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Abstract
This work deals with the Integrated Vehicle and C&uteduling Problem (VCSP) in urban mass transie Wahicle Scheduling
Problem (VSP) consists in creating a daily routifi@peration for a fleet of vehicles of a companytisat all timetabled trips are
covered and the operational costs of such actretijiced, making the best use of the fleet. In th@vC3cheduling Problem (CSP)
each crew corresponds to a duty, and the goakig#meration of its schedule, satisfying a seabbt agreement and operational
rules of the company, as well as the workforcerjzition. Traditionally, the VSP and the CSP areexblindependently, e.g., by
vehicles-first duties-second approach, but thesthodelogies do not explore the link between botbbjfems. The difficulty of
solving VCSP is greater than the isolated probleimsesit contains all the degrees of freedom of elehscheduling and all the
degrees of freedom of crew scheduling. Since VC3¥Pishard, an algorithm based on metaheuristicscampes is proposed here.
This algorithm combines Iterated Local Search (JL0#riable Neighborhood Descent (VND) and Tabu 8e4iS). In order to
explore the solution space, some moves based Boca#n and swap of both, trips of the vehiclebexlule and tasks of the duties
schedule are used. The algorithm was tested withda&a provided by BHTRANS, the manager of theditamass system of the
city of Belo Horizonte, Brazil. The results show #ftectiveness of the proposed approach.
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1. Introduction

The public transportation system planning is a v@mplex activity. Thus it is generally divided anfive main stages, which are:
route planning, timetables defining, vehicle scHiedy crew scheduling and crew rostering. In geheh& output of one stage is the
input for the subsequent one. This work deals Withintegration of two stages, the vehicle and celneduling problems.

According to Frelinget al (2003), there are three different approachesoteesthe vehicle and crew scheduling: Sequential,
Independent and Integrated.

In the sequential approach, the vehicle and crédwedding problems are solved separately and theisolof one is used as input
for the other. The sequential approach, in turn,lmaclassified as Traditional or Reverse.

The traditional sequential approach was the first to be studied and it is widely adopted by th@mganies. It consists in solving
thevehicle scheduling problevSP) and then, considering this solution as infhdcrew scheduling probleCSP) is solved. This
approach has the inconvenience that the vehicledsdimg solution guides the crew scheduling solu{lBREELINGet al, 2003),
which has the most relevant cost among the onedvied in the system (BOUZADA, 2003). An alternatieesolve it is to apply the
traditional sequential approach, but considering ¢rew features during the vehicle scheduling smutEven though the vehicle
scheduling costs increase, it becomes easier t@ sbeé CSP and much probably the total cost willdveer than the traditional
approach. Scott (1985), Darby-Dowman (1988) and R€i86, 2007) use this strategy for solving thebfam involving vehicle and
crew scheduling.

In the reverse sequential approach, the CSP is ddirst and then, considering this solution as inghe VSP is solved. This
strategy is justified for two main motives: 1) ttrew costs are higher than vehicle costs and 23ehef vehicle restrictions is much
smaller, which suggests solving CSP first, becausas fewer alternatives for solution. Bassial (2007) propose a GRASP
heuristic to solve the independent crew schedufimplem (ICSP), which builds the crew duties dinedtiom the timetable,
independently of the vehicle scheduling. In a sdcstage, the vehicle schedule problem is solveéhbaas input the driver shifts
already defined. A path-relinking mechanism wa® atmmplemented in order to improve the ICSP solutibhe heuristic was
implemented for several transport companies andebats were compared with the traditional appno@ccording to the authors,
it can be concluded that this strategy is ablertalpce solutions with lower costs than the tradaigrocess.

In the independent approach the vehicle scheduettam crew schedule are built directly from tri;éitables. Therefore, in this
approach the vehicle schedule is built without @ering any crew characteristics and the crew sgleeds obtained without
considering vehicle constraints. Generally, thailtesobtained by this approach are not feasiblpractice, because some vehicle
trips will not have a driver, and some drivers wiierate virtual vehicles that are not in the viehschedule. This approach is used
to determine lower bounds for VSP and CSP.



In the integrated approach both problems are solegdther in the same model. As both problems dPehard (GAREY and
JOHNSON, 1979), then Vehicle and Crew Schedulinglero (VCSP) is NP-hard. It is obvious than the difft of solving VCSP
is bigger because the solution space is huge, I6&P contains all the degrees of freedom of velsicleeduling and all the degrees
of freedom of crew scheduling. However, with thepiovement in the CPU speed of the computers, caedbinith algorithm
progress, the research has taken up this topiattgc€relinget al (1995), Haase and Friberg (1999) and Fredihgl (1999) use
this type of approach. See Borndrééeml (2006) and Freelingt al (2003) for a survey and experience about thigtop

This paper proposes an algorithm which combineatid Local Search, Variable Neighborhood Descedtlabu Search heuristics
for solving VCSP. This heuristic strategy is justifibecause VCSP is NP-hard and according to thatiire these approaches are
able to produce good solutions for each problemsiciered individually (See Sougtal 2007 and Marinhet al, 2004).

The rest of the paper is organized as follows. i8ec2 describes the problem. Section 3 presentptbposed methodology,
including the representation of the problem, thecpdure employed for generating an initial solutithe neighborhood structure,
the evaluation function and finally the adaptatafnthe Iterated Local Search, VND and Tabu Seamlriktics to the problem.
Section 4 shows the results achieved in this stud/discusses the improvement obtained. Sectioingsbthe concluding remarks
of this work.

2. Problem definition

According to Freelinget al (2003), the Vehicle and Crew Scheduling Probler@$¥P) is defined as follows. Given a set of trips
within a fixed planning horizon, the objective ésftnd a minimum cost schedule for the vehicles #recrews, such that both the
vehicle and the crew schedules are feasible andaiyicompatible. Each trip has fixed starting @mdling times, and the traveling
times between all pairs of location are known. Aigke schedule is feasible if (1) each trip is @ssd to a vehicle, and (2) each
vehicle performs a feasible sequence of trips, @l@esequence of trips is feasible if a vehicle eecute each pair of consecutive
trips in the sequence. Some trips do not beloranyoroute and these are called dlead trips. A dead trip time is the time a vehicle
takes to travel between two locations (terminalslepots) that do not belong to any route. Thiseisessary in order to move the
vehicle from an ending point to the next startignp so that the vehicle can start the next thipzehicle schedule defines which
trips have to be performed by the same vehiclethisddefines the so-called blocks. If there is ejfotime between one trip and the
next, a change of driver may occur, and these @tedaelief points, defined by location and time. The blocks aredtd by relief
points, and each part is the so-caliagk, that is defined by two consecutive relief poiatel represents the minimum piece of work
that can be assigned to a crew. These tasks hdeedssigned to crew members, and the tasks efraroember define a crew duty.
All the duties constitute a crew schedule. Sucteduale is feasible if (1) each task is assignedn d@uty, and (2) each duty is a
sequence of tasks that can be performed by a single, both from a physical and a legal point @&wi In particular, each duty
must satisfy several complicated constraints cpmeding to work load regulations for the crews. i€gp examples of such
constraints are the maximum working time withobir@ak, minimum break duration and maximum totalkivay time. The cost of a
duty is usually a combination of fixed costs sushnages, and variable costs such as overtime pdyifies subsection 3.4 details
the considered requirements in this work.

It is assumed that there is only one depot andedlicles are always available.

3. Proposed methodology
In this section is presented a hybrid heuristicicwicombines Iterated Local Search, Variable Neighbod Descent and Tabu
Search for reaching suboptimal solutions to the VCSP

3.1. A solution representation to the problem

A solutions to the VCSP consists in §,( ) pair, wheres, represents a solution to the VSP apdepresents a solution to the CSP.
Thes, solution consists in a set of vehicles, where eahhas an associated list of trips to be realizethg a day. Thec solution
consists in a set of crew duties, where each oassgciated to a list of tasks to be carried oiy.da

3.2. Construction of an initial solution
An initial solution to the VCSP is made by a seqismhechanism. To begin with, an initial soluticor the vehicle scheduling is
built. Later, from this vehicle solution, a crevhsduling solution is generated. Both solutions ait by a greedy heuristic.

An initial solution to the VSP is obtained by afpty a constructive heuristic where at each itergataonew trip not yet assigned is
added to the current schedule of the best vehicleccordance to the value of the evaluation fmctielative to each vehicle
scheduling (see eq. (2) in subsection 3.4). Thécehaf the trip to be added to the vehicle schedutetally greedy, which means
that the trip with lower cost will be chosen. Thepeoach ends when all the trips are allocated. tfihe belonging to each vehicle
are known as the blocks of the vehicle.

From the blocks of each vehicle, a solution for @&P is built. Initially, for each block, the tripse grouped in a task until a relief
point is found. A relief point is defined by loaati and time, where and when a change of driver ooayr.

Next, the tasks are ordered by their starting tifteeach step, there is a set of non-empty duties aaduty without tasks. The
constructive procedure works as follows. The ftestk is assigned to the first duty, the empty dwext, for each task of the
sequence, we evaluate its insertion for all theeduand also for a new duty without tasks. The wat@dn of each crew duty is
carried out according to the eq. (8), relativelte trew scheduling (see subsection 3.4). The taslssigned to the duty with the



lowest cost. The crew schedule stops when allabkstare allocated.

3.3. Neighborhood Structure

With a view to defining the neighborhoods of a giwlutions six moves were applied. T&R, Ny°, Nc® andNcS neighborhoods
use moves based on reallocation and swap of lrggh,df the vehicles schedule and tasks of the cheties schedule, respectively.
The Ny?” and N*" neighborhoods consist in reassigning and swapitiagrips of vehicles followed by the reconstrustiof the
duties affected by the moves according to the presssubsection, respectively.

3.4. Evaluation function
The cost function of VCSP is computed by the eq. (1)

f(s)=axf,(s)+Lx1c(s) 1)

wheref\(s) represents the componentfdhat evaluates with respect to the vehicle scheduling (see e}, {&s) evaluates with
respect to the duty scheduling (see eq. (8))anddf are weights.

f, () = Z ka(s) + ar X ChangeRoutet w., x ExcSplitBocks @)

kOF

In the eq. (2), f (s )is the cost of the vehiclk of the fleet, obtained through the eq. (@hangeRoutess the total number of

changes of routes made by all the vehides is the penalty associated toHcSplitBlocksepresents the excess of times that each
vehicle returns to the depot and stays there muwaie 120 minutes and, finallgsg is the respective penalty. By operational
restrictions, we observe that the maximum numbéinoés that it can occur is 60% of the fleet size.

f(s) = Zcij +CD,, +CD,q 3)

@i,j)ar

In the eq. (3)T is the set of trips of the vehiclé, C; is obtained by the eq. (4) and represents thetogstrform the consecutive
tripsi andj; CDy, is the transportation cost of the vehikltom the depot to the its first trip a@D,4 is the transportation cost of the
vehiclek between its last trip and the depot.

CD, +CC, if t, <0
C, ={CT, +CD, if 0<t, <MaxTimeTem 4)
CD, +CD, if t; > MaxTimeTem

In the eq. (4)CT;, CD; andCG; represent, respectively, the time that the velitdgs at the terminal between tripandj, the time
of a dead trip and the time in minutes that aitrjpincides with a trig. In the eq. (4)MaxTimeTerms the maximum time that a
vehicle can stay at the terminal, established alicgrto the operational politics of the Public Tsport System antj is the time, in
minutes, that the vehicle is idle (i.e., withoubghuctive activity) between the tripsandj. Thereforet; is the time between the
beginning of the trip and the ending of the tripminus the time of the dead trip if this one ises=ary to reposition the vehicle.

TheCD; andCTj costs are obtained as follows:

D - (o, xdt, )5 if dt, <TimeLimitDeadTrip ]
" ldt, xaw, if dt, >TimeLimitDeadTrip ®)
s S
cT, = (cr2 Xtij) !f t; sT|'meL|.m|.tTerm ©)
t, X W if t; >TimeLimitTerm

where:dt; is the time of dead trip between the trigandj; TimeLimitDeadTripmeans the maximum time of the company schedule
in which a dead trip can be donegy is the weight admitted if the dead trip time isaer tharTimeLimitDeadTrip TimeLimitTerm

is the maximum time of the company schedule thaghicle stays at the terminaly is the weight considered if the vehicle stays at
the terminal more thahimeLimitTermminutes,a; 0 [0, 1] andf, O [0, 1] are weights utilized to adjust the costeds. (5) and (6),
respectively.

The conflictCG; between trip$ andj is evaluated by the eq. (7), as follows:
CCij = _(tij ) X Wre (7)

wherewrc is the weight associated to this infeasibility.



LetR={ry, r5, ..., rrj} be the set of routes of the company &dS,, ..., Sg subsets oR, called groups of routes, wiR=S, 0 S,
O0..08gandSnSn...nSg=0.

The evaluation of the duty scheduling is givenhwy ¢qg. (8), which must be minimized:

f.(s)= Z(Penaltyldeim¢+ PenaltyOveiime +

iODuties

U, xChangeVelules + 1, xChangeRowts + 1, x TerminalClange + @)
A, xConflictTime + A, x ExcTime+ A, x DutyTimelsuf + A, xChangeVeltesFor +
A; xChangeRowsFor + A, XTerminaIChangeFoir)+ A, x ExcesSplitDuty + d xnDuties

where:

0] Dutiesrepresents the set of duties;

(ii) 1 andA; are the penalties applied to the constraintsodijietctives, respectively;

(i) PenaltyldleTimeassumes the valyg if the idleness of the crew on the dutjs greater than two hours and
0.347xIdleTime®® otherwise, whertlleTimeg corresponds to the time that each crew is idlgherdutyi;

(iv) PenaltyOverTimeassumegs, when the overtime is greater than 120 minuteslaB87xOvertime®®, otherwise,
whereOvertimgindicates the time, in minutes, that the crésin overtime payment;

(v) ChangeVehiclgsndicates the number of times that the crew issigmed to a different vehicle during the duty
and there is enough time to do the changes;

(vi) ChangeRoutgsndicates the number of times that the crew assigo a duty in the router; is reassigned to a
another routey , and both routes must belong to the same groeipr; i S, O Randr, 0 Sy,

(vii) TerminalChanggeindicates the number of times that the crew issigmed to a different terminal during the duty
i. This crew reassignment is allowed in the follogvsituations: (1) if the terminal involved belorigsthe same
group of terminals; (2) if the involved tasks bajao the same vehicle and (3) if there is at |1&26 minutes of
idleness between two consecutive tasks of the duhat is, in a split duty, a crew reassignmena tdifferent
terminals is always allowed. On the other handreavaeassignment is forbidden if the reallocatia®sl not
satisfy none of the three items previously desdiibe

(viii) ConflictTime represents the total time, in minutes, with resp@t¢he dutyi, that there are tasks in conflict, for
example, two consecutive tasks of the same crewnwine second starts before the first ends;

(ix) ExcTimegrepresents the time, in minutes, with respechéodutyi, that surpasses nine hours of daily work. The

worked time in each dufyis computed as followsVorkedTimge= (final time of the last task of the dufy— (the
initial time of the first task) — (the duration e split, if the duty is classified as split dyty)

x) DutyTimelnsyf= max {0, 11x60 — (1440 — time in which dutgnds + time in which dutiybegins)}. It occurs
because between two consecutive labor days musfl beours of resting. Therefore, this factor repnésehe
amount of time, in minutes, in respect to the duty which this labor law is not verified;

(xi) ChangeVehiclesFoindicates the number of times that the crew issigmed to a different vehicle during the
dutyi and there are not enough time to do the changes;

(xii) ChangeRoutesFpmdicates the number of times that a crew allat#bea route; in a dutyi is also allocated to
another routey not belonging to the same group, irgl] S, O Randr, 0 Sy;

(xiii) TerminalChangeFgmepresents the number of times during the dukhat there are forbidden reassignments in

relation with terminals (See item (vii));

(xiv) ExcSplitDutyrepresents the number of split duties in the smluthat is greater than 1.25 x (fleet size). It
represents an estimative of the company that asstimé at most 50% of the crews are necessanatizeesplit
duties.

(xv) nDutiesrepresents the number of duties ahis the penalty applied to minimize the number ofies in the
schedule;

3.5. The ILS-VND-TSAR algorithm

With an aim to introduce the Variable Neighborhd@escent — VND (Hansen and Mladenovic, 2003)Nfetk=1,... knmay) be a finite
set of pre-selected neighborhood structures,Ni(g) the set of solutions in thgh neighborhood o0§. Neighborhoods$\* may be
induced from one or more metric (or quasi-metrimictions introduced into a solution spa&&eAn optimal solutionis a feasible
solution where a minimum of the evaluated funcfimreached. There islacal minimum sof f with respect taN (s), if there is no
solutions O N¥(s) such thatf(s) < f(S). Metaheuristics based on local search proceduye® continue the search by other means
after finding the first local minimum. VND is based three simple facts: (1) A local minimum wittspect to one neighborhood
structure is not necessary so with another; (2)lgdha minimum is a local minimum with respect td pbssible neighborhood
structures; and (3) For many problems local mininwith respect to one or several are relativelyelmseach other.

According to these authors, this last observatidnich is empirical, implies that a local optimuntesf provides some information
about the global one. This may for instance berséwariables with the same value in both. Howeitds, usually not known which
ones are such. An organized study of the neighloatiod this local optimum is therefore in order,iLliatbetter one is found.

The Variable Neighborhood DescdMND) approach is obtained if a change of neighbods is performed in a deterministic way



and its main steps are presented in Figure 1.

Procedure VND

Input: s, f(.),the set of neighborhood structuS fork = 1, ..., knas that will be used in the search
ke—1
whilek < k. do
Find the best neighbsr 0 N¥(s)
if f(s) < f(s) then
S«¢§s
ke—1
else
ke—k+1
10: end if
11! end while
12! returns

CoNoakhwOE

Figure 1 — Basic VND procedure

For large instances, finding the best neighboaahéteration (line 4 of Figure 1) is quite costlythese cases, a random approach is
normally used and this is what is done here. Asita$ Random Descent (RD) procedure works as faldwpoints' is generated at
random from théth neighborhood of (line 4 of Figure 1). IE is better than the incumbent, theis updated t@’ (s < s’) and the
search continues from If there are not any improvementsDescentMaviterations, then the search stops. Thereforeptbeedure
can return not necessarily a local optimum. In aafsenprovement, the search starts from the fiighborhood K < 1). This
mechanism is justified because the neighborhoalsested such that*! is more computationally complex thaf

The proposed procedure to do a local search isdhgion space of the VCSP, called VND_2 LEVELSdéscribed in the Figure
2. This procedure is based on the ideas of the Wixistic in the sense that not only the neighbodscare changed, but also the
local search procedures. In this procedsgés a resulting solution of the perturbation iroadl optimum. The RDVVPs§, N7 is
the Random Descent Procedure that makes use @daain movements belonging to thgR" neighborhood structure, and the
tasks of the crews are allocated in a greedy wgngring the weights of the crew scheduling, thaBis 0 in equation (1). The
RDVVP (s, N9 is the Random Descent Algorithm that makes swapphovements of thél, " neighborhood, ignoring the
weights of the crew scheduling function. The RDMg), NJ?) and RDVVI &, N°)) are similar to the RDVVPs§, N°%) and
RDVVP (s;, N9, respectively, but in these cases the weightshefcrew scheduling function are computed. Theselom
approaches are interrupted if no improvementsaurad inDescentMaviterations. The TSAR_R and TSAR_S are algorithased
on Tabu Search metaheuristic with Adaptive RelaxatiGlover, 1996) that makes use of the neighbathdd-R and Nc°
respectively. These algorithms consist in changigweights of the infeasibilities periodically éhg the search, either promoting
the generation of infeasible solutions or feas#alitions in order to explore other regions notwsited in the solution space. These
algorithms were used by Marinted al (2004) to solve the Crew Scheduling Problem (C&#) a detailed description can be found
in their work.

Procedure VND_2 LEVELS
Inicialization Letsy be a initial solution
Step 1 s, — RDVVP (5, NN¥H
s, — RDVVP (51, Ny*)
If the value of; is lower thars,, dos, < S, and return to the beginning of the Step 1

Step 2 s3— TSAR_R &)
sS4 TSAR_S &)
If s, is better thars,, dos, < s, and run the Step 2 again

Step 3 S — RDVVI (54, NV

S — RDWVI (s5, \*)
If 55 is better thars,, dos, <+ S5 and executes again the Step 3
If there was some improvement in this step, retarthe Step 2

Step 4 Returisg

Figure 2 —VND_2_LEVELS procedure applied to theSFC

The Iterated Local Search — ILS procedure (Louremgartin and Stiitzle, 2003) is a metaheuristic vidhr basic components:
GeneratelnitialSolutionLocalSearchPerturbationand AcceptanceCriterionThe GeneratelnitialSolutioris a module that consists
in building a good solution to the problelrocalSearchis the module that starts the search from a smiuéind returns a local
optimum. Perturbation consists in realizing modifications on the locatimum in order to escape from it. Finally, the gedure
AcceptanceCriteriortonsists in determining whether the new solut®adcepted or not as the new current solution. vlieg to
the authors, a reasonable first guess for the taoep criterion is to force the cost to decredsmeptanceCriteriorhas a strong
influence on the nature and effectiveness of thi& imathe space of solutions. Roughly, it can beduto control the balance between
intensification and diversification of that search.



The Figure 3 presents the pseudo-code of ILS-VNBHRSan ILS procedure combined with VND and TaburSeaapplied to the
VCSP.

Algorithm ILS-VND-TSAR

1.  Input:s, f(.) , LevelMax, ILSmax, TimeMax
2: S* s

3: level < 0

4:  whilelevel <LevelMaxdo

5: iter—0

6: whileiter <ILSmaxand time <TimeMaxdo
7 s« Perturbatiorg, level)

8: s« VND_2_LEVELSE)

9: if f(s) <f(s*) then

10: S*—s

11: levek— 0

12: iter— 0

13: ese

14: S« s*

15: iter— iter + 1

16: end if

17: end while

18: level«— level +1

19: end while

20: returns*

Figure 3 — ILS-VND-TSAR algorithm applied to the €

Six levels of perturbations have been considerepgerurbation of levell consists in realizing+ 2 random movements in tHe "
neighborhood.

4. Computational results
The proposed algorithm, so-called ILS-VND-TSAR, vaplemented in C++ language using the Borland 8titder environment,
version 5.0 and tested in a PC Intel Pentium I\fh\8i0 GHz and 1 GB of RAM running Windows XP Pssfional Edition.

Preliminary tests were performed to calibrate taeameters of the ILS-VND-TSAR algorithm. The numbérterations without
improvement of the ILSIL Smax was fixed at 50. The number of iterations withimprovement of the TSARBTmay was fixed at
500. TheLevelMaxvalue was fixed at 6 and the number of iteratissithout improvement of the Random Descent appraache
(DescentMakwas fixed as number of trips number of vehicles. The total processing time iaged to half an hour. The first
phase of the traditional sequential approach us8salgorithm described in Souz al. (2007) and second one uses the TSAR
algorithm described in Marinhet al (2004). Both algorithms stop after 15 minutegxdcution.

In order to test the algorithms, we examined sclieglyproblems for one public transportation compé#mgt operates in the city of
Belo Horizonte, Brazil.

Tables (1) and (2) show the value of the parametsesl in the evaluation function, described inisacB.4. In the Table (1), the
values of the parametefémeLimDeadTripandTimeLimTermare linked to each instance and represent thermemitime of a dead
trip and the maximum waiting time of the vehicldsttee terminal, respectively, in minutes, foundtlie solution utilized by the
company.

Table 1 — Instances and their respective time $imith respect to the VSP

I nstances TimeLimDeadTrip TimeLimTerm
G02_SUN_90oVv 18 83
GO2_MON_260V 18 82
G02_FRI_260V 18 77

G02_SAT_172V 18 75




Table 2 — Parameters of the VCSP evaluation functio

Parameter Value Parameter Value

MaxTimeTerm 119 minutes M1 18
0 2 Lo 40
By In (16) / In @; x TimeLimDeadTrip s 19
oo 1 Ha 5
B2 In (16) / In @, x TimeLimTern) Ms 5
Wrp 50 A1 40
Wrr 40 Ao 40
Wre 80 Az 40
ks 80 Ay 45
Ucr 5 As 35
o 100 A6 35
o 1 A7 45

B 2.5

Table 3 contains the evaluation function valuetheftraditional sequential and integrated approachean be observed that both
best and average values were reduced in all caséyzad and the gap between these values in eat@nae is also small, ratifying
that the proposed algorithm is robust. In additibere was an improvement of up to 4.19% if comgphémethe best solution found in
the sequential approach.

Table 3: Evaluation function values from the tramtitl sequential and integrated approaches

Sequential Approach Integrated Approach
Instance Best Value AverageValue Gap BestValue AverageValue Gap Improvement
G02_SUN_90V 7036 7160,35 6,47%  6725,5 6841,5 1,72% 4,41%
G02_MON_260V  22507,5 22828,55 8,26%  21087,5 21297,7 1,00%6,31%
G02_FRI_260V 23045,5 23354,1 7,50% 21724,5 21910,1 0,85% ,73%
GO02_SAT_172V 12938,5 13260,5 8,51% 12220 12468,05 2,03% 55%,

Table 4 presents the details from the best solsiionnd on each instance, in respect of the segliant integrated approaches.

Table 4: Schedules from the sequential and intedrapproaches

G02 Company Sequential Approach Integrated Approach
SUN MON FRI SAT SUN MON FRI  SAT
Number of trips 90 260 260 172 90 260 260 172
Number of vehicles 11 40 40 23 11 40 39 23

Vehicle waiting time (hh:mm) 16:13 22:26 5:56 21:02 ¥:4 8:12 22:14 21.02
Dead trip time (hh:mm) 824 1250 12:14 16148 9:50 15:064:5& 18:36

Number of split blocks 3 21 20 5 5 24 24 8
Number of split duties 12 50 50 16 7 49 43 20
Number of crews 21 62 63 37 19 62 63 34

Crew idleness (hh:mm) 15:13 15:04 9:23 15:44 11.07 7:52 286: 15:12
Overtime payment (hh:mm)  5:04  6:44 7:34 20:08 14:58 8:282:31 19:44

Change of routes 1 5 7 1 4 4 6 2
Change of terminals 2 18 19 9 3 11 8 10
Change of vehicles 6 62 66 11 2 34 34 15

fy 841 2510 2553 1491 893 2740 2887 1585
fc 2478 7999 8197 4579 2333 7339 7535 4254
f=fy,+25xf; 7036 22507.5 23045.5 12938.5 6725.5 21087.5 21724.5 12220

From Table 4 it can be verified that the propodgdrithm was able to reduce the number of crewsr{F21 to 19 on Sunday, from
37 to 35 on Saturday), the waiting time of the ¢kds at the terminals (From 16:13 to 15:31 on Synftam 22:26 to 21:12 on
Monday, from 5:56 to 2:24 on Friday and from 21t6020:23 on Saturday), the crew idleness on Sugéiayn 15:13 to 10:47) and
the number of changes of terminals on Monday andafr(From 18 to 13 on Monday and from 19 to 14Foitay). It can be



observed that the number of crews grew up on Fridaion the other hand there was a reduction erotiertime payment and on
the number of changes of routes and terminals.eSeaal. (2006) has shown that there is a trade-off betweerthe one hand, the
number of trips plus crew idleness and, on therdtled, the overtime payment. This trade-off camdedled by manipulating the
weights of the evaluation function. Also, it is iofpant to observe that the integrated approachumesiworst vehicle schedule, but
its crew schedule are better than the ones produc#te sequential approach.

7. Conclusions

This paper dealt with the Integrated Vehicle anevC8cheduling Problem. In order to solve it, aroatgm based on Iterated Local
Search, Variable Neighborhood Descent and TabwcBeeth Adaptive Relaxation, so-called ILS-VND-TSAR proposed. It is an
adaptation of the ILS algorithm described in Soeiizal. (2007) for solving the vehicle scheduling probland the TSAR algorithm
developed by Marinhe@t al. (2004) for the crew scheduling problem. Two nesighborhoods are introduced, which consist in
reassigning and swapping the trips of vehicleofdd by the reconstruction of the duties affectgthe moves.

A comparison between the integrated approach amdr#ditional sequential one is performed. The fiansiders both problems
simultaneously, while the later first solves théigee scheduling and then solves the crew scheglulihe results showed that the
integrated approach was able to produce betteltsesvith global improvement of up to 4.19%. In &uuh, it can be verified that
the proposed algorithm is robust since the maximariation of the final solutions is quite smallnmaly, 1.96%.

It is important to point out that the integrategagach produced a worst vehicle schedule, butréa schedule was better than the
traditional sequential one. This fact clearly ithases that producing a good quality solution te tkehicle scheduling may not
necessarily lead to a good quality solution todieav scheduling.
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