
A Tabu Search Heuristic with Efficient

Diversification Strategies for the Class/Teacher
Timetabling Problem

Haroldo G. Santos1, Luiz S. Ochi1, and Marcone J.F. Souza2

1 Instituto de Computação, Universidade Federal Fluminense, Niterói, Brazil
{hsantos,satoru}@ic.uff.br

2 Departamento de Computação, Universidade Federal de Ouro Preto, Ouro Preto,
Brazil

marcone@iceb.ufop.br

Abstract. The Class/Teacher Timetabling Problem (CTTP) deals with
the weekly scheduling of encounters between teachers and classes of an
educational institution. Since CTTP is a NP-hard problem for nearly
all of its variants, the use of heuristic methods for its resolution is jus-
tified. This paper presents an efficient Tabu Search (TS) heuristic with
two different memory based diversification strategies for CTTP. Results
obtained through an application of the method for a set of real world
problems show that it produces better solutions than a previously pro-
posed TS found in the literature and faster times are observed in the
production of good quality solutions.

1 Introduction

The Class/Teacher Timetabling Problem (CTTP) embraces the scheduling of
sequential encounters between teachers and students so as to insure that re-
quirements and constraints are satisfied. Typically, the manual solution of this
problem extends for various days or weeks and normally produces unsatisfactory
results due to the fact that lesson periods could be scheduled which are incon-
sistent with pedagogical needs or could even serve as impediments for certain
teachers or students. CTTP is considered a NP-hard problem [7] for nearly all
of its variants, justifying the usage of heuristic methods for its resolution. In
this manner, various heuristic and metaheuristic approaches have been applied
with success in the solution of this problem, such as: Tabu Search (TS) [14,5,12],
Genetic Algorithms [15] and Simulated Annealing (SA) [2].

The application of TS to the CTTP is specially interesting, since this method
is, as local search methods generally are, very well suited for the interactive
building of timetables, a much recognized quality in timetable building systems.
Furthermore, TS based algorithms offer robust solution methods for timetabling
problems [6], often presenting the best known solutions, when compared to other
metaheuristics [4,13]. The diversification strategy is an important aspect in the
design of a TS algorithm. Since the use of a tabu list is not enough to prevent

the search process from becoming trapped in certain regions of the search space,
other mechanisms have been proposed. In particular, for the CTTP, two main
approaches have been used: adaptive relaxation [12,5] and random restart [14]. In
adaptive relaxation the costs involved in the objective function are dynamically
changed to guide the search process to newly, unvisited, regions of the search
space. In random restart a new solution is generated and no previous information
is utilized.

This work employs a TS algorithm that uses informed diversification strate-
gies, which take into account the history of the search process to guide the
selection of diversification movements. Although it uses only standard TS com-
ponents, it provides better results than more complex previous proposals [14].

The article is organized as follows: section 2 presents related works; section 3
introduces the problem to be treated; section 4 presents the proposed algorithm;
section 5 describes the computational experiments and their results; and finally,
section 6 formulates conclusions and future research proposals.

2 Related Works

Although the CTTP is a classical combinatorial optimization problem, no widely
accepted model is used in the literature. The reason is that the characteristics of
the problem are highly dependent on the educational system of the country and
the type of institution involved. As such, although the basic search problem is
the same, variations are introduced in different works (mainly in the evaluation
of timetables) [4,5,12,14]. Described afterwards, the problem considered in this
paper derives from [14] and considers the timetabling problem encountered in
typical Brazilian public high schools. In [14], a GRASP-Tabu Search (GTS-II)
metaheuristic was developed to tackle this problem. The GTS-II method incor-
porates a specialized improvement procedure named “Intraclasses-Interclasses”,
which uses a shortest-path graph algorithm. At first, the procedure is activated
aiming to attain the feasibility of the constructed solution, after which, it then
aims to improve the feasible solution. The movements made in the “Intraclasses-
Interclasses” also remain with the tabu status for a given number of iterations.
Diversification is implemented through the generation of new solutions, in the
GRASP constructive phase. In [13] three different metaheuristics that incorpo-
rate the “Intraclasses-Interclasses” were proposed: Simulated Annealing, Micro-
canonical Optimization (MO) and Tabu Search. The TS proposal significantly
outperformed both SA and MO.

3 The Problem Considered

The problem considered deals with the scheduling of encounters with teachers
and classes over a weekly period. The schedule is made up of d days of the week
with h daily periods, defining the set P , with p = d×h distinct periods. There is
a set T with t teachers which teach to a set C of c classes, which are disjoint sets
of students with the same curriculum. The allocation of teachers to classes is

previously fixed and the workload is informed in a matrix of requirements Rt×c,
where rij indicates the number of lessons that teacher i shall teach for class j.
Classes are available at any period, and must have their time schedules, of length
p, completely filled out, while each teacher i indicates his/her set of available
periods Ai. Also, teachers may request a number of double lessons per class.
These lessons are lessons which must be allocated in two consecutive periods
on the same day. This way a solution to the CTTP problem must satisfy the
following constraints:

1. no class or teacher can be allocated for two lessons in the same period;
2. teachers can only be allocated respecting their availabilities;
3. each teacher must fulfill his/her weekly number of lessons;
4. for pedagogical reasons no class can have more than two lesson periods with

the same teacher per day.

Also, there are the following desirable features that a timetable should present:

1. the time schedule for each teacher should encompass the least possible num-
ber of days;

2. double lessons requests must be satisfied whenever possible;
3. “gaps” in the time schedule of teachers should be avoided, that is: periods

of no activity between two lesson periods.

3.1 Solution Representation

A timetable is represented as a matrix Qt×p, in such a way that each row rep-
resents the complete weekly timetable for a given teacher. As such, the value
qik ∈ {0, 1, · · · , c}, indicates the class for which the teacher i is teaching during
period k (qik ∈ {1, · · · , c}), or if the teacher is available for allocation (qik = 0).
The advantage of this representation is that it eliminates the possibility for the
occurrence of conflicts for teachers. The occurrence of conflicts in classes happens
when in a given period k more than one teacher is allocated to that class. Allo-
cations are only allowed in periods with teacher availability. A partial sample of
a timetable with 5 teachers can be found in Figure 1, with value “X” indicating
unavailabilities of teachers.

Teacher \ Period 1 2 3 4 5 · · · d× h
1 1 0 0 2 2 · · ·
2 0 X X 0 1 · · ·
3 X X 1 0 3 · · ·
4 0 1 0 1 0 · · ·
5 0 0 2 3 X · · ·

Fig. 1. Fragment of generated timetable

3.2 Objective Function

In order to treat CTTP as an optimization problem, it is necessary to define
an objective function that determines the degree of infeasibility and dissatis-
faction of requirements; that is, pretends to generate feasible solutions with a
minimal number of unsatisfied requisites. Thus, a timetable Q is evaluated with
the following objective function, which should be minimized:

f(Q) = ω × f1(Q) + δ × f2(Q) + ρ× f3(Q) (1)

where f1 counts, for each period k, the number of times that more than one
teacher teaches the same class in period k and the number of times that a class
has no activity in k. The f2 portion measures the number of allocations that
disregard the daily limits of lessons (constraint 4). As such, a timetable can only
be considered feasible if f1(Q) = f2(Q) = 0. The importance of the costs involved
defines a hierarchy so that: ω > δ � ρ. The f3 component in the objective
function measures the dissatisfaction of personal requests from teachers, namely:
double lessons, non-existence of “gaps” and timetable compactness, as follows:

f3(Q) =

t∑

i=1

αi × bi + βi × vi + γi × ci (2)

where αi, βi, and γi are weights that reflect, respectively, the relative importance
of the number of “gaps” bi , the number of week days vi each teacher is allocated
for teaching, and the non-negative difference ci between the minimum required
number of double lessons and the effective number of double lessons in the current
agenda for teacher i.

4 Tabu Search for the Class/Teacher Timetabling
Problem

Tabu Search (TS) is an iterative method for solving combinatorial optimization
problems. It explicitly makes use of memory structures to guide a hill-descending
heuristic to continue exploration without being confused by the absence of im-
provement movements. This technique was independently proposed by Glover
[8] and Hansen [10]. For a detailed description of TS, the reader is referred to
[9]. This section presents a brief explanation of TS principles. They are followed
by specifications of the customized TS implementation proposed in this paper.

Starting from an initial solution x, the method systematically explores the
neighborhood N (x) and selects the best admissible movement m, so that the
application of m in the current solution x (denoted by x⊕m) produces the new
current solution x′ ∈ N (x). Movements that deteriorate the cost function are
also permitted. Thus, to try to avoid cycling, a mechanism called short term
memory is employed. The objective of short term memory is to try to forbid
movements toward already visited solutions, which is usually achieved by the
prohibition of the last performed movements. These movements are stored in

a tabu list and remain forbidden (with tabu status), for a given number of
iterations, called tabu tenure. Since this strategy can be too restrictive, so as not
to disregard high quality solutions, movements with tabu status can be accepted
if the new solution produced satisfies an aspiration criterion. Also, intensification
and diversification procedures can be used. These procedures, respectively, aim
to deeply investigate promising regions of the search space and to ensure that
no region of the search space remains neglected. Following is a description of the
constructive algorithm and the customized TS implementation proposed in this
paper.

4.1 Constructive Algorithm

The constructive algorithm basically consists of a greedy randomized construc-
tive procedure [11]. Although in other works the option for a randomized con-
struction is to provide diversification, through multiple re-initializations, in our
implementation the only purpose is to have control of the randomization degree
of initial solution. The construction procedure (Figure 2) is somewhat similar
to the human way of building timetables. To build a solution, step-by-step,
the principle of allocating first the most urgent lessons in the most appropri-
ate periods is used. In this case, the urgency degree θij of allocating a lesson
from teacher i for class j is computed considering the available periods Vi from
teacher i, the available periods Wj from class j and the number of unscheduled

lessons ζij of teacher i for class j, as follows: θij =
ζij

|Vi∩Wj |+1 . The algorithm

then builds a restricted candidate list (RCL) with ordered pairs (i, j) with high-
est urgency degrees, such that RCL = {(i, j) | θij ≥ θ − (θ − θ) × α}, where
θ = max{θij | i ∈ T, j ∈ C} and θ = min{θij | i ∈ T, j ∈ C}. At each iteration,
one lesson from teacher i and class j, so that (i, j) ∈ RCL, is randomly selected
for allocation. The α parameter allows tuning the randomization degree of the
algorithm, varying from the pure greedy lesson selection (α = 0) to a completely
random (α = 1) selection of teacher and class for allocation.

The selection of the period in which the selected lesson will be allocated is
done in free periods of teachers, trying to prevent clashes in classes timetables
(this constraint is violated whenever Wj ∩ Vi = ∅). To provide another level
of diversity in the initial solution, the selection of period for allocation is also
probabilistic, in a way that periods with low availability of teachers will have an
exponentially bigger probability of being chosen [3].

At each iteration, the number of unscheduled lessons, availabilities of teachers
and classes and urgency degrees are recomputed. The process continues till no
more unscheduled lessons are found (i.e., ζij = 0, i ∈ T, j ∈ C).

4.2 Tabu Search Components

The TS procedure (Figure 3) starts from the initial timetable Q provided by
the constructive algorithm and, at each iteration, fully explores the neighborhood
N (Q) to select the next movement m. The movement definition used here is the

procedure GenerateTimetable(α, R,A,P)

1: ζij ← rij (i ∈ T, j ∈ C);
2: Vi ← Ai (i ∈ T); Wj = P (j ∈ C);
3: repeat

4: θij =
ζij

|Vi∩Wj |+1
;

5: RCL = {(i, j) | θij ≥ θ − (θ − θ)× α};
6: Randomly select (d, e), such that (d, e) ∈ RCL;
7: F ← Vd ∩We

8: if F = ∅ then
9: F ← Vd;

10: end if
11: Associate probabilities to periods and randomly select f ∈ F ;
12: Qdf ← e;
13: until ∃ζij > 0 (i ∈ T, j ∈ C);
14: return Q;

end GenerateTimetable.

Fig. 2. Pseudo-code for GenerateTimetable

same as in [12], and involves the swapping of two values in the timetable of a
teacher i ∈ T , which can be defined as the triple 〈i, p1, p2〉, such that qip1 6= qip2 ,
p1 < p2 and p1, p2 ∈ {1, · · · , p}. Clearly, any timetable can be reached through
a sequence of these movements that is, at most, the number of lessons in the
requirements matrix. Once a movement m is selected, it will be kept in the tabu
list during the next tabuTenure(m) iterations. In order to hinder the occurrence
of cycling, tabuTenure(m) is not a fixed value, but is randomly selected from
values close to a central value (ctenure input parameter). The allowable deviation
from this value is defined by the ϕ input parameter (ϕ ∈ [0, 1]), such that it will
determine the range of possible values for tabu tenure (line 19). Insertions and
removals in tabu list can be made at every iteration (line 20). The aspiration
criterion defined is that the movement will loose its tabu status if its application
produces the best solution found so far (line 11).

Since short term memory is not enough to prevent the search process from
becoming entrenched in certain regions of the search space, some diversification
strategy is necessary. In the proposed method, long term memory is used to guide
the diversification procedure. The motivation to employ a memory guided di-
versification procedure instead of random re-start is twofold: firstly, information
loss incurred from random re-start is avoided and secondly, the use of memory
to guide the diversification process, hopefully, diminishes the risk of revisiting
the same region of the search space.

Two types of long term memory are proposed. The first type regards the
storage of transition measures, counting the frequency of movements involving
each teacher and class. The second type regards the storage of residency measures
counting the number of times in which each lesson has occupied a given period.
Every time a movement is done, long term memory information is updated (line

procedure ImproveTimetable(Q, divActivation, iterationsDiv, ctenure, ϕ)

1: Q∗ = Q; TabuList = ∅; noImprovementIterations = 0; iteration = 0;
2: initializeLongTermMemory();
3: repeat
4: ∆ =∞; iteration+ +;
5: for all movement m such that (Q⊕m) ∈ N (Q) do
6: penalty = 0;
7: if (noImprovementIterations mod divActivation < iterationsDiv)

and (iteration ≥ divActivation) then
8: penalty = computePenalty(m);
9: end if

10: ∆′ = f(Q⊕m)− f(Q);
11: if ((∆′ + penalty < ∆) and (m /∈ TabuList)) or (f(Q⊕m) < f(Q∗)) then
12: bestMov = m;
13: ∆ = ∆′;
14: if (f(Q⊕m) ≥ f(Q∗)) then ∆ = ∆+ penalty;
15: end if
16: end for
17: updateLongTermMemory(bestMov,Q);
18: Q = Q⊕ bestMov;
19: tabuTenure(bestMov) = random(bctenure−ϕ×ctenurec, dctenure+ϕ×ctenuree);
20: updateTabuList(bestMov, iteration);
21: if (f(Q) < f(Q∗)) then
22: Q∗ = Q; noImprovementIterations = 0;
23: initializeLongTermMemory();
24: else
25: noImprovementIterations++;
26: end if
27: until termination criterion reached;
28: return Q∗;

end ImproveTimetable.

Fig. 3. Pseudo-code for tabu search algorithm to the class/teacher timetabling problem

17), and every time the best solution is updated, long term memory is cleared
(line 23).

While the diversification strategy is active, long term memory information is
used to guide the selection of movements, so that movements in slight modified
timetables and/or movements which make unusual allocations are encouraged.
This is done through the incorporation of penalties in the evaluation of move-
ments (line 8). In the following paragraphs a description of the proposed long
term memories and how they are used to compute penalties in the diversification
strategy is presented.

Transition based long term memory: in this type of memory, transition
measures are stored in a matrix Zt×c, counting how many movements zij were

done involving teacher i and class j. Using these values, transition ratios are
computed. Let z = max{zij | i ∈ T, j ∈ C}, the transition ratio εij for teacher
i and class j is:

εij =
zij
z

(3)

Since a movement can involve two lesson periods, or a lesson period and a free
period, the penalty used in the diversification strategy ψia1a2 associated with a
movement in the timetable of teacher i, in periods p1 and p2 with allocations
a1 = qip1 and a2 = qip2 , respectively, considering the cost of the current solution
f(Q) is:

ψia1a2 =




εia1 × f(Q) if a1 6= 0 and a2 = 0
εia2 × f(Q) if a1 = 0 and a2 6= 0
(εia1 + εia2)/2× f(Q) if a1 6= 0 and a2 6= 0

Residence based long term memory: in this type of memory, residence
measures are stored for each lesson, in a Yt×c×u×p matrix (u = max{rij | i ∈
T, j ∈ C}), where zijmk expresses how many iterations the m-th lesson of teacher
i on class j occupied period k. Although it is a fourth-dimensional matrix, this
is a very sparse matrix, in a way that efficient implementations make its use
practical for problems considered in this paper. To compute the residence ratio
ηijmk of the m-th lesson of teacher i and class j on period k, the maximum value
of yijmk (i ∈ T, j ∈ C,m ∈ {1, 2, · · · , u}, k ∈ P) y is considered, as follows:

ηijmk =
yijmk
y

(4)

Thus, the penalty µijmk for allocating the m−th lesson of teacher i and class
j on period k is:

µijmk = ηijmk × f(Q) (5)

For movements which involve two allocations in a timetable for a given
teacher the penalty will be the average penalty of the involved lessons.

The diversification strategy is applied whenever signals that regional en-
trenchment may be in action are detected. In this case, the number of non-
improvement iterations is evaluated before starting the diversification strategy
(line 7). The number of non-improvement iterations necessary to start the diver-
sification process (divActivation) and the number of iterations that the process
will remain active (iterationsDiv) are input parameters. The process is cyclic
and restarts whenever a multiple of divActivation non-improvement iterations
is reached. Movements performed in this phase can be viewed as influential
movements [9], since these movements try to modify the solution structure in a
influential (non-random) manner. The function computePenalty (line 8) can use
one of the proposed long term memory based penalties. In the following sections

the tabu search implementation with transition based long term memory will
be referred as TST, while the implementation with residence based long term
memory will be referred as TSR. Another implementation, which maintains both
types of long term memory will be referred as TSTR. In TSTR, penalties computed
using transition based long term memory and residence based long term memory
are summed and used in the diversification strategy.

For comparison purposes, an implementation without any diversification strat-
egy (TS), will also be considered in the next sections.

5 Computational Experiments and Discussion

Experiments were done in the set of instances originated from [14], and the
data referred to public Brazilian high schools, with 25 lesson periods per week
for each class, in different shifts. In Table 1 some of the characteristics of the
instances can be verified, such as dimension and sparseness ratio (sr), which can
be computed considering the total number of lessons (#lessons) and the total

number of unavailable periods (#u): sr = t×p−(#lessons+#u)
t×p . Lower sparseness

values indicate more restrictive problems and, likewise, problems in which it is
more difficult to find feasible timetables.

Instance Teachers Classes Total Double Sparseness
Lessons Lessons Ratio (sr)

1 8 3 75 21 0.43

2 14 6 150 29 0.50

3 16 8 200 4 0.30

4 23 12 300 66 0.18

5 31 13 325 71 0.58

6 30 14 350 63 0.52

7 33 20 500 84 0.39
Table 1. Characteristics of problem instances

Three objectives guided the selection of computational experiments to be
included in this work: firstly, to search for the best parameters and modules
composition (which diversification strategy gives better results), secondly, verify
how the proposed tabu search heuristic compares to the previously proposed
GTS-II algorithm, and thirdly, verify how good the provided solutions are, con-
sidering its practical application.

The algorithms were coded in C++ and the implementation of GTS-II was
the same presented in [14]. The compiler used was GCC 3.2.3 using flag -O2.
Experiments were performed in micro-computers with AMD Athlon XP 1533
MHz processors, 512 megabytes of RAM, running the Linux operating system.

The weights in the objective function were defined as in [14]: ω = 100, δ = 30,
ρ = 1, αi = 3, βi = 3 and γi = 1, ∀i = 1, · · · , t.

TS TST

Central Tabu Tenure Central Tabu Tenure
Instance 15 20 25 30 Average 15 20 25 30 Average

1 5.13 2.32 0.78 1.28 2.38 0.35 0.30 0.15 0.10 0.22

2 3.47 2.21 1.15 1.72 2.14 0.00 0.12 0.52 0.38 0.25

3 7.94 6.68 2.48 0.92 4.50 0.46 1.03 0.27 0.00 0.44

4 0.97 0.96 0.82 0.24 0.75 0.36 0.27 0.27 0.31 0.30

5 4.83 6.32 1.96 0.45 3.39 0.22 0.21 0.24 0.37 0.26

6 3.45 2.14 0.94 0.30 1.71 0.19 0.27 0.45 0.45 0.34

7 1.75 1.65 0.54 0.82 1.19 0.00 0.19 0.43 0.55 0.29

Average 3.93 3.18 1.24 0.82 2.29 0.22 0.34 0.33 0.31 0.30

TSR TSTR

Central Tabu Tenure Central Tabu Tenure
Instance 15 20 25 30 Average 15 20 25 30 Average

