Chapter 1

A GRASP-TABU SEARCH ALGORITHM FOR
SOLVING SCHOOL TIMETABLING PROBLEMS

Marcone Jamilson Freitas Souza

Department of Computer Science
Federal University of Ouro Preto, Brazil

marcone@iceb.ufop.br

Nelson Maculan

Systems Engineering and Computer Science Program
Federal University of Rio de Janeiro, Brazil

maculan@cos.ufrj.br

Luis Satoru Ochi

Department of Computer Science
Fluminense Federal University, Brazil

satoru@dcc.ic.uff.br

Abstract This work proposes a hybrid approach to solve school timetabling prob-
lems. This approach is a GRASP algorithm that uses a partially greedy
procedure to construct an initial solution and attempts to improve the
constructed solution using a Tabu Search algorithm. When an infeasi-
ble solution without overlapping classes is generated, a procedure called
Intraclasses-Interclasses is activated, trying to retrieve feasibility. If
successful, it will be reactivated. This time, attempting to improve the
timetable’s compactness as well as other requirements. Computational
results show that the Intraclasses-Interclasses procedure speeds up the
process of obtaining better quality solutions.

Keywords: Metaheuristics, GRASP, Tabu Search, School Timetabling

2

1. Introduction

The school timetabling problem (STP) regards the weekly class sched-
ule. The problem consists of coordenating lessons with periods satisfying
a set of requirements. The difficulty of solving a real case is well known,
since the problem has a huge search space and is highly constrained. As
it is a NP-hard problem (Even et al. 1976), a heuristic approach to solve
it is justified.

Among the recent techniques that have been successfully used to solve
the problem, the following metaheuristics techniques stand out: Tabu
Search (Schaerf 1996, Alvarez-Valdes et al. 1996, Costa 1994), Simulated
Annealing (Abramson 1991), Genetic Algorithms (Carrasco and Pato
2001, Colorni et al. 1998) etc.

In this work, a local search technique, called Intraclasses-Interclasses
(IT), is developed. It is introduced in the course of the local search phase
of GRASP (Greedy Randomized Adaptive Search Procedures) (Feo and
Resende 1995) to try speed up the obtaining of better quality solutions.
Procedure II attempts to improve a given timetable without overlapping
classes in 2 steps. First, it tries to retrieve feasibility and if successful,
it is reactivated. This time, it seeks to improve timetabling quality
requirements. This procedure can be applied to solve school timetabling
problems, as described in Section 1.2, in which the number of lessons
and the periods set aside for classes are the same.

This paper is organized as follows. In Section 1.2, the problem in ques-
tion is described; the following sections regard the used representation,
the neighborhood structure and the objective function. Section 1.5 de-
scribes, in detail, the proposed algorithm, and Section 1.6 presents some
experimental results. The last Section concludes this investigation.

2. Problem Description

The school timetabling problem (STP) in question consists of a set of
m teachers, n classes, s subjects and p weekly periods which are set aside
for classes. Periods are distributed in d week days and h daily periods,
which occur during the same shift, i.e., p = d * h. Classes, which are
always available, are disjoint sets of students who take the same subjects.
Each subject of a given class is associated with only one teacher, who is
previously determined. Furthermore, the number of weekly lessons for
each class is precisely p. The following requirements must be satisfied:

(a) a teacher cannot teach more than one class at the same time, i.e, a
timetable cannot have an overlapping of teachers;

A GRASP-Tabu Search Algorithm for School Timetabling Problems 3

(b) a class cannot have a lesson with more than one teacher at the same
period, i.e, a timetable cannot have an overlapping of classes;

(c) each teacher must fulfill his/her weekly number of lessons;

(d) a teacher cannot be scheduled for a period in which he/she is not
available;

(e) a class cannot have more than two lessons a day with the same
teacher;

(f) teachers’ request for double lessons (lessons conducted in two con-
secutive periods) should be granted as often as possible;

(g) teacher’s agenda should be as compact as possible.

Definition 1 A timetable @ that does not satisfy at least one of the
requirements (a),. . .,(e), is considered infeasible and cannot be im-
plemented by the school.

