4, 5 and 1# ] )

In the test (1)-(2), the null hypothesis (1) represents the equality of the population
means hypothesis in relation to the analyzed multi-objective performance measure on the five
algorithms, that is, it conjectures that there is no significant difference between these
algorithms regarding the metric. The hypothesis (2), on the other hand, conjectures the
opposite.

However, to apply the ANOVA, the sample data should be normally distributed in
this case, and the population variances (c°) approximately equal between the factor levels,
regarding the algorithms proposed here.

Although the test is based on the supposition that the sample data should be normally
distributed, according to Kulinskaya et al. [42], this hypothesis is not critical when the sizes
of the samples are at least 15 or 20. Once all the samples on this work have the equal size to
160 (number of instances used) for each algorithm, thus, the normality is not critical. Hence,



the normality premise is verified for all the algorithms regarding all metrics. To use the
ANOVA it is needed, then, the verification of only the variances proximity between the data
from the algorithms regarding each metrics. For this, the following hypotheses were tested:

H020'12=0'22=(732=af=0'52 3
H,: o # o} forat least one pair (i, j), withi,j=1,2,3,4,5and i # ] )

In the test (3)-(4), the null hypothesis (3) represents the equality of the population
variances hypothesis in relation to the analyzed multi-objective performance measure on the
five algorithms. The hypothesis (4) conjectures the opposite.

By applying these hypothesis tests is possible to calculate a test statistic that allows us
to accept or reject the null hypothesis. In Statistical Inference is usual to represent this test
statistic for p-value. From the value of this test statistic and of a criterion for
acceptance/rejection is possible to conclude, with a significance level o defined a priori,
which of the hypotheses accept. That is, if o > p-value rejects Ho. All the tests in this section
have been executed with a significance level a = 0.05 (5%).

Nevertheless, the ANOVA does not tell us which pairs of algorithms present
significant differences, that is, result in different means to each assessed metric. To answer
this question the method of the Least Significant Difference (LSD), also known as the
Fisher’s method [41], is used.

All the tables of ANOVA results presented in this section show the calculated value
of the p-value, the sample means, the sample standard deviations and the interval limits with
95% of confidence on the population means from the analyzed multi-objective performance
measure, in accordance with each algorithm.

e Distance Metrics

For the distance metrics the hypothesis test (3)-(4) was used to verify the proximity of
variances between the data of all algorithms. The p-value statistics calculated for this test was
equal to 0.078 for the average distance, and 0.054 for the maximum distance. Once a < p-
value for both distance metrics, the variance equality hypothesis is accepted between the
population data to the five algorithms. Therefore, once the premise is verified, the ANOVA is
applied to the concerning data from the metrics.

The application of ANOVA to the average distance data allowed us to calculate the
values presented in Table 9.

Table 9: The results of ANOVA for the Average Distance

p-value Algorithm
0.025 MOG MOVNS GMOVNS MOVNS | PILS
Mean 39.0 17.2 18.6 6.8 8.6
Standard 103.4 29.1 31.6 10.7 10.7
Deviation

IC (1, 95%) (5.9;72.1) (7.9;265)  (85:287)  (3.4:102)  (5.2;12.0)

According to the results on Table 9, p-value = 0.025. Therefore, it can be stated that
the null hypothesis should be rejected, that is, as a > p-value, there are enough statistical
evidences to conclude that the average values regarding the average distance are different on
each algorithm. By using the LSD method, it can be stated that there are statistical evidences
showing that the average values, regarding the average distance, are different within the
following algorithm pairs: MOG x MOVNS_I and MOG x PILS.

The application of ANOVA to the maximum distance data allowed us to calculate the
values presented on Table 10.



