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Abstract. This work addresses the unrelated parallel machine scheduling problem where setup
times are sequence-dependent and machine-dependent. The maximum completion time of the
schedule, known as makespan, is considered as an objective to minimize. Few studies has been
done about this problem, which is a motivation to the development of this work. Other motiva-
tions are the fact that it is NP-Hard and it is commonly found in industrial processes, like textile
manufacturing. Aiming to its resolution, an approach based on Iterated Local Search (ILS),
Greedy Randomized Adaptive Search Procedure (GRASP) and Path Relinking (PR) are pro-
posed. The construction phase of GRASP, which is used to build the initial solution, is inspired
on the Adaptive Shortest Processing Time (ASPT) heuristic. PR is applied as an intensification
strategy, after the local search. The perturbations of ILS consists in reinserting jobs from one
machine to another. The developed algorithm explores the solution space using movements
based on multiple insertions and swaps. It was tested using benchmark instances. Computa-
tional experiments showed that the results achieved by the proposed algorithm outperformed
the results of the literature, both in terms of variability and quality of solutions.
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1 INTRODUCTION

The search for efficiency in industrial processes is increasingly intensifying. This is due to
the highly competitive fostered by globalization. In order to have efficiency is essential to have
a good production planning. Increased productivity and reduced costs are the result of good
planning. Computational tools that assist the development of planning are increasingly being
used by industries.

Planning the schedule of jobs on multiple machines is a problem constantly found in the
industrial sector. The problem is to define a sequence of jobs that must be allocated in parallel
machines so that the maximum time for completion is minimized. Such machines can be con-
sidered identical and unrelated. Are said to be identical when the processing time to the same
job on another machine is identical and unrelated when the processing time to the same job on
another machine is different.

Among the various scheduling problems in parallel machines, there is the Unrelated Par-
allel Machine Scheduling Problem with Sequence Dependent Setup Times, or, from now on,
just UPMSP. This problem is characterized by containing setup times between jobs that are de-
pendent on the machine to which jobs are allocated and dependent on the sequence in which
these jobs are allocated. The objective is to minimize the maximum time of completion of the
schedule, known as makespan.

This problem has both theoretical and practical importance. Theoretical, not only because
few studies has been done about this problem, but also because it is a difficult problem that
belong to the NP-Hard class (Ravetti et al., 2007). Practical, as there are many situations where
it appears, for example, processes in the textile manufacturing (Pereira Lopes and de Carvalho,
2007).

Due to the difficulty of finding optimal solutions for UPMSP on acceptable times, the use of
heuristics to obtain quality solutions should be considered. Are found in the literature several
heuristic approaches that seek to address this problem and similar problems. These approaches
were the inspiration for this work.

This work proposes a development of a hybrid heuristic algorithm based on Iterated Local
Search – ILS (Lourenço et al., 2003) in order to obtain better quality solutions for UPMSP hav-
ing as optimization criterion the makespan. The initial solution is build with the construction
phase of Greedy Randomized Adaptive Search Procedure – GRASP (Feo and Resende, 1995).
As an intention to expand the exploration of search space, it is proposed to use the method
Variable Neighborhood Descent - VND (Mladenovic and Hansen, 1997) responsible for con-
ducting local searches in neighborhood structures. It also aims to incorporate into the algorithm
the strategy Path relinking - PR (Glover, 1996) with the objective of intensify and diversify
the search in the search space. Not only analysis of the implementation of PR strategy will be
made to understand its importance, but also comparisons of the results with those found in the
literature.

The rest of this work is structured as follows. In Section 2 articles that inspired the devel-
opment of this work are found. Section 3 contains the description of the related problem. The
Section 4 presents the methodology used for the deployment of this work. Computational re-
sults are presented in Section 5. Finally, in Section 6, this work is concluded, as well as possible
proposals to be explored are described.