Definition 2 A timetable @) is considered to be type-1 infeasible if
one of the following conditions is satisfied in at least one period:
(i) There is a class having a lesson with more than one teacher
(constraint (b) is not verified); (ii) There is a class having no les-
son.

Definition 3 A timetable @ is considered to be type-2 infeasible if con-
straint (e) is not satisfied by a teacher.

3. Problem Representation and Neighborhood
Structure

Teachers’ timetable is represented as a matrix @, xp of integer values.
Each line ¢ in @Q represents the weekly schedule for teacher 7. Each
element ¢;;, € {—1,0,1,2,...,n} indicates the activity of teacher i in
period k. Positive values represent the classes of the teachers in the
period. Negative values indicate the teacher is unavailable, whereas null
values indicate inactivity in the period.

A neighbor of a timetable @ is a timetable @ that can be reached
from @ through a movement consisting of a mere change of two distinct
and non-negative values of a given line of). This movement is identified
by the triplet < i, k, k >, where k and k represent the periods in which
the activities ¢;; and g,z of teacher 7 will be interchanged.

One can observe that this kind of movement may produce type-1 or
type-2 infeasibility. Nevertheless, the possibility of having a teacher that

4

teaches more than one class at the same time (violation of constraint
(a)) is automatically rejected by this representation. In Section 1.5.1
we note that constraint (c) is always satisfied by the representation.
The constraint (d) is also always satisfied because movements involving
non-negative values are not permitted.

4. The Objective Function

A timetable @ is evaluated according to the following objective func-
tion, based on penalties, and should be minimized:

FQ) =wx f1(Q) + 0+ fa(Q) + p = f3(Q) (1.1)

The first two components respectively measure, type-1 and type-2
infeasibility levels, and the third one measures the level of satisfaction
regarding the granting of teachers’ requests. The weights w, § and p are
chosen to satisfy the condition: w > § > p and according to Definition
1.2, Q is feasible if f1(Q) = f2(Q) = 0.

Type-1 infeasibility level of @, f1(Q), is measured by adding to each
period k: (a) the number of times Ij; a class has no activity in &; (b) the
number of times s; more than one teacher teaches the same class in
period k.

Regarding type-2 infeasibility, timetable @ is evaluated by adding the
number of times e; constraint (e) is not satisfied by each teacher 1.

The satisfaction of the granting of teachers’ requests is measured with
relation to the compactness of the timetable (constraint (g)) as well as
the compliance with the number of double lessons required (constraint
(f)). More precisely,

m

f3<Q) :Z(ai*bi‘i‘ﬁi*vi‘f'%*ci) (1.2)

i=1

where «;, §; and y; are weights that reflect, respectively, the relative
importance of the number of “holes” b; (periods of no activity between
two lesson periods during the same day), the number of week days v; each
teacher is involved in any teaching activity during the same week, and
the non-negative difference ¢; between the minimum required number of
double lessons and the effective number of double lessons in the current
agenda of each teacher i. We note that the definition of b; implies that
no difference is made between a hole of two periods and two holes of one
period.

A GRASP-Tabu Search Algorithm for School Timetabling Problems)

5. The Algorithm

The proposed algorithm, called GTS-II, is a GRASP heuristic (Feo
and Resende 1995) in which an initial solution is generated by a par-
tially greedy constructive procedure (see Section 1.5.1). Refinement is
obtained by means of a Tabu Search method (Section 1.5.2). When a
solution without type-1 infeasibility is generated, the T'S method acti-
vates the Intraclasses-Interclasses procedure (see Section 1.5.3). This
construction and refinement sequence is repeated by GT'Smax itera-
tions. The best overall solution is kept as the result. The pseudo-code
of GTS-II algorithm for minimization is presented in Figure 1.1.

procedure GTS-II()

1 Let Q* be the best timetable and f* its value;

2 oo

3 GTSmar «— Maximum number of GTS-II iterations;

4 for (Iter =1,2,...,GTSmazx) do

5 Q" «— grasp-construction();

6 Qe TS-II(Q");

7 (f(Q) < f*) then

8 Q" — Q;

9 [T = f(Q);

10 end-if;

11 end-for;

12 Return Q*;

end GTS-II;

Figure 1.1. Pseudo-code of GTS-II Algorithm

5.1 Generating an initial solution

An initial solution is generated in a constructive way by means of a
partially greedy procedure, according to the description that follows.