1 0.59 0.15 0.00 0.20 0.23 0.25 0.10 0.15 0.25 0.19

2 0.61 0.32 0.20 0.41 0.39 0.26 0.44 0.61 0.61 0.48

3 0.14 0.60 0.76 1.17 0.66 0.73 0.30 0.53 0.53 0.52

4 0.24 0.21 0.34 0.37 0.29 0.00 0.15 0.19 0.43 0.19

5 0.30 0.00 0.35 0.31 0.24 0.05 0.09 0.56 0.55 0.31

6 0.00 0.39 0.39 0.41 0.30 0.08 0.19 0.53 0.59 0.35

7 0.45 0.63 0.38 0.72 0.55 0.04 0.20 0.36 0.44 0.26

Average 0.33 0.33 0.34 0.51 0.38 0.20 0.21 0.42 0.49 0.33
Table 2. Average distance from best known solutions, for each instance, in different
tabu search strategies

Initially, experiments to verify which is the best parameter configuration
for the proposed algorithms were done (parameters for GTS-II were the same
used in [14]). Average results of 10 independent executions (different random
seeds) on each instance for different central tabu tenure values (ctenure) and
instances were computed (other parameters remain fixed: α = 0.1, ϕ = 0.1,
divActivation = 500 and iterationsDiv = 10). Executions had fixed time limits,
as proposed in [14], which are for instances {1, · · · , 7}: {90, 280, 380, 870, 1930,
1650, 2650} seconds, respectively. In Table 2 the average distance of the cost of
generated solutions from the best know solutions is shown. As can be seen, for TS
(without diversification strategy), better results were obtained with the highest
ctenure values. Nevertheless, implementations with the proposed diversification
strategies obtained better results, with any ctenure value, than the simple TS.
While on average TST performed better than TSR, the best results were obtained
in the implementation which considers both types of long term memory, using
low ctenure values, since TSTR with ctenure = 15 generated solutions, on average,

only 0.2% off from best known solutions. From now on, results of the proposed
algorithms consider experiments with parameters which produced better average
results (i.e.: for ctenure : 30 for TS and 15 for TST, TSR and TSTR).

A different view of the results of the previously described experiment is pre-
sented in Table 3. Average solution costs generated by proposed algorithms are
compared to average results of GTS-II within the same time limits. Best results
are shown in bold.

Instance GTS-II TS TST TSR TSTR

1 204.80 205.30 203.40 203.00 203.20

2 350.10 349.20 343.30 344.40 344.20

3 455.70 440.90 438.90 439.50 440.10

4 686.30 670.50 671.30 670.30 668.90

5 796.30 782.70 780.90 779.20 779.60

6 799.10 781.50 780.70 782.20 779.80

7 1,076.20 1,063.80 1,055.20 1,061.90 1,055.60
Table 3. Average results, runs with fixed time limits

Inst. Constructive Algorithm TSTR

f1(Q∗) f2(Q∗) #d (%d) #g (%g) cr f1(Q∗) f2(Q∗) #d (%d) #g(%g) cr

1 0.0 0.5 15.1 (71.5) 17.2 (22.9) 1.6 0.0 0.0 1.9 (9.0) 4.1 (5.5) 1.2

2 0.0 0.0 24.3 (83.8) 24.8 (16.5) 1.3 0.0 0.0 7.3 (25.2) 1.3 (0.9) 1.0

3 0.3 2.5 2.0 (50.0) 31.2 (15.6) 1.4 0.0 0.0 0.4 (10.0) 5.4 (2.7) 1.1

4 4.3 0.9 35.5 (53.8) 21.0 (7.0) 1.2 0.0 0.0 19.4 (29.4) 3.8 (1.3) 1.0

5 0.0 0.2 54.1 (76.1) 46.4 (14.3) 1.5 0.0 0.0 13.7 (19.3) 3.5 (1.1) 1.1

6 0.2 0.0 53.7 (85.2) 53.4 (15.3) 1.4 0.0 0.0 15.4 (24.4) 8.8 (2.5) 1.0

7 0.5 0.2 69.6 (82.9) 74.1 (14.8) 1.3 0.0 0.0 23.0 (27.4) 10.6 (2.1) 1.0
Table 4. Average costs of objective function components obtained by the constructive
algorithm and at the end of the tabu search heuristic TSTR

As can be seen in Table 3, although only minor differences can be observed
among implementations that use different penalty functions in the diversifica-
tion strategy, results show that versions using informed diversification strategies
perform significantly better than GTS-II and TS.

In order to evaluate the quality of the solutions obtained by the proposed
method, taking into account its practical application, and to verify how signifi-
cant is the improvement of TSTR over the solution received from the constructive
algorithm, Table 4 presents the average costs involved in each objective function
component, for the solution provided by the constructive algorithm and for the

improved solution from TSTR. Columns #d (%d), #g (%g) and cr are related
to the f3 component of the objective function, in the following way: #d (%d)
indicates the unsatisfied double lessons (and the percentage of unsatisfied dou-
ble lessons, considering the number of double lesson requests), while #g (%g)
indicates the number of “gaps” in the timetable of teachers (and the percentage
considering the total number of lessons) and cr measures the compactness ratio
of timetable of teachers. To compute cr, the summation of the actual number
of days ad that each teacher must teach some lesson in the school in a given
timetable and the lower bound for this value ad are used. The ad value considers

the minimum number of days mdi = d
∑

c

j=1
rij

h e that each teacher i must teach

some lecture in the school, such that ad =
∑t

i=1mdi. This way, cr = ad/ad. Val-
ues close to one indicate that the timetable is as compact as it can be. As can be
seen in Table 4, the solution provided by the constructive algorithm usually con-
tains some type of infeasibility. These problems were always solved by the TSTR

algorithm, in a way that no infeasible timetable was produced. Regarding the
preferences of teachers, the timetable compactness, which has the highest weight
in the f3 component of the objective function, it can be seen that in most cases
the optimal value was reached (cr = 1). Also, small percentage values of “gaps”
and unsatisfied double lessons were obtained.

GTS-II TSTR

Instance 25% 50% 75% 25% 50% 75%

1 7.64 9.57 12.15 2.13 3.36 6.39

2 21.39 26.57 34.68 9.03 13.48 19.71

3 28.57 46.84 85.41 16.29 27.66 46.47

4 49.22 92.57 146.50 2.65 3.40 5.45

5 47.79 62.85 102.20 27.63 37.85 54.51

6 35.81 48.00 72.12 25.20 33.97 44.38

7 92.41 150.72 287.48 89.57 118.82 155.72

Table 5. Time (in seconds) for 25%, 50% and 75% of runs achieve the target solution
values.

In another set of experiments, the objective was to verify the empirical proba-
bility distribution of reaching a given sub-optimal target value (i.e. find a solution
with cost at least as good as the target value) in function of time in different in-
stances. The sub-optimal values were chosen in a way that the slowest algorithm
could terminate in a reasonable amount of time. In these experiments, TSTR and
GTS-II were evaluated and the execution times of 150 independent runs for each
instance were computed. The experiment design follows the proposal of [1]. The
results of each algorithm were plotted by associating the i-th smallest running
time ti with a probability pi = (i− 1

2)/150, which generates points zi = (ti, pi),
for i = 1, · · · , 150. The results show that TSTR achieves high probability values

Fig. 4. Empirical probability distribution of finding target value in function of time
for instances 3 and 4

(≥ 50%) of reaching the target values in significantly smaller times than GTS-II,
for all instances. Representative results are presented in figures 4 and 5.

This difference is enhanced mainly in instance 4, which presents a very low
sparseness ratio. This result may be related to the fact that the “Intraclasses-
Interclasses” procedure of GTS-II works with movements that use free periods,
which are hard to find in this instance. Another analysis, taking into account
all test instances, shows that at the time when 95% of TSTR runs have achieved
the target value, on average, only 64% of GTS-II runs have achieved the target
value. Considering the time when 50% of TSTR runs have achieved the target
value, only 11%, on average, of GTS-II runs have achieved the target value.
Table 5 presents the execution times needed by GTS-II and TSTR to achieve
different probabilities of reaching the target values.

6 Concluding Remarks

This paper presented a new tabu search heuristic to solve the class/teacher
timetabling problem. Experiments in real world instances showed that the pro-
posed method outperforms significantly a previously developed hybrid tabu
search algorithm, and it has the advantage of a simpler design.

Contributions of this paper include the empirical verification that although
informed diversification strategies are not commonly employed in tabu search
implementations for the class/teacher timetabling problem, its incorporation can
significantly improve the method robustness. The proposed method not only
produced better solutions for all test instances but also performed faster than a
hybrid tabu search approach.

Although in the proposed algorithm long term memory was used to guide
diversification procedures, intensification strategies which use this type of in-
formation can be formulated, and its application is worthy of receiving further
investigation.

Other interesting enhancement to the algorithm could be the combination of
the “Intraclasses-Interclasses” procedure with an informed diversification strat-
egy, which could lead to even better results.

Acknowledgements

This work was partially supported by CAPES and CNPq. The authors would
like to thank Olinto C. B. Araújo, from DENSIS-FEE-UNICAMP, Brazil for
their valuable comments on the preparation of this paper.

References

1. Aiex, R. M., Resende, M. G. C., Ribeiro, C. C.: Probability distribuition of solution
time in GRASP: an experimental investigation, Journal of Heuristics, 8 (2002),
343–373

2. Abramson, D.: Constructing school timetables using simulated annealing: sequential
and parallel algorithms. Management Science. 37 (1991) 98–113

3. Bresina, J.L.: Heuristic-biased stochastic sampling. In: Proceedings of the AAAI-96.
1 (1996) 271–278

4. Colorni, A., Dorigo, M., Maniezzo, V.: Metaheuristics for High-School Timetabling.
Computational Optimization and Applications. 9 (1998) 277–298

5. Costa, D.: A Tabu Search algorithm for computing an operational timetable. Euro-
pean Journal of Operational Research Society. 76 (1994) 98–110

6. Dowsland, K. A.: Off-the-peg or made to measure: timetabling and scheduling with
SA and TS. In: Practice and Theory of Automated Timetabling II. Springer Lecture
Notes in Computer Science, Vol. 1408. Springer-Verlag, New York (1997) 37–52

7. Even, S., Itai, A., Shamir, A.: On the complexity of timetabling and multicommodity
flow problems. SIAM Journal of Computation. 5 (1976) 691–703

8. Glover, F.: Future paths for integer programming and artificial intelligence. Com-
puters & Operations Research. 13 (1986) 533–549

9. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Boston Dor-
drecht London (1997)

10. Hansen, P.: The steepest ascent mildest descent heuristic for combinatorial pro-
gramming. Congress on Numerical Methods in Combinatorial Optimization. Capri
(1986)

11. Resende, M.G.C., Ribeiro. C.C.: Greedy randomized adaptive search procedures.
Handbook of Metaheuristics. Kluwer. (2003) 219–249

12. Schaerf, A.: Tabu search techniques for large high-school timetabling problems.
Report CS-R9611. Centrum voor Wiskunde en Informatica, Amsterdam (1996)

13. Souza, M.J.F.: Programação de Horários em Escolas: Uma Aproximação por Meta-
heuŕısticas, D.Sc. Thesis (in Portuguese), Universidade Federal do Rio de Janeiro -
Rio de Janeiro (2000)

14. Souza, M.J.F., Ochi, L.S., Maculan, N.: A GRASP-Tabu search algorithm for
solving school timetabling problems. In: Resende, M.G.C., Souza, J.P. (eds.): Meta-
heuristics: Computer Decision-Making. Kluwer Academic Publishers, Boston (2003)
659–672

15. Wilke, P, Gröbner, M., Oster, N.: A hybrid genetic algorithm for school
timetabling. In: AI 2002: McKay B. and Slaney J. (eds.): Advances in Artificial In-
telligence. Springer Lecture Notes in Computer Science, Vol. 2557. Springer-Verlag,
New York (2002) 455–464

Fig. 5. Empirical probability distribution of finding target value in function of time
for instances 5 and 7