2 LITERATURE REVIEW

Some authors address similar problems to UPMSP, but not taking into account the setup
times dependent on machines, only dependent on the sequence. In Weng et al. (2001) seven
heuristics are proposed with the objective of minimize the weighted mean completion time. A
similar problem is treated in Kim et al. (2003), but with common due dates, four heuristics
are implemented in order to minimize total weighted tardiness. In Logendran et al. (2007), the
authors used four dispatching rules to generate initial solutions and a Tabu Search as the basis
for developing six search algorithms, aiming to minimize the total weighted tardiness and also
considering dynamic releases of jobs and dynamic availability of machines. A Branch-and-
Price algorithm is developed in Pereira Lopes and de Carvalho (2007) trying to solve the same
problem.

Yet excluding setup times dependent of machines there is an adaptive Genetic Algorithm
in Randall and Kurz (2007) to the problem involving due dates, aiming to minimize the total
weighted tardiness. The authors represent individuals with random keys. The initial popula-
tion is randomly generated and the selection for reproduction is done randomly choosing two
individuals of the population. Four crossover operators are used: single-point crossover (SPC),
two-point crossover (TPC), uniform crossover (UC) and parametric uniform crossover (PUC).
The applications of these operators are adapted according to the evolution, and those that gen-
erate the best individuals are chosen. In each generation, 20% of the population is generated by
the elitist reproduction, 79% by the crossover and 1% by immigration.

Among the works that address the UPMSP are found more recent references. Al-Salem
(2004) address UPMSP and presents a three-phase partitioning heuristic, called PH. Rabadi
et al. (2006) implements a Metaheuristic for Randomized Priority Search (Meta-RaPS), this
metaheuristic uses a heuristic strategy that combines the construction and refinement, using
ideas that are similar to Greedy Ramdomized Adaptive Search Procedure (GRASP). In de Paula
et al. (2007) the method implemented is Variable Neighbourhood Search (VND) to solve un-
related machines problems (UPMSP) and also identical, being imposed due dates for each job
and penalties for delays in the due dates.

Arnaout et al. (2009) implements the method Ant Colony Optimization (ACO) for special
structures of the problem, where the ratio of the number of jobs and the number of machines
is large. Ying et al. (2010) proposes a restricted method of Simulated annealing (RSA) which
reduces the computational effort of the searching by eliminating job movements that wont be
effective. Fleszar et al. (2011) present a hybrid method of Variable Neighbourhood Descent
(VND) with mathematical programming.

Vallada and Ruiz (2011) tries to solve the UPMSP through Genetic Algorithms. In the al-
gorithms of these authors, the initial population is generated with one individual created by
Multiple Insertion heuristic (MI) (Kurz and Askin, 2001) and the rest of the population is ran-
domly generated. Once the population is created, local searches are applied in all individuals.
The selection for the crossover is performed by n-tournament. Crossover is made in procedures
with limited local searches. Local search based on multiple insertion movements between ma-
chines are also applied to all individuals. The selection for survival is made by the stationary
strategy, including original individuals in the population if they are better than the worst. Two
algorithms, GA1 and GA2, which differ by the parameters were tested. GA2 is the one that had
achieved the best results.



3 PROBLEM DESCRIPTION

In the unrelated parallel machine scheduling problem has a set N = {1, ..., n} of n jobs and
a set M = {1, ...,m} of m unrelated machines, with the following characteristics:

• Each job must be processed exactly once by only one machine;

• Each job j has a processing time pij which depends on the machine where i will be
allocated. By this characteristic, the machines are said to be unrelated;

• There are setup times between jobs, sijk, where i represents the machine whose job j
and k will be processed, in that order. These setup times are sequence-dependent and
machine-dependent.

The objective is to find a schedule of the n jobs in m machines in order to minimize the
maximum completion time of the schedule, called makespan or Cmax. By the characteristics
listed, the UPMSP is defined as R|Sijk|Cmax (Pinedo, 2008).

To better understand the problem, let a scheduling problem involving seven jobs and two
machines. Table 1 contains the processing times of these jobs in both machines, while in Table
2 the setup times of these jobs in these machines are showed. Figure 1 illustrates a possible
schedule for this example.