At first, the periods are sorted according to the number of available
teachers, that is, the periods with smallest number of available teachers
are on the top. Next, the unscheduled lessons are sorted according to
the activity degree of each teacher, that is, the lessons, whose teachers
have a larger number of lessons and unavailable periods, have priority.
Then, well-ranked lessons are placed in a restricted candidate list (RCL)
and a lesson is selected randomly from the RCL. Next, using the critical
period order, the selected lesson is scheduled, so that there is no type
of infeasibility (in this case, violation to constraints (b) and (e)). In the

6

event this is impossible, only violation to constraint (e) is admitted at
this time. If the impossibility still persists, the lesson will be scheduled
by admitting violation to constraint (b) as well. Every time a lesson is
scheduled, critical periods are updated as well as the list of remaining
unscheduled lessons.

Since all lessons will be scheduled, even though some sort of infeasi-
bility may occur, constraint (c) is automatically guaranteed.

5.2 Tabu Search

Starting from an initial solution generated by the constructive proce-
dure, Tabu Search (TS) metaheuristic follows iteratively exploring the
whole neighborhood N(Q) of the current solution) by means of move-
ments defined in Section 1.3 and guided by the objective function de-
scribed in (1.1). Then, the algorithm goes to neighbor @', which pro-
duces the smallest f(Q’) value, regardless of being worse than the current
f(Q) value.

In order to prevent the occurrence of cycling, each time a movement is
done, it is stored in a tabu list 7. Such list contains the |T'| most recent
movements and reduces the risk of revisiting one of the |T| — 1 last
solutions previously visited. Since the tabu list can be very restrictive
(Glover and Laguna 1997), the TS algorithm also uses an aspiration
criteria by objective. In this way, a movement loses its tabu status if
it produces a solution @' whose value is smaller than the best solution
value, Q*, that had been obtained so far.

Whenever a timetable without overlapping classes is generated (i.e.,
f1(Q) = 0), the Intraclasses-Interclasses procedure is activated (lines
12 to 15 in Figure 1.2) if no solution with the same value has yet been
submitted to II. Reverse movements to those made by II procedure are
introduced into the tabu list. The TS procedure continues the search
from a solution produced by II and is performed for T'Smax iterations
without improving the value of the best solution reached so far.

The pseudo-code of TS algorithm using the procedure II is presented
in Figure 1.2.

5.3 Intraclasses-Interclasses Procedure

The Intraclasses-Interclasses procedure (II) is based on shortest paths.
This procedure is activated when a solution without type-1 infeasibility
is available. First, II attempts to make the fo component equal to zero.
Should it succeed, improvement of the f3 component, respecting con-
straints (a) through (e), is attempted, i.e., considering only feasible so-
lutions. Alvarez-Valdes et al. (1996) use a similar procedure, but only to

A GRASP-Tabu Search Algorithm for School Timetabling Problems 7

procedure TS-11(Q)
Let Q be a initial timetable;
Q*f — Q; /* Best timetable reached so far */
Iter «— 0; /* Tteration counter */
BestIter — 0; /* Iteration at which @* has been found */
T —0; /* Tabu List */
TSmax +— Maximum number of consecutive iterations
without improving f(Q*);
while (Iter — BestIter < T'Smazx) do
Iter « Iter + 1;
9 Let @ — Q @& m the best neighbor in N(Q) such that
either the move m does not be tabu (m ¢ T') or
Q' satisfies the aspiration criteria (f(Q) < f(Q*));
10 Update the tabu list T7

STk W N

[IEN

11 Q — Q';

12 if (f1(Q') = 0) then

13 @ < Intraclasses-Interclasses(Q');
14 Update the tabu list T’;

15 end-if;

16 if (f(Q) < /(Q)) then

17 Q" — @Q;

18 Bestlter < Iter;

19 end-if;

20 end-while;
21 Return Q%
end TS-II;

Figure 1.2. Pseudo-code of Tabu Search procedure using II

improve a feasible timetable. The type of movement under consideration
in their study is also more restricted than II’s.

Since II acts similarly, either to retrieve feasibility or to improve a
timetable, only the working principles for the second case will be pre-
sented.

Let us assume that a solution with no infeasibility is available. Thus,
given a timetable) under these conditions (f1(Q) = f2(Q) = 0), the
graph of class j is defined by G; = (Vj, A;), where V; is the set of
periods reserved for class j. A; is a set of oriented arcs, and is defined as
follows: Aj = {(k,k) : the teacher who will teach to class j in period k
is available in period k and requirement (e) in Section 1.2 is respected
in period k}.

To each arc (k,k) € G, a cost Af;(k, k) is associated. It represents
the cost variation of transferring teacher i from period k to period k,
taking only the f3 component of the objective function into considera-
tion. Thus, the cost is obtained by calculating the difference between
the values of the objective function, regarding the teacher, in the old
and new configurations, i.e.:

Afi(k, k) = fi(k) — fi(k) (1.3)

where f(.) = (p % f3)(.)

Table 1.1 shows a fragment of a timetable. Each line ¢ represents
a teacher (i = Ty,T»,T3,Ty) and each column k represents a period
(k = Py, Py, P3, Py, P5) of the same day. Each element (i,k) in this
table represents the activity of teacher i in period k. A, B, C and D
are classes. A dash (-) means that the teacher is unavailable, whereas
an empty cell indicates there is no activity in the period. Column f;
indicates the value of the objective function of each teacher. It is defined
in (1.1) and (1.2) taking p = 1, ; = 1 and f; = v; = 0 Vi, that is,
only holes in the schedule are relevant. The cost of this timetable is
FQU) = fry + fr + fry + fr, = 14140 +0=2,

Table 1.1. Timetable Q1

P P> Ps Py Ps fi
Th A B B 1
T> B C A A 1
Ts B A C B 0
Ty C A C D - 0

Figure 1.3 represents class A graph, G4. Each period is represented
by a vertex to which a teacher is associated. The -1 cost arc (Py, Ps)
indicates that in a case where teacher T; changes his/her lesson from
period P; to period Ps, the value of the objective function will be reduced
by 1 unit (Afp, (P, P5) = fr,(P5) — fr (P1) =0—1=—1).

In order to find a timetable that presents a smaller value for the
objective function, one should only search for a negative cost cycle in G;.
In the example under consideration, the arc sequence {(Py, Ps), (Ps, Ps),
(Ps, P1)} forms a cycle that has a total cost of —1 (= =1+ (—1) + 1).
This sequence defines a set of intraclasses movements.

After updating graph G4 and timetable)1 with these movements, it
is necessary to check once again whether there are negative cost cycles

A GRASP-Tabu Search Algorithm for School Timetabling Problems 9

Figure 1.3. G4, Class A Graph

in the class A graph. In the event that there are no such cycles, the idea
is, then, to repeat the procedure with another class and so forth, until
it is no longer possible to improve the teachers’ timetable by means of
intraclasses movements.

Nevertheless, the existence of a negative cost cycle cannot guarantee
a better value of the objective function. Moreover, it can generate type-
2 infeasible solutions, as demonstrated by Souza (2000). However, such
situations only happen when the same teacher is associated to more than
one vertex in a cycle. Thus, it is necessary to check the feasibility and
the value of the objective function after candidate movements. In order
to find other negative cost cycles while using a similar type graph, one
should proceed as follows: Choose any arc from the cycle, (k, k) € G},
and insert it in a forbidden movement list L. Then, update the graph
of the class under evaluation, excluding the arcs belonging to L from
G, and search for another negative cost cycle. When it is no longer
possible to find negative cost cycles, one should move to another class
and eliminate list L.

At the end of the Intraclasses procedure, negative cost arcs may still
remain in the graphs of the classes. Figure 1.4, which considers the
graphs of classes j and 7, illustrates this situation.

In Figure 1.4, there is a negative cost arc in class j from k to k,
i.e, Af/(k,k). This indicates that the value of the objective function
is likely to be improved, if the lesson assigned to teacher i in period k
is transferred to period k. However, such change cannot occur, because
teacher 7, who teaches in period k, is unavailable in period k (he is
teaching class 7). The idea is to switch teacher’s 7 lesson periods, so as
to enable the search for a negative cost cycle, involving the graphs of
both classes, that are connected to periods k and k. Let ¢/(k, k) be the
cost of the shortest path from k to k in Gj. The existence of a negative
cost cycle involving both classes may be verified by checking whether the
condition Af{ (k, k) +c?(k, k) < 0 is satisfied while transferring teacher 7

10

i Af} (k,K) < 0 I
@ @ Class j

Figure 1.4. Graphs of j and j classes after Intraclasses procedure

from class j to class 7 in period k and from class 7 to class j in period k.
It is noted that there are no costs involved in moving one teacher from
one class to another in the same period (null cost arcs in Figure 1.4).

Thus, to each negative cost arc (k,k) € G;, one should investigate
whether there is a negative cost cycle involving this arc of G, the graph
G and the null cost arcs that connect them. This arc sequence defines
the so-called interclasses movements. Like the intraclasses movements,
one must check the feasibility and the value of the objective function
after candidate movements.

The Intraclasses-Interclasses procedure is therefore composed of two
steps. First, the Intraclasses procedure is applied, resulting in n graphs
Gj, Vj =1,...,n and, possibly, negative cost arcs. When the first step
is finished, Interclasses procedure is applied.

When II procedure is activated, in an attempt to retrieve the feasi-
bility of a solution which has only type-2 infeasibility, the cost of an
arc (equation 1.3) is evaluated by assuming that f(.) = f2(.) Once this
attempt is finished, the arc cost is evaluated again based on the cost
variation of function (1.1).

Figure 1.5 illustrates how Intraclasses-Interclasses procedure works.

6. Experimental Results

We have evaluated the performance of the GTS-II Algorithm using
data of a Brazilian public high school, Escola Dom Silvério, located in
Mariana, Minas Gerais State. The requirements for a timetable in this
school are displayed in Section 1.2.

The GTS-II algorithm was implemented in C language and tested on
a Pentium II PC (350 MHz, 64 MB RAM) running Linux operating

A GRASP-Tabu Search Algorithm for School Timetabling Problems 11

procedure 11(Q)
1 Let @ be a initial timetable satisfying f1(Q) = 0,
that is,) is not type-1 infeasible;
/* If timetable @) is type-2 infeasible call Intraclasses
and Interclasses to repair the infeasibility, that is,
these procedures will use fo as objective function /*

2 if (f2(Q) #0) then
3 Q < Intraclasses(Q);
4 if (f2(Q) # 0) then @ « Interclasses(Q);
5 end-if;
/* If timetable @ is not type-2 infeasible
call Intraclasses and Interclasses to improve
teachers’ personal requests, that is,
these procedures will use f3 as objective function /*
6 if (f2(Q) = 0) then
7 @ < Intraclasses(Q);
8 if (f2(Q) # 0) then Q « Interclasses(Q);
9 end-if;
10 Return Q;
end II;

Figure 1.5. Pseudo-code of Intraclasses-Interclasses procedure

system. In order to determine negative cost cycles, the Floyd algorithm
(Ahuja et al. 1993) was implemented.

In order to test the efficiency of the II procedure, the GTS-II al-
gorithm was compared to the GTS algorithm, which does not include
such procedure (In GTS there are not the lines 12 to 15 in Figure
1.2). The following parameters were set, taking into consideration that
#lessons represent the number of remaining lessons to be scheduled:
|[RCL| = max{l, (#lessons)/10}, TSmax = 500, GTSmaxr = 1,
w = 100,06 = 30,p = 1,4 = 3,0; = 9andy; = 1Vi=1,...m

Table 1.2 presents a few characteristics of the data sets and summa-
rizes the results. Columns m, n and #lessons represent, respectively,
the number of teachers, classes and lessons to be scheduled. Column

Sparseness ratio indicates the sparseness ratios of the data sets, that is,

X l
Sparseness = TP (# issoner"), where u represents the number of un-

available periods and p L 25 the weekly periods which are set aside for
classes. Lower values indicate a harder problem. The results of Table 1.2
are based on 25 runs, each one initialized by a different seed of random
numbers. However, each run had the same seed for both algorithms. To

12

each 25

run set, the average best solution [f*] and the average CPU

time (minute:second) are shown.

