
A hybrid metaheuristic algorithm for the Integrated
Vehicle and Crew Scheduling Problem

M.J.F.Souza∗,1, S.Ribas∗∗,2, I.M.Coelho∗∗,3

Federal University of Ouro Preto, Department of Computer Science, Ouro Preto, Minas
Gerais, Brazil 35400-000

Abstract

This work deals with the Integrated Vehicle and Crew Scheduling Problem
(VCSP) in urban mass transit. The Vehicle Scheduling Problem (VSP) con-
sists in creating a daily routine of operation for a fleet of vehicles of a company
so that all timetabled trips are covered and the operational costs of such activ-
ity reduced, making the best use of the fleet. In the Crew Scheduling Problem
(CSP) each crew corresponds to a duty, and the goal is the generation of its
schedule, satisfying a set of labor agreement and operational rules of the com-
pany, as well as the workforce optimization. Traditionally, the VSP and the CSP
are solved sequentially by the vehicles-first duties-second approach, but these
methodologies do not explore the link between both problems. The difficulty of
solving VCSP is greater than the individual problems since it contains all the
degrees of freedom of vehicle scheduling and all the degrees of freedom of crew
scheduling. Since VCSP is NP-hard, an algorithm based on metaheuristics ap-
proaches is proposed here. This algorithm combines Iterated Local Search (ILS),
Variable Neighborhood Descent (VND) and Tabu Search with Adaptive Relax-
ation (TSAR). In order to explore the solution space, we defined six movements
based on relocation and swap of both, trips of the vehicles schedule and tasks
of the duties schedule. The algorithm was tested with real data of a Brazilian
city. The results show the effectiveness of the proposed approach.

Key words: Vehicle Scheduling, Crew Scheduling, Integrated Vehicle and
Crew Scheduling, Public Transport, Metaheuristics

1. INTRODUCTION

The public transportation system planning is a very complex activity. Thus
it is generally divided into five main stages, which are: route planning, timeta-
bles defining, vehicle scheduling, crew scheduling and crew rostering.

Figure 1 shows the traditional stages of public transportation system plan-
ning, where the output of one stage is the input for the subsequent one.

∗Principal corresponding author
∗∗Corresponding author
1marcone@iceb.ufop.br
2imcoelho@iceb.ufop.br
3sabir@iceb.ufop.br

Preprint submitted to Elsevier January 12, 2010



Figure 1: Stages of public transportation system planning

This work deals with the third and fourth stages, the vehicle and crew
scheduling problems.

According to Freling et al. (2003), there are three different approaches to
solve the vehicle and crew scheduling: Sequential, Independent and Integrated.

In the sequential approach, the vehicle and crew scheduling problems are
solved separately and the solution of one is used as input for the other. The
sequential approach, in turn, can be classified as Traditional or Reverse.

The traditional sequential approach was the first one to be studied and it is
widely adopted by the companies. It consists in solving the vehicle scheduling
problem (VSP) and then, considering this solution as input, the crew schedul-
ing problem (CSP) is solved. This approach has the inconvenience that the
vehicle scheduling solution guides the crew scheduling solution (Freling et al.,
2003), which has the most relevant cost among the ones involved in the system
(Bouzada, 2003). An alternative to solve it is to apply the traditional sequen-
tial approach, but considering the crew features during the vehicle scheduling
solution. Even though the vehicle scheduling costs increase, it becomes easier
to solve the CSP and much probably the total cost will be lower than the tra-
ditional approach. Scott (1985), Darby-Dowman et al. (1988), Reis (2008) use
this strategy for solving the problem involving vehicle and crew scheduling.

In the reverse sequential approach, the CSP is solved first and then, consid-
ering this solution as input, the VSP is solved. This strategy is justified for two
main motives: 1) the crew costs are higher than vehicle costs and 2) the set of
vehicle restrictions is much smaller, which suggests solving CSP first, because
it has fewer alternatives for solution.