Table 1: Processing times in machines M1 and M2

1 2 3 4 5 6 7
M1 20 25 28 17 43 9 65
M2 4 21 15 32 38 23 52

Table 2: Setup times in machines M1 and M2

M1 1 2 3 4 5 6 7 M2 1 2 3 4 5 6 7
1 0 1 8 1 3 9 6 1 0 4 6 5 10 3 2
2 4 0 7 3 7 8 4 2 1 0 6 2 7 7 5
3 7 3 0 2 3 5 3 3 2 6 0 6 8 1 4
4 3 8 3 0 5 2 2 4 5 7 1 0 12 10 6
5 8 3 7 9 0 5 7 5 7 9 5 7 0 4 8
6 8 8 1 2 2 0 9 6 9 3 5 4 9 0 3
7 1 4 5 2 3 5 0 7 3 2 6 1 5 6 0

figs/repProb.pdf

Figure 1: An example of a possible schedule



In Fig. 1 is observed, for example, that job 6 is allocated in third position of machine M2
with job 4 as its predecessor and job 3 as its successor. In Table 1 is showed that job 6 has
the processing time in machine M2 (p26) equals to 23. The cross-hatched area of the figure
represents the setup times between jobs. Therefore, in this example, the times s246 = 10 and
s263 = 5 are computed by looking at Table 2. Times marked in red represents the conclusion
times of each machine. The conclusion time of machine M1 is 120 and of machine M2 is 130,
which results in a makespan of 130.

4 METHODOLOGY

4.1 PROPOSED ALGORITHM

In order to resolve the UPMSP, it is proposed an algorithm that combines the heuristic proce-
dures Greedy Randomized Adaptive Search Procedure (GRASP), Iterated Local Search (ILS),
Variable Neighborhood Descent (VND) and Path Relinking (PR). The construction phase of
GRASP is used to build the initial solution, VND is responsible to accomplish the ILS’s local
searches and PR is used as an intensification and diversification strategy of the searches. The
pseudocode of this algorithm, named GILSVNDPR is showed on Algorithm 1.

The Algorithm 1 initializes two solutions on line 1, as well as the set of elite solutions (line 2).
Then, on line 3, a solution using GRASP’s construction phase is created. This solution passes
through local search processes, by means of the VND procedure (line 4). With the result of
these local searches, the best known solution, until now, is updated and this solution is inserted
in elite set (lines 5-6). The iterative process is situated on lines 8 to 38 and finishes when the
stop criterion is satisfied. A copy of the current solution is made on line 9. The following loop is
responsible to control the number of times in each level of perturbation (lines 11-33), being this
number, timeslevel, received as an input of the algorithm. The next loop, lines 15 to 18, execute
the perturbations (line 17), so that the number of times the loop is executed depends on the level
of perturbation. With the perturbations accomplished, the solution obtained is evaluated on line
19. Then, it is applied the VND procedure in this solution and it is verified if the local optimum
reached, in relation to all neighborhoods adopted in VND, can be inserted in elite set (lines 20
and 21). The lines 22 to 26 controls the application of the PR procedure. On lines (27-31)
it is verified if the changes made in the solution contributed to a better quality solution. The
following subsections presents details of the proposed algorithm.

4.2 REPRESENTATION OF A SOLUTION

A solution s of the UPMSP is represented as a vector of lists. In this representation has a
vector v whose size is the number of machines, m, and each position of this vector contains
a number that represents a machine. The schedule of the jobs on each machine is represented
by a list of numbers where each number represents the jobs. For a better understanding of this
representation has the example of Fig. 2, where s represents the schedule seen in Fig. 1.

