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Abstract

This work addresses the problem of assigning preventive maintenance jobs in a 52-week planning horizon. Given
a set of machines that need preventive maintenance, a set of maintenance jobs in these machines, a set of work
teams, and a planning horizon, the problem consists of assigning each job to a work team in a given instant of the
planning horizon, aiming to minimize the cost with work teams and the cost of performing the unscheduled jobs
using outsourced teams. We propose an Iterated Local Search (ILS)-based algorithm specialized for this problem.
Using real instances, the ILS algorithm achieved the best results in 81% of the instances, outperforming literature
algorithms. However, these algorithms only treat the deterministic version of the problem and do not consider the
uncertainty in the job duration that may occur in an industry environment. Not considering this aspect can produce
an inefficient schedule with many unscheduled jobs. So, this work also proposes a simheuristic-based algorithm
(SIM-ILS) capable of capturing this issue. We tested it in three scenarios, which differ in the level of uncertainty
regarding the job duration, and compared their results with those provided by the stochastically evaluated ILS
solutions. SIM-ILS found the best solution in 61% of the tests. Therefore, the SIM-ILS can be used to support
decision-making in different industrial environments, from environments with low variability in job duration to
those with high variability.

Keywords: Long-term preventive maintenance scheduling; Iterated Local Search; Variable Neighborhood Descent; Metaheuris-
tics; Dispatching rules; Simheuristic.
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1. Introduction

Maintenance planning and control are crucial for the industrial sector as they ensure the availability of
assets (e.g., machines such as trucks, belt conveyors, and crushers in the mining industry context) at
the lowest possible cost. There are two types of maintenance: corrective and preventive. In corrective
maintenance, the aim is to correct an asset’s failure. On the other hand, preventive maintenance is a
scheduled intervention according to the manufacturer’s recommendations or the maintenance teams’
experience to minimize the probability of assets failing (Viana, 2022).

Industries such as mining, metallurgy, and automotive use a Computerized Maintenance Manage-
ment System (CMMS) to manage maintenance jobs. This system centralizes information and controls
all maintenance operations. The maintenance plans of the assets are registered in it, containing the in-
formation related to the preventive maintenance that must be scheduled, its periodicity, duration, and the
skill that each team needs to perform the maintenance jobs.

The data extracted from the CMMS enables the creation of a long-term plan known in the industry as
a 52-week maintenance plan. This plan is used as a planning tool, allowing the company to anticipate the
material and workforce needs required to perform preventive maintenance. If the industry’s workforce
is insufficient to perform all the maintenance jobs, the industry can plan to hire external teams to carry
them out. This annual planning is, therefore, important to ensure that all preventive maintenance jobs
are carried out on time to reduce the probability of failure and increase asset life. In addition, it allows
maintenance teams to be planned in advance, ensuring that the work teams with the skills required for
performing each maintenance job are available when needed.

However, treating the problem of assigning preventive maintenance jobs for a 52-week plan, called
the Long-Term Preventive Maintenance Scheduling Problem (LTPMSP), is challenging. This problem,
introduced by Aquino et al. (2018a,b) for a mining company, is NP-hard. In the company used as a
case study for this problem, the CMMS only lists the maintenance jobs to be performed on the assets
for the coming year, typically around 30,000 jobs in 1,000 assets for a single operating unit, with their
respective characteristics (such as durations, execution windows, and skills required to perform them). It
does not consider the availability and skills of the maintenance teams, nor does it suggest the scheduling
of these jobs. When receiving such jobs, the maintenance team manager manually sequences them. As a
result of this manual work, the company is only able, with its own staff, to carry out far fewer jobs than
expected. Therefore, to maintain production and minimize the occurrence of asset failures, the company
hires outsourced teams, which increases operating costs.

On the other hand, uncertainty is present in industrial environments. Not considering it can produce an
inefficient schedule with many unscheduled jobs. Despite this, we did not find any study that considered
this characteristic in the literature review of the LTPMSP.

One of the most popular methods for dealing with uncertainties in stochastic optimization problems
is the simheuristic (Juan et al., 2022). This method combines simulation and metaheuristic procedures
and has been used successfully in various stochastic optimization problems (Kizys et al., 2022; Keenan
et al., 2021; Santos et al., 2020; Panadero et al., 2020; Rabe et al., 2020; Gonzélez-Neira et al., 2019;
Guimarans et al., 2018; Juan et al., 2014). On the other hand, the Iterated Local Search (ILS) (Lourenco
et al., 2019) is one of the metaheuristics with many successful applications in various deterministic or
stochastic optimization problems, such as those presented by Ferone et al. (2020), Cunha et al. (2020),
Guimarans et al. (2018), and Hatami et al. (2018).
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So, to fill this gap in the study of the stochastic version of the LTPMSP, this work proposes a
simheuristic-based algorithm to treat it considering the uncertainty in the duration of maintenance jobs.
This proposal is justified because humans carry out these jobs, and therefore, there is variability in the
time taken to complete these jobs, which depends on the work team and also on the operating environ-
ment. The proposed algorithm combines Monte Carlo Simulation (MCS) and an ILS-based algorithm.
As shown in the results, it produces high-quality solutions for the LTPMSP with uncertainty in the du-
ration of the maintenance jobs. As it adapts to different industrial scenarios, it can be incorporated into
a decision support system to support the development of the 52-week maintenance plan. Another contri-
bution of our work is the introduction of a new algorithm for determining the start times of maintenance
jobs. We show that it is more efficient than the one proposed by Aquino et al. (2019). Finally, we also
introduce a new constructive algorithm, which is an ensemble of dispatching rules. This algorithm auto-
matically applies several dispatching rules, each prioritizing a specific optimization criterion, and returns
the best of the generated schedules.

The remainder of this article is organized as follows. Section 2 presents a literature review of the
problem. Section 3 describes the problem in detail. The proposed algorithms are presented in Section 4.
Section 5 reports the results of the computational experiments. Finally, Section 6 concludes this study
and suggests directions for future work.

2. Literature review

This section reviews studies on job maintenance (Section 2.1) and simulation techniques for dealing with
uncertainties in optimization problems (Section 2.2).

2.1. Review on maintenance management

Although there are many studies on maintenance management, preventive maintenance scheduling prob-
lems are still little explored in the literature. Among these, some studies focus on solving generic main-
tenance problems, and others on applications in specific industries. As an example for the first case,
Mena et al. (2021) deal with the preventive maintenance planning of a single machine in a medium-term
planning horizon. In this problem, there are time window tolerances for advancing or delaying the ex-
ecution of the maintenance jobs. To solve the problem, the authors introduced a Mixed-Integer Linear
Programming (MILP) formulation. This formulation determines the scheduling of the maintenance jobs
to minimize the number of stoppages needed to meet a preventive maintenance policy that guarantees
adequate equipment availability.

In the energy industry, there are studies such as those by Saraiva et al. (2011), Almakhlafi and Knowles
(2015), Gu et al. (2023), and Ruiz-Rodriguez et al. (2024). Saraiva et al. (2011) deal with the generator
maintenance scheduling of a system with 29 generator sets. The study considers long-term planning to
minimize the generation cost to supply the expected demand over a scheduling period. They developed
a MILP formulation to represent the problem. Using a fictitious, high-cost generator, they penalize the
energy not supplied in a period by all the other generators. As a method of solving the problem, they
applied a Simulated Annealing-based algorithm. In Almakhlafi and Knowles (2015), an ILS-based algo-
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rithm was developed to treat a variant of the preventive maintenance scheduling problem, the generator
maintenance scheduling problem. Gu et al. (2023) participated in a challenge to solve the maintenance
job scheduling problem proposed by Europe’s largest electricity transmission operator, Réseau de Trans-
port d’Electricité. The authors proposed an ILS-based algorithm with two perturbation levels to treat
large-scale instances of the problem. The objective is to minimize the risk of not carrying out mainte-
nance. Ruiz-Rodriguez et al. (2024) study a maintenance scheduling problem that aims to keep machines
in operation at all times based on knowledge of their failure distribution and the time work teams con-
sume to repair them. The authors consider uncertainty in the distribution of machine failures and the
repair duration. They also consider that each work team can perform maintenance on any machine. The
goal is to increase machines’ uptime and reduce the average repair duration.

Viveros et al. (2021) and Ertem et al. (2022) present applications to the chemical industry. In Viveros
et al. (2021), the authors address the maintenance planning problem in wastewater treatment plants. The
goal is to minimize planned interruptions, fixed maintenance costs, and system downtime while improv-
ing cost efficiency and quality requirements. They introduced a MILP formulation to solve the problem.
Ertem et al. (2022) deal with a workers-constrained shutdown maintenance scheduling with skills’ flex-
ibility. The authors proposed two MILP formulations and two constructive heuristic algorithms. A case
study of the cement industry was used to validate the methods.

