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Abstract. The School Timetabling Problem (STP) regards the weekly
scheduling of encounters between teachers and classes. Since this schedul-
ing must satisfy organizational, pedagogical and personal costs, this
problem is recognized as a very difficult combinatorial optimization prob-
lem. This work presents a new Tabu Search (TS) heuristic for STP. Two
different memory based diversification strategies are presented. Compu-
tational experiments with real world instances, comparing with a pre-
viously proposed TS found in the literature, show that the proposed
method produces better solutions for all instances, as well faster times
are observed in the production of good quality solutions.

1 Introduction

The School Timetabling Problem (STP) embraces the scheduling of sequential
encounters between teachers and students so as to insure that requirements and
constraints are satisfied. Typically, the manual solution of this problem extends
for various days or weeks and normally produces unsatisfactory results due to the
fact that lesson periods could be generated which are inconsistent with pedagog-
ical needs or could even serve as impediments for certain teachers or students.
STP is considered a NP-hard problem [5] for nearly all of its variants, justifying
the usage of heuristic methods for its resolution. In this manner, various heuris-
tic and metaheuristic approaches have been applied with success in the solution
of this problem, such as: Tabu Search (TS) [10,4,8], Genetic Algorithms [11] and
Simulated Annealing (SA) [2].

The application of TS to the STP is specially interesting, since this method
is, as local search methods in general, very well suited for the interactive building
of timetables, a much recognized quality in timetable building systems. Further-
more, TS based methods often offer the best know solutions to many timetabling
problems, when compared to other metaheuristics [3,9]. The diversification strat-
egy is an important aspect in the design of a TS algorithm. Since the use of a
tabu list is not enough to prevent the search process from becoming trapped
in certain regions of the search space, other mechanisms have been proposed.
In particular, for the STP, two main approaches have been used: adaptive re-
laxation [8,4] and random restart [10]. In adaptive relaxation the costs involved



in the objective function are dynamically changed to bias the search process to
newly, unvisited, regions of the search space. In random restart a new solution
is generated and no previous information is utilized.

This work employs a TS algorithm that uses an informed diversification strat-
egy, which takes into account the history of the search process to bias the selec-
tion of diversification movements. Although it uses only standard Tabu Search
components, it provides better results than more complex previous proposals
[10].

The article is organized as follows: section 2 presents related works; section 3
introduces the problem to be treated; section 4 presents the proposed algorithm;
section 5 describes the computational experiments and their results; and finally,
section 6 formulates conclusions and future research proposals.

2 Related Works

Although the STP is a classical combinatorial optimization problem, no widely
accepted model is used in the literature. The reason is that the characteristics
of the problem are highly dependent on the educational system of the country
and the type of institution involved. As such, although the basic search problem
is the same, variations are introduced in different works [3,4,8,10]. Described
afterwards, the problem considered in this paper derives from [10] and consid-
ers the timetabling problem encountered in typical Brazilian high schools. In
[10], a GRASP-Tabu Search (GTS-II) metaheuristic was developed to tackle
this problem. The GTS-II method incorporates a specialized improvement pro-
cedure named “Intraclasses-Interclasses”, which uses a shortest-path graph al-
gorithm. At first, the procedure is activated aiming to attain the feasibility of
the constructed solution, after which, it then aims to improve the feasible solu-
tion. The movements made in the “Intraclasses-Interclasses” also remain with
the tabu status for a given number of iterations. Diversification is implemented
through the generation of new solutions, in the GRASP constructive phase. In
[9] three different metaheuristics that incorporate the “Intraclasses-Interclasses”
were proposed: Simulated Annealing, Microcanonical Optimization (MO) and
Tabu Search. The TS proposal outperformed significantly both SA and MO.

3 The Problem Considered

The problem considered deals with the scheduling of encounters with teachers
and students over a weekly period. The schedule is made up of d days of the
week with h daily periods, defining p = d × h distinct periods. There is a set T
with t teachers that teach a set S of s subjects to a set C of c classes, which are
disjoint sets of students with the same curriculum. The association of teachers
to subjects in certain classes is previously fixed and the workload is informed in
a matrix of requirements Rt×c, where rij indicates the number of lessons that
teacher i shall teach for class j. Classes are always available, and must have
their time schedules, of size p, completely filled out, while teachers indicate a



set of available periods. Also, teachers may request a number of double lessons
per class. These lessons are lessons which must be allocated in two consecutive
periods on the same day. This way a solution to the STP problem must satisfy
the following constraints:

1. no class or teacher can be allocated for two lessons in the same period;
2. teachers can only be allocated respecting their availabilities;
3. each teacher must fulfill his/her weekly number of lessons;
4. no class can have more than two lessons of a given subject per day.