Table 1.2. Computational Results
Sparseness GTS GTS-II
Datasets m n F#lessons ratio [f*] CPU time [f*] CPU time
DS00A 14 6 150 0.50 368 01:53 356 01:41
BR89M 16 8 200 0.30 491 02:17 481 01:24
DSooM 23 12 300 0.13 749 06:01 741 06:02
DS98M 31 13 325 0.58 831 15:36 826 08:09
DSO00ON 30 14 350 0.52 847 16:10 710 09:40
DS00D 33 20 500 0.39 1164 38:45 1101 29:00

Figure 1.6 illustrates a typical evolution of the best solution in the
early seconds of a GRASP iteration in GTS and GTS-II algorithms. As
it can be observed, better quality solutions are obtained faster when 11

is used.

Objective function

1600

1500 | 4
1400 |- g
1300 ey |

1200 | b i

1100 H R

1000 T R

900 | T

0 20 40 60 80 100 120 140 160 180 200
CPU time (in sec.)

Figure 1.6. Typical performance of the GTS and GTS-II algorithms

7.

Conclusions

A hybrid metaheuristic is developed for solving STP. While the par-
tially greedy constructive procedure generates good initial solutions and
diversifies the search, the Tabu Search procedure refines the search.

A GRASP-Tabu Search Algorithm for School Timetabling Problems 13

A contribution of our study is the development of the Intraclasses-
Interclasses procedure. It is applied to intensify the search when TS
generates a timetable without overlapping classes. In this situation, if
the solution has some other type of infeasibility, it will try to retrieve
feasibility. If successful, it will be applied again. This time, it will
try to improve the compactness of the timetable as well as the other
requirements.

Finally, besides the requirements mentioned in Section 1.2, the GTS-
IT algorithm can also be applied to treat other requirements such as: a
daily limit of lessons per teacher, teachers’ period preference, interval
between lessons of the same subject to the same class etc. In such cases,
one should simply add the components which measure the difference
between the current and the desired solution to the objective function.

Acknowledgment

This work was partially supported by CAPES, Brazil.

References

D. Abramson. Constructing school timetables using simulated anneal-
ing: sequential and parallel algorithms. Management Science, 37:98—
113, 1991.

R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory,
Algorithms and Applications. Prentice-Hall, New Jersey, 1993.

R. Alvarez-Valdes, G. Martin, and J.M. Tamarit. Constructing good
solutions for the spanish school timetabling problem. Journal of the
Operational Research Society, 47:1203-1215, 1996.

M.P. Carrasco and M.V. Pato. A multiobjective genetic algorithm for
the class/teacher timetabling problem. In E.K. Burke and W. Erben,
editors, Practice and Theory of Automated Timetabling I1I, volume
2079 of Lecture Notes in Computer Science, pages 3-17. Springer-
Verlag, Konstanz, Germany, 2001.

A. Colorni, M. Dorigo, and V. Maniezzo. Metaheuristics for high
school timetabling. Computational Optimization and Applications, 9:
275298, 1998.

D. Costa. A tabu search algorithm for computing an operational
timetable. European Journal of Operational Research, 76:98-110, 1994.

S. Even, A. Itai, and A. Shamir. On the complexity of timetabling
and multicommodity flow problems. SIAM Journal of Computation,
5:691-703, 1976.

14

T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search
procedures. Journal of Global Optimization, 6:109-133, 1995.

F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Boston, 1997.

A. Schaerf. Tabu search techniques for large high-school timetabling
problems. In Proceedings of the 30th National Conference on Artificial
Intelligence, pages 363-368, 1996.

M.J.F. Souza. School timetabling: an approrimation by metaheuristics
(in portuguese). Phd thesis, Systems Engineering and Computer Sci-
ence Program, Federal University of Rio de Janeiro, Rio de Janeiro,
Brazil, December 2000.