In the mining industry, we highlight the studies by Aquino et al. (2019) and Andrade et al. (2024).
Aquino et al. (2019) developed a mathematical model to solve small-scale instances of the LTPMSP and
metaheuristic algorithms to treat larger instances. These heuristic algorithms start from a random initial
solution and use a job assignment procedure that starts assignments from the beginning of each job’s time
window. They considered instances with up to 33484 jobs, 1286 machines, and 263 work teams. Later,
in Andrade et al. (2024), the authors proposed two new mathematical formulations and a GRASP-based
algorithm for the LTPMSP. The first formulation uses time-indexed variables, and the second combines
time-indexed variables with precedence variables. With these new formulations, obtaining seven optimal
solutions not yet known in medium-scale instances was possible. GRASP outperforms the methods of
Aquino et al. (2019) on medium- and large-scale instances.

Although some studies mentioned above deal with maintenance job scheduling problems, only the
last two studies consider specific characteristics of LTPMSP simultaneously, such as maintenance job
time windows, assignment of work teams to maintenance jobs, the skill required of the work team to
execute a maintenance job, the cost for using a work team, the cost for not scheduling a maintenance
job, and the maximum instant of availability of the work team. However, these two studies only treat
the deterministic version of the problem and do not consider the uncertainty in the job duration that may
occur in an industry environment. Not considering this aspect can produce an inefficient schedule with
many unscheduled jobs.

Table 1 summarizes the main characteristics of our proposal with those of the previously reviewed
studies for maintenance scheduling problems, focusing on the planning horizon, the objective functions,
and the solution methods.
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Table 1: Summarizing the main characteristics of our proposal in comparison with the reviewed studies.

Works Planning horizon Objective functions Solution methods
Short Medium Long [I] [2] [3] [4] [5] Exact Constructive Metaheuristics Simheuristics

Saraiva et al. (2011) - - v v v

Almakhlafi and Knowles (2015) - - v - v v - v

Aquino et al. (2019) - - v v/ - v v

Woller and Kulich (2021) - v v - - -/ - v

Viveros et al. (2021) v - - /7 v o v .

Mena et al. (2021) - v - v o v v -

Ertem et al. (2022) v - - - v v v -

Gu et al. (2023) - - v - -V v v
Ruiz-Rodriguez et al. (2024) v - - 7 - . v .

Andrade et al. (2024) - - v v v v v v -
Our proposal - - v v v - v v v

Legend:
[1]: More than one work team; [2]: More than one asset; [3]: Cost for unscheduled jobs; [4]: Downtime; [5]: System reliability

Of the studies presented above, only Ruiz-Rodriguez et al. (2024) consider uncertainty in the input
data of the maintenance planning problem. However, they address an operational problem that aims
to keep machines running at all times. They do not consider the number of work teams to schedule
maintenance jobs. Their study also does not consider that the machines may require different team skills
to perform the maintenance.

2.2. Review on simulation techniques

As stated previously, simulation techniques have been used successfully to deal with uncertainty in
the input data of several optimization problems. Juan et al. (2022) present an introductory tutorial on
the concept of simheuristics and show applications in various sectors, such as manufacturing, services,
transport, telecommunications, and insurance. Next, we analyze some studies that used this technique
in other optimization problems. We aim to verify which metaheuristics are usually employed within a
simheuristic framework.

Guimarans et al. (2018) address the two-dimensional vehicle routing problem where customers’ de-
mands are composed of sets of non-stackable items and travel times are stochastic. The authors pro-
posed a simheuristic algorithm that combines Monte Carlo simulation, iterated local search, and biased-
randomized routing and packing heuristics.

Santos et al. (2020) seek to determine the appropriate number of active equipment in an iron ore
crusher circuit to ensure efficiency and production rate. They developed a decision support system that
applies an ILS-based simheuristic to achieve the objectives of the problem. This system uses a simulated
plant model to evaluate the production rate. They used real production scenarios from a Brazilian mine
to perform the computational experiments. The results showed that the simheuristic solutions generated
an increase in production rate of up to 9% and a reduction in energy consumption of up to 59%.

Panadero et al. (2020) applied a variable neighborhood search-based simheuristic for the project port-
folio selection problem aiming to maximize the expected net present value of the investment. Rabe et al.
(2020) developed a genetic algorithm-based simheuristic for a manufacturing system aiming to find a
configuration that minimizes the difference between the system flow factor and a target value.
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Keenan et al. (2021) deal with the time-capacitated arc routing problem with stochastic demands. The
objective is to minimize the expected time needed to serve all customers, considering the variability of
demands and service times. They proposed a simheuristic algorithm with an oscillation pattern, which
works together with a local search method to create a balance between diversification and intensification
strategies.

Kizys et al. (2022) deal with the portfolio optimization problem to minimize risk for an expected
return by assigning weights to assets. They proposed a simheuristic algorithm that integrates a variable
neighborhood search-based algorithm with Monte Carlo simulation to treat stochastic returns and noisy
covariances modeled as random variables.

Rodriguez-Espinosa et al. (2024) applied a simheuristic approach using the NSGA-II with Monte
Carlo simulation to deal with a flexible job shop problem. The problem follows the just-in-time philos-
ophy, seeking to minimize two objectives: 1) the weighted sum of the earliness and tardiness and 2) the
weighted sum of the earliness and tardiness risk.

Regarding solution methods for the maintenance scheduling problem studied by Ruiz-Rodriguez et al.
(2024), they compared genetic algorithm-based simheuristic with reinforcement learning and dispatch-
ing rules. In turn, Rabet et al. (2024) proposed a genetic algorithm-based simheuristic for a supply chain
scheduling problem.

From the literature review on solution methods using simheuristics, we realized that the most common
metaheuristics integrated into simheuristic algorithms are genetic algorithms, variable neighborhood
search, and iterated local search. Therefore, our proposal for developing an ILS-based algorithm for
the LTPMSP aligns with that of the simheuristic research community. Furthermore, the LTPMSP is a
scheduling problem, and this solution method has proven efficient in dealing with both deterministic and
stochastic versions of this type of problem.

3. Long-term maintenance scheduling problem

We describe below the sets, input parameters, indexes, decision variables, and the mixed-integer linear
programming model proposed by Aquino et al. (2019) to represent the problem under study.

* Sets:
&: Set of industrial machines that will undergo preventive maintenance jobs;
T: Set of preventive maintenance jobs to be performed on the set of machines;
W: Set of maintenance teams available to execute maintenance jobs.
* Indexes:
i, 7: Indexes for maintenance jobs;
k: Index for work teams.
* Input parameters:
@: Number of industrial machines, i.e, Q = |£];
N': Number of preventive maintenance jobs, i.e., N = |T|;
M: Number of work teams, i.e., M = |W|;
8;: Skill required to execute maintenance job ¢ € T,
FE;: Start of the maintenance job execution time window ¢ € T ;
L;: End of maintenance job execution time window i € T
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P;: Duration of the maintenance job i € T
~g: Cost for using a work team k € W;

w;: Cost for not scheduling maintenance job i € T

&€;: Industrial machine on which maintenance job i will be executed, £; C £.
'W;: Set of maintenance teams available to execute maintenance job i, W; C W,
Hj.: Maximum instant of availability of the work team k£ € W,

T2 Set of maintenance jobs that work team k& € WV can execute, T, C T.

Decision and auxiliary variables:

xf] 1 if maintenance job i is performed immediately before maintenance j by work team k, 0 other-
wise;

Y+ 1 if maintenance job i is performed by work team k, O otherwise;

zi+ 1if work team k is used, O otherwise;

c;i¢ instant of completion of maintenance job ¢ when it is performed by work team k;

r;i;+ 1 if maintenance job i is performed immediately before maintenance j, 0 otherwise.

The problem under study can be represented through mathematical expressions (1)-(17):

min Z Yk Zk +Zwi 1-— Z Yik (D

kew ieT kewW;
> oy <1 ieT ©)
kew;
x5 = yjk JET keW; 3)
i €7 U{0N\ {4}
S al = kew (4)
JET
>oooah= Y af keW,leT ®)
i €Tk U{ON\ {1} J€TK U{ON {1}
cor =0 kew (6)
ik > cin + Py — M;(1 — k) EeW,iec Ty U{0},j€T @)
cik > (Ei + ;) yix keW,ie Ty (8)
cik < Ly keW,ie Ty 9

ke W,k eW,i€ Ty, je€ T,

) | 10)
kK, i< &i=E (

Cik’ Z Cik + Pj — M,:](l — 7”1']')

keW, kK e W,ie Tk, j € T,

o (11)
|]€;ék,,2<],8i=8j

1"
ciw < ik — Py 4 Mjrij

cik < Hy keW,ie Ty (12)
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at; €{0,1} keW,ie T, U{0},jeTp U {0} (13)
yir € {0,1} keW,ieT, U {0} (14)
2, €{0,1} kew (15)
cik >0 EeW,icTy (16)
ri; € {0,1} VieT,je€T,i<j & =E¢&, a7

In this formulation, a dummy job (0) was defined to precede the first preventive maintenance job
immediately and immediately succeed the last job performed by each work team.

The objective function (1) seeks to minimize the cost with the use of the maintenance teams of the
company and the cost of performing the unscheduled jobs using outsourced teams.

The set of constraints (2) guarantees that a maximum of one work team will perform each maintenance
job. Constraints (3) guarantee that each scheduled maintenance job will have a workforce assigned to it.
Constraints (4) guarantee that each work team will only be scheduled if it is used to perform a main-
tenance job. Constraints (5) guarantee the scheduling of the maintenance jobs performed by each work
team. Constraints (6) impose that the completion time of the fictitious maintenance job is zero for all
work teams. Constraints (7) control the completion time of maintenance job j and are only activated
when it is performed immediately after maintenance job ¢ by team k. Constraints (8) and (9) ensure
that each maintenance job is executed in its respective time window. Constraints (10) are activated when
maintenance job j immediately precedes maintenance job i in cases where both maintenance jobs con-
cern the same machine (€; = ;) and are performed by different work teams. Constraints (11) are similar
to constraints (10) when maintenance job 7 immediately precedes maintenance job j. To activate or dis-
able these constraints, the constants Mi’j and Ml’é must take on values greater than or equal to L; + P;
and L; + P;, respectively. Constraints (12) ensure that the completion time of job 7 does not exceed the
availability limit time of team k. Finally, constraints (13) to (17) define the domains of the decision and
auxiliary variables.

4. Proposed SIM-ILS algorithm

This section details the proposed algorithm and its procedures to provide a solution for the LTPMSP.
The main novelties are i) A new algorithm for determining the start times of maintenance jobs called
JPA. The development of this algorithm was necessary because the method of Aquino et al. (2019)
failed in some instances, not respecting the jobs’ time windows. Also, unlike the method of Aquino et al.
(2019), which starts the allocation of each job from the beginning of its time window, we show that
starting this allocation from the end to the beginning of its time window is more efficient; ii) A new
constructive algorithm that automatically applies several dispatching rules, each prioritizing a specific
optimization criterion, and returns the best of the generated schedules; iii) The proposed algorithm
captures the uncertainties present in the duration of maintenance jobs through a simulation procedure
that performs the stochastic evaluation of a solution using the Monte Carlo simulation method; iv) The
above procedures are embedded in an ILS-based simheuristic algorithm named SIM-ILS.

This section is organized as follows. Subsection 4.1 presents the operation of the SIM-ILS algorithm
proposed to deal with the stochastic version of the problem. The following subsections detail each of
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its procedures. Subsections 4.2 and 4.3 show how a solution is represented and evaluated. Subsection
4.4 presents the algorithm responsible for generating an initial solution. Subsections 4.5 and 4.6 present
the local search and perturbation methods. Finally, Subsection 4.7 presents the procedure for stochastic
evaluation of a solution.

4.1. SIM-ILS

The SIM-ILS algorithm proposed to deal with the stochastic version of the problem under study is based
on the classic ILS algorithm and was developed according to the ideas of the algorithms of Guimarans
et al. (2018) and Keenan et al. (2021).

The SIM-ILS starts from an initial solution built and refined, considering the deterministic version of
the problem. Next, it performs a stochastic evaluation of this solution. In the iterative loop of the SIM-
ILS algorithm, a new candidate solution is only accepted if it improves on the current solution in both
the deterministic and stochastic evaluations. At the end of this iterative loop, the pool of best solutions
found during the search is re-evaluated with a greater number of stochastic simulations. The method
returns the solution from the pool with the best stochastic evaluation.

The SIM-ILS pseudo-code is described by Algorithm 1.

Algorithm 1 initializes the time control variables and the solution pool in lines 1 and 2, respectively.
In line 3, a solution is built using Algorithm 3. In line 4, the local search RandomDescent(.), defined
by Algorithm 4, is applied to the constructed solution s. The refined solution is stored in s*. In line 5,
the stochastic cost of the solution s* is calculated using the Simulation(.) function with ng,, iterations,
described by Algorithm 6. It then enters a repeat loop in lines 7-25 until one of the stopping criteria is
met. In lines 10-24, an inner repeat loop begins. In line 12, the Shake(.) procedure is applied to shake
the solution s*, and in line 13, the perturbed solution s’ is refined using the RandomDescent(.) local
search. The deterministic cost of the refined solution s’ is evaluated in line 14 using Algorithm 2. If s’
is better than s*, it is submitted to the Simulation(.) procedure on line 15 to find its stochastic cost. If
s’ has a lower stochastic cost than s*, the best solution is updated and inserted into a pool of the best
solutions. In lines 26-32, each pool solution is evaluated by the Simulation(.) procedure, this time with
Npeep Simulations. As before, each solution is evaluated in terms of its stochastic cost, and if it is less
than the stochastic cost of s*, it is stored as the best solution obtained so far. In the end, the SIM-ILS
algorithm returns the best solution for the stochastic version of the problem and its stochastic cost.

The following subsections detail each procedure of the Algorithm 1.

4.2. Representation of a solution

As in Aquino et al. (2019), a solution is represented indirectly by a sequence s = (S1, 82, , Si, ", Sp)
of n maintenance jobs to be assigned. In this solution, s; is the ¢-th job candidate to be executed. The
order in which the maintenance jobs are in the schedule is important, as it defines the assignment priority;
the further ahead a given job is in the sequence, the higher its priority.

The indirect representation of the solution simplifies the evaluation of the proposed solution and the
use of neighborhood operators to explore the problem’s solution space.
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Algorithm 1: SIM-ILS

input : Number of iterations of the fast simulation (72£,s:), number of iterations of the deep simulation (12peep ), type of distribution (distrib),
deviation of the simulation ( desv), number of iterations of the local search (RDMax), number of iterations without improvement (ILSMax),
Kmax, time limit (¢;,4x ), and set of criteria (77)
output  :s*
t < 0O;
pool < 0;
s <— BuildSolution(T); /* According to Algorithm 3 */
s* < RandomDescent(s, RDMax); /* According to Algorithm 4 */
stochCost™ < Simulation(s*, Ny, distrib, desv); /* According to Algorithm 6 */
ILSIter < 0O;
while (ILSlter < ILSMax & t < tmax) do
ILSIter < ILSIter + 1;
k <+ 1;
while (k < kmax) do
k<« k+1;
s" < Shake(s*, k); /* According to Algorithm 5 */
s" < RandomDescent(s’, RDMax); /* According to Algorithm 4 */
if f(s") < f(s*) then
stochCost < Simulation(s’, npug, distrib, desv); /
if stochCost < stochCost™ then
s* «— s;
stochCost* < stochCost;
insert(pool, s*);
k <+ 1;
ILSIter < 0;

R I R Y S

_ e e =
PRI SR .Y

&
*

According to Algorithm 6 */

ROR e e =
=3 =33

end
end

N~
IS

)
<@

end

b

end
r (s € pool) do
stochCost <— Simulation(s, Wpeep, distrib, desv); /* According to Algorithm 6 */
if stochCost < stochCost* then
8%« s
stochCost* < stochCost,

[SI)

2REBNEN
=
=)

end

w

end
return s*, stochCost*

IO
@R

4.3. Evaluation of a solution

A solution s is evaluated using the Job Positioning Algorithm (JPA), defined by Algorithm 2. Besides
calculating the cost of the solution, it also returns the start time of each maintenance job scheduled over
the planning horizon. In other words, the JPA defines whether each job will be scheduled, and if it is
scheduled, it determines when it will be started and the work team assigned to perform it.

In Algorithm 2, the JPA identifies, for each job s;, whether there is a time slot available on the machine
where it should be executed (line 5). Lines 6-8 identify the candidate teams to execute it, considering
their skills and availability. If a team £ is skilled and available, the job s; is assigned to it in line 9. The
cost of using this team is updated in line 12 if it has not already been used. For each unscheduled job s;,
a cost wg, (line 19) is imposed on the solution. Finally, the algorithm returns the total stochastic cost of
the solution s.

To illustrate how the JPA works, consider the sequence s = (1,2, 3,4) with four maintenance jobs
(Jobs 1, 2, 3, and 4), one machine (machine A), and two work teams (Teams 1 and 2). Table 2 describes
the characteristics of the four jobs of machine A. In turn, Table 3 shows the skills and available time
windows of the teams for executing these jobs.
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Algorithm 2: JPA - Job Positioning Algorithm

P

20

21 end

input
output

: Solution s
: Cost of the solution s

Cost < 0;
W'’ « Set W sorted non-increasingly by available time and then by skill;
for each job s;, 1 = 1 to N do

assigned < false;

if the machine that will undergo the job s; is available at the time window [esi s lsi] then

for each team k € W' do

Assign job s; to team k;
assigned <— true;
if team k is not yet used then
| Cost < Cost + ~vg;
end
end
end

end
end
if assigned = false then
‘ Cost < Cost + ws,;;
end

22 return Cost

if the team k has a compatible skill to perform the job s; then
if the team k has an available time window to perform the job s; then

/* v is the cost for using the work team k. */

/* ws, is the cost for not scheduling job s;. */

Table 2: Maintenance jobs.

Machine A
Time Window Time Window
#Job Skill Earliest date Latest date Duration ~ Weight
(E) (L) ) (w)
1 Mechanic 1 6 2 10
2 Mechanic 3 10 3 20
3 Electric 4 9 3 10
4 Electric 1 4 2 20

Table 3: Maintenance teams.

Team Skill Availability window (H)
1 Mechanic [0, 10]
2 Electric [0, 10]

Table 4 reports the result of applying the JPA to this example. It shows the representation of the time
windows of the machine and the work teams.

Table 4: Job positioning for the sequence (1,2, 3, 4).

Planning horizon

1 2 3 45 6 7 8 9 10

Team 1 !2 2 2

Team 2

Machine A

2 2 2

W] W
W] W
W W

In this example, three of the four maintenance jobs were assigned, and the two available teams were
used. The value of the objective function is obtained by adding the cost of using these teams (in this
case, two) with the cost of not scheduling Job 4, i.e., Cost = 2 4 20 = 22.

In JPA, the sequence in which the jobs are submitted has a direct influence on the value of the objective
function. In the previous example, the sequence of jobs was the same as that described in Table 2:
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(1,2,3,4). To ascertain this influence, if we sort the jobs non-decreasingly according to the end of their
L value from Table 2, we have the following sequence: (4,1, 3, 2).

Table 5 shows the new solution after submitting this sequence of jobs to the JPA. This table shows
that Team 1 processes jobs 1 and 2 within the time windows [3, 4] and [8, 10], respectively. On the other
hand, Team 2 executes jobs 4 and 2 during the intervals [1, 2] and [5, 7], respectively.

Table 5: Job positioning for the sequence (4, 1, 3, 2).

Planning horizon
1 2 3 4 5 6 7 8 9 10
Team 1 2 2 2
Team 2 4 4
Machine A | 4 4

W W
W] W
W] W

2 2 2 |

In this new sequence of jobs, it was possible to schedule all of them, generating a better value for
the objective function. As only two teams were needed, the cost of this new solution is Cost = 2. This
result shows that the order in which the jobs are submitted to the JPA algorithm influences the objective
function value.

We propose two versions of the JPA: Direct JPA and Inverted JPA. They differ only concerning the
assignment of a job within its available interval. In the direct JPA, each job is positioned at the beginning
of the interval. In contrast, in the inverted JPA, it is positioned to conclude at the end of the available
interval. These versions impact the objective function’s value, as will be shown in Section 5.

To illustrate the differences between these JPA versions, we present an example of allocating a job ¢
with the following parameter values: P; = 3, E; = 1, and L; = 10. Figures 1 and 2 illustrate how the
JPA versions assign this job.

1 TTT}TTTTTB 1J2[s]a]s]e]7[s o]
Job Job
Machine ‘ Machine
Team } Team
Assignment - Assignment -
DAvaiFable interval - Used interval C] Available interval . Used interval
Fig. 1: Job positioning with direct JPA Fig. 2: Job positioning with inverted JPA

As illustrated in Figures 1 and 2, the time window available for processing job ¢ is the interval [3, 7],
which is the interval common to the job, machine, and work team windows. In direct JPA, job ¢ starts at
instant 3 and ends at instant 5, as illustrated in Figure 1. On the other hand, in inverted JPA, job i starts
at instant 5 and ends at the end of the available time window for its processing, which is instant 7, as
shown in Figure 2.
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4.4. Constructive algorithm

Constructive heuristic algorithms, known as “dispatching rules” in job scheduling problems, are used
to generate an initial solution to the problem. They are methods for generating sequences of jobs in
which each is subjected to rules that check the benefit of its insertion. Thus, only the job with the most
significant benefit is inserted into the sequence at each algorithm step.

Several constructive algorithms can be designed to generate an initial solution, each based on a rule.
In order to present these dispatching rules, let T" be the set of criteria for ranking jobs, indexed by t € T.
Let a; = 1 if criterion ¢ € T is sorted in descending order and O if it is sorted in ascending order.

Let d; be a dispatching rule, and R be the set of all dispatching rules, i.e., R = UBl!XQ‘T‘dl.
A dispatching rule d; € R consists of choosing a sequence of |T'| criteria, that is, d; =
((t1,ar,), (t2,at,), -+, ({7, ar, ). Each job is evaluated respecting the order in which the criteria are
in the sequence d; that defines the [-th constructive algorithm. Thus, if there is a tie in a given criterion
t;, the next criterion, ¢;1, is used to break the tie. If the tie persists until the last criterion is reached, i.e.,
t|7, the job chosen to be inserted into the solution is the one with the lowest index.

To explain how this constructive algorithm works, let Table 6 be an example with four criteria for

sorting six maintenance jobs.

Table 6: Example of criteria for sorting a set of maintenance jobs.

Criteria
#Job  Skill Machine FE L P w
1 1 100 0 25 5 10
2 2 100 7 20 7 20
3 1 200 7 25 4 10
4 2 200 10 20 7 20
5 1 100 0 10 3 30
6 2 200 15 30 2 30

In this table, the first three columns identify each job, the skill required, and the machine on which it
will be executed. In a given sequence, the last four columns (£, L, P, and w), which are in columns 4,
5, 6, and 7, are the criteria used for sorting the jobs and so to define the constructive algorithms.

For the above example, there are 4! x2% = 24 x 16 = 384 constructive algorithms since there are four
criteria and two ways for sorting each criterion. Let d; = ((7,1), (5,0), (4,0), (6,1)) be one of these
dispatching rules. This rule means that Column 7 (w) is used as the first criterion for sorting these jobs.
On the other hand, as a7 = 1, the jobs are sorted in descending order according to their weights, i.e.,
priority is given to the jobs with the highest w; values. However, there is a tie when applying this first
criterion because w; = wg = 30 for jobs 5 and 6. So, Column 5 (L) is used as the second criterion to
break the tie. In this case, these jobs are sorted in ascending order according to the end of their windows
(Ls and Lg). As Ly = 10 < 30 = Lg, thus Job 5 is the first to be inserted into s, and Job 6 is the second.
Among the remaining jobs (1, 2, 3, and 4), jobs 2 and 4 are the next ones to be scheduled because they
have the highest value for the first criterion (wy = wy = 20). As before, there is a tie using the first
criterion, so the second criterion must be used. The third criterion must be used since Lo = L4 = 20.
So, Column 4 (F) is applied for sorting jobs 2 and 4 in ascending order. As Fy = 7 < FE; = 10,
Job 2 is inserted into s before Job 4. Now, the remaining jobs, 1 and 3, will be sorted in descending
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order concerning the first criterion. The third criterion (F) is used because of ties in the first two criteria.
As F1 = 0 < 7 = Ej3, Job 1 is inserted into s before Job 3. Therefore, the solution returned by this
constructive algorithm is s = (5,6,2,4,1, 3).

Algorithm 3 shows the pseudo-code of the proposed ensemble method responsible for evaluating all
dispatching rules and returning the best constructed solution.

Algorithm 3: BuildSolution

input : Set of criteria (77)
output : Solution s
1 s+ 0;
2 forl + 1to|T|! x2!T! do
3 Let s’ be the solution constructed with the rule d;;
4 if f(s’) < Cost then
5 s+ s';
6 Cost « f(s');
7 end
s end
9 return s

The algorithm receives the set of criteria 7" as parameter. The main loop occurs between lines 2 and
8. In line 4, a solution s’ is constructed using a rule d;, [ € T'. Next, in line 5, the solution s’ is evaluated.
If it has the best cost so far, it is stored. At the end, the algorithm returns the best solution constructed s.

4.5. Random Descent Procedure

As Aquino et al. (2019), we use a neighborhood structure that swaps two jobs in the current solution.
With this type of move, it is possible to explore the problem’s solution space, starting from any initial
solution. To give an example, let s = (1,2, 3,4) be a solution to the problem. One of the neighboring
solutions of s is ' = (1,4, 3,2), which is obtained by swapping jobs 2 and 4 from s.

We use the Random Descent as the local search method. It consists of randomly selecting a neighbor
to be analyzed. If its cost is lower than that of the current solution, it will be accepted; otherwise, another
neighbor is randomly selected to be evaluated. This process continues until the determined stopping
criterion is reached. Algorithm 4 describes its pseudo-code.

Algorithm 4: Random Descent

input : Solution s, maximum number of iterations without improvement (RDMazx)
output HE]
Iter < O;
while (Iter < RDMax) do
Iter < Iter + 1;
Let s’ a random neighbor obtained from s;
if f(s") < f(s) then
RS
Iter < 0;
end
end
return s

R R N T

-
s
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4.6. Shake Procedure

At the end of the local search process, the solution returned may be a local optimum, i.e., a solution in
which all its neighbors have a higher cost, causing the algorithm to get stuck in that region.

The Shake procedure is applied to avoid the algorithm stopping at these optima. It consists of generat-
ing k consecutive perturbations in these solutions. In each perturbation, a swap move is applied between
two jobs. Algorithm 5 presents the pseudo-code of this procedure.

Algorithm 5: Shake

input : Solution s, level of perturbation (k)

output  :s’

s’ s;

7+ 1;

while (: < k) do
s"" < solution resulting from s’ by randomly swapping two jobs;
s s//;
P14 1;

end

I I 7 Y IR * I S I

return s’

4.7. Simulation Procedure

The Simulation procedure performs the stochastic evaluation of a solution using the MCS method. The
stochastic evaluation can be fast or deep, depending on the number of simulations. Its pseudo-code is
shown in Algorithm 6.