Table 10: The results of ANOVA for the Maximum Distance

p-value Algorithm
0.002 MOG MOVNS GMOVNS MOVNS_| PILS
Mean 1245 492 70.1 19.3 271
Standard 311.4 59.3 137.1 19.9 28.1
Deviation

IC (1, 95%) (24.9;224.1) (30.3;68.2) (26.2;113.9) (12.9;25.7) (18.1;36.1)

According to the results on Table 10, p-value = 0.002. Therefore, it can be stated that
the null hypothesis should be rejected, that is, as o > p-value, there are enough statistical
evidences to conclude that the average values regarding the maximum distance are different
on each algorithm. By using the LSD method, it can be stated that there are statistical
evidences showing that the average values regarding the maximum distance, are different
within the following algorithm pairs: MOG x MOVNS, MOG x MOVNS_I| and MOG x PILS.

e Hypervolume Indicator

For the hypervolume indicator it was verified the proximity of variances between the
data of all algorithms by the hypothesis test (3)-(4). The calculated p-value statistics was
equal to 0.567 and, as a < p-value, the hypothesis of the variances equality between the
population data on the five algorithms is accepted. Once verified the premise, the ANOVA is
applied to the data of this metric.

The application of ANOVA to the hypervolume indicator data allowed us to calculate
the values presented on Table 11.

Table 11: The results of ANOVA for the Hypervolume Indicator

p-value Algorithm
0.452 MOG MOVNS GMOVNS MOVNS_| PILS
Mean 2700.0 2374.0 1634.0 1910.0 1847.0
Standard 3099.0 3159.0 2235.0 2729.0 2958.0
Deviation
(1709.2; (1363.4; (919.4; (1037.0; (901.1;

V)
IC (1, 95%) 3691.4) 3383.8) 2349.2) 2782.6) 2793.3)

According to the results on Table 11, p-value = 0.452. Therefore, it can be stated that
the null hypothesis should be accepted, that is, as a < p-value, there are enough statistical
evidences to conclude, with a 5% significance level (a = 0.05), that the average values
regarding the hypervolume indicator equal within all algorithms.

e Epsilon metric

For the epsilon metric it was verified the proximity of variances between the data of
all algorithms by the hypothesis test (3)-(4). The calculated p-value statistics was equal to
0.082 and, as a < p-value, the hypothesis of the variances equality between the population
data on the five algorithms is accepted. Once verified the premise, the ANOVA is applied to
the data of this metric.

The application of ANOVA to the epsilon metric data allowed us to calculate the
values presented on Table 12.

Table 12: The results of ANOVA for the Epsilon Metric

p-value Algorithm
0.024 MOG MOVNS GMOVNS MOVNS_|I PILS
Mean 1.53 1.80 1.34 1.81 1.51

Standard 0.81 0.97 0.48 0.83 0.56




Deviation
IC (1, 95%) (1.27;1.79) (1.48;2.11) (1.18; 1.49) (1.54; 2.07) (1.33; 1.68)

According to the results on Table 12, p-value = 0.024. Therefore, it can be stated that
the null hypothesis should be rejected, that is, as o > p-value, there are enough statistical
evidences to conclude that the average values regarding the epsilon metric are different
between the algorithms. By using the LSD method, it can be stated that there are statistical
evidences showing that the average values, regarding the epsilon metric, are different within
the following algorithm pairs: GMOVNS x MOVNS and GMOVNS x MOVNS_I.

e Error ratio

For the error ratio the hypothesis test (3)-(4) was used to verify the proximity of
variances between the data of all algorithms. The calculated p-value statistics was equal to
0.002 and, as a > p-value, the hypothesis of the variances equality between the population
data on the five algorithms is rejected. Therefore, this premise is not verified, and
consequently, the ANOVA cannot be applied to this metric’s data. As a result, the Kruskal-
Wallis non-parametric test [43] was used. The difference from ANOVA to the Kruskal-Wallis
non-parametric test is that the later, instead of working with means, uses population medians
(n7). The test can be used to verify the medians equality of two or more populations and,

applying to this work, tests the following hypothesis:
Ho tm=n,=n3=n,=n )
H, :n, #n, for at least one pair (i, j), withi,j=1,2,3,4,5and i # | (6)

In the test (5)-(6), the null hypothesis (5) represents the equality of the population
medians hypothesis in relation to the error ratio on the five algorithms, that is, it conjectures
that there is no significant difference between these algorithms regarding this metric. The
hypothesis (6), on the other hand, conjectures the opposite.

For this test of hypothesis, the p-value statistics calculation brought the value 0.000.
Once the significance level a = 0.05 is adopted and o > p-value, the median equality between
the population data on the five algorithms should be rejected. Hence, it is statistically
concluded that the algorithms differ in error ratio. By comparing the pairs of algorithms, it
can be stated that there are statistical evidences that the median values from the error ratio are
different between: MOG x MOVNS, MOG x GMOVNS, MOG x MOVNS_I, MOG x PILS,
MOVNS x PILS and GMOVNS x PILS.

6. Conclusions

This work addressed the resource-constrained project scheduling problem with
precedence relations as a multi-objective optimization problem, having two optimization
criteria that were tackled: the makespan minimization and the minimization of the total
weighted start time of the activities.

To solve the problem, five algorithms were implemented: MOG, MOVNS, MOG
using VNS as local search, denominated GMOVNS; MOVNS with intensification procedure
based on Ottoni et al. [24], denominated MOVNS_I; and PILS.

The algorithms were tested in 160 instances adapted from literature, and compared
using four multi-objective performance measures: distance, hypervolume, epsilon and error
ratio. Based on the results attained from the computational experiments, we can see that all
algorithms were computationally efficient, obtaining sets of non-dominated solutions in an
acceptable time, and three conclusions were obtained: first, the MOVNS_| has shown to be
superior than the other algorithms on the majority of instances, regarding the distance metrics;



second, the GMOVNS is superior regarding the hypervolume indicator and the epsilon metric;
and third, the algorithm PILS is superior regarding the error ratio. Statistical experiments
were conducted and have revealed that there is a significant difference between some
proposed algorithms concerning the distance, epsilon, and error ratio metrics. However,
significant difference between the proposed algorithms with respect to hypervolume indicator
was not observed.
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*Detailed Response to Reviewers

Dear Reviewers,

We would like to thank for their relevant comments. They have contributed to the
improvement of our work.

In the following pages we highlight changes made and answers for their comments.
Reviewers' comments:
Reviewer #1:

Even if the originality of the methods can be discussed, because it is a simple adaptation
to the problem addressed for some of them, this is a good and well structured paper. The
analysis of the experimental data is very Excellent.

(1) However a few turns of phrase sometimes complex and lengthy can be simplified.

The proposed changes in the text were relevant and, therefore, performed. It was made,
also, a review in the text verifying paragraphs which can be simplified, reducing the turns of
phrase. The review was made especially in the Statistical Analysis section.

Reviewer #2:

The authors applied five multi-objective metaheuristics: MOG, MOVNS, GMOVNS,
MOVNS_I and PILS, to solve the resource-constrained project scheduling problem with
precedence relations, and aimed to minimize two criteria: the makespan and the total weighted
start time of the activities. The proposed algorithms use strategies based on the concept of
Pareto Dominance to search for solutions and determine the set of non-dominated solutions.
Four multi-objective performance measures: distance metrics, hypervolume indicator, epsilon
metric and error ratio, were adopted to evaluate and compare the five heuristics.

The authors were appreciated for their efforts in conducting the set of computational
tests to analyze the performances of the five heuristics for solving the multi-objective
RCPSPRP. Nevertheless, this work lacks theoretical contributions to the existing literature, as
the authors just applied or adapted several existing algorithms to solve an existing problem.
Specific comments are given as follows.

(1) The authors did not provide an adequate literature review on multi-objective RCPSPRP. In
this manuscript, the authors mentioned "According to Ballestin and Blanco [6], the number of
possible multi-objective formulations for the PSP is very large, due to the countless objectives
found in literature™, but no specific references or examples were given. At least, the authors
need to review solution algorithms to multi-objective RCPSPRP.

It was inserted in the manuscript (page 3, paragraphs 3-10) a literature review about the
multi-objective RCPSPRP. This literature review presents some objectives and algorithms used
in the resolution of the problem. The literature review is below.