figs/rep.pdf

Figure 2: Representation as a vector of lists of the UPMSP



Algorithm 1: GILSVNDPR
Input : timeslevel, stopCriterion
Solution s, s’;1
elite← {};2
s .createGRASPSolution();3
s .VND();4
updateBest(s);5
elite .insert(s);6
level← 1;7

while stop criterion not satisfied do8
s’← s;9
times← 0;10
while times < timeslevel do11

maxperturb← level + 1;12
perturb← 0;13
s’← s;14
while perturb < maxperturb do15

perturb ++;16
s’.perturbation();17

end18
s’.evaluate();19
s’.VND();20
elite.update(s’);21
pr← random(0,1);22
if pr ≤ 0.1 ∧ elite.size ≥ 5 then23

el← random(1,5);24
PR(elite [el], s’);25

end26
if s’.fo < s.fo then27

s = s’;28
updateBest(s);29
elite.update(s);30

end31
times ++;32

end33
level ++;34
if level ≥ 4 then35

level← 1 ;36
end37

end38

4.3 EVALUATION OF A SOLUTION

A solution s has as evaluation value the processing time of the machine that will be the last
to conclude its jobs, this value is called makespan.

4.4 CREATION OF THE INITIAL SOLUTION

To build the initial solution, firstly, an understanding about the Adaptive Shortest Processing
Time (ASPT) is necessary. In this procedure, first of all, the jobs are sorted in increasing order
of processing times, that is, they are ordered with the intention to get the machine on which
the job has its shorter processing times. For other jobs, the same sort described above must
be performed, however, on machines that have already allocated jobs, should be added, to this
time, the setup times. The job is allocated on the machine that has the lowest completion time.



This allocation process ends when all jobs are assigned.
The partially greedy construction is done according to the construction phase of GRASP

heuristic, using as guide the evaluation function g of heuristic ASPT. On each iteration a Re-
stricted Candidate List (RCL) is built, containing the highest rated jobs of the Candidate List
(LC), that is, of the list of job still unallocated. The jobs j of LC are classified according to the
guide function g. Jobs j are part of the LRC if g(j) ≤ gmin + α × (gmax − gmin), where gmin

is the lowest completion time, gmax the highest completion time, and α a GRASP parameter
responsible for controlling how greedy the solution will be. Next, a job j is chosen randomly
from RCL and allocated to the associated machine. This process is repeated until all jobs are
allocated.

4.5 VARIABLE NEIGHBORHOOD DESCENT

The Variable Neighborhood Descent (VND) procedure has as a characteristic the exploration
of the space solutions through systematic exchange of neighborhood structures. Such structures
are usually associated with predefined order of application. At each iteration of the VND a local
search is performed in a neighborhood structure. At the end of this search has been the best
neighbor of the current solution in relation to this neighborhood structure. If this best neighbor
is not better than the current solution, then a new local search in the next neighborhood structure
is performed. If this best neighbor is better than the current solution, then the current solution
becomes the best neighbor and local search is restarted at the first neighborhood structure. The
procedure ends when no improvement is found in any of the adopted neighborhood.

4.6 NEIGHBORHOOD STRUCTURES

Three neighborhood structures are proposed, based on swap and insertion movements of the
jobs. These structures will be described next, in the same order as they are processed by VND.
The first neighborhood is analyzed with multiple insertions movements, which are characterized
by removing a job from a machine and insert it into a position on another machine, including the
machine to which the job was already allocated. The search in the second neighborhood is made
by swap movements of the jobs between different machines. The third and final neighborhood
is analyzed based on swap movements of the jobs on the same machine. Following, the local
searches implemented based on these movements are described.

4.7 LOCAL SEARCHES

The first local search uses multiple insertions movements with the strategy First Improve-
ment. In this search, each job of each machine is inserted in all positions of all machines. The
removals of the jobs are done on machines with higher completion times to the machines with
lower completion times. By contrast, the insertions are made from the machines with lower
completion times to machines with higher completion times. The movement is accepted if the
completion times of the machines involved are reduced. If the completion time of a machine is
reduced and the completion time of another machine is added, the movement is also accepted.
However, in this case, it is only accepted if the value of reduced time is greater than the value
of time increased. It is noteworthy that even in the absence of improvement in the value of
makespan, the movement can be accepted. Upon such acceptance of a movement, the search is
restarted and only ends when it is found a local optimum, that is, when there is no movement
that can be accepted in the neighborhood of multiple insertion.

The second local search makes swap movements between different machines. For each pair



of existing machines are made every possible swap of jobs between them. Exchanges are made
from machines that have higher completion times to machines with lower completion times.
The acceptance criteria are the same as those applied in the first local search. If there are
reductions in completion times on two machines involved, then the movement is accepted. If
the reduced value of the completion time of a machine is larger than the completion time plus
another machine, the movement is also accepted. Once a movement is accepted, the search
stops.

The third local search apply swap movements on the same machine and uses the strategy
First Improvement. For each machine all possible swaps between their jobs are made. The
order of selection of machines is from the machine that has the highest value of completion
time to the machine the has the lowest value of completion time. The movement is accepted if
the completion time of the machine is reduced. As the acceptance of the movement occurred,
the search is restarted and only ends when the local optimum is found in relation to the swap
movements on the same machine.

Evaluate an entire solution on every insertion or swap movement requires a lot of computa-
tional efforts. In order to make the local search more efficient, is used a procedure that avoids
this situation, by evaluating only the jobs environment that have been modified. Thus, some
additions and subtractions are enough to obtain the completion time of each machine.

figs/delta.pdf

Figure 3: Evaluation on insertion movement

Figure 3 illustrates this procedure for calculating the evaluation function, from an insertion
movement. This figure was developed based on Fig. 2 and data tables 1 and 2. It is seen the
withdrawal of the job 6 from machine M2 and its insertion after job 7 on machine M1. The
evaluation procedure calculates the new completion time of machine M2 subtracting from the
old value of this the processing time of job 6, p26, and also subtracting the setup times involved,
s246 and s263. It is added to the completion time of machine M2 the setup time s243. In the
machine M1, are added to the completion time, the processing time of job 6 on this machine,
p16, and the setup time s176. Because the job 7 is the last to be processed, no setup time is
required, so there is no need to subtract anything. The new completion time of machine M1 is
calculated by the equation M1 = 120 + 9 + 5 = 134 and the new completion time of machine
M2 is calculated as M2 = 130− 23− 10− 5 + 1 = 93.

It was given an example of the application of this procedure to evaluate the insertion move-
ment. When dealing with swap movements, the application of this procedure becomes trivial.

4.8 PERTUBATIONS

The perturbations consist of applying insertion movements on a local optimum. Each pertur-
bation is characterized by removing a job from a machine and inserting it into another machine.
By placing the job on another machine, it is searched for the best position for it, that is, the
job will be inserted in the position where the machine has the lowest completion time. The
choice of machines and the job is done randomly. The amount of modifications in a solution
is controlled by a “level” of perturbation, so that a given level n of perturbation consists in the



application of n+ 1 insertion movements. The maximum level allowed for the perturbations is
3, so perturbations will occur at most 4. The objective of increasing the level of perturbation is
to diversify the search and look for a better solution in a region gradually more “distant” from
that local optimum. The perturbation level only is increased after the generation of timeslevel
perturbed solutions without improving the current solution. On the other hand, whenever a bet-
ter solution is found, the perturbation back to its lowest level. The procedure used to evaluate
the solutions in local searches is also used in perturbations.

4.9 PATH RELINKING

The strategy Path relinking (PR) makes a balance between intensification and diversification
of the search. Its goal is to explore paths that connect high quality solutions. For this to be
done, these high-quality solutions are stored in a set of elite solutions. This set has two rules for
a solution to join. One solution is included in the elite set if it has a smaller value of makespan
than the value of the best solution already present in it. Also included in the elite set is the
solution that is better than the worst solution of the set, but one that satisfy the minimum level
of diversity in comparison to other elite solutions. The purpose of this second rule is to avoid
inserting, into the elite set, solutions that are very similar. In the GILSVNDPR algorithm the
maximum size of elite set is 5 and the minimum level of diversity is 10%.

The diversity between two solutions is defined as the percentage of different jobs in the same
positions. To find the percentage of diversity, a comparison between the jobs for each position
of the solution is performed. The sum of the positions that presents different jobs is then divided
by the total number of positions of the solution. The result of this division corresponds to the
percentage of diversity among the solutions evaluated.

In possession of the elite set, the paths between the high-quality solutions can be build, from
a base solution and toward a guide solution. With this finality, it is used the backward strategy.
Thus, it is considered the best solution as the base solution and the worst solution as the guide
solution. In GILSVNDPR the base solution is chosen, randomly, as one of the solutions present
in the elite set and the guide solution is the solution resulting from application of VND, that
is, a local optimum. At each iteration of the PR, a job from the base solution is inserted in
the same position that it is encountered in the guide solution. With that done, a local search is
performed with multiple insertion movements in this new solution. This procedure is repeated
until the base solution is equal to the guide solution. In GILSVNDPR, the PR is applied after
the execution of the VND, with a probability of 10% and only when the elite set has 5 solutions.

5 COMPUTATIONAL RESULTS

Computational tests were performed using a set of 360 test problems from the literature,
found in SOA (2011), involving combinations of 50, 100 and 150 jobs and 10, 15 and 20
machines. For each combination, of these, there are 40 instances. In SOA (2011) are also
provided the best values of makespan so far for these test problems.

Two algorithms were implemented, one using GRASP, ILS and VND (GILSVND) and the
other based solely on the addition of the PR procedure (GILSVNDPR). Both were developed in
C++ language. All experiments were executed in a computer with Intel Core 2 Quad 2.4 GHz
processor, 4 GB of RAM memory and in Ubuntu 10.10 operational system. The parameter used
in GILSVND and GILSVNDPR algorithms was: timeslevel = 15. The stop criterion, of both,
was the maximum time of execution Timemax, in milliseconds, obtained by Eq. 1, where m
represents the number of machines, n the number of jobs and t is the parameter received as an



input for the Algorithm 1. The parameter t was tested with three values for each instance: 10,
30 and 50. It is observed that the stop criterion, with these values of t, was the same adopted in
Vallada and Ruiz (2011).

Timemax = n× (m/2)× t ms (1)

The metric used to compare the algorithms, given by Eq. 2, has the objective to verify the
variability of final solutions produced by algorithms. In this metric, it is calculated, for each
algorithm Alg applied to a test problem i, the Relative Percentage Deviation RPDi of the found
solution f̄Alg

i in relation to the best known solution so far f ∗i . In Vallada and Ruiz (2011) the
algorithms were executed 5 times for each instance and for each value of t. In this work, the
algorithms GILSVNDPR and GILSVND were executed 30 times, for each instance and for
each value of t, calculating the average Relative Percentage Deviation RPDavg

i of the RPDi

values found.

RPDi =
f̄Alg

i − f ∗i
f ∗i

(2)

Table 3 shows, for each set of instances, the RPDavg
i for each value of t of algorithms

GILSVND, GILSVNDPR, as well as the algorithm GA2 from Vallada and Ruiz (2011). It is
noteworthy that GA2 was executed on computers with similar configurations to those used for
the tests, allowing comparisons. For each set of instances three values of RPDavg

i separated by
a ’/’ are found. This separation represents tests results where t values were changed, and the
order t = 10/30/50 is respected. Negative values indicate that the results outperformed the best
values found by Vallada and Ruiz (2011) on their experiments.

Table 3: Average Relative Percentage Deviation of the algorithms GILSVND, GILSVNDPR and GA2 with t =
10/30/50

Instances GILSVND GILSVNDPR GA2
50 x 10 3,50/2,06/1,50 -0,84/-1,51/-1,11 7,79/6,92/6,49
50 x 15 0,42/-1,09/-1,64 -3,39/-4,76/-4,22 12,25/8,92/9,20
50 x 20 -0,88/-2,14/-2,89 -2,71/-4,13/-4,95 11,08/8,04/9,57
100 x 10 5,43/3,55/2,76 0,22/-1,77/-1,24 15,72/6,76/5,54
100 x 15 2,76/0,80/-0,09 -2,60/-4,21/-4,74 22,15/8,36/7,32
100 x 20 1,16/-1,43/-2,20 -5,69/-7,35/-6,65 22,02/9,79/8,59
150 x 10 5,30/3,43/2,43 0,47/-1,59/-1,72 18,40/5,75/5,28
150 x 15 4,36/2,07/1,32 -2,07/-3,03/-3,85 24,89/8,09/6,80
150 x 20 1,75/-0,70/-1,62 -4,16/-6,24/-6,44 22,63/9,53/7,40
RPDavg 2,65/0,73/-0,05 -2,31/-3,85/-3,88 17,44/8,02/7,35

In Table 3 are highlighted in bold the best average values of RPD. As noted, the GILSVNDPR
algorithm is the one that reached the best results. Not only it wins in all sets of instances, but
also it has improved the majority of best known solutions so far. The GILSVND algorithm also
reached good results, because when compared to GA2 algorithm, it wins in all sets of instances.

The robustness of GILSVNDPR can be best seen through the boxplot (Fig. 4) that contains all
theRPDavg for each algorithm. It is observed that almost 100% of the RPD values encountered
by GILSVNDPR outperforms the best known solutions. Meanwhile, GILSVND is able to find a



little bit more than 25% of solutions that are better than the best ones. Comparing the algorithms
it is notable that the worst solutions GILSVNDPR can find are better than 50% of solutions
produced by GILSVND. The GILSVND algorithm, in its turn, has the ability to obtain, near
100%, solutions that are better than solutions obtained by GA2 algorithm. Also, it is important
to notice the lower variability of both algorithms developed.
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Figure 4: Boxplot showing the RPDavg of the algorithms

In order to validate if the differences between the average values of RPD are statistically
significant, an analysis of variance (ANOVA) was applied (Montgomery, 2007). This analysis
returned, with 95% of confidence level and threshold = 0.05, that F (2, 78) = 97.02 and
p = 2.2× 10−16. As p < threshold, exist statistical differences between the average values of
RPD.

To check where are these differences, it was used a Tukey HSD test, with 95% of confidence
level and threshold = 0.05. Table 4 contains the differences in the average values of RPD
(diff), the lower end point (lwr), the upper end point (upr) and the p-value (p) for each pair of
algorithms. It can be seen by the p-values that all algorithms are statistically different from each
other, because all p-values were less than the threshold.

Table 4: Results from Tukey HSD test

Algorithms diff lwr upr p
GILSVND-GA2 -9.828148 -12.334711 -7.321585 0.0000000

GILSVNDPR-GA2 -14.280000 -16.786563 -11.773437 0.0000000
GILSVNDPR-GILSVND -4.451852 -6.958415 -1.945289 0.0001761

By plotting the results from Tukey HSD test (Fig. 5), the statistical differences are more
perceived. The largest difference appears when comparing GILSVNDPR with GA2, where
GILSVNDPR remarkably wins. Also when making a comparison between GILSVND and
GA2 results in a better performance of GILSVND. Comparing both algorithms developed,
GILSVNDPR is the one that prevail. Thus, with a statistical basis, it can be concluded that
GILSVNDPR is the best algorithm, that is, it is the algorithm that can obtain the best solutions
for UPMSP. In addition, it can also be concluded that GILSVND is better than GA2, generating
better solutions for UPMSP.
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Figure 5: Graphical results from Tukey HSD test

Aiming on a time-based analysis of the developed algorithms, two time-to-target (TTT) plots
(Aiex et al., 2002) were created. The use of such plots are important when comparing different



algorithms or strategies for solving a problem and have been widely used as a tool for algorithm
design and comparison (Feo et al., 1994) (Ribeiro and Resende, 2011).

Two experiments were made, in the first experiment the algorithms were applied on a test
problem with 100 jobs and 20 machines, and the target was set at 5% of the known optimal
value. In the second experiment, the algorithms were applied on a test problem with 150 jobs
and 10 machines, and the target was set at 10% of the known optimal value. Both algorithms
were executed 100 times and each time the target was reached, they were stopped and the
time was stored. These times were then sorted in ascending order, so that, for each execution
i = 1, 2, ..., 100 there is a time ti and a probability pi = (i − 0.5)/100 associated. The results
of the graph ti × pi are shown in Fig. 6 for the first experiment and in Fig. 7 for the second
experiment. For a better comparison between the algorithms, their empirical probability curves
were superimposed.

Figure 6: Superimposed empirical distribution - 100 jobs and 20 machines

As expected, when analyzing the empirical probability curves (Fig. 6 and Fig. 7) the algo-
rithm with PR procedure (GILSVNDPR) prevailed over the one without it (GILSVND). Since
the run time distribution of algorithm GILSVNDPR concentrate more on the left part of the
graphs, it can be concluded that GILSVNDPR finds more quality solutions than GILSVND in
much smaller running times.

In Fig. 6, the algorithm GILSVNDPR was the first to reach the desired target, within 25
seconds and with a probability of about 100%. Also, in Fig. 7 the algorithm GILSVNDPR was
the first to reach the desired target with a probability of about 100% in 20 seconds.

In addition to validate the analysis of the empirical experiments, a probability experiment
according to Ribeiro and Rosseti (2009) was executed. Let A1 and A2 two stochastic search
algorithms applied to the same problem and let X1 and X2, be the continuous random variable
that represents the time required for algorithm A1 and A2, respectively, to find a solution as



Figure 7: Superimposed empirical distribution - 150 jobs and 10 machines

good as the given target. Ribeiro and Rosseti (2009) developed a numerical tool to calculate
the probability of the runtime of the algorithm A1 be less than or equal to the runtime of the
algorithm A2, that is, Pr(X1 ≤ X2).

This tool was used to calculate the probability mentioned for the algorithms GILSVNDPR
and GILSVND, denoted as A1 and A2, respectively. In first test problem with 100 jobs and
20 machines (Fig. 6), the computation shows that Pr(X1 ≤ X2) = 90, 58%, with an error
ε = 0.0357. In the second test problem with 150 jobs and 10 machines (Fig. 7), the computation
shows that Pr(X1 ≤ X2) = 94, 15%, with an error ε = 0.0005. In other words, for these two
computations, the chance that GILSVNDPR reaches a solution as good as the given target is
more than 90%.

6 CONCLUSIONS

This paper addressed the unrelated parallel machine scheduling problem where setup times
are sequence-dependent and machine-dependent. The desired objective was to minimize the
maximum completion time of the schedule, or makespan.

An algorithm based on Iterated Local Search was proposed with the intention to solve this
problem, the perturbations used for this algorithm consists in reinserting jobs from one machine
to another. This algorithm implements the construction phase of the Greedy Randomized Adap-
tive Search Procedure (GRASP) in order to create the initial solution and based on the Adaptive
Shortest Processing Time (ASPT) heuristic. The Variable Neighborhood Descent procedure
was used to perform the local searches, exploring the solution space with multiple insertions
and swap movements. Also were included, in this algorithm, periodic triggers of the Path Re-
linking procedure after the local searches, aiming to intensify and diversify the search.

By using sets of test problems from literature, the proposed algorithm (GILSVNDPR) was



compared to the version without the PR procedure (GILSVND), as well as to a genetic algorithm
from literature. The computational results showed that both versions of the algorithm are able
to produce better solutions than the genetic algorithm, with lower variability and setting new
lower bounds for these test problems. But, with a statistical analysis it was showed that all these
algorithms are statistically different from each other, proving that GILSVNDPR is the best one.
In addition, the importance of PR, also, could be noticed by the empirical probability test, which
showed the improvement in efficiency, because it took less time to reach the target value and
with a probability of 90%.

As future work, the algorithms will be tested on the entire set of test problems available in
SOA (2011), as well as tested on another sets of test problems available in (SchedulingResearch,
2005). Another interesting work is to analyze the importance of the solutions generated by
GRASP.
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