Algorithm 6: Simulation

input : Solution s, number of iterations (niy), type of distribution (distrib), percentage deviation (desv)
output: stochCost

1 stochCost < 0; /* stochCost is the stochastic cost of the solution. */
2 for j + 1 to ng, do

3 s’ s /* s’ is a copy of s. */
4 Tstoch — T /* Tstoecn is a copy of the original set of jobs. */
5 for each job i € Tyoen do

6 | P! < P; x Rand(distrib, desv); /* P! is the new job duration in s’. */
7 end

8 cost + f(s'); /* s’ is evaluated by Algorithm 2. */
9 stochCost < stochCost + cost;

10 end

11 stochCost <— stochCost [ Ngim;
12 return stochCost

In lines 2-10, the Simulation procedure performs ng;, evaluations of the objective function resulting
from the new job duration. For each job, line 6, its new duration PZ»’ is calculated from its original
duration P; using the procedure Rand(.), described by Algorithm 7. The cost of this stochastic solution
is calculated in line 8 through Algorithm 2. Line 11 calculates the average value of the ng;,, stochastic
solutions generated. In the end, the algorithm returns this average value as the stochastic cost of the
solution s given as input to the algorithm.

Algorithm 7 describes how the randomness of the Rand(.) procedure is generated using the normal
distribution. This distribution uses two parameters: y and o. The first is the mean of the distribution, i.e.,

where it is centered, and the second is its standard deviation.
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Algorithm 7: Rand

input : Type of distribution (distrib), percentage deviation (desv)
output s
< 0;

o < desv/3;

r < CreateRand(distrib, ju, o);
rr—+1;

return r

I SR S

Line 1 of Algorithm 7 establishes that the distribution is centered on 0. In line 2, the percentage
deviation value desv is divided by 3 to ensure that 99.74% of the data generated is within the desired
range. In line 3, a random value is generated by the CreateRand(.) function. Finally, in line 4, a unit is
added to this generated value to create the multiplication factor to be applied to the duration of the jobs.

5. Computational Experiments

The proposed SIM-ILS algorithm for the stochastic LTPMSP was implemented in C++ programming
language. We also implemented the ILS algorithm for the deterministic LTPMSP. This implemented ILS
is a classic version of the method, which uses the same initial solution, local search, and perturbation
procedures from the SIM-ILS algorithm, described in subsections 4.4, 4.5, and 4.6.

All the algorithms developed were run on an Intel Xeon E-2378G @ 2.80 GHz x 16, 64 GB RAM
computer, with a Windows 10 operating system. Although this machine allows multiprocessing, the
algorithms developed did not use this feature. The results of the algorithms from the literature, i.e.,
MSVNS, BRKGA, and BRKMA, are those reported by Aquino et al. (2019). Like them, we use each
instance’s number of jobs (/N) as the maximum runtime for the algorithms in seconds. We have also
included the results returned from the GRASP algorithm by Andrade et al. (2024). Both results are
available at http://www.decom.ufop.br/prof/marcone/projects/LTPMSP.html.

The rest of this section is organized as follows. Firstly, in Section 5.1, we describe the instances.
In Section 5.2, we compare the two versions of the JPA to select the best strategy for positioning the
jobs. In Section 5.3, we showed how the parameter values of the proposed ILS were calibrated, reported
its results, and compared them with those of four state-of-the-art algorithms of the literature for the
deterministic version of the problem. Section 5.4 compares the results of applying the ILS and SIM-ILS
algorithms to the stochastic version of the problem.

5.1. Instances

Small-, medium-, and large-scale instances of this problem are available from Aquino and Souza (2016).
In these instances, each work team has only a skill and planning horizon of up to 8,670 hours per year.

Initially, we used the set of small-scale instances to validate the convergence of the ILS. The CPLEX
solver, version 12.5, with the model (1)-(17), found the optimal solution in 26 of the 100 instances of
this set. In contrast, for the others, it does not prove the optimality of the solutions generated in 3600
seconds of processing. On the other hand, ILS found all these optimal solutions and was able to generate
solutions with objective function values equal to or lower than those generated by CPLEX.

We tested the proposed algorithms only on medium- and large-scale instances. Table 7 summarizes
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their characteristics.

Table 7: Instance characteristics.

Values per instance scale

Description Parameter

Medium Large X Large
Number of jobs N 150 to 600 1200 to 4800 9600 to 33484
Number of work teams M 57 to 256 41 to 287 132 to 145
Number of machines Q 91 to 388 252 to 1286 816 to 1032
Start time window (hours) E; 0 0 0
End time window (hours) L; 3480 4560 10416
Duration (hours) P; 0.2 to 108.2 0.1 to 169.8 0.1 to 169.8
Cost for using each work team Y 1 1 1
Cost for an unscheduled job w; 3 to 3246 3 to 5094 4 to 5094
Maximum instant of availability of a work team (hours)  Hp, 3480 4560 8760

5.2. Comparison of two job positioning strategies

To decide the best job positioning algorithm (Direct JPA or Inverted JPA), we perform computational
experiments using these two strategies in the Constructive Algorithm.

Table 8 reports the results of these strategies in the proposed constructive algorithm. Columns ID, N,
M, and Q correspond to the ID, number of jobs, maintenance teams, and machines of each instance.
Columns Obj, #N, #M, Time (s), and d* correspond, respectively, to the value of the objective function
generated by the algorithm, the number of scheduled jobs, the number of used teams, the algorithm’s
execution time, in seconds, and the best dispatching rule used by the constructive algorithm.

Table 8 shows that the best results were achieved by the inverted JPA strategy. Based on these results,
it was chosen to be the job positioning algorithm for the proposed constructive algorithm.

5.3. Comparison of the results of the algorithms for the deterministic version of the problem

Given the stochastic nature of metaheuristic algorithms, we first calibrated the parameters of the ILS
algorithm. It has three parameters to be calibrated: ILSMax, k,.x, and RDMax. To choose the best values
for these parameters, the Irace tool (Lopez-Ibéiiez et al., 2016) was used. The Irace package receives a
set of representative instances of the problem and values for the algorithm’s parameters. In the end, it
returns the best values found among those provided.

Three representative instances of the data set were selected to carry out the calibration experiments.
They have the following characteristics: ¢) 300, 1200, and 2400 jobs; i¢) 112, 122, and 130 teams; and
119) 117, 403, and 603 machines. The values given to Irace and those returned by it are described in
Table 9.
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Table 8: Results of the constructive algorithm with direct and inverted JPA. Best results are highlighted
in bold.

Instances Constructive Algorithm with Direct JPA Constructive Algorithm with Inverted JPA