In the independent approach the vehicle schedule and the crew schedule are
built directly from trip timetables. Therefore, in this approach the vehicle sched-
ule is built without considering any crew characteristics and the crew schedule
is obtained without considering vehicle constraints. Generally, the results ob-
tained by this approach are not feasible in practice, because some vehicle trips
will not have a driver, and some drivers will operate virtual vehicles that are
not in the vehicle schedule. This approach is used to determine lower bounds
for VSP and CSP.

In the integrated approach both problems are solved together in the same
model. As both problems are NP-hard (Garey and Johnson, 1979), then Vehicle
and Crew Scheduling Problem (VCSP) is NP-hard. It is obvious than the diffi-
cult of solving VCSP is bigger because the solution space is huge, since VCSP
contains all the degrees of freedom of vehicle scheduling and all the degrees of
freedom of crew scheduling. However, with the improvement in the CPU speed
of the computers, combined with algorithm progress, the research has taken up
this topic recently. Freling et al. (1995), Haase and Friberg (1999) and Freling
et al. (1999) use this type of approach. See Borndröfer et al. (2006) and Freling
et al. (2003) for a survey and experience about this topic.

This paper proposes an algorithm, named ILS-VND-TSAR, which combines

2



Iterated Local Search, Variable Neighborhood Descent and Tabu Search heuris-
tics for solving VCSP. This heuristic strategy is justified because VCSP is NP-
hard and according to the literature these approaches are able to produce good
solutions for each problem, considered individually (See Souza et al. (2007) and
Marinho et al. (2004)).

The rest of the paper is organized as follows. Section 2 describes the problem.
Section 3 presents the proposed methodology, including the representation of
the problem, the procedure employed for generating an initial solution, the
neighborhood structures, the evaluation function and finally the adaptation of
the Iterated Local Search, Variable Neighborhood Descent and Tabu Search
heuristics to the problem. Section 4 shows the results achieved in this study and
discusses the improvement obtained. Section 5 brings the concluding remarks
of this work.

2. Problem definition

According to Freling et al. (2003), the Vehicle and Crew Scheduling Problem
(VCSP) is defined as follows. Given a set of trips within a fixed planning horizon,
the objective is to find a minimum cost schedule for the vehicles and the crews,
such that both the vehicle and the crew schedules are feasible and mutually
compatible. Each trip has fixed starting and ending times, and the traveling
times between all pairs of location are known. A vehicle schedule is feasible if
(1) each trip is assigned to a vehicle, and (2) each vehicle performs a feasible
sequence of trips, where a sequence of trips is feasible if a vehicle can execute
each pair of consecutive trips in the sequence. Some trips do not belong to any
route and these are called the dead trips. A dead trip time is the time a vehicle
takes to travel between two locations (terminals or depots) that do not belong to
any route. This is necessary in order to move the vehicle from an ending point
to the next starting point, so that the vehicle can start the next trip. A vehicle
schedule defines which trips have to be performed by the same vehicle and this
defines the so-called blocks. If there is enough time between one trip and the
next, a change of driver may occur, and these are called relief points, defined
by location and time. The blocks are divided by relief points, and each part is
the so-called task, that is defined by two consecutive relief points and represents
the minimum piece of work that can be assigned to a crew. These tasks have
to be assigned to crew members, and the tasks of a crew member define a crew
duty. All the duties constitute a crew schedule. Such schedule is feasible if
(1) each task is assigned to one duty, and (2) each duty is a sequence of tasks
that can be performed by a single crew, both from a physical and a legal point
of view. In particular, each duty must satisfy several complicated constraints
corresponding to work load regulations for the crews. Typical examples of such
constraints are the maximum working time without a break, minimum break
duration and maximum total working time. The cost of a duty is usually a
combination of fixed costs such as wages, and variable costs such as overtime
payment. The subsection 3.4 details the considered requirements in this work.

It is assumed that there is only one depot and all vehicles are always avail-
able. We assumed too that from 05:00 to 08:00 and from 16:00 to 19:00 two
minutes are necessary for a change of driver, while in the other periods, only
one minute is necessary.

3



3. Proposed methodology

A solution s to the VCSP consists in a (sv, sc) pair, where sv represents a
solution to the VSP and sc represents a solution to the CSP. The sv solution
consists in a set of vehicles, where each one has an associated list of trips to be
done during a day. The sc solution consists in a set of crew duties, where each
one is associated to a list of tasks to be carried out daily. Figure 2 shows an
example.