Also, there are the following desirable features that a timetable should present:

1. the time schedule for each teacher should include the least number possible
of days;

2. double lessons requests must be satisfied whenever possible;
3. “gaps” in the time schedule of teachers should be avoided, that is: periods

of no activity between two lesson periods.

3.1 Solution Representation

A timetable is represented as a matrix Qt×p, in a such way that each row rep-
resents the complete weekly timetable for a given teacher. As such, the value
qik ∈ {0, 1, · · · , c}, indicates the class for which the teacher i is teaching during
period k (qik ∈ {1, · · · , c}), or if the teacher is available for allocation (qik = 0).
The advantage of this representation is that it eliminates the possibility for the
occurrence of conflicts in the timetable for teachers. The occurrence of conflicts
in classes happens when in a given period k more than one teacher is allocated to
that class. Allocations are only allowed in periods with availability of teachers.
A partial sample of a timetable with 5 teachers can be found in Figure 1, with
value “X” indicating the unavailabilities of teachers.

Teacher \ Period 1 2 3 4 5 · · · d × h

1 1 0 0 2 2 · · ·
2 0 X X 0 1 · · ·
3 X X 1 0 3 · · ·
4 0 1 0 1 0 · · ·
5 0 0 2 3 X · · ·

Fig. 1. Fragment of generated timetable

3.2 Objective Function

In order to treat STP as an optimization problem, it is necessary to define an
objective function that determines the degree of infeasibility and satisfaction of



requirements; that is, pretends to generate feasible solutions with minimal num-
ber of unsatisfied requisites. Thus, a timetable Q is evaluated with the following
objective function, which should be minimized:

f(Q) = ω × f1(Q) + δ × f2(Q) + ρ × f3(Q) (1)

where f1 counts, for each period k, the number of times that more than one
teacher teaches the same class in period k and the number of times that a class
has no activity in k. The f2 portion measures the number of allocations that
disregard the daily limits of lessons of subjects in classes (constraint 4). As
such, the timetable can only be considered feasible if f1(Q) = f2(Q) = 0. The
importance of the costs involved defines a hierarchy so that: ω > δ � ρ. The
f3 component in the objective function measures the satisfaction of personal
requests from teachers, namely: double lessons, non existence of “gaps” and
timetable compactness, as follows:

f3(Q) =
t∑

i=1

αi × bi + βi × vi + γi × ci (2)

where αi, βi, and γi are weights that reflect, respectively, the relative importance
of the number of “gaps” bi , the number of week days vi each teacher is involved
in any teaching activity during the same shift, and the non negative difference
ci between the minimum required number of double lessons and the effective
number of double lessons in the current agenda of teacher i.

4 The Proposed Algorithm

Tabu Search (TS) methods [6] are adaptive procedures that make use of search
history information to guide the improvement heuristic so that it is not con-
founded by the absence of improvement movements. The design of a TS al-
gorithm involves basically the following definitions: the construction procedure
that will provide an initial solution, the type of movement that will be applied in
the search process and which memory structures will be used. These components
will be described as follows:

4.1 Constructive Algorithm

The constructive algorithm basically consists of a greedy randomized construc-
tive procedure [7]. While in other works the option for a randomized construction
is to allow diversification, through the re-start of the process, in this case the
purpose is only to have control of the randomization degree of the initial so-
lution. To build a solution, step-by-step, the principle of allocating the most
urgent lessons in the most appropriate periods is used. In this case, the ur-
gency degree θij of allocating a lesson from teacher i for class j is computed
considering the available periods Vi from teacher i, the available periods Wj

from class j and the number of unscheduled lessons unscheduledij of teacher



i for class j, as follows: θij = unscheduledij

|Vi∩Wj |+1 . The algorithm then builds a re-
stricted candidate list (RCL) with the most urgent lessons, in a such a way that:
RCL = {i, j} | θij ≥ θ − (θ − θ) × α, where θ = max{θij | i ∈ T, j ∈ C} and
θ = min{θij | i ∈ T, j ∈ C}. The α parameter allows tuning the randomization
degree of the algorithm, varying from the pure greedy algorithm (α = 0) to
a completely random (α = 1) selection of the teacher and class to allocation.
At each step, the urgency degrees are recomputed. The selected lesson is allo-
cated attempting to maintain the timetable free of conflicts and giving priority
to periods with less teacher availability.

4.2 Tabu Search Components

The TS procedure starts from the initial solution provided by the constructive
algorithm and, at each iteration, fully explores the neighborhood N(Q) to select
the next movement. The movement, in this case, consists in the swap of two
values in the timetable of a teacher i ∈ {1, · · · , t}, and can be defined as 〈i, p1, p2〉,
such that qip1 �= qip2 , p1 < p2 and p1, p2 ∈ {1, · · · , p}. The best movement is
chosen at each iteration, even if it does not improves the best solution found. In
order to try to prevent cycles a short term memory is updated, containing the
last reverse movements performed. Once a movement m enters the tabu list, it
will remain with the tabu status for a random number of iterations tt(m), such
that tt(m) ∈ {minTabuTenure, · · · , maxTabuTenure}. The tabu list defines a
modified neighborhood, in a way that the algorithm will select the best non tabu
movement from this neighborhood. In order to not exclude good solutions from
the allowed set of movements, an aspiration criteria is defined. In this case, if the
movement improves the best solution found so far, it will loose its tabu status.

Since short-term memory is not enough to prevent the search process from
become entrenched in certain regions of the search space, long-term memory is
also employed. In this case a transition based long-term memory, that considers
the frequency of moves involving a given teacher and class was used. These
frequencies are computed using a matrix Zt×c , whose counts zij , represent the
number of movements that were done involving teacher i and class j. The counts
are zeroed whenever the best solution found is updated. The transition ratio of
frequency of movements for teacher i and class j is computed in the following
way, where z = max{zij | i ∈ T, j ∈ C}:

transitionRatioij =
zij

z
(3)

These values will be used in the diversification strategy, in a way that the
execution of few explored movements will be stimulated. This is done through
the incorporation of penalties in the evaluation of movements. The penalty for a
movement considers the cost of the best solution found so far f(Q∗), and involves
two allocations, say qip1 and qip1 . These allocations can consist in lessons for two
classes, or a lesson to one class and a free period. This way, the penalty for a
movement involving teacher i and allocations of periods p1, a1 = qip1 and p2,
a2 = qip2 , can be calculated as:



penaltyia1a2 =

{
transitionRatioia1 × f(Q∗) if a1 �= 0 and a2 = 0
transitionRatioia2 × f(Q∗) if a1 = 0 and a2 �= 0
(transitionRatioia1 + transitionRatioia2 )/2 × f(Q∗) if a1 �= 0 and a2 �= 0

Another penalty function also considers the teacher workload to promote di-
versification. In this case, the objective is to favor movements involving teachers
whose timetable changes would probably produce bigger modifications in the
solution structure. This penalty function (penaltyTL), is computed as follows:

penaltyTLia1a2 =
penaltyia1a2∑c

j=1 rij/ maxt
l=1 (

∑c
j=1 rlj)

(4)

The diversification strategy is applied whenever signals that regional en-
trenchment may be in action are detected. In this case, the number of non-
improvement iterations is evaluated before starting the diversification strategy.
Movements performed in this phase can be viewed as influential movements
[6], in a way that these movements try to modify the solution structure in a
influential (non-random) way.

The pseudo-code in Figure 2 presents the proposed TSDS heuristic. The pa-
rameters minTT and maxTT inform, respectively, the lower bound and the
upper bound of the tabu tenure values that can be randomly selected at each
iteration. The parameters activationDiv and iterationsDiv inform the number
of non improvement iterations necessary to start the diversification process, and
the number of iterations that the process will remain active, respectively. The
binary operator ⊕ means the application of a movement in the current solu-
tion. The function computePenalty can use one of the penalty functions previ-
ously presented. In the following sections, the implementation that considers the
penalty function that only takes into account the frequency ratio of transitions
will be referred as TSDS, while the implementation that use the penalty function
that takes into account also the workload of teachers will be referred as TSDSTL.
For comparison purposes, an implementation without the diversification strategy
(TS), also will be considered.



procedure TSDS(Q, minTT , maxTT , activationDiv, iterationsDiv)
begin

f∗ = f(Q); Q∗ = Q; TabuList = ∅;
noImprovementIterations = 0; iteration = 0;
repeat

deltaCost(bestMov) = ∞; iteration + +;
for each movement m ∈ N(Q)

penalty = 0;
if ((noImprovementIterations mod activationDiv) < iterationsDiv) and

(noImprovementIterations > iterationsDiv) then
penalty = computePenalty(m);

endif
if (f(Q) − f(Q ⊕ m) + penalty < deltaCost(bestMov) and (bestMov /∈ TabuList))
or (f(Q ⊕ m) < f∗)
bestMov = m;
deltaCost(bestMov) = f(Q) − f(Q ⊕ m);

endif
end for
Q = Q ⊕ m;
tabuTenure(m) = random(minTT,maxTT );
UpdateTabuList(m, iteration);
ComputeMovementFrequency(m);
if (f(Q) < f∗) then

noImprovementIterations = 0; Q∗ = Q; f∗ = f(Q∗);
else

noImprovementIterations + +;
endif

until (stoppingCriterionReached())
return Q∗;

end.

Fig. 2. Pseudo-code for TSDS algorithm



5 Computational Experiments and Discussion

Experiments were done in the set of instances originated from [10], and the data
referred to Brazilian high schools, with 25 lesson periods per week for each class,
in different shifts. In Table 1 some of the characteristics of the instances can be
verified, such as dimension and sparseness ratio (sr), which can be computed
considering the total number of lessons (#lessons) and the total number of
unavailable periods (u): sr = t×p−(#lessons+u)

t×p . Lower sparseness values indicate
more restrictive problems and likewise, more difficult resolution.

Instance Teachers Classes Total Double Sparseness
Lessons Lessons Ratio (sr)

1 8 3 75 21 0.43
2 14 6 150 29 0.50
3 16 8 200 4 0.30
4 23 12 300 66 0.18
5 31 13 325 71 0.58
6 30 14 350 63 0.52
7 33 20 500 84 0.39
Table 1. Characteristics of problem instances

The algorithms were coded in C++. The implementation of GTS-II was the
same presented in [10], and was implemented in C. The compiler used was GCC
3.2.3 using flag -O2. The experiments were performed in a micro-computer with
an AMD Athlon XP 1533 MHz processor, 512 megabytes of RAM running the
Linux operating system.

The weights in the objective function were defined as in [10]: ω = 100, δ = 30,
ρ = 1, αi = 3, βi = 3 and γi = 1, ∀i = 1, · · · , t.

In the first set of experiments, the objective was to verify the average so-
lution cost produced by each algorithm, within a given time limit. The results
(Table 2) consider the average best solution found in 20 independent executions,
with the following time limits to instances 1, · · · , 7, respectively: {90, 280, 380,
870, 1930, 1650, 2650}. The parameters for GTS-II and the time limits are the
same proposed in [10]. The parameters for TSDS and its variations are: α = 0.1
(constructive algorithm), minTT = 20, maxTT = 25, activationDiv = 500 and
iterationsDiv = 10. Best results are shown in bold.

As it can be seen in Table 2, although only minor differences can be ob-
served among the two implementations that use different penalty functions in
the diversification strategy, results show that versions that use the informed
diversification strategy perform significantly better than GTS-II and TS.

In other set of experiments, the objective was to verify the empirical probabil-
ity distribution of reaching a given sub-optimal target value (i.e. find a solution



Instance GTS-II TSDSTL TSDS TS

1 204.80 203.42 203.37 207.05
2 350.10 344.84 345.36 349.26
3 455.70 439.94 439.05 455.58
4 686.30 669.69 672.15 670.92
5 796.30 782.74 780.74 782.84
6 799.10 783.38 781.77 787.85
7 1,076.20 1,060.84 1,059.05 1,071.21

Table 2. Average results with fixed time limits

with cost at least as good as the target value) in function of time in different
instances. The sub-optimal values were chosen in a way that the slowest algo-
rithm could terminate in a reasonable amount of time. In these experiments,
TSDSTL and GTS-II were evaluated and the execution times of 150 independent
runs for each instance were computed. The experiment design follows the pro-
posal of [1]. The results of each algorithm were plotted associating with the i-th
smallest running time ti a probability pi = (i − 1

2 )/150, which generates points
zi = (ti, pi), for i = 1, · · · , 150. As it can be be seen in Figures 3 to 6 the TSDSTL
heuristic achieves high probability values (≥ 50%) of reaching the target values
in significantly smaller times than GTS-II. This difference is enhanced mainly
in instance 4, which presents a very low sparseness ratio. This result may be re-
lated to the fact that the “Intraclasses-Interclasses” procedure of GTS-II works
with movements that use free periods, which are hard to find in this instance.
Another analysis show that at the time when 95% of TSDSTL runs have achieved
the target value, in average, only 64% of GTS-II runs have achieved the target
value. Considering the time when 50% of TSDSTL runs have achieved the target
value, only 11%, in average, of GTS-II runs have achieved the target value.

6 Concluding Remarks

This paper presented a new tabu search heuristic to solve the school timetabling
problem. Experiments in real world instances showed that the proposed method
outperforms significantly a previously developed hybrid tabu search algorithm,
and it has the advantage of a simpler design.

Contributions of this paper include the empirical verification that although
informed diversification strategies are not commonly employed in tabu search
implementations for the school timetabling problem, its incorporation can sig-
nificantly improve the method robustness. The proposed method not only pro-
duced better solutions for all test instances but also performed faster than a
hybrid tabu search approach.

Although the proposed method offers quite an improvement, future researches
may combine the “Intraclasses-Interclasses” procedure with an informed diver-
sification strategy, which could lend to even better results .
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Fig. 3. Empirical probability distribution of finding target values in function of time
for instances 1 and 2
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for instances 5 and 6
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