
EngOpt 2008 - International Conference on Engineering Optimization 
Rio de Janeiro, Brazil, 01 - 05 June 2008.  
 
 
 
 

An algorithm based on Iterated Local Search, Variable Neighborhood Descent and Tabu 
Search for the Integrated Vehicle and Crew Scheduling Problem 

 
Marcone Jamilson Freitas Souza, Gustavo Peixoto Silva, Sabir Ribas, Igor Machado Coelho 

 
Programa de Pós-Graduação em Engenharia Mineral, Departamento de Computação 

Universidade Federal de Ouro Preto 
Campus Universitário, 35.400-000 Ouro Preto, Minas Gerais, Brazil 

{marcone, gustavo}@iceb.ufop.br, {sabirribas, igor.machado}@yahoo.com.br  
 

Abstract 
This work deals with the Integrated Vehicle and Crew Scheduling Problem (VCSP) in urban mass transit. The Vehicle Scheduling 
Problem (VSP) consists in creating a daily routine of operation for a fleet of vehicles of a company so that all timetabled trips are 
covered and the operational costs of such activity reduced, making the best use of the fleet. In the Crew Scheduling Problem (CSP) 
each crew corresponds to a duty, and the goal is the generation of its schedule, satisfying a set of labor agreement and operational 
rules of the company, as well as the workforce optimization. Traditionally, the VSP and the CSP are solved independently, e.g., by 
vehicles-first duties-second approach, but these methodologies do not explore the link between both problems. The difficulty of 
solving VCSP is greater than the isolated problems since it contains all the degrees of freedom of vehicle scheduling and all the 
degrees of freedom of crew scheduling. Since VCSP is NP-hard, an algorithm based on metaheuristics approaches is proposed here. 
This algorithm combines Iterated Local Search (ILS), Variable Neighborhood Descent (VND) and Tabu Search (TS). In order to 
explore the solution space, some moves based on reallocation and swap of both, trips of the vehicles schedule and tasks of the duties 
schedule are used. The algorithm was tested with real data provided by BHTRANS, the manager of the transit mass system of the 
city of Belo Horizonte, Brazil. The results show the effectiveness of the proposed approach. 
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1. Introduction 
The public transportation system planning is a very complex activity. Thus it is generally divided into five main stages, which are: 
route planning, timetables defining, vehicle scheduling, crew scheduling and crew rostering. In general, the output of one stage is the 
input for the subsequent one. This work deals with the integration of two stages, the vehicle and crew scheduling problems. 
 
According to Freling et al. (2003), there are three different approaches to solve the vehicle and crew scheduling: Sequential, 
Independent and Integrated. 
 
In the sequential approach, the vehicle and crew scheduling problems are solved separately and the solution of one is used as input 
for the other. The sequential approach, in turn, can be classified as Traditional or Reverse. 
 
The traditional sequential approach was the first one to be studied and it is widely adopted by the companies. It consists in solving 
the vehicle scheduling problem (VSP) and then, considering this solution as input, the crew scheduling problem (CSP) is solved. This 
approach has the inconvenience that the vehicle scheduling solution guides the crew scheduling solution (FREELING et al., 2003), 
which has the most relevant cost among the ones involved in the system (BOUZADA, 2003). An alternative to solve it is to apply the 
traditional sequential approach, but considering the crew features during the vehicle scheduling solution. Even though the vehicle 
scheduling costs increase, it becomes easier to solve the CSP and much probably the total cost will be lower than the traditional 
approach. Scott (1985), Darby-Dowman (1988) and Reis (2006, 2007) use this strategy for solving the problem involving vehicle and 
crew scheduling. 
 
In the reverse sequential approach, the CSP is solved first and then, considering this solution as input, the VSP is solved. This 
strategy is justified for two main motives: 1) the crew costs are higher than vehicle costs and 2) the set of vehicle restrictions is much 
smaller, which suggests solving CSP first, because it has fewer alternatives for solution. Bassi et al. (2007) propose a GRASP 
heuristic to solve the independent crew scheduling problem (ICSP), which builds the crew duties directly from the timetable, 
independently of the vehicle scheduling. In a second stage, the vehicle schedule problem is solved having as input the driver shifts 
already defined. A path-relinking mechanism was also implemented in order to improve the ICSP solution. The heuristic was 
implemented for several transport companies and the results were compared with the traditional approach. According to the authors, 
it can be concluded that this strategy is able to produce solutions with lower costs than the traditional process. 
 
In the independent approach the vehicle schedule and the crew schedule are built directly from trip timetables. Therefore, in this 
approach the vehicle schedule is built without considering any crew characteristics and the crew schedule is obtained without 
considering vehicle constraints. Generally, the results obtained by this approach are not feasible in practice, because some vehicle 
trips will not have a driver, and some drivers will operate virtual vehicles that are not in the vehicle schedule. This approach is used 
to determine lower bounds for VSP and CSP. 
 



 
 

In the integrated approach both problems are solved together in the same model. As both problems are NP-hard (GAREY and 
JOHNSON, 1979), then Vehicle and Crew Scheduling Problem (VCSP) is NP-hard. It is obvious than the difficult of solving VCSP 
is bigger because the solution space is huge, since VCSP contains all the degrees of freedom of vehicle scheduling and all the degrees 
of freedom of crew scheduling. However, with the improvement in the CPU speed of the computers, combined with algorithm 
progress, the research has taken up this topic recently. Freling et al. (1995), Haase and Friberg (1999) and Freling et al. (1999) use 
this type of approach. See Borndröfer et al. (2006) and Freeling et al. (2003) for a survey and experience about this topic. 
 
This paper proposes an algorithm which combines Iterated Local Search, Variable Neighborhood Descent and Tabu Search heuristics 
for solving VCSP. This heuristic strategy is justified because VCSP is NP-hard and according to the literature these approaches are 
able to produce good solutions for each problem, considered individually (See Souza et al, 2007 and Marinho et al, 2004). 
 
The rest of the paper is organized as follows. Section 2 describes the problem. Section 3 presents the proposed methodology, 
including the representation of the problem, the procedure employed for generating an initial solution, the neighborhood structure, 
the evaluation function and finally the adaptation of the Iterated Local Search, VND and Tabu Search heuristics to the problem. 
Section 4 shows the results achieved in this study and discusses the improvement obtained. Section 5 brings the concluding remarks 
of this work. 
 
2. Problem definition 
 
According to Freeling et al. (2003), the Vehicle and Crew Scheduling Problem (VCSP) is defined as follows. Given a set of trips 
within a fixed planning horizon, the objective is to find a minimum cost schedule for the vehicles and the crews, such that both the 
vehicle and the crew schedules are feasible and mutually compatible. Each trip has fixed starting and ending times, and the traveling 
times between all pairs of location are known. A vehicle schedule is feasible if (1) each trip is assigned to a vehicle, and (2) each 
vehicle performs a feasible sequence of trips, where a sequence of trips is feasible if a vehicle can execute each pair of consecutive 
trips in the sequence. Some trips do not belong to any route and these are called the dead trips. A dead trip time is the time a vehicle 
takes to travel between two locations (terminals or depots) that do not belong to any route. This is necessary in order to move the 
vehicle from an ending point to the next starting point, so that the vehicle can start the next trip. A vehicle schedule defines which 
trips have to be performed by the same vehicle and this defines the so-called blocks. If there is enough time between one trip and the 
next, a change of driver may occur, and these are called relief points, defined by location and time. The blocks are divided by relief 
points, and each part is the so-called task, that is defined by two consecutive relief points and represents the minimum piece of work 
that can be assigned to a crew. These tasks have to be assigned to crew members, and the tasks of a crew member define a crew duty. 
All the duties constitute a crew schedule. Such schedule is feasible if (1) each task is assigned to one duty, and (2) each duty is a 
sequence of tasks that can be performed by a single crew, both from a physical and a legal point of view. In particular, each duty 
must satisfy several complicated constraints corresponding to work load regulations for the crews. Typical examples of such 
constraints are the maximum working time without a break, minimum break duration and maximum total working time. The cost of a 
duty is usually a combination of fixed costs such as wages, and variable costs such as overtime payment. The subsection 3.4 details 
the considered requirements in this work. 
 
It is assumed that there is only one depot and all vehicles are always available. 
 
3. Proposed methodology 
In this section is presented a hybrid heuristic, which combines Iterated Local Search, Variable Neighborhood Descent and Tabu 
Search for reaching suboptimal solutions to the VCSP. 
 
3.1. A solution representation to the problem 
A solution s to the VCSP consists in a (sV, sC) pair, where sV represents a solution to the VSP and sC represents a solution to the CSP.  
The sV solution consists in a set of vehicles, where each one has an associated list of trips to be realized during a day. The sC solution 
consists in a set of crew duties, where each one is associated to a list of tasks to be carried out daily. 
 
3.2. Construction of an initial solution 
An initial solution to the VCSP is made by a sequential mechanism. To begin with, an initial solution for the vehicle scheduling is 
built. Later, from this vehicle solution, a crew scheduling solution is generated. Both solutions are built by a greedy heuristic. 
 
An initial solution to the VSP is obtained by applying a constructive heuristic where at each iteration, a new trip not yet assigned is 
added to the current schedule of the best vehicle, in accordance to the value of the evaluation function relative to each vehicle 
scheduling (see eq. (2) in subsection 3.4). The choice of the trip to be added to the vehicle schedule is totally greedy, which means 
that the trip with lower cost will be chosen. The approach ends when all the trips are allocated. The trips belonging to each vehicle 
are known as the blocks of the vehicle. 
 
From the blocks of each vehicle, a solution for the CSP is built. Initially, for each block, the trips are grouped in a task until a relief 
point is found. A relief point is defined by location and time, where and when a change of driver may occur. 
 
Next, the tasks are ordered by their starting time. At each step, there is a set of non-empty duties and a duty without tasks. The 
constructive procedure works as follows. The first task is assigned to the first duty, the empty one. Next, for each task of the 
sequence, we evaluate its insertion for all the duties and also for a new duty without tasks. The evaluation of each crew duty is 
carried out according to the eq. (8), relative to the crew scheduling (see subsection 3.4). The task is assigned to the duty with the 



 
 

lowest cost. The crew schedule stops when all the tasks are allocated. 
 
3.3. Neighborhood Structure 
With a view to defining the neighborhoods of a given solution s six moves were applied. The NV

R, NV
S, NC

R and NC
S neighborhoods 

use moves based on reallocation and swap of both, trips of the vehicles schedule and tasks of the crew duties schedule, respectively. 
The NV

RP and NV
SP neighborhoods consist in reassigning and swapping the trips of vehicles followed by the reconstruction of the 

duties affected by the moves according to the previous subsection, respectively. 
 
3.4. Evaluation function 
The cost function of VCSP is computed by the eq. (1): 
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where fV(s) represents the component of f that evaluates s with respect to the vehicle scheduling (see eq. (2)), fC(s) evaluates s with 
respect to the duty scheduling (see eq. (8)) and α and β are weights. 
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In the eq. (2), )(sf k

V  is the cost of the vehicle k of the fleet, obtained through the eq. (3), ChangeRoutes is the total number of 

changes of routes made by all the vehicles, ωCR is the penalty associated to it, ExcSplitBlocks represents the excess of times that each 
vehicle returns to the depot and stays there more than 120 minutes and, finally, ωESB is the respective penalty. By operational 
restrictions, we observe that the maximum number of times that it can occur is 60% of the fleet size. 
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In the eq. (3), T is the set of n trips of the vehicle k, Cij is obtained by the eq. (4) and represents the cost to perform the consecutive 
trips i and j; CDd1 is the transportation cost of the vehicle k from the depot to the its first trip and CDnd is the transportation cost of the 
vehicle k between its last trip and the depot. 
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In the eq. (4), CTij, CDij and CCij represent, respectively, the time that the vehicle stays at the terminal between trips i and j, the time 
of a dead trip and the time in minutes that a trip i coincides with a trip j. In the eq. (4), MaxTimeTerm is the maximum time that a 
vehicle can stay at the terminal, established according to the operational politics of the Public Transport System and tij is the time, in 
minutes, that the vehicle is idle (i.e., without productive activity) between the trips i and j. Therefore tij is the time between the 
beginning of the trip j and the ending of the trip i minus the time of the dead trip if this one is necessary to reposition the vehicle. 
 
The CDij and CTij costs are obtained as follows: 
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where: dtij is the time of dead trip between the trips i and j; TimeLimitDeadTrip means the maximum time of the company schedule 
in which a dead trip can be done, wTD is the weight admitted if the dead trip time is greater than TimeLimitDeadTrip, TimeLimitTerm 
is the maximum time of the company schedule that a vehicle stays at the terminal; wTT is the weight considered if the vehicle stays at 
the terminal more than TimeLimitTerm minutes, α1 ∈ [0, 1] and β1 ∈ [0, 1] are weights utilized to adjust the costs in eqs. (5) and (6), 
respectively. 
 
The conflict CCij between trips i and j is evaluated by the eq. (7), as follows: 
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where wTC is the weight associated to this infeasibility. 



 
 

 
Let R = {r1, r2, …, r |R|} be the set of routes of the company and S1, S2, …, S|S| subsets of R, called groups of routes, with R = S1 ∪ S2 
∪ …∪ S|S| and S1 ∩ S2 ∩ … ∩ S|S| = ∅. 
 
The evaluation of the duty scheduling is given by the eq. (8), which must be minimized: 
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where: 
 

(i) Duties represents the set of duties; 
(ii)  µi and λi  are the penalties applied to the constraints and objectives, respectively; 
(iii)  PenaltyIdleTimei assumes the value µ1 if the idleness of the crew on the duty i is greater than two hours and 

0.347× IdleTimei
0.8, otherwise, where IdleTimei corresponds to the time that each crew is idle on the duty i; 

(iv) PenaltyOverTimei assumes µ2 when the overtime is greater than 120 minutes and 1.357× Overtimei
0.6, otherwise, 

where Overtimei indicates the time, in minutes, that the crew i is in overtime payment; 
(v) ChangeVehiclesi indicates the number of times that the crew is reassigned to a different vehicle during the duty i 

and there is enough time to do the changes; 
(vi) ChangeRoutesi indicates the number of times that the crew assigned to a duty i in the route r j is reassigned to a 

another route rk , and both routes must belong to the same group, i.e., r j ∈ Sm ⊂ R and rk ∈ Sm; 
(vii)  TerminalChangei indicates the number of times that the crew is reassigned to a different terminal during the duty 

i. This crew reassignment is allowed in the following situations: (1) if the terminal involved belongs to the same 
group of terminals; (2) if the involved tasks belong to the same vehicle and (3) if there is at least 120 minutes of 
idleness between two consecutive tasks of the duty i, that is, in a split duty, a crew reassignment to a different 
terminals is always allowed. On the other hand, a crew reassignment is forbidden if the reallocation does not 
satisfy none of the three items previously described; 

(viii)  ConflictTimei represents the total time, in minutes, with respect to the duty i, that there are tasks in conflict, for 
example, two consecutive tasks of the same crew, when the second starts before the first ends; 

(ix) ExcTimei represents the time, in minutes, with respect to the duty i, that surpasses nine hours of daily work. The 
worked time in each duty i is computed as follows: WorkedTimei = (final time of the last task of the duty i) – (the 
initial time of the first task) – (the duration of the split, if the duty is classified as split duty); 

(x) DutyTimeInsufi = max {0, 11×60 – (1440 – time in which duty i ends + time in which duty i begins)}. It occurs 
because between two consecutive labor days must be 11 hours of resting. Therefore, this factor represents the 
amount of time, in minutes, in respect to the duty i, in which this labor law is not verified; 

(xi) ChangeVehiclesFori indicates the number of times that the crew is reassigned to a different vehicle during the 
duty i and there are not enough time to do the changes; 

(xii)  ChangeRoutesFori indicates the number of times that a crew allocated to a route r j in a duty i is also allocated to 
another route rk not belonging to the same group, i.e., r j ∈ Sm ⊂ R and rk ∉ Sm; 

(xiii)  TerminalChangeFori represents the number of times during the duty i that there are forbidden reassignments in 
relation with terminals (See item (vii)); 

(xiv) ExcSplitDuty represents the number of split duties in the solution that is greater than 1.25 × (fleet size). It 
represents an estimative of the company that assumes that at most 50% of the crews are necessary to realize split 
duties. 

(xv) nDuties represents the number of duties and δ is the penalty applied to minimize the number of duties in the 
schedule; 

 
3.5. The ILS-VND-TSAR algorithm 
With an aim to introduce the Variable Neighborhood Descent – VND (Hansen and Mladenovic, 2003), let Nk (k=1,…,kmax) be a finite 
set of pre-selected neighborhood structures, and Nk(s) the set of solutions in the kth neighborhood of s. Neighborhoods Nk may be 
induced from one or more metric (or quasi-metric) functions introduced into a solution space S. An optimal solution is a feasible 
solution where a minimum of the evaluated function f is reached. There is a local minimum s’ of f with respect to Nk(s), if there is no 
solution s ∈ Nk(s’) such that f(s) < f(s’). Metaheuristics based on local search procedures try to continue the search by other means 
after finding the first local minimum. VND is based on three simple facts: (1) A local minimum with respect to one neighborhood 
structure is not necessary so with another; (2) A global minimum is a local minimum with respect to all possible neighborhood 
structures; and (3) For many problems local minimum with respect to one or several are relatively close to each other. 
 
According to these authors, this last observation, which is empirical, implies that a local optimum often provides some information 
about the global one. This may for instance be several variables with the same value in both. However, it is usually not known which 
ones are such. An organized study of the neighborhood of this local optimum is therefore in order, until a better one is found. 
 
The Variable Neighborhood Descent (VND) approach is obtained if a change of neighborhoods is performed in a deterministic way 



 
 

and its main steps are presented in Figure 1. 
 

Procedure VND 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 

Input: s, f(.),the set of neighborhood structures Nk, for k = 1, …, kmax, that will be used in the search 
k ← 1 
while k ≤ kmax do 
     Find the best neighbor s’ ∈ Nk(s) 
     if f(s’) < f(s) then 
         s ← s’ 
         k ← 1 
     else 
         k ← k + 1 
     end if 
end while 
return s 

Figure 1 – Basic VND procedure 
 
For large instances, finding the best neighbor at each iteration (line 4 of Figure 1) is quite costly. In these cases, a random approach is 
normally used and this is what is done here. A classical Random Descent (RD) procedure works as follows. A point s’ is generated at 
random from the kth neighborhood of s (line 4 of Figure 1). If s’ is better than the incumbent, then s is updated to s’ (s ← s’) and the 
search continues from s. If there are not any improvements in DescentMax iterations, then the search stops. Therefore, the procedure 
can return not necessarily a local optimum. In case of improvement, the search starts from the first neighborhood (k ← 1). This 
mechanism is justified because the neighborhoods are nested such that Nk+1 is more computationally complex than Nk. 
 
The proposed procedure to do a local search in the solution space of the VCSP, called VND_2_LEVELS, is described in the Figure 
2. This procedure is based on the ideas of the VND heuristic in the sense that not only the neighborhoods are changed, but also the 
local search procedures. In this procedure, s0 is a resulting solution of the perturbation in a local optimum. The RDVVP (s0, NV

RP) is 
the Random Descent Procedure that makes use of reallocation movements belonging to the NV

RP neighborhood structure, and the 
tasks of the crews are allocated in a greedy way, ignoring the weights of the crew scheduling, that is, β = 0 in equation (1). The 
RDVVP (s1, NV

SP) is the Random Descent Algorithm that makes swapping movements of the NV
SP neighborhood, ignoring the 

weights of the crew scheduling function. The RDVVI (s4, NV
RP) and RDVVI (s5, NV

SP) are similar to the RDVVP (s0, NV
RP) and 

RDVVP (s1, NV
SP), respectively, but in these cases the weights of the crew scheduling function are computed. These random 

approaches are interrupted if no improvements are found in DescentMax iterations. The TSAR_R and TSAR_S are algorithms based 
on Tabu Search metaheuristic with Adaptive Relaxation (Glover, 1996) that makes use of the neighborhoods NC

R and NC
S, 

respectively. These algorithms consist in changing the weights of the infeasibilities periodically during the search, either promoting 
the generation of infeasible solutions or feasible solutions in order to explore other regions not yet visited in the solution space. These 
algorithms were used by Marinho et al. (2004) to solve the Crew Scheduling Problem (CSP) and a detailed description can be found 
in their work. 
 

Procedure VND_2_LEVELS 
Inicialization Let s0 be a initial solution 
Step 1 s1 ← RDVVP (s0, NV

RP) 
 s2 ← RDVVP (s1, NV

SP) 
 If the value of s2 is lower than s0, do s0 ← s2 and return to the beginning of the Step 1 
  
Step 2 s3 ← TSAR_R (s2) 
 s4 ← TSAR_S (s3) 
 If s4 is better than s2, do s2 ← s4 and run the Step 2 again 
  
Step 3 s5 ← RDVVI (s4, NV

RP) 
 s6 ← RDVVI (s5, NV

SP) 
 If s6 is better than s4, do s4 ← s6 and executes again the Step 3 
 If there was some improvement in this step, return to the Step 2 
  
Step 4 Return s6 

Figure 2 – VND_2_LEVELS procedure applied to the VCSP 
 
The Iterated Local Search – ILS procedure (Lourenço, Martin and Stützle, 2003) is a metaheuristic with four basic components: 
GenerateInitialSolution, LocalSearch, Perturbation and AcceptanceCriterion. The GenerateInitialSolution is a module that consists 
in building a good solution to the problem. LocalSearch is the module that starts the search from a solution and returns a local 
optimum. Perturbation consists in realizing modifications on the local optimum in order to escape from it. Finally, the procedure 
AcceptanceCriterion consists in determining whether the new solution is accepted or not as the new current solution. According to 
the authors, a reasonable first guess for the acceptance criterion is to force the cost to decrease. AcceptanceCriterion has a strong 
influence on the nature and effectiveness of the walk in the space of solutions. Roughly, it can be used to control the balance between 
intensification and diversification of that search. 



 
 

 
The Figure 3 presents the pseudo-code of ILS-VND-TSAR, an ILS procedure combined with VND and Tabu Search, applied to the 
VCSP. 
 

Algorithm ILS-VND-TSAR 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 

Input: s, f(.) , LevelMax , ILSmax , TimeMax 
s* ← s 
level ← 0 
while level < LevelMax do 
    iter ← 0 
    while iter < ILSmax and time < TimeMax do 
        s ← Perturbation(s, level) 
        s ← VND_2_LEVELS(s) 
        if f(s) < f(s*) then 
            s* ← s 
            level ← 0 
            iter ← 0 
        else 
            s ← s* 
            iter ← iter + 1 
        end if 
    end while 
    level ← level +1 
end while 
return s* 

Figure 3 – ILS-VND-TSAR algorithm applied to the VCSP 
 
Six levels of perturbations have been considered. A perturbation of level i consists in realizing i + 2 random movements in the RP

VN  

neighborhood. 
 
4. Computational results 
The proposed algorithm, so-called ILS-VND-TSAR, was implemented in C++ language using the Borland C++ Builder environment, 
version 5.0 and tested in a PC Intel Pentium IV, with 3.0 GHz and 1 GB of RAM running Windows XP Professional Edition. 
 
Preliminary tests were performed to calibrate the parameters of the ILS-VND-TSAR algorithm. The number of iterations without 
improvement of the ILS (ILSmax) was fixed at 50. The number of iterations without improvement of the TSAR (BTmax) was fixed at 
500. The LevelMax value was fixed at 6 and the number of iterations without improvement of the Random Descent approaches 
(DescentMax) was fixed as number of trips × number of vehicles. The total processing time was limited to half an hour. The first 
phase of the traditional sequential approach uses ILS algorithm described in Souza et al. (2007) and second one uses the TSAR 
algorithm described in Marinho et al. (2004). Both algorithms stop after 15 minutes of execution. 
 
In order to test the algorithms, we examined scheduling problems for one public transportation company that operates in the city of 
Belo Horizonte, Brazil. 
 
Tables (1) and (2) show the value of the parameters used in the evaluation function, described in section 3.4. In the Table (1), the 
values of the parameters TimeLimDeadTrip and TimeLimTerm are linked to each instance and represent the maximum time of a dead 
trip and the maximum waiting time of the vehicles at the terminal, respectively, in minutes, found in the solution utilized by the 
company. 
 
 

Table 1 – Instances and their respective time limits with respect to the VSP 
Instances TimeLimDeadTrip TimeLimTerm 

G02_SUN_90V 18 83 
GO2_MON_260V 18 82 
G02_FRI_260V 18 77 
G02_SAT_172V 18 75 

 
 



 
 

Table 2 – Parameters of the VCSP evaluation function 
Parameter Value Parameter Value

MaxTimeTerm  119 minutes µ1 18

α1 2 µ2 40

β1  ln (16) / ln (α1 x TimeLimDeadTrip) µ3 19

α2 1 µ4 5

β2  ln (16) / ln (α2 x TimeLimTerm)  µ5 5

ωTD 50 λ1 40

ωTT 40 λ2 40

ωTC 80 λ3 40

ωESB 80 λ4 45

ωCR 5 λ5 35

δ 100 λ6 35

α 1 λ7 45

β 2.5  
 
Table 3 contains the evaluation function values of the traditional sequential and integrated approaches. It can be observed that both 
best and average values were reduced in all cases analyzed and the gap between these values in each instance is also small, ratifying 
that the proposed algorithm is robust. In addition, there was an improvement of up to 4.19% if compared to the best solution found in 
the sequential approach. 
 

Table 3: Evaluation function values from the traditional sequential and integrated approaches 
Sequential Approach Integrated Approach

Instance Best Value Average Value Gap Best Value Average Value Gap Improvement

G02_SUN_90V 7036 7160,35 6,47% 6725,5 6841,5 1,72% 4,41%
G02_MON_260V 22507,5 22828,55 8,26% 21087,5 21297,7 1,00%6,31%
G02_FRI_260V 23045,5 23354,1 7,50% 21724,5 21910,1 0,85% 5,73%
G02_SAT_172V 12938,5 13260,5 8,51% 12220 12468,05 2,03% 5,55%  

 
Table 4 presents the details from the best solutions found on each instance, in respect of the sequential and integrated approaches. 
 

Table 4: Schedules from the sequential and integrated approaches 

G02 Company
SUN MON FRI SAT SUN MON FRI SAT

Number of trips 90 260 260 172 90 260 260 172
Number of vehicles 11 40 40 23 11 40 39 23

Vehicle waiting time (hh:mm) 16:13 22:26 5:56 21:02 13:44 8:12 22:14 21:02
Dead trip time (hh:mm) 8:24 12:50 12:14 16:48 9:50 15:06 14:58 18:36
Number of split blocks 3 21 20 5 5 24 24 8
Number of split duties 12 50 50 16 7 49 43 20

Number of crews 21 62 63 37 19 62 63 34
Crew idleness (hh:mm) 15:13 15:04 9:23 15:44 11:07 7:52 6:28 15:12

Overtime payment (hh:mm) 5:04 6:44 7:34 20:08 14:58 8:28 12:31 19:44
Change of routes 1 5 7 1 4 4 6 2

Change of terminals 2 18 19 9 3 11 8 10
Change of vehicles 6 62 66 11 2 34 34 15

f V 841 2510 2553 1491 893 2740 2887 1585

f C 2478 7999 8197 4579 2333 7339 7535 4254

f  = f V + 2.5 × f C 7036 22507.5 23045.5 12938.5 6725.5 21087.5 21724.5 12220

Integrated ApproachSequential Approach

 
 
From Table 4 it can be verified that the proposed algorithm was able to reduce the number of crews (From 21 to 19 on Sunday, from 
37 to 35 on Saturday), the waiting time of the vehicles at the terminals (From 16:13 to 15:31 on Sunday, from 22:26 to 21:12 on 
Monday, from 5:56 to 2:24 on Friday and from 21:02 to 20:23 on Saturday), the crew idleness on Sunday (From 15:13 to 10:47) and 
the number of changes of terminals on Monday and Friday (From 18 to 13 on Monday and from 19 to 14 on Friday). It can be 



 
 

observed that the number of crews grew up on Friday, but on the other hand there was a reduction on the overtime payment and on 
the number of changes of routes and terminals. Soares et al. (2006) has shown that there is a trade-off between, on the one hand, the 
number of trips plus crew idleness and, on the other hand, the overtime payment. This trade-off can be handled by manipulating the 
weights of the evaluation function. Also, it is important to observe that the integrated approach produces worst vehicle schedule, but 
its crew schedule are better than the ones produced by the sequential approach. 
 
7. Conclusions 
This paper dealt with the Integrated Vehicle and Crew Scheduling Problem. In order to solve it, an algorithm based on Iterated Local 
Search, Variable Neighborhood Descent and Tabu Search with Adaptive Relaxation, so-called ILS-VND-TSAR, is proposed. It is an 
adaptation of the ILS algorithm described in Souza et al. (2007) for solving the vehicle scheduling problem and the TSAR algorithm 
developed by Marinho et al. (2004) for the crew scheduling problem. Two new neighborhoods are introduced, which consist in 
reassigning and swapping the trips of vehicles followed by the reconstruction of the duties affected by the moves. 
 
A comparison between the integrated approach and the traditional sequential one is performed. The first considers both problems 
simultaneously, while the later first solves the vehicle scheduling and then solves the crew scheduling. The results showed that the 
integrated approach was able to produce better results, with global improvement of up to 4.19%. In addition, it can be verified that 
the proposed algorithm is robust since the maximum variation of the final solutions is quite small, namely, 1.96%. 
 
It is important to point out that the integrated approach produced a worst vehicle schedule, but its crew schedule was better than the 
traditional sequential one. This fact clearly illustrates that producing a good quality solution to the vehicle scheduling may not 
necessarily lead to a good quality solution to the crew scheduling. 
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