According to Ballestin and Blanco [6], Slowinski [4] was the first author to explicitly
represent the RCPSPRP as a multi-objective optimization problem. In the last years, some
authors have addressed the RCPSPRP this way, as is the case of Viana and Sousa [12], Abbasi
et al. [13], Kazemi and Tavakkoli-Moghaddam [14], Hamm et al. [15], Geyer [16], Ballestin
and Blanco [6], among others.



Slowinski [4] applied the multi-objective linear programming to solve the RCPSPRP,
allowing activities preemption. Renewable and non-renewable resources were considered.
Makespan and costs minimization were choosing as objectives. Also, goal programming and
fuzzy logic applications to the multi-objective RCPSPRP were discussed.

The PSA and MOTS algorithms were implemented by Viana and Sousa [12] to solve
the multi-objective PSP considering renewable and non-renewable resources. Three minimizing
criteria were used: makespan, mean weighted lateness of activities and sum of the violation of
resource availability. The distance metrics were used to assess the algorithms efficiency.

Abbasi et al. [13] studied the multi-objective RCPSPRP considering only one

renewable resource. Two objectives, makespan minimization and robustness maximization,
were used. The authors incorporated these two objectives in a linear objective function and
applied the Simulated Annealing metaheuristic to generate different solutions to the problem.

Kazemi and Tavakkoli-Moghaddam [14] presented a mathematical model for the multi-
objective RCPSPRP considering positive and negative cash flows. The maximization of net
present value and makespan minimization were considered as objectives. The NSGA-II was
used to solve the problem.

Hamm et al. [15] have proposed an adaptation of the PSA for the multi-objective
RCPSPRP but do not presented applications. According to authors, the differential of their
algorithm is the rule of acceptance of new solutions, which depends on current temperature and
of the dominance status of the neighbor solutions.

Geyer [16] has proposed a methodology based on the Genetic Algorithm metaheuristic
for the multi-objective RCPSPRP. The author took into account economic and environmental
objectives, as well as the preferences of the decision maker (project manager).

Ballestin and Blanco [6] have presented theoretical and practical fundamentals of multi-
objective optimization applied to the RCPSPRP. A comparison between the PSA, NSGA-II and
SPEA-II was presented when the makespan and resources availability costs minimizations were
considered as objectives. Also, a study of seven multi-objective performance measures applied
to the problem and their disadvantages was presented.

(2) In addition, the authors did not explain the reason why they aimed to minimize the
makespan and total weighted start time of activities, despite that there were several objectives
considered in the literature.

According to Martinez-Irano et al. [5], the multi-objective formulation of a problem is
particularly important when the objectives are conflicting, i.e., when the objectives may be
opposed to one another. (Page 2, paragraph 3)

Therefore, the choice of such objectives was based on the fact these are conflicting.
This justification was inserted in the manuscript (page 4, paragraph 7).

(3) While the authors aimed to minimize the total weighted start time, in Eq.(2), they actually
took the sum inversed start times.

The objective f,(s) (Eq. 2) represents the modified minimization of the total weighted
start time of the activities. This objective was modified to become conflicting with fi(s). While
in the objective f,(s) the activities must be initiated as early as possible in the objective fy(s) is
the opposite. (Page 4, paragraph 7)

(4) In section 4.3, the proposed two neighborhood structures: exchange and insertion may lead
to infeasible solutions, due to resource constraints and precedence relations.



By using the proposed two neighborhood structures, infeasible solutions can be
generated due to resource constraints and precedence relations, but only the feasible solutions
generated are considered and assessed by the algorithms.

This justification was inserted in the manuscript (page 7, paragraph 1).

(5) The reference set approach described in Section 5.2 can only be used to determine the
relative performances of the five algorithms. We cannot judge whether or not the problem is
effectively and efficiently solved by the algorithms. The reference set are constructed using the
solutions obtained by the algorithms under comparison. What if all there algorithms are not
good. There lacks an absolute benchmark.

The ideal would be to compare the results obtained by the algorithms with the Pareto-
optimal set. However, this set is not always known or available. In these cases, the Pareto
approximation set of the union of sets obtained by the different algorithms is used as the
reference set.

As there were no results in the literature for the multi-objective RCPSPRP with the
same characteristics as studied in this work, the efficiency of the algorithms only can be
assessed based on the reference set (Ref), which is the best known set of solutions to the
problem. This procedure is used in most studies which deal multi-objective optimization, as is
the case of Viana and Sousa [12], Arroyo et al. [20], Arroyo et al. [23], Ottoni et al. [24], among
others.

According to Ballestin and Blanco [6], is necessary to be created exact algorithms
capable of calculating the Pareto-optimal set for many important problems as the multi-
objective RCPSPRP. The generated solutions would be used to compare and assess the sets of
solutions obtained by metaheuristic algorithms.

(6) The four measures were used to determine the relative effectiveness of the five algorithms.
What about the computational efficiency?

It was inserted in the manuscript (page 16, paragraphs 1-2) the results and comments
regarding computational efficiency of the algorithms. The results and comments are below.

For each group of 40 instances of size n, Table 2 shows the average values (in seconds)
of the computational time spent by each algorithm to obtain the non-dominated solutions sets.

Table 2: Average Computational Time

0 Algorithm
MOG MOVNS GMOVNS MOVNS_I PILS
30 0.19 0.41 0.41 0.56 1.16
60 0.88 3.99 2.98 4.08 11.09
90 2.72 12.91 10.96 15.82 52.95
120 7.73 53.75 36.46 57.62 154.71

Table 2 shows that all algorithms presented low computational effort, i.e., obtained the
sets of non-dominated solutions in an acceptable time.



(7) The five algorithms were run ONLY five times for each instance. This is not enough to get
meaningful results.

The choice of running the five algorithms only five times for each instance was based in
the following papers:

- Arroyo JEC, Ottoni RS, Oliveira AP. Multi-objective Variable Neighborhood Search
Algorithms for a Single Machine Scheduling Problem with Distinct Due Windows. Electronic
Notes in Theoretical Computer Science 2011;281:5-19.

- Ottoni RS, Arroyo JEC, Santos A G. Algoritmo VNS Multiobjetivo para um Problema de
Programacdo de Tarefas em uma Maquina com Janelas de Entrega. In: Proceedings of the 18th
Simposio Brasileiro de Pesquisa Operacional, Ubatuba, Brasil; 2011.

This choice was based on papers above where their authors had published several works
regarding multi-objective metaheuristic methods using this procedure.

(8) For table 2 and table 3, the authors need to analyze and explain why MOVNS | did not
attain lower average values to the set of instances with n = 60, not just report the results.

Regarding this comment, the analysis below was inserted in the manuscript (page 16,
paragraph 6, and page 17, paragraph 1).

As presented in Section 5.2, the distance metrics measures the proximity between the
solutions of a set D; and the solutions of set Ref. Therefore, the higher the percentage of
solutions of D; in the Ref set, the lower tends to be the values of the distance metrics. The values
of the distance metrics tend to be smaller, but those values also depend of the distance between
D; solutions and solutions belonging to Ref set obtained by other algorithms. For each group of
40 instances of size n, Table 5 shows average percentages of solutions obtained by the
MOVNS_I and PILS algorithms which are part of Ref set.

Table 5: Average Percentages of Solutions of the MOVNS I and PILS in the Ref Set

Algorithm _

" MOVNS _| PILS Difference
30 56.75 59.79 3.04
60 27.08 55.48 28.48
90 36.70 38.64 1.94
120 42.11 44.16 205

Table 5 shows that algorithms had presented very close values for the average
percentage except for the set with n = 60. In this case the percentage difference was 28.48%.
For the groups of instances in which the difference between the average percentages was small,
the MOVNS_I algorithm had presented better results for D,, and Dyax, €ven the PILS showing
higher percentage. However, when the difference between these average percentages was large,
as in the case of the instances set with n = 60, better values for the distances was obtained by the
PILS.

(9) In Section 5.4, the authors selected ANOVA to verify and compare solutions of algorithms.
This approach requires some strong assumptions. There are other statistical approaches, such as
response surface methods, that can be used in this regard.



There are other methods could be used, but due to statistical knowledge of the authors,
we opted for use of the ANOVA. The using of the Minitab® computational package has
assisted in the obtaining and analysis of results.

(10) In Section 5.4, the same equation (1), (3), (5), and (7) were used in different tests. This is
really confusing. What is u?

The equations (1), (3), (5) and (7) represent the same hypothesis in different tests, i.e.,
each equation is related to a different multi-objective performance measures.

The Statistical Analysis section was reviewed and this equation was presented only once
(page 18, paragraphs 8-9), facilitating the understanding of tests.

In equations (1), (3), (5) and (7), “w” represent the population means. The definition of
“w” is found in the manuscript (page 18, paragraph 7, line 3).

(11) The authors definitely need to provide a section to discuss the implications and differences
of the computational results.

It was inserted in the manuscript (page 18, paragraphs 2-5) a section that discusses
implications and differences of the computational results. The section is below.

5.3.1. Analysis of the Results

Based on the average values of the computational time spent by each algorithm to
obtain the non-dominated solutions sets, we can see that all the algorithms were
computationally eficeintes, obtaining sets of solutions in an acceptable time. For all the
instances sets, the MOG and PILS algorithms had presented the lowest and highest average
computational time, respectively.

Results attained from the computational experiments, showed that the GMOVNS

algorithm had best performance. The GMOVNS has generated better results for two of the four
multi-objective performance measures assessed: hypervolume indicator and epsilon. This means
that the GMOVNS algorithm produces a better coverage for the Pareto-optimal front and that the
non-dominated solutions generated by this algorithm are closer to the Ref set.

Regarding the distance metrics, in general, the MOVNS I algorithm has obtained the
lowest average values for this metric. Therefore, the MOVNS_I has achieved better distributed
solutions throughout the Ref set.

For all the instances sets, the PILS algorithm had obtained the better results for the error
ratio. The PILS had presented, on average, the higher percentage of solutions belonging to the
Ref set.

(12) In Section 6, the authors mentioned that "Statistical experiments were conducted and have
revealed that there is a significant difference between the proposed algorithms concerning the
distance, epsilon, and error ratio metrics", but this is inconsistent with the statistical result in
Section 5.4, where the authors said "there are enough statistical evidences to conclude that the
average values regarding the hypervolume indicator equal within all algorithms".

The statistical experiments have revealed that there is a significant difference between
some proposed algorithms regarding to three multi-objective performance measures assessed:

- Distance metrics:



- Average: MOG x MOVNS_I and MOG x PILS;
- Maximum: MOG x MOVNS, MOG x MOVNS_I and MOG x PILS;
- Epsilon: GMOVNS x MOVNS and GMOVNS x MOVNS _I;

- Error ratio MOG x MOVNS, MOG x GMOVNS, MOG x MOVNS_I, MOG x PILS,
MOVNS x PILS and GMOVNS x PILS.

According to statistical experiments, the algorithms only showed no significant
difference with respect to hypervolume indicator, on a 5% significance level.

The multi-objective performance measures are used to quantitatively compare the
algorithms with respect to characteristics of the sets of non-dominated solutions obtained by
them. Each metric compare a different characteristic.

Regarding the distance metrics, for example, characteristics of the solutions sets
assessed are the proximity between the solutions of the sets and the solutions of the Ref set and
the distribution of the solutions throughout the set. In this case, algorithms pairs MOG x
MOVNS_I and MOG x PILS showed different characteristics to the average distance and
algorithms pairs MOG x MOVNS, MOG x MOVNS_| and MOG x PILS to the maximum
distance.

Therefore, the algorithms can present or not differences in the characteristics of their
solutions sets. The Statistical Analysis was performed to verify this.

Also, these results are based on statistical analysis considering a 5% significance level.
If another significance level smaller than p-value is used in the tests, then other algorithms pairs
could present significant difference with respect to assessed multi-objective performance
measures.