Figure 2: Solution representation

In the Figure 2 there are two vehicles and three crew duties. The Vehicle
1 performs the trips 1, 3, 4, 7 and 8. The crew 0 performs the tasks 0, makes
a vehicle change and performs the task 4. Just remembering, some trips are
grouped in the same task because there is not enough time to make a vehicle
change.

We observe that the solution representation adopted allows a vehicle to make
more than one trip at the same moment, and a crew to make more than one task
at the same time. To eliminate these practical inconsistencies, our evaluation
function penalize these occurrences.

3.1. Evaluation function
The cost of VCSP is calculated by equation (1), that we try to minimize. In

this equation, fv(s) represents the component of f that evaluates the solution
s with respect to the vehicle scheduling and fc(s) evaluates the solution s with
respect to the duty scheduling.

f(s) = fv(s) + fc(s) (1)

3.1.1. Vehicle schedule evaluation
In this work we try to minimize the follow items about the vehicle schedule:

• Number of vehicles

• Down time, i.e., the time that a vehicle is idle

• Dead trip time, i.e., the time that a vehicle performs trips without pas-
sengers

According to the companies that we contacted, a solution can not be used if
more than 60% of the vehicles comes back to the depot during its duties. Thus,
a vehicle scheduling is feasible if:

• There are no conflict time in the vehicle schedule

4



• The number of split vehicle duties is less than 60% of the number of vehicle
duties

The vehicle schedule cost is given by equation (2):

fv(s) = f(sv) =
∑
i∈Qv

αiq
v
i (sv) +

∑
i∈Ov

γio
v
i (sv) (2)

where Qv and Ov are the quality and the operational requirements of the vehicle
schedule, respectively; αi and γi are the penalties applied to the quality and the
operational requirements of a vehicle solution sv, respectively; and qv

i and ov
i are

the values of the ith quality and operational vehicle requirement, respectively.

3.1.2. Crew evaluation
In relation to the crew schedule, we try to minimize the follow items:

• Number of crew duties

• Overtime payment

• Crew idleness time

According to the Brazilian labor laws, the crews can not work more than nine
hours in one day. Moreover, there can be no less than eleven hours between the
end of a workday and the beginning of the next day journey. We also consider
the following operational restriction: a solution can not be used if more than
25% of the crew comes back to the depot during its duties. Thus, a crew
scheduling is feasible if:

• There is no conflict time in the crew schedule

• There is no crew working more than 9 hours per day

• There is no duty having less than 11 hours between its ending time and
its next starting time

• The number of split crew duties is less than 25% of the number of crew
duties

The crew schedule cost is given by equation (3):

fc(s) = f(sc) =
∑
i∈Qc

βiq
c
i (sc) +

∑
i∈Oc

θio
c
i (sc) (3)

where Qc and Oc are the quality and the operational requirements of the crew
schedule, respectively; βi and θi are the penalties applied to the quality and the
operational requirements of a crew solution sc, respectively; and qc

i and oc
i are

the values of the ith quality and operational crew requirement, respectively.

5



Table 1: Used data on the weights calculation
Description Value
Driver payment (month) R$ 1000,99
Ticket collector payment R$ 600,59
Crew payment R$ 1601,58
Crew payment + taxes (38%) R$ 2210,18
Crew workdays in a month 24
Work time during a day (minutes) 430
Payment about one work minute R$ 0,21
Payment of one overtime minute R$ 0,32
Payment of one workday R$ 92,09
Fixed cost of one vehicle R$ 13415,58
Vehicle workdays in a month 30
Vehicle cost daily R$ 447,19
Average velocity (km/h) 20
Cost for kilometer R$ 2,64
Cost of one minute of dead trip R$ 0,88
Variable cost of one kilometer R$ 0,78
Cost of one minute of downtime R$ 0,26

3.1.3. Defining weights to the evaluation function
The objective of the evaluation function is to evaluate the quality of a solu-

tion. As we saw in previous sections, this function considers requirements that
must to be minimized and some of these requirements are relatively more impor-
tant than others. To contemplate the relative importance of the requirements,
our the weight used are based on real costs of a Brazilian city company, as used
in Reis (2008). The Table 1 presents the data used to calculate the evaluation
function weights, where R$ means Brazilian currency.