1D N M Q Obj #N #M Time (s) d* Obj #N #M Time (s) d*

01 150 148 120 1851 143 31 08 (@.0). 5. D). (6.0). 3. 0)) 1848 143 28 0.8 (@ D. 6. D.(.0).3.0)
02 150 75 129 30 150 30 0.7 ((6,0). (5. 0), (4,0), 3,0)) 30 150 30 0.7 ((6,0). (5.0), (4,0), (3,0))
03 150 102 91 3281 149 35 0.7 ((3,0), (4,0), (6, 1), (5, 0)) 3273 149 27 0.7 ((4,1),(6,0),(5,0), (3,0))
04 150 57 126 25 150 25 0.8 ((5.0). (6.0), (4,0, (3,0)) 24 150 24 0.8 ((6, 1), (5,0), 4,0), (3,0))
05 150 92 93 303 139 52 0.7 ((3,0), (6, 1), (5,0, (4, 0)) 49 150 49 0.7 ((6, 1), (5,0), (4,0), (3,0))
06 150 71 101 681 146 45 0.7 (5, 1), (4,0), (6,0, (3,0)) 106 149 34 0.7 ((6, 1), (5.0), (4, 0), (3,0))
07 300 158 179 5694 275 54 1.8 ((6, 1), (5.0), (4, 1), (3,0)) 2023 292 43 1.8 (@, 1), (6. 1), (5,0),(3,0))
08 300 221 239 2460 286 56 2.1 {(6,0), (5. 0), (4,0), (3,0)) 2470 285 54 1.9 (@, 1), (6,0), (5,0), (3,0))
09 300 112 177 3720 292 57 1.8 ((3,0), 4, 1), (5. 1), (6,0)) 3360 298 2 17 (@, 1), (3. 1), (6, 1), (5,0))
10 300 75 181 182 298 38 1.8 (4, 0), (5, 0), (6,0, (3,0)) 35 300 35 1.8 (@, 1), (6, 1), (5,0),(3,0))
11 300 121 162 189 297 79 1.8 ((3,0), 4, 1), (5. 1), (6,0)) 65 300 65 1.8 (4, 1), (6,0), (5,0), (3,0))
12 300 119 176 1181 288 59 1.7 {(6, 1), (5.0, (3,0, (4, 0)) 308 297 41 1.8 (4, 1), (6.0), (5,0), (3,0))
13 600 165 329 9703 558 73 43 ((3,0), (5. 1), (6, 0), (4, 1)) 4879 580 55 43 (4, 1), (5. 1), (6,0), (3, 0))
14 600 256 388 3556 569 85 44 ((3,0), (4,0), (5,0), (6, 1)) 3448 570 77 4.5 ((4,1),(3,0), (6,0), (5, 0))
15 600 120 288 10019 571 65 4.0 (5, 1), (6, 1), 3, 1), (4, 0)) 9075 579 60 4.0 ((5, 1), (6,0), 3,0, (4, 1))
16 600 77 215 613 594 45 4.0 {(6,0). (5,0), 3, 1), (4, 0)) 37 600 37 4.1 (@, 1), (3,0), (5. 1), (6,0))
17 600 126 279 732 588 87 4.0 ((3,0), (6, 1), (5,0), (4, 1)) 410 598 67 39 (@, 1), (6, 1), (5,0),(3,0))
18 1200 186 519 18072 1103 88 12.0 (5, 1), (3,0), (4, 1), (6, 1)) 13067 1137 71 122 (@, 1), (5. 1),(3,0), (6, 1))
19 1200 263 666 10883 1102 116 115 ((5, 1), (6,0), 3, 1), (4, 1)) 9893 1110 9 11.6 (@, 1), (3,0, (5, 1), (6,0))
20 1200 122 470 25543 1143 73 10.6 (5, 1. 3. 1), (4,0), (6,0)) 23815 1162 62 10.7 (6, 1), (5.0), 3, 1), (4, 0))
21 1200 88 252 1965 1177 51 10.9 (5, 1. (6, 1), (4, 1), (3,0)) 299 1199 39 113 (@, 1), (5.0, (6, 1),(3,0))
22 1200 130 420 2758 1156 92 103 (5, 1), (3.0, (6,0), (4, 1)) 555 1195 72 103 (@, 1), (6, 1),(5,0), 3, 1))
23 1200 122 403 13702 1110 83 104 (6, 1), (5.0), (4,0), (3, 1)) 7402 1170 69 105 (5, 1), (3, 1), (6,0), (4, 1))
24 2400 188 738 37646 2177 93 345 {((6,1),(5.0), (3,0), (4, 1)) 31963 2230 83 357 (4, 1), (5. 1), (6,0), (3,0))
25 2400 130 603 51367 2231 80 293 (5, 1), (6,0), (4,0), (3,0)) 44941 2303 70 28.5 ((5, 1), (4, 1), (6,0), 3, 1))
26 2400 90 278 6193 2345 67 31.0 (@, 1), (6, 1), (5,0),(3,0)) 1510 2391 54 318 (@, 1), 3, 1), (6, 1), (5,0))
27 2400 132 701 3459 2330 102 275 (5, 1), (6,0), 3,0), (4, 0)) 1058 2388 83 279 (@, 1), (3, 1),(6,1),(5,0))
28 2400 126 561 17595 2268 92 273 {(6, 1), (5.0, (3,0, (4, 1)) 9276 2346 84 2738 (5, 1). (3.0), (6,0), (4, 1))
29 4800 197 1128 70037 4372 114 107.0 (5, 1. 3. 1), (4, 1), (6,0)) 62760 4459 98 110.1 (@, 1), (3,0, (6, 1), (5,0))
30 4800 78 1286 55313 4379 177 85.1 (6, 1), (5.0), 3, 1), (4, 1)) 45143 4460 144 88.0 (@, 1), (3. 1), (6,1),(5,0))
31 4800 130 720 117255 4413 85 82.6 (5, 1), (4,0), (6, 1), (3,0)) 102571 4553 75 84.7 (5, D). (4, 1), (6,0), 3, 1))
32 4800 91 294 19221 4646 69 98.6 (@, 1), (6, 1), (5.0),(3,0)) 2545 4781 57 99.6 (@, 1), (3. 1), (6, 1), (5,0))
33 4800 135 990 16628 4642 110 82.5 ((3,0), (4, 1), (6, 1), (5, 0)) 3194 4776 90 83.8 (4, 1), (5. 1), (6,0),

34 4800 129 713 30170 4594 96 81.9 {(6,1),(5.0), (4,0), (3, 1)) 16390 4709 82 83.6 (6, 1), (5,0), (4, 1),

35 9600 132 816 72860 9184 104 259.7 (5, 1), (6, 1), 3,0), (4, 1)) 39849 9407 88 263.4 ((5.1).(6,0), (4, 1),

36 19200 132 908 156077 18377 105 947.8 (6, 1), (5,0, 4,0),3, 1)) 89924 18812 94 970.9 ((5, 1), (6,0), 4, 1), 3, 1))
37 33484 145 1032 234613 32231 111 2885.8 (5, 1), (4,0), 6, 1), (3,0) 141902 32870 92 3006.6 (5, 1).(6,1), 3, 1), (4, 0))

Table 9: Description of the parameters, its values given to Irace, and the values returned by it.

Parameter ~ Description Set of Values
values Returned
ILSMax Maximum number of iterations without improvement in ILS {40, 50, 60, 70} 70
Emax Highest level of perturbations {10, 15, 20, 30} 15
RDMax Maximum number of iterations without improvement of the local search method {30, 40, 50, 60} 40

Considering the criteria established in Table 6 for sorting jobs, all 384 constructive algorithms were
tested for each instance, each using the two versions of JPA, direct and inverted. At the end of the runs,
the best-performing constructive algorithm and its cost are returned. The constructive algorithm with
inverted JPA obtained the best performance because it generated the lowest costs in all the instances
evaluated. Therefore, only its results were compared with those of the other algorithms. In addition,
the solution provided by the best constructive algorithm was used as the initial solution for the ILS
algorithm.

Table 10 reports the results of the proposed algorithms (Constructive algorithm with inverted JPA and
ILS), those of the metaheuristic algorithms by Aquino et al. (2019): MSVNS, BRKGA, and BRKMA,
and those of the GRASP algorithm by Andrade et al. (2024). Columns ID, N, M, and Q represent the
instance ID, number of jobs, maintenance teams, and machines in each instance, respectively. Columns
Avg, Best, and RPD (%) indicate respectively the average of the results, the best result, and the relative
percentage deviation from the best solution found by all algorithms (BKV, Best Known Value) for each
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instance, including our ILS results, calculated by Eq. (18):

RPD — W (18)

For the constructive algorithm with inverted JPA, the values in the Avg and Best columns are the
same because this algorithm is deterministic. For the ILS, the “Avg” column reports the average result
of 30 runs for each instance. For MSVNS, BRKGA, and BRKMA, the Avg column reports the values
published in Aquino et al. (2019), which ran each instance five times. For GRASP, the Avg column
reports the values published in Andrade et al. (2024), which ran each instance five times. The instances
marked with an asterisk (*) are those whose results reported by Aquino et al. (2019) are infeasible. The
best results for each instance are highlighted in bold.

Table 10: Results of the Constructive Algorithm with Inverted JPA, ILS, MSVNS, BRKGA, BRKMA,
and GRASP algorithms.

Instances Constructive Algorithm () MsVNs (1) BRKGA (1) BRKMA (1) GRASP(2)
I N M Q | BKV| Bet Awg RPD| Best _Avg RPD| Best _Avg RPD| Best _Avg RPD| Best _Avg  RPD| Bext Avz RPD
01 150 148 120 | 1848 | 1848 1848 | 1888 isds - B E E B B E - B | 1838 1848 B
02 150 75 129 30 30 30 000 30 30 0.00 30 30 0.00 30 30 000 30 30 0.00 30 30 0.00
03 150 102 9 | 3273| 3273 3273 000 | 3273 3273 000 | 3273 3273 000 | 3273 3273 000 | 3273 3273 000 | 3273 3273 000
04 150 57 126 2 2 24 000 24 24 0.00 2 24 000 2 24 000 2 24 000 24 24 000
05 150 92 93 49 49 19 000 " 19 000 49 19 000 49 19 000 49 19 000 49 49 000
06 150 71 101 16| 106 106 000| 106 106 000| 106 106 000 | 106 106 000| 106 106 000| 106 106 000

07 300% 158% 179% 1931 2023 2023 - 1931 1938 - - - - - - - - - - -
08 300 221 239 2451 2470 2470 0.78 2451 2451 0.01 2452 2452 0.04 2452 2452 0.04 2452 2452 0.04 2451 24526 0.07
09 300 12 177 3359 3360 3360 0.03 3359 3359 0.00 3360 3361 0.06 3361 3362 0.09 3362 3363 0.12 3359 3359 0.00

10 300 75 181 35 35 35 0.00 35 35 0.00 35 36 2.86 37 38 8.57 37 38 8.57 35 35 0.00
11 300 121 162 65 65 65 0.00 65 65 0.00 281 281 33231 282 283 33538 282 283 33538 65 65 0.00
12 300 119 176 308 308 308 0.00 308 308 0.00 308 308 0.00 308 309 0.32 308 309 0.32 308 308  0.00

13 600* 165*% 329* 4494 4879 4879 - 4494 4522 - - - - - - - - - - -
14 600 256 388 3380 3448 3448 2.01 3380 3392 035 3384 3385 0.15 3384 3387 0.21 3388 3398 0.53 3448 3457.6 230
15 600 120 288 8576 9075 9075 5.82 8577 8577 0.02 8578 8579 0.03 8580 8581 0.06 8584 8593 0.20 8576 89744  4.65
16 600 77 215 37 37 37 0.00 37 37 0.00 42 42 1351 43 106 186.49 43 84 127.03 38 38 270
17 600 126 279 410 410 410 0.00 410 410 0.00 414 414 0.98 415 416 1.46 416 417 1.71 410 410 0.00
18 1200 186* 519* 10921 13067 13067 - | 10921 11281 - - - - - - - - - - | 10923 109732 048
19 1200 263 666 9517 9893 9893 3.95 9517 9542 0.26 9527 9535 0.19 9587 9634 1.23 9575 9632 1.21 9621 9653.6  1.44
20 1200 122 470 21921 | 23815 23815 8.64 | 21921 22100 0.82 | 21930 21932 0.05 | 22075 22268 1.58 | 22318 22434 234 | 22673 230682 5.23
21 1200 88 252 299 299 299 0.00 299 299 0.00 309 324 8.36 765 1016 239.8 390 664 122.07 299 299 0.00
22 1200 130 420 513 555 555 8.19 513 513 0.00 526 528 2.92 532 665  29.63 679 779 5185 581 597.2 1641
23 1200 122 403 6830 7402 7402 8.37 6836 6839 0.13 6841 6842 0.18 6841 6852 0.32 6842 6850 0.29 6830 6830.2  0.00
24 2400 188 738 26174 | 31963 31963  22.12 | 26932 27978 6.89 | 26777 26991 3.12 | 26705 27797 6.20 | 27179 27835 6.35| 26174 263148 0.54
25 2400 130 603 37566 | 44941 44941 19.63 | 37566 39127 4.15 | 38094 38293 1.94 | 39614 41268 9.85 | 38764 40402 7.55 | 45537  45846.4 22.04

26 2400 90 278 566 1510 1510 166.78 570 584 3.1 2000 2273 301.59 2026 2333 312.19 1585 1953 245.05 566 569.2  0.57
27 2400 132 701 621 1058 1058 70.37 621 628 111 816 945 5217 1768 2319 27343 1608 2244 26135 760 776.4  25.02
28 2400 126 561 8234 9276 9276 12.65 8242 8244 0.12 8259 8280 0.56 8839 9454 14.82 8775 9363 13.71 8234 82342  0.00
29 4800 197 1128 | 56164 | 62760 62760 1174 | 56902 57762 2.85 | 59580 60525 776 | 62395 62883  11.96 [ 61138 62649  11.55 | 56164 562526  0.16

30 4800 78 1286 | 40953 | 45143 45143 10.23 | 40953 41219 0.65 41925 42215 3.08 | 42643 43650 6.59 | 42781 43981 7.39 | 41135 417972 2.06
31 4800 130 720 | 86147 | 102571 102571  19.07 | 86147 88412 2.63 | 94780 95815  11.22 | 95629 97950  13.70 | 92320 95958  11.39 | 91174 95693 11.08
32 4800 91 294 | 194868 | 197978 197978 1.60 | 194944 195014  0.07 | 207390 208749 7.12 | 199117 200655 297 | 198340 199368 231 | 194868 194868.4  0.00
33 4800 135 990 1944 3194 3194 64.30 1944 1958 0.74 6194 6803 249.95 6008 7279 27443 6088 7831 302.83 2613 2753.6  41.65
34 4800 129 713 15171 16390 16390 8.04 15171 15186 0.10 16745 17181 13.25 19062 19738 30.10 17749 18138 19.56 16212 16737.6  10.33
35 9600 132 816 29943 39849 39849  33.08 29943 31075 3.78 | 50272 51712 7270 | 35778 39650  32.42 38004 39445  31.73 33782 35119.2 17.29
36 19200 132 908 69688 89924 89924  29.04 | 69688 73805 591 | 198838 208419 199.07 | 102773 108320  55.44 | 103863 108290  55.39 80720 817252 17.27
37 33484 145 1032 | 123538 | 141902 141902 14.87 | 123538 127514 3.22 | 616479 621953 403.45 | 223752 237002  91.85 | 220048 222586  80.18 | 141431 149869 21.31
* Infeasible solution returned by the MSVNS. BRKGA. and BRKMA algorithms.

(1) Tested on an Intel Xeon E5-2660 v2 @ 2.20 GHz X 40 computer, with 384 GB of RAM using multiprocessing.

(2) Tested ona computer equipped with an Intel i3-10100T 3.00 GHz processor, 16 GB of RAM, and the Ubuntu 18.04.6 LTS operating system.

According to Table 10, the proposed ILS algorithm achieved the best results in 81% of the instances,
followed by GRASP at 57%, the constructive algorithm with inverted JPA at 33%, MSVNS at 19%,
BRKGA at 16%, and BRKMA at 16%. Considering the average results, ILS achieved the best average
results in 76% of the instances, followed by GRASP in 22%. Analyzing the largest instances (ID 35, 36,
and 37), the performance of ILS was much better than the other algorithms.

Figure 3 illustrates the box plot graph of the distribution of the RPDs of the algorithms evaluated.
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Fig. 3: Box plot of the algorithms’ RPD results for the deterministic version of the problem.

According to Figure 3, the dispersion of the RPD values of the ILS was almost zero, much smaller
than that of the other algorithms. In addition, the proposed JPA also performed well when compared to
the algorithms by Aquino et al. (2019).

We then apply statistical tests to verify if there is a significant difference between the results of the
metaheuristic algorithms (ILS, MSVNS, BRKGA, BRKMA, and GRASP). Initially, we checked that
the data did not follow a normal distribution using the Shapiro-Wilk test since the p-value was equal
to 2.2 x 10716, Thus, to verify if the differences between the results presented by the algorithms are
statistically significant, we performed the non-parametric Friedman test (Montgomery, 2007) with 95%
confidence. The test presented a p-value equal to 1.449 x 10710, Therefore, we can conclude that there is
a statistical difference in the results. Next, we applied the Paired Wilcoxon signed-rank non-parametric
test (Wilcoxon, 1945), with 95% confidence, to identify the pairs of results that present the differences.
Table 11 reports the results of this test.

Table 11: p-values of the paired Wilcoxon signed-rank test (a = 0.05).

Group 1 Group 2 p-value

ILS MSVNS 0.0004729
ILS BRKGA 1.296 x 10~°
ILS BRKMA  8.515 x 10~°
ILS GRASP 0.005386

MSVNS BRKGA 0.0129
MSVNS BRKMA  0.05023
BRKGA BRKMA  0.1194
MSVNS GRASP 0.01205
BRKGA GRASP 0.0004733
BRKMA  GRASP 0.0005609

Table 11 shows a significant statistical difference between the results of the ILS algorithm and the
other algorithms (p-value < 0.05). Thus, these tests confirm that ILS outperforms all other algorithms
regarding the RPD results.
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5.4. Comparison of the results of the algorithms for the stochastic version of the problem

As the previous subsection showed, the ILS algorithm performed best among the algorithms evaluated
for the problem under study. However, all the tests were carried out with deterministic job duration,
which is not a reality in the industrial environment. For this purpose, we evaluated in this section the
proposed SIM-ILS algorithm (see Algorithm 1) to deal with the uncertainties present in the job duration.

In the computational experiments, we use the normal distribution in the SIM-ILS algorithm to rep-
resent the distribution of the job duration. As in Panadero et al. (2020), we set three values for the job
duration variability (L, M, and H, representing the levels of uncertainty: Low, Medium, and High). Each
value raises a scenario for the application of the SIM-ILS algorithm. SIM-ILS-L considers that there
may be a 10% variability in the duration of jobs. SIM-ILS-M and SIM-ILS-H consider the variability of
up to 20% and 30% in the duration of jobs, respectively. The parameters ng,; and npe.,, representing
the number of objective function evaluations with the simulated job duration values, were set to 100 and
1000. These two values are those used by Guimarans et al. (2018) and Keenan et al. (2021). Finally, as
in Aquino et al. (2019), the parameter ¢,,,x Was set to [V, i.e., the number of jobs in each instance.

To compare ILS and SIM-ILS, we stochastically evaluate the best solution generated by ILS for the
deterministic problem, considering each of the three levels of uncertainty for the stochastic problem.
These ILS evaluations give rise to ILS-L, ILS-M, and ILS-H scenarios. Table 12 reports the results of
the stochastic evaluation of the best ILS solution for the deterministic problem and the best SIM-ILS
solution for the stochastic problem at each level of uncertainty. In this table, column ILS represents
the best solution provided by the ILS for the deterministic problem. Columns ILS-L, ILS-M, and ILS-
H show their stochastic evaluations at each level of uncertainty of the stochastic problem. The other
columns show the best SIM-ILS results in each uncertainty scenario.

Table 13 reports the values of the stochastic RPDs of the SIM-ILS at each level of uncertainty, given
by Equation (19).

RPD}g _ stochCostsp.is.1 — stochCostyrs. (19)
stochCostys.

where stochCosty s represents the stochastic evaluation of the ILS best solution in Scenario I €
{L,M, H} and stochCostsp.s.; represents the stochastic cost of best solutions returned by the al-
gorithm SIM-ILS in the same Scenario /. Negative RPD values indicate that the SIM-ILS solution is
better than the stochastically evaluated ILS solution for each level of uncertainty.

The results show that the SIM-ILS solutions are better or equal to the ILS ones in scenarios L, M, and
H in 61% of the tests (i.e., in 68 of the 111 tests). The cases in which the RPD was positive indicate that
SIM-ILS could not find the best solution generated by ILS. This result occurred because the SIM-ILS and
ILS algorithms are limited in execution time, given by the number of jobs in each instance. As a SIM-ILS
solution requires more evaluations of the objective function to know its stochastic evaluation, it does not
have enough time to better evaluate the solution space compared to ILS. One way of further improving
SIM-ILS results is to consider the initial solution provided by ILS as its initial solution. Another way is
to increase the execution time of SIM-ILS.
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Table 12: Results of stochastic evaluation of the best ILS solution and the best SIM-ILS solution at each
level of uncertainty.

Deterministic

Instances PR Stochastic evaluation’ result at each level of uncertainty
evaluation” result
1D N M Q ILS ILS-L ILS-M ILS-H SIM-ILS-L SIM-ILS-M SIM-ILS-H
01 150 148 120 1848 1847 1837 1827 1847 1841 1834
02 150 75 129 30 30 30 29 30 30 29
03 150 102 91 3273 3269 3107 2711 3273 3078 2750
04 150 57 126 24 24 24 24 24 24 24
05 150 92 93 49 49 49 49 49 49 49
06 150 71 101 106 707 720 683 696 686 672
07 300 158 179 1931 2117 2118 2124 2022 2058 1972
08 300 221 239 2451 2456 2455 2454 2455 2456 2452
09 300 112 177 3359 3359 3359 3325 3634 3359 3353
10 300 75 181 35 34 34 34 34 34 34
11 300 121 162 65 65 65 65 65 65 65
12 300 119 176 308 913 891 915 903 755 910
13 600 165 329 4494 4545 4584 4607 4744 4796 4775
14 600 256 388 3380 3425 3440 3445 3391 3486 3413
15 600 120 288 8577 8742 8923 8870 8826 8659 7990
16 600 77 215 37 128 179 201 127 180 196
17 600 126 279 410 417 504 542 411 465 556
18 1200 186 519 10921 11864 12066 12271 11807 12020 12288
19 1200 263 666 9517 9656 9653 9667 9641 9610 9874
20 1200 122 470 21921 24455 25327 25274 23594 23021 23769
21 1200 88 252 299 460 534 580 462 531 571
22 1200 130 420 513 518 613 696 517 592 631
23 1200 122 403 6836 7842 8029 8249 8418 7936 9919
24 2400 188 738 26932 30668 31085 31184 28866 28844 30993
25 2400 130 603 37566 40522 41354 41136 41594 40870 42350
26 2400 90 278 570 1575 1694 1709 1479 1693 1746
27 2400 132 701 621 690 828 883 757 718 904
28 2400 126 561 8242 10288 10757 11259 10946 11678 11939
29 4800 197 1128 56902 60238 60835 61356 60352 61553 61768
30 4800 78 1286 40953 43815 44005 44188 43065 43032 44228
31 4800 130 720 86147 93445 94092 93667 93996 96340 92017
32 4800 91 294 194944 198803 199854 199973 198529 199249 200498
33 4800 135 990 1944 2118 2331 2476 2548 2381 2893
34 4800 129 713 15171 17924 18150 18855 19280 19430 19815
35 9600 132 816 29943 36101 36731 37874 37898 40366 40649
36 19200 132 908 69688 80964 82206 84035 78422 80989 82558
37 33484 145 1032 123538 141969 143817 146249 140729 142124 143278

6. Conclusions

This work focused on the problem of allocating preventive maintenance jobs to a 52-week schedule. We
develop constructive and job positioning algorithms that work with an ILS-based metaheuristic algorithm
to deal with it. The aim is to minimize the cost of using maintenance work teams and the cost of hiring
outsourced teams to perform unscheduled jobs.

Initially, we developed a new constructive algorithm capable of automatically testing a set of dispatch-
ing rules defined from a set of criteria and returning the best one for each instance. We evaluate it through
computational experiments using two versions of this constructive algorithm on medium- and large-scale
instances from the literature. We showed that the version of the constructive algorithm that uses the in-
verted job positioning algorithm (named Inverted JPA) obtained the best performance in all the instances
evaluated since it generated the lowest costs. In addition, we observed that this proposed constructive
algorithm constructs good-quality solutions in much less computational time than the metaheuristic al-
gorithms of the literature. We also registered that it generated better solutions for some instances than
the existing ones, including the largest instance taken from the industry.

We also developed an ILS-based metaheuristic algorithm to improve the solutions generated by the
constructive heuristic algorithm. In the computational experiments, the solution provided by the best
constructive algorithm, i.e., the constructive algorithm with inverted JPA, was used as the starting point
for the ILS algorithm. We showed that the ILS algorithm outperformed other metaheuristic algorithms
in the literature, achieving the best results in 81% of the instances.
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Table 13: Results of the RPD}? for the best SIM-ILS solution at each level of uncertainty.

Instances RPDY
1D N M Q SIM-ILS-L SIM-ILS-M SIM-ILS-H
01 150 148 120 0.00 0.22 038
02 150 75 129 0.00 0.00 0.00
03 150 102 91 0.12 -0.93 1.44
04 150 57 126 0.00 0.00 0.00
05 150 92 93 0.00 0.00 0.00
06 150 71 101 -1.56 -4.72 -1.61
07 300 158 179 -4.49 -2.83 -7.16
08 300 221 239 -0.04 0.04 -0.08
09 300 112 177 8.19 0.00 0.84
10 300 75 181 0.00 0.00 0.00
11 300 121 162 0.00 0.00 0.00
12 300 119 176 -1.10 -15.26 -0.55
13 600 165 329 438 4.62 3.65
14 600 256 388 -0.99 1.34 -0.93
15 600 120 288 0.96 -2.96 -9.92
16 600 71 215 -0.78 0.56 -2.49
17 600 126 279 -1.44 -1.74 2.58
18 1200 186 519 -0.48 -0.38 0.14
19 1200 263 666 -0.16 -0.45 2.14
20 1200 122 470 -3.52 -9.10 -5.95
21 1200 88 252 0.43 -0.56 -1.55
22 1200 130 420 -0.19 -3.43 -9.34
23 1200 122 403 7.35 -1.16 20.24
24 2400 188 738 -5.88 -7.21 -0.61
25 2400 130 603 2.65 -1.17 2.95
26 2400 90 278 -6.10 -0.06 2.17
27 2400 132 701 9.71 -13.29 2.38
28 2400 126 561 6.40 8.56 6.04
29 4800 197 1128 0.19 1.18 0.67
30 4800 78 1286 -1.71 -2.21 0.09
31 4800 130 720 0.59 2.39 -1.76
32 4800 91 294 -0.14 -0.30 0.26
33 4800 135 990 2030 2.15 16.84
34 4800 129 713 7.57 7.05 5.09
35 9600 132 816 4.98 9.90 733
36 19200 132 908 -3.14 -1.48 -1.76
37 33484 145 1032 -0.87 -1.18 -2.03

However, the ILS algorithm developed and others in the literature only deal with the deterministic
version of the problem. They do not consider the uncertainties that can occur during the execution of
a job. Thus, a high-quality solution for the deterministic problem is not necessarily the best for the
stochastic problem.

To deal with this situation, we proposed the SIM-ILS algorithm, a simheuristic algorithm capable of
considering these stochastic aspects of a real industry environment. In this algorithm, the solutions are
submitted to a stochastic evaluation through Monte Carlo simulations considering the variation in job
duration.

We tested the SIM-ILS algorithm in three scenarios, which differ in terms of levels of uncertainty
regarding the job duration, and compared their results with those provided by the ILS. We showed that
the proposed simheuristic algorithm finds the best solutions in 61% of different industrial environments,
from environments with low variability in job duration to those with high variability. For example, for the
largest instance (with 33484 jobs), the stochastic evaluation of the best solution produced by ILS costs
1240 units more than the one generated by SIM-ILS, considering the scenario with a level of uncertainty
equal to 10%. In other words, the best ILS solution is worse than the SIM-ILS solution, resulting in more
unscheduled jobs and/or the need for more work teams.

In future work, we suggest considering the uncertainty in the availability of work teams. In addition,
we intend to treat maintenance job windows as flexible. In this case, jobs scheduled outside their win-
dows are penalized in the objective function. This variant of the problem could reduce the need to hire
outsourced teams to perform these jobs.
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