
Computers & Operations Research 39 (2012) 671–677
Contents lists available at ScienceDirect
Computers & Operations Research
0305-05

doi:10.1

n Corr

E-m

laura@p

boavent
journal homepage: www.elsevier.com/locate/caor
The dynamic space allocation problem: Applying hybrid GRASP and Tabu
search metaheuristics
Geiza Cristina da Silva a, Laura Bahiense b, Luiz Satoru Ochi c,n, Paulo Oswaldo Boaventura-Netto b

a Department of Statistic, Federal University of Pernambuco, Recife, Pernambuco, CEP 50.740-540, Brazil
b Production Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, CEP 21.941-972, Brazil
c Computer Science Institute, Fluminense Federal University, Niterói, Rio de Janeiro, CEP 24.210-240, Brazil
a r t i c l e i n f o

Available online 23 May 2011

Keywords:

Dynamic Space Allocation Problem

Quadratic Assignment Problem

Metaheuristics

Combinatorial optimization
48/$ - see front matter & 2011 Elsevier Ltd. A

016/j.cor.2011.05.016

esponding author. Tel.: þ55 21 26295681; fa

ail addresses: geiza.silva@gmail.com (G.C. da

ep.ufrj.br (L. Bahiense), satoru@ic.uff.br (L. Sa

u@pep.ufrj.br (P.O. Boaventura-Netto).
a b s t r a c t

This work is devoted to the Dynamic Space Allocation Problem, where project duration is divided into a

number of consecutive periods, each of them associated with a number of activities. The resources

required by the activities have to be available in the corresponding workspaces and those sitting idle

during a period have to be stored. This problem contains the Quadratic Assignment Problem (QAP) as a

particular case, which puts it in the NP-hard class. In this context, the difficulty of identifying optimal

solutions, even for instances of medium size, justifies the use of heuristic techniques. This work

proposes a construction and a hybrid algorithm (HGT) based on the GRASP and Tabu search

metaheuristics. Comparisons are presented for values obtained by HGT, pure GRASP versions, Tabu

search and literature results. Computational results show the proposed methods to be competitive in

relation to instances in the literature and to existing techniques.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The Dynamic Space Allocation Problem (DSAP) [8], quite
recent in the literature, was inspired by the need to optimize
the cost of reallocating resources when we assign activities to
workspaces and resources to work or storage spaces during a
multi-period planning horizon. The reallocation costs include
both the distances between locations and preparation costs for
moving equipment and other resources.

A given project is divided into consecutive time periods, each
involving certain activities that have to be executed. A given
resource is considered necessary during a given period when it
is related to an activity of this period and considered idle

otherwise. The place where the project is worked on is divided
into workspaces, where activities are carried out and their asso-
ciated resources are stored, and depots, where idle resources are
stored. The set of periods, with their activities and the respective
necessary and idle resources, is the project’s agenda. The objective
of the problem is to allocate the resources to spaces in such a way
as to minimize the reallocation costs over the time periods
associated with the project.

The DSAP, introduced by McKendall and Jaramillo in Ref. [8],
is related to other well-known combinatorial optimization
ll rights reserved.

x: þ55 21 26295669.

Silva),

toru Ochi),
problems: the problem of assigning activities to workspaces
(Quadratic Assignment Problem, QAP) [4,6], and the problem of
allocating activities to multiple time periods (Dynamic Facility
Layout Problem, DFLP) [10] The Static Facility Layout Problem
(SFLP) is a well-researched problem of finding positions of
departments on the plant floor in order to avoid depart-
ments overlapping and to minimizing material handling cost
(i.e., minimizing the sum of the product of the flow of materials,
distance, and transportation cost per unit per distance unit for
each pair of departments). When material flows between depart-
ments change during the planning horizon, the problem becomes
the Dynamic Facility Layout Problem (DFLP). The solution of the
DFLP is a group of layouts (one for each period), which minimizes
the sum of the material handling cost and the rearrangement cost
during the planning horizon.

Layout problems are known to be complex and are generally
NP-Hard [2]. There are several research reviews describing facility
layout problems carefully ([1,3,6]). Loiola et al. [6] dealt with
facility layout as a branch of the Quadratic Assignment Problem
(QAP), an NP-hard combinatorial optimization problem first
introduced by Koopmans and Beckmann [4] to model a facility
location problem. In this context, the objective is to find a
minimum cost assignment of facilities to locations considering
the flow of materials between facilities and the distance between
locations.

In general terms, the Dynamic Space Allocation Problem
(DSAP), addressed by this paper, can be described as follows: it
is the assigning of activities to workspaces and idle resources to

www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2011.05.016
mailto:geiza.silva@gmail.com
mailto:laura@pep.ufrj.br
mailto:satoru@ic.uff.br
mailto:boaventu@pep.ufrj.br
dx.doi.org/10.1016/j.cor.2011.05.016
dx.doi.org/10.1016/j.cor.2011.05.016

A2(1, 5) A1(6, 7) A2(1) A3(3, 4)

2, 8

Period 1

A4(2, 8) A4(2) A5(6, 9)

1, 5

Period 3

3, 4 9 2, 8, 5 6, 7, 9

3, 4 6, 7, 9 1, 5, 8 7 3, 4

Period 4

Period 2

Fig. 2. An optimal solution for the sample instance.

G.C. Silva et al. / Computers & Operations Research 39 (2012) 671–677672
storage spaces while minimizing the total distance traveled by
the resources throughout the duration of the project [8]. The
inputs of the DSAP are: the schedule of project activities and the
required resources to perform the activities, the layout of the floor
plan, the capacity of the storage spaces, and the distances
between the locations. The output is a sequence of layouts
containing the locations of the activities and their resources in
the workspaces as well as the idle resources in the storage spaces.

The DFLP consider the minimization of the distances traveled
by the materials/products during the planning horizon. The DFLP
is related to the DSAP, since the departments require spaces
(workspaces) to produce a product, and the materials (which can
be considered as resources) travel from department to depart-
ment. In the DFLP, the facility layout is redesigned every time a
change in the flow pattern (i.e., for each period) occurs (e.g., a new
product mix is required). Each period considers the relocation of
the departments (e.g., old departments, new departments, or
modified departments). That is, for each period, there exists a
new set of activities requiring resources. Each of the new
activities (departments) is allocated to a workspace such that
total cost (i.e., the sum of the material handling costs and the
relocation costs) is minimized. Therefore, the DSAP generalizes
the DFLP and since DFLP is NP-hard, so is the DSAP.

Fig. 1 shows a small DSAP instance, where the agenda has four
periods, five activities and nine resources. The space layout has
three workspaces (W1 to W3), along with three depots (D1 to D3).
This type of layout, with the rows of workspaces and depots
alongside each other, is considered in every instance of the
literature. The Manhattan distance metric is used in determining
distances. Each space can receive up to three resources. Lastly, in
all instances we found in the literature, the resource requirements
of an activity spanning multiple periods do not change from one
period to another, although in some practical applications an
activity can require a different set of resources for each period.
Fig. 1 shows this situation.

For a given solution to be considered feasible, the following
conditions must be met:
1.
 During a given period, exactly one activity can be carried out
in a workspace.
2.
 At any time, a given activity is always carried out in the same
workspace.
3.
 The capacity of a workspace must be sufficient to contain the
resources required by its activity.
4.
 The depot capacities also have to be respected.

Fig. 2 shows an optimal solution of cost 13 for this instance,
found using Cplex.

During period 1, resources 1 and 5, used by activity A2, were
allocated to workspace W1 and resources 6 and 7, used by activity
A1, were allocated to workspace W3, while the idle resources
Period Activities
(Necessary resources)

Idle resources

1 A1 (6,7)
A2 (1,5)

2,3,4,8,9

2 A2 (1)
A3 (3,4)

2,5,6,7,8,9

3 A4 (2,8) 1,3,4,5,6,7,9

4 A4 (2)
A5 (6,9)

1,3,4,5,7,8

W1 W2 W3
D1 D2 D3

Fig. 1. A small DSAP instance: agenda and space layout.
2 and 8, 3 and 4 and 9 were allocated to depots D1, D2 and D3,
respectively, as shown in the figure. The first period is free of
traveling cost by convention.

During period 2, the resources for A1 become idle and are
allocated to D3, covering one distance unit. At the same time, A3 is
allocated to W2, which means that its resources 3 and 4 have to
come from D2 (one distance unit). Besides, resource 5 of activity A2 is
made idle in this period, and is allocated to D1 (one distance unit).
The subtotal distance thus equals (2 resources�1 unit distanceþ2
resources�1 unit distanceþ1 resource�1 unit distance)¼5.

The third period finds only A4 being carried out at W1, where
A2 is deactivated, with its resources going to W3 (one distance
unit). Consequently, resources 2 and 8 travel from D1 to W3, and
resource 1 moves in the opposite direction. The subtotal distance
thus equals (2 resources�1 unit distanceþ2 resources�1 unit
distanceþ1 resource�1 unit distance)¼5.

Lastly, period 4 has activity A4 continuing to be executed
(in W1) requiring only resource 2, making idle resource 8 (one
distance unit), while activity A5 is carried out in W3, receiving its
resources from D3 (one distance unit). The subtotal distance
thus equals (1 resource�1 unit distanceþ2 resources�1 unit
distance)¼3.

The sum of the distances traveled by all resources is 13, which
is equal to the optimal problem solution value.

In this paper, we present a construction algorithm and a
hybrid heuristic based on GRASP (greedy randomized adaptive
search procedure) and Tabu search metaheuristics, in order to
obtain near-optimal solutions for the DSAP. Section 2 contains a
brief review of the literature and a mathematical formulation is
presented in Section 3. Section 4 presents the proposed heuristics
and Section 5 shows the computational results obtained using a
set of test problems taken from the literature. Section 6 provides
conclusions and suggestions for future research.
2. Brief review of the literature

The DSAP is a recently formulated problem for which there are
few contributions in the literature. It was proposed by McKendall
et al. [7], which associated it with the minimization of costs for
transporting given resources such as equipment, tools and repla-
cement parts, in situations encountered during maintenance
operations at nuclear power plants. These costs have been
frequently associated, in theoretical instances, with the distances
traversed by the resources. The authors presented a mathematical
formulation for exact resolution and two heuristic algorithms
based on simulated annealing.

McKendall Jr. and Jaramillo [8] presented five construction
algorithms and a Tabu search strategy (Tabu I). A new constraint
was added to the formulation to keep the idle resources that
remain idle for consecutive time periods in the same location, a
reasonable assumption that reduces the search space. Tabu I keeps
two tabu lists, one for displacements of activities and the other for
movements of resources. At each iteration, the best movement is
chosen and the resulting solution becomes the current one for the

G.C. Silva et al. / Computers & Operations Research 39 (2012) 671–677 673
next iteration. Comparison with previously used methods showed
that combining the construction algorithms with Tabu I give better
results, both in solution quality and computing time.

In Ref. [9], a modified mathematical formulation and three
Tabu-type algorithms are proposed. The mathematical formulation
has objective function and constraints modified in order to consider
the costs of transporting and loading/unloading resources in different
locations during the time horizon. These modifications make the new
instances very different from those ones proposed with the first
formulation. Moreover, they did not present in Ref. [9] new instances
that are capable of taking advantage of the model generalization.

The first Tabu algorithm, Tabu II, is a simple tabu search, which
differs from Tabu I in terms of the individual manipulation of idle
resources.

The second heuristic algorithm, Tabu III, recalculates the sizes
of the tabu lists at each iteration and uses intensification and
diversification strategies. The diversification is guided by evalua-
tion functions for inefficient movements of activities and idle
resources. A modified objective function based on these functions
is used to evaluate these movements. The intensification strategy
consists in not allowing movements yielding reduction percen-
tiles over a threshold value.

The third heuristic algorithm, Tabu IV, is similar to Tabu II but
evaluates and orders every possible movement, with the best
ones M being selected to create a candidate movement list (CML).
The first CML member is then accepted with probability p. If it is
accepted, the resulting solution becomes current for the next
iteration. Otherwise, the same strategy is applied to the next
movement, and so on, until a movement is selected. If the strategy
fails, the best CML movement is chosen. Computational results
show the second heuristic algorithm as the best among those
compared in the paper.
3. Mathematical formulation

The formal DSAP definition considers the following parameters
and indexes:

Indexes:
J¼set of activities (j¼1, 2, y, 9J9);
R¼set of resources (r¼1, 2, y, 9R9);
P¼set of periods (p¼1, 2, y, 9P9);
N¼total location number (workspaces and depots);
L¼ location set, 9L9¼N (k, l¼1, 2, y, N);
W¼workspace set, WCL (wAW);
S¼depot set, SCL (sAS) and W[S¼L;
Rjp¼set of resources required by activity j in period p;
Ip¼set of idle resources during period p;
Ap¼set of activities in period p.
Parameters:
dkl¼distance between locations k and l;
Cs¼capacity of depot s.
Our decision variables are xrkp which equals 1 if the resource r

is assigned to the location k in period p, and 0 otherwise, and yjw

which equals 1 if the activity j is assigned to the workspace w, and
0 otherwise. The mathematical formulation proposed in Ref. [7],
modified in order to consider the generalized situation where the
resource requirements of an activity spanning multiple periods
can change from one period to another, is presented below

Minimize:

X9R9

r ¼ 1

XN

k ¼ 1

XN

l ¼ 1

X9P9�1

p ¼ 1
dklxrkpxrlpþ1 ð1Þ
subject to:
X

sAS
xrsp ¼ 1,8rA Ip,8pAP, ð2Þ

X
rA Ip

xrsprCs,8sAS,8pAP, ð3Þ

X
wAW

yjw ¼ 1, 8jA J, ð4Þ

X
jAAp

yjwr1,8wAW ,8pAP, ð5Þ

X
rARjp

xrwp ¼ 9Rjp9yjw,8jAAp,8wAW ,8pAP, ð6Þ

xrkp ¼ 0 or 1,8rAR,8kAL,8pAP, ð7Þ

yjw ¼ 0 or 1,8jA J,8wAW : ð8Þ

The objective function (1) minimizes the distance traveled by the
resources over the project time periods. Constraints (2) guarantee
that every idle resource in each period will be assigned to a single
depot and constraints (3) make sure that depot capacity is respected
throughout each period. Constraints (4) and (5) specify, respectively,
that every activity be assigned to a single workspace and that every
workspace have at most one assigned activity. Constraints (6)
guarantee that every resource required by a given activity in each
period is assigned to the same workspace where this activity is
going on. Finally, constraints (7) and (8) state that the decision
variables are binary.

The addition of index p to the required resources set of activity
j, in order to define Rjp instead of Rj, made the model capable of
dealing with the situation where an activity j requires different
sets of resources in consecutive periods. Trough this little change
the model became more general and the solution methodologies
were not affected by this adjustment.

This formulation is clearly quadratic, but it can be linearized
by substituting expression (1a) for (1), where zrklp,pþ1 is a binary
decision variable. Additionally, constraints (9–11) have to be
included [7]

X9R9

r ¼ 1

XN

k ¼ 1

XN

l ¼ 1

X9P9�1

p ¼ 1
dklzrklp,pþ1 ð1aÞ

xrkpþxrlpþ1�1rzrklp,pþ1,8rAR,8k,lAL,lak,8pAP, ð9Þ

xrkpþxrlpþ1Z2zrklp,pþ1,8rAR,8k,lAL,lak,8pAP, ð10Þ

zrklp,pþ1 ¼ 0 or 1,8rAR,8k,lAL,lak,8pAP: ð11Þ

4. Proposed heuristic algorithms

This work presents a construction algorithm and a hybrid
heuristic based on GRASP and Tabu search metaheuristics, together
with the isolated implementation of these two methods. These
algorithms have achieved good results for a number of combinator-
ial optimization problems [8,9] and the combination of their ideas in
hybrid heuristics have been fruitful for difficult problems such
as QAP.

4.1. The construction algorithm

The construction algorithm proposed here has two phases. The
first one aims to allocate activities to workspaces and, in the
second one, idle resources are assigned to depots. In the first phase,
we consider the set J of activities and the set W of workspaces.
At each iteration, an initial candidate list (ICL) is drawn up of the
best results to be considered for inclusion in the solution.

A2(1, 5) A1(6, 7) A2(1) A3(3, 4)

8 6, 7, 9

Period 1

A4(2, 8) A4(2) A5(6, 9)

3, 5 1, 4 3, 5, 8 1, 4

Period 3

3, 4, 2 9 8, 5 2

6, 7, 9 7

Period 2

Period 4

Fig. 4. Interchange and relocation move in NR for the sample instance.

G.C. Silva et al. / Computers & Operations Research 39 (2012) 671–677674
In the first phase, each feasible solution is iteratively constructed
as follows. First, an activity aAJ is randomly associated with a
workspace. At each iteration, a restricted list of candidates (RLC) is
obtained from the remaining ICL, and an activity-workspace pair is
randomly chosen from RLC and included in the solution. ICL contains
the activity not yet assigned, paired with the available workspaces.
For each pair, the insertion cost in the partial solution is calculated.
ICL is then sorted in non-decreasing cost order and the first C ICL

elements are selected to compose RLC. C value is given by
a�min(n_av, 9W9), where n_av is the number of available work-
spaces and aA[0,1] is the same GRASP parameter.

The second phase is the Randomized Storage Policy (RSP)
proposed in Ref. [8] and adapted from RSP by considering the
resource assignment made in the last period, denoted by RSPA.

RSP associates idle resources to depots as follows: after
obtaining a complete activity allocation, each idle resource is
allocated to the depot nearest to the activity requiring it. The first
idle resources to be allocated are those first called up for use. In
addition, a resource that will remain idle during the remaining
periods will be allocated to the depot nearest to the workspace
where the activity which last used it was allocated.

In the first period, RSPA initializes the allocation of idle
resources to depots as in RSP but, in the sequence, the allocation
from the previous period is considered when making a new
allocation. Then, if a given resource remains idle, its previous
allocation is maintained for the new period. The remaining idle
resources are allocated as in RSP.
4.2. Neighborhood structures

Once a feasible solution s is available, two natural neighbor-
hood structures proposed in Ref. [7] are used:
�
 NA(s) is related to the assignment of activities in s, and

�
 NR(s) is related to the assignment of idle resources in s.
When considering the neighborhood NA(s), an interchange

move changes the workspaces of two activities in one or more
periods, and a relocation move removes an activity from a work-
space and reassigns it to an available (empty) location.

Fig. 3 illustrates, and highlights in bold, an interchange move and
a relocation move in the neighborhood NA(s), based on the example
presented in Fig. 2. The interchange move occurs at period 1, where
activities A1 and A2 have their workspaces interchanged: A1 changes
from workspace W3 to workspace W1 and A2 changes from W3 to
W1, always satisfying the feasibility conditions presented before. The
relocation move occurs at period 4, where activity A5 is removed
from workspace W3 and it is relocated to workspace W2.

When considering neighborhood NR(s), an interchange move

interchanges the depots of two (or more) idle resources in all
consecutive periods where the resources remain idle. On the
other hand, a relocation move removes one idle resource from a
depot, in all consecutive periods where the resource remains idle,
A1(6, 7) A2(1, 5) A3(3, 4) A2(1)

2, 8

Period 1

A4(2, 8) A4(2) A5(6, 9)

1, 5

Period 3

3, 4 9 2, 8, 5 6, 7, 9

Period 2

3, 4 6, 7, 9 1, 5, 8 3, 4 7

Period 4

Fig. 3. Interchange and relocation move in NA for the sample instance.
and then reassigns it to a different depot, if the depot capacity is
not exceeded.

Fig. 4 illustrates, and highlights in bold, an interchange move
and a relocation move in the neighborhood NR(s), based on the
example presented in Fig. 2. The interchange move occurs at
consecutive periods 3 and 4, where resources 1 and 3 interchange
their respective depots. The relocation move occurs at consecu-
tive periods 1 and 2, where the idle resource 2 is reassigned from
depot D1 to depot D2.

4.3. Proposed hybrid GRASP and Tabu heuristic algorithm

In the Hybrid GRASP and Tabu heuristic algorithm (HGT), the
construction phase yields an initial solution using the construc-
tion algorithm, presented in Section 4.1. In the local search phase,
all possible activity and idle resource movements are performed
as in Section 4.2, independently of one another, in order to find
the best feasible move (either an activity or an idle resource
move). This best move is executed and the current solution is
updated. The search terminates when the current solution can no
longer be improved.

HGT uses Tabu search as an intensification step. Starting with
the current solution, the tabu algorithm executes the following
steps until a fixed given number of non-improving consecutive
iterations is achieved:
�
 Evaluate all possible movements related to activities and, for
each one, execute heuristic algorithm RSPA in order to reallo-
cate the idle resources according to the new activities matrix
obtained.
�
 Choose the best movement.

�
 Update current solution and Tabu list.

A dynamic FIFO Tabu list stores the recent moves performed in
the activity set. A movement is classified as Tabu if it belongs to the
Tabu list or if it is a reverse movement of another movement
belonging to the Tabu list. The size of the list ranges between a
lower bound li and an upper bound ls. The time during which a
given movement is considered Tabu is determined by the list size.
At the beginning, and at each Z iterations without improvement,
the new size of the list is randomly chosen inside the interval [li, ls].

An aspiration criterion allows a Tabu movement to be per-
formed if the cost of the solution yielded by the movement,
followed by the application of heuristic RSPA, is better than the
best current one.

At the end of this process, the solution is updated according to
the better value. The final result is the best solution obtained after
running a fixed number of iterations.

The main differences of our tabu search with respect to
previous ones are:
�
 The movements are made only with activities, while Refs.
[8 and 9] execute the best movement also for idle resources.
�
 The use of RSPA heuristic algorithm to yield a partial solution
for idle resources.

G.C. Silva et al. / Computers & Operations Research 39 (2012) 671–677 675
5. Computational results
The set of tested instances is available in Ref. [7]. It is composed
of 96 instances (P01 to P96) containing problems with 6, 12, 20 and
Table 1
Parameters in proposed HGT, GRASP and Tabu search.

Parameter HGT GRASP TS

GRASP iterations 20 100 –

a 1.0 1.0 –

Tabu iterations 50 TT 100

li 1:1�
ffiffiffiffiffiffi
9J9

q
TT 1:1�

ffiffiffiffiffiffi
9J9

q

ls 9W9�1�
ffiffiffiffiffiffi
9J9

q
TT 9W9�1�

ffiffiffiffiffiffi
9J9

q

Z 0.2�Tabu iterations TT 0.2�Tabu iterations

Table 2
Results of Cplex, literature, Tabu, GRASP and HGT.

Inst. Cplex CPU(Cplex) Lit. CPU(Lit) GRASP

P1 16 0.3 16 0.8 16
P2 25 0.3 25 1.0 26

P3 18 0.3 18 0.8 18
P4 25 3.5 25 0.8 26

P5 16 1.3 16 1.6 16
P6 27 5.5 27 2.1 27
P7 16 3.5 16 2.3 16
P8 31 0.9 31 1.6 31
P9 25 6.8 25 1.8 25
P10 46 19.0 46 2.1 46
P11 32 7.7 32 1.8 32
P12 41 15.0 41 2.1 43

P13 28 11.0 28 2.6 28
P14 45 18.9 45 1.8 45
P15 35 17.8 35 2.1 35
P16 49 4.5 49 1.8 49
P17 35 16.2 35 7.5 35
P18 60 62.3 60 4.9 62

P19 46 26.6 46 5.2 46
P20 60 57.8 60 4.7 63

P21 46 46.5 46 4.7 48

P22 67 103.2 67 4.7 67
P23 55 24.6 55 4.2 56

P24 74 32.6 74 3.1 74
P25 31 59,551.0 30 7.5 31
P26 43 20,663.1 42 8.3 43
P27 43 1,008.4 43 4.9 43
P28 55 582.3 54 4.4 55
P29 29 94,397.6 29 10.2 29
P30 49 27,609.2 50 8.6 49
P31 42 1,950.3 42 7.8 42
P32 69 3,716.4 66 7.3 69
P35 73 790,670.6 68 12.8 73
P36 95 57,012.0 90 117.9 95
P39 68 177,400.5 67 13.0 69

P40 108 211,216.3 104 15.1 108

Aver. 45.1 40,174.0 44.5 7.9 45.4

Heuristic HGT (ITER_GRASP, α , ITER_TABU, l i, ls,)
1. for k ← 1 until ITER_GRASP do
2. Sol ← constructionAlgorithm (α);
3. Sol ← localSearch (Sol);
4. Sol ← tabuSearch (Sol , ITER_Tabu, l i, ls,);
5 updateSolution (Sol , bestSol);
6. endfor
7. return bestSol;
end .

�

�

Fig. 5. Hybrid GRASP/Tabu algorithm.
32 locations and 9, 18, 30 and 48 resources, each one with 10, 15
and 20 periods. Half of the locations are workspaces and the other
half are depots. Each depot has a maximum capacity of three
resources, and the number of required resources per activity varies
between 1 and 3. Lastly, the number of activities ranges between 6,
for small instances, and 87, for larger instances.

In order to better evaluate the HGT algorithm, we also
implemented pure versions of GRASP and Tabu search. To obtain
pure GRASP, the tabu call was taken off the HGT algorithm, which
left Steps 1 to 3 and 5 to 7 to be executed. For pure tabu, an initial
solution was built by the algorithm described in Section 4.1 with
C¼1 (greedy solution). Then, in Fig. 5, only Step 4 is considered.

All parameters involved (Table 1) in the proposed techniques
were determined with the aid of preliminary testing. The para-
meters li, ls and Z have been rounded to integers using the floor
operator. The algorithms were written in C, using the GCC 4.2.3
compiler with –O3 option. We used a computer with an Intels

Core
TM

2 Quad Processor Q6600 with 2.40 GHz, 4 Gbytes of RAM,
and the Linux 2.6.24-19 operating system.

Optimal solutions were reported in the references for 25
instances, P01�P24 and P27. We solved the formulation
described in Section 2 using Cplex 11 and, besides the previous
known optimal values, we were able to find optimal solutions to
instances P25, P26, P28, P29, P30, P31, P32, P35, P36, P39 and P40.
Surprisingly, for instances P25, P26, P28, P32, P35, P36, P39 and
P40 the best known upper bounds (heuristic algorithm solutions)
reported in Ref. [9] were smaller than the optimal solutions found
by Cplex 11.
CPU(GRASP) TS CPU(TS) HGT CPU(HGT)

0.0 16 0.0 16 0.2

0.0 26 0.0 25 0.2

0.0 18 0.0 18 0.2

0.0 26 0.0 25 0.3

0.0 16 0.0 16 0.3

0.0 27 0.0 27 0.2

0.1 16 0.0 16 0.2

0.0 31 0.0 31 0.2

0.1 25 0.0 25 0.4

0.1 46 0.0 46 0.4

0.1 32 0.0 32 0.5

0.1 43 0.0 41 0.4

0.1 28 0.0 28 0.5

0.1 45 0.0 45 0.4

0.1 35 0.0 35 0.5

0.1 49 0.0 49 0.5

0.2 35 0.1 35 0.9

0.2 62 0.1 62 0.5

0.2 46 0.1 46 0.6

0.2 63 0.0 60 0.4

0.2 48 0.0 48 0.6

0.2 67 0.0 67 0.5

0.2 56 0.1 55 0.7

0.2 74 0.0 74 0.5

0.5 31 0.2 31 1.6

0.6 43 0.1 43 1.8

0.7 43 0.1 43 1.7

0.6 55 0.1 55 1.2

0.4 29 0.1 29 1.6

0.5 49 0.2 49 1.6

0.7 42 0.2 42 2.3

0.5 69 0.1 69 1.2

2.3 73 0.4 73 4.9

1.6 95 0.2 95 3.2

2.3 69 0.4 69 4.5

1.7 108 0.2 108 3.0

0.4 45.4 0.1 45.2 1.1

G.C. Silva et al. / Computers & Operations Research 39 (2012) 671–677676
Table 2 reports the results for the instances solved by Cplex 11,
comparing the solutions and computational times for Cplex 11
and literature, GRASP, Tabu (TS) and HGT algorithms. The first
column presents the instances, the second column presents the
Table 3
Best results of literature and our proposed algorithms.

Inst. Lit_Best CPU(Lit_Best) Ou

12 Locations
P33 53 17.2 5
P34 72 20.6 7
P37 47 12.0 4

P38 77 26.6 8

P41 78 25.0 7
P42 104 20.0 10
P43 110 267.9 11
P44 137 20.8 14

P45 66 47.6 6
P46 111 39.6 11

P47 111 33.8 11

P48 169 23.7 17

Aver. 94.6 46.2 9

20 Locations
P49 45 25.3 4
P50 63 25.5 6
P51 55 24.0 5
P52 98 20.8 8
P53 49 36.2 4
P54 67 24.2 6
P55 63 22.6 6
P56 97 27.6 8
P57 67 81.2 6
P58 106 106.2 10
P59 101 96.6 9
P60 159 70.8 15
P61 82 120.5 7
P62 129 100.2 11
P63 121 68.2 11
P64 190 68.5 17
P65 105 106.5 9
P66 156 203.1 15
P67 157 119.5 14
P68 234 84.6 21
P69 112 112.5 11
P70 178 262.9 16
P71 170 176.2 16
Aver. 113.2 88.0 10

32 Locations
P72 265 128.1 24
P73 74 130.4 7
P74 97 106.2 9
P75 110 116.4 10
P76 155 80.4 14
P77 73 97.4 7
P78 101 163.2 9
P79 110 117.7 9
P80 175 87.7 16
P81 119 266.8 10
P82 176 240.8 16
P83 192 357.4 18
P84 282 247.8 26
P85 125 343.9 11
P86 192 540.5 17
P87 193 461.8 18
P88 302 342.3 27
P89 171 447.5 15
P90 262 696.7 24
P91 284 400.7 26
P92 395 1458.4 37
P93 189 770.3 17
P94 281 887.0 27
P95 318 717.2 30
P96 464 663.6 43
Aver. 204.2 405.9 19
solutions found by Cplex 11, followed in the third column by their
computational times. The fourth column presents the best solutions
found by the literature, followed by their computational times, the
sixth column presents the best solutions found by GRASP procedure,
r_Best CPU(Our_Best) Best Result

2 0.8 GRASP, TS, HGT

2 1.9 [9], GRASP, TS, HGT

8 0.4 [9]

3 0.3 [9]

8 0.9 [9] , GRASP, TS, HGT

2 0.7 GRASP, TS, HGT

0 0.7 [9], GRASP, TS, HGT

0 0.4 [9]

6 1.2 [9], GRASP, TS, HGT

6 1.1 [9]

5 0.8 [9]

1 0.5 [9]

6.1 0.8 -

4 1.2 GRASP, TS, HGT

0 1.2 GRASP, TS, HGT

3 7.8 GRASP, HGT

9 0.7 GRASP, TS, HGT

7 1.7 GRASP, TS, HGT

2 1.5 GRASP, TS, HGT

0 1.8 GRASP, TS, HGT

9 1.6 GRASP, TS, HGT

6 4.0 GRASP, TS, HGT

0 34.2 HGT

3 3.7 TS, HGT

3 2.4 GRASP, TS, HGT

4 4.4 GRASP, TS, HGT

2 3.1 TS, HGT

6 7.1 TS, HGT

5 4.9 TS, HGT

8 89.4 HGT

0 4.6 TS

5 74.5 HGT

8 33.5 GRASP, HGT

3 7.0 TS, HGT

6 14.6 TS, HGT

2 9.1 TS, HGT

6.3 15.2 -

8 52.0 GRASP, HGT

1 54.8 GRASP, TS, HGT

0 63.0 GRASP, TS, HGT

1 107.6 HGT

4 86.4 TS, HGT

0 6.4 GRASP, TS, HGT

2 11.4 TS, HGT

9 128.4 HGT

3 91.7 HGT

9 342.1 HGT

2 36.9 TS

3 330.9 HGT

6 210.1 HGT

7 367.6 HGT

7 343.4 HGT

1 419.8 HGT

6 236.6 HGT

9 720.7 HGT

3 25.2 TS

9 570.0 HGT

1 380.7 HGT

6 706.9 HGT

1 568.3 HGT

1 679.2 HGT

6 49.7 TS

1.0 272.4 –

G.C. Silva et al. / Computers & Operations Research 39 (2012) 671–677 677
followed in the seventh column by their computational times, the
eighth column presents the best solutions found by Tabu procedure,
followed in the ninth column by their computational times and
finally, the tenth column presents the best solutions found using the
HGT procedure, followed by their computational times. Best solutions
are set off in bold typeface. There are some values reported by
McKendall [9] that are lesser than those found by Cplex. They are
indicated by underlined italics. The last line in Table 2 shows the
average processing time and the average objective function values for
each algorithm. Note that the average objective function value in the
literature column is lesser than that found by Cplex.

The computer reported in Ref. [9], a Pentium IV 2.4 GHz, has an
estimated power of 4595 MFlops (http://www.activewin.com/
reviews/hardware/processors/intel/p424ghz/benchs.shtml), while
our computer has an estimated power of 44300 MFlops (http://
techgage.com/print/intel_core_2_quad_q6600). Thus, in order to
perform a fair comparison between the computational times, we
use the rate of 4595/44300 Mflops to adjust the best literature
times (fifth column of Table 2). All the computational times are
expressed in seconds.

For the 36 instances where Cplex 11 was able to find the
optimal solution, Tabu and GRASP procedures achieved the
optimum value in 28 of them. HGT algorithm was able to get to
the optimum with 33 instances. For the remaining suboptimal
solutions, the maximum gap was 5.0%.

Table 3 shows the comparison between the best solution
achieved by our Tabu, GRASP and HGT algorithms and the best
results reported in Ref. [9], for the 60 instances where the optimal
value is not known, i.e., P33, P34, P37, P38 and from P41 to P96.
The first column shows the instance, the second column shows the
best solution reported in Ref. [9], followed in the third column by
its computational time. The fourth column shows the best cost
obtained by the proposed algorithm, followed by its time, in the
fifth. Finally, the sixth column indicates the algorithms that
obtained this result. Lines Aver. in Table 3 show the average
processing time and the average objective function values for
each algorithm. All the computational times are expressed in
seconds.

The GRASP algorithm proposed in this work was able to improve
the known upper bounds 49 times, tied 2 times and decreased the
best known upper bound, for instance in P62 by 12.4%. The
maximum gap was 7.8%, also for P38. It yields, on average, solutions
with a cost 1.6% less than the best known values from the literature.

The Tabu algorithm proposed in this work yielded the best
solutions in 48 instances, where the average gap reduction was
4.0% and the greatest reduction was 13.2%, for instance in P62. In
four other instances, Tabu had the same performance as the best
algorithm in the literature and, in the remaining 11 instances, the
maximum gap was 7.8%, for P38.

Our proposed HGT algorithm was able to obtain lower cost
solutions for 50 instances and to tie with the best algorithm in the
literature in four instances. The average improvement obtained in
the objective function was by 4.7%.

Considering all the 96 instances, the average percentual
deviations from algorithms GRASP, TS and HGT to the best known
solution was of 1.6, 2.2 and 2.8, respectively. Moreover, the
optimal or best known solution was found for 79 instances by
GRASP, for 80 instances by TS, for 86 instances by HGT, while the
literature algorithm has found it only in 37 cases.

We can observe that, concerning time, Tabu search is more
efficient than GRASP and HGT. On the average, nevertheless, these
two algorithms are faster than those in the literature.
6. Conclusions and future work

The DSAP problem, relatively new in the literature, can model
many important real-life problems where rearranging resources is a
difficult or expensive task. It is also significant due to its relations
with three well known hard combinatorial problems: QAP and DFLP.

A new hybrid heuristic (HGT), based on GRASP and Tabu
search, was proposed in this paper. In order to verify its efficiency,
the computational results obtained were compared against the
pure GRASP and Tabu search heuristics. The hybrid algorithm was
able, on average, to yield solutions with better costs than the best
solutions produced by GRASP or Tabu search.

When comparing the GRASP and the Tabu search algorithms,
the latter was found to be the most efficient for the chosen
parameters, both in processing time and in the quality of the
solutions generated. We believe that GRASP can be improved
through a more in-depth study of a value [12] or by using a
reactive strategy, as was done with other problems of high
complexity, as in Ref. [11].

It is important to note that, by using Cplex 11 over a previously
defined formulation, we were able to correct the upper bounds
P25, P26, P28, P32, P35, P36, P39 and P40, which are incorrectly
presented in the literature. We were also able to solve to
optimality some open instances.

As directions for future research we would suggest:
�
 Expanding this problem, merging it with the Resource Con-
strained Project Scheduling problem, in order to embrace other
business problems;

�
 Testing other heuristic procedures, like variable neighborhood

search (VNS), iterative local search (ILS) and hybrid versions
using these metaheuristics.
Acknowledgements

We are grateful to CNPq/CT-Info and Universal, CAPES, FAPEMIG
and FAPERJ for their support of this work.

References

[1] Drira A, Pierreval H, Hajri-Gabouj S. Facility layout problems: a survey.
Annual Reviews in Control 2007;31:255–67.

[2] Garey MR, Johnson DS. Computers and intractability: A guide to the theory of
NP-completeness. New York: WH Freeman; 1979.

[3] Gu J, Goetschalckx M, McGinnis LF. Research on warehouse operation: a
comprehensive review. European Journal of Operational Research 2007;177:
1–21.

[4] Koopmans TC, Beckmann M. Assignment problems and the location of
economic activities. Econometrica 1957;25:53–76.

[6] Loiola EM, NMMA Abreu, Boaventura-Netto PO, Hahn P, Querido TM.
A survey for the quadratic assignment problem. European Journal of Opera-
tional Research 2007;176:657–90.

[7] McKendall Jr A, Noble J, Klein C. Simulated annealing heuristics for managing
resources during planned outages at electric power plants. Computers &
Operations Research 2005;32:107–25.

[8] McKendall Jr A, Jaramillo J. A tabu search heuristic for the dynamic space
allocation problem. Computers & Operations Research 2006;33:768–89.

[9] McKendall Jr A. Improved tabu search heuristic for the dynamic space
allocation problem. Computers & Operations Research 2008;35:3347–59.

[10] Rosenblatt MJ. The dynamics of plant layout. Management Science 1986;32:
76–86.

[11] Silva GC, Andrade MRQ, Ochi LS, Martins SL, Plastino A. New heuristics for the
maximum diversity problem. Journal of Heuristics 2007;13:315–36.

[12] Resende MGC. Metaheuristic hybridization with Greedy Randomized Adap-
tive Search Procedures. In: Chen Zhi-Long, Raghavan S, editors. TutORials in
Operations Research. INFORMS; 2008. p. 295–319.

http://www.activewin.com/reviews/hardware/processors/intel/p424ghz/benchs.shtml
http://www.activewin.com/reviews/hardware/processors/intel/p424ghz/benchs.shtml
http://techgage.com/print/intel_core_2_quad_q6600
http://techgage.com/print/intel_core_2_quad_q6600

	The dynamic space allocation problem: Applying hybrid GRASP and Tabu search metaheuristics
	Introduction
	Brief review of the literature
	Mathematical formulation
	Proposed heuristic algorithms
	The construction algorithm
	Neighborhood structures
	Proposed hybrid GRASP and Tabu heuristic algorithm

	Computational results
	Conclusions and future work
	Acknowledgements
	References