The Table 2 presents the weights of the VCSP evaluation function. The
quality weights are based on the real costs presented in the Table 1, while the
operational weights are empirical and its values are greater than the quality
ones. The last column of this table give us the characteristics of an example
solution.

The equations (4), (5), (6), (7), (8) and (9) show how is made the evaluation
the solution of the Table 2.

f(s) = fv(s)+fc(s) =
∑
i∈Qv

αiq
v
i (sv)+

∑
i∈Ov

γio
v
i (sv)+

∑
i∈Qc

βiq
c
i (sc)+

∑
i∈Oc

θio
c
i (sc)

(4)

∑
i∈Qv

αiq
v
i (sv) = 447.19× 5 + 0.26× 1700 + 0.88× 161 = 2819.63 (5)

∑
i∈Ov

γio
v
i (sv) = 4000× 0 + 1000× 0 = 0 (6)

∑
i∈Qc

βiq
c
i (sc) = 92.09× 11 + 0.21× 1702 + 0.32× 815 = 1631.21 (7)

6



Table 2: Weights of the VCSP evaluation function
Type Refers to Requirement Weight Example of s

Quality Vehicles Number of vehicles 447.19 5
Quality Vehicles Down time 0.26 1700
Quality Vehicles Dead trip time 0.88 161
Quality Crews Number of crews duties 92.09 11
Quality Crews Crew idleness time 0.21 1702
Quality Crews Overtime payment 0.32 815

Operational Vehicles Conflict time 4000 0
Operational Vehicles Excess of split duties 1000 0
Operational Crews Conflict time 4000 0
Operational Crews Excess of split duties 1000 0
Operational Crews Insufficient time between duties 4000 0
Operational Crews Excess time worked 4000 0

∑
i∈Oc

θio
c
i (sc) = 4000× 0 + 1000× 0 + 4000× 0 + 4000× 0 = 0 (8)

f(s) = 2819.63 + 1631.21 = 4450.84 (9)

3.2. Constructing an initial solution
An initial solution to the VCSP is made by a sequential mechanism. To

begin with, an initial solution for the vehicle scheduling is built. Later, from
this vehicle solution, a crew scheduling solution is generated. Both solutions are
built by a greedy heuristic.

An initial solution to the VSP is obtained by applying a constructive heuris-
tic where at each iteration, a new trip not yet assigned is added to the current
schedule of the best vehicle, in accordance to the value of the evaluation func-
tion relative to each vehicle scheduling (see eq. (2) in subsection 3.1.1). The
choice of the trip to be added to the vehicle schedule is totally greedy, which
means that the trip with lower cost will be chosen. The approach ends when
all the trips are allocated. The trips belonging to each vehicle are known as the
blocks of the vehicle.

From the blocks of each vehicle, a solution for the CSP is built. Initially, for
each block, the trips are grouped in a task until a relief point is found. A relief
point is defined by location and time, where and when a change of driver may
occur.

Next, the tasks are ordered by their starting time. At each step, there is a
set of non-empty duties and a duty without tasks. The constructive procedure
works as follows. The first task is assigned to the first duty, the empty one. Next,
for each task of the sequence, we evaluate its insertion for all the duties and also
for a new duty without tasks. The evaluation of each crew duty is carried out
according to the eq. (3), relative to the crew scheduling (see subsection 3.1.2).
The task is assigned to the duty with the lowest cost. The crew schedule is
interrupted when all the tasks are allocated.

7



3.3. Neighborhood Structure
The heuristic methods used in this work are based on making modifications

in a given solution to improve the quality. These modifications are so-called
movements and we can apply different types of movements in a solution. A
neighborhood structure is defined by a type of movement.

A neighbor of a given solution s is defined by applying a movement in the
solution s. Applying different movements the heuristic methods are able to
explore different regions of the solution space.

With a view to explore the solutions space we define six neighborhood struc-
tures, which are based on relocation (R) and swap (S) of both, trips of the
vehicles (v) schedule and tasks of the duties (c) schedule are used.

Two of them (NR
v and NS

v ) do modifications only on the vehicles, ignoring
the repercussions of these movements in the crew scheduling, which creates,
possibly infeasible solutions.

Two other structures (NR
c and NS

c ) only modify the crew scheduling, pre-
serving the compatibility between vehicles and crews.

The third pair of neighborhood structures (NRP
v and NSP

v ) is integrated
and modifies both items, vehicles and crews. These last two structures are
to relocate or to change the vehicles trips followed by a reconstruction of the
duties to make the schedules of vehicles and crews compatible. For each vehicle
involved in the modification, all tasks that belong to these vehicles are removed
from the crew scheduling. Then, from the new configuration of the blocks of the
involved vehicles, the new tasks are generated. These tasks, in turn, are added
to any crew member, in accordance with the greedy procedure described in the
previous section. For these two structures, NRP

v and NSP
v , the change made is

“spread” for the crews.

3.4. The Proposed Algorithm
To solve the VCSP we propose the ILS-VND-TSAR algorithm, which is

described in section 3.4.5. The following sections show the components of this
algorithm.

3.4.1. The Vehicle Random Descent Procedure
For large instances, finding the best neighbor at each iteration is a costly

operation. In these cases, a random approach is normally used. A classical
Random Descent (RD) procedure works as follows. A point s′ is generated at
random from the kth neighborhood of s. If s′ is better than the incumbent,
then s is updated to s′ (s ← s′) and the search continues from s. If there are
not any improvements in RDmax iterations, then the search stops. Therefore,
the procedure can return not necessarily a local optimum.

When it comes to integrated problems, finding the best neighbor at each
iteration is a much more costly operation. This is due to the fact that in
integrated neighborhoods considered (NRP

v and NSP
v ), each modification in the

vehicle schedule is reflected in the crew scheduling. To reduce the number of
spreadings of these modifications in the crew scheduling, the Vehicle Random
Descent (VRD) procedure is proposed as described in Algorithm 1.

The working principle of this algorithm is quite simple and it is similar to the
classic random descent. The main difference is that in this new algorithm, only

8



the changes made in vehicles (relocation or swap) that improve the evaluation
function fv are propagated in the crew scheduling.

In the Algorithm 1, s is a solution formed by the pair of solutions sv and sc,
V RDmax is the maximum number of iterations without improvement, Nv is an
specific neighborhood structure (relocation or swap) for the vehicles, m is the
movement made in the considered structure, NP

v is the neighborhood structure
(relocation or swap) with the spreading in accordance to the movement m and
fv is the function that evaluates the part sv of the solution s.

It is observed that the final solution of this algorithm can, not necessarily
be better than the initial solution in relation to the integrated function f since
the vehicles evaluation function fv is the only one used.

Algorithm 1: RDP
Input: Solution s, Integer V RDmax, Neighborhood Nv(.),

Neighborhood NP
v (.), Function fv(.)

Output: Solution s∗ better than or equal to s according to the function
fv

iter ← 1;
while (iter ≤ V RDmax) do

m ← randomMovement(s, Nv);
s′ ← neighbor(s, m);
if s′ better than s according to the function fv then

s ← neighbor(s, NP
v , m);

iter ← 0;
end
iter ← iter + 1;

end
s∗ ← s;
return s∗;

3.4.2. The Integrated Vehicle and Crew Random Descent Procedure
This strategy is similar to the one presented in the previous section. There

are two basic differences. The first one is that only the movements that produce
better solutions with respect to vehicles are candidates (better than fv) or worse
than fv in at most (λ− 1)× 100%.

The second difference is that it considers both the costs of sv and the sc,
which is not the case of the Vehicle Random Descent that only considers the
cost of sv when applied to solving the VCSP. The objective of this algorithm
is refining a solution s using integrated movements without unduly burdening
the processing, as may happen if the refinement was done by classical Random
Descent algorithm using only integrated movements.

The Algorithm 2 presents the Integrated Vehicle and Crew Random Descent
Procedure (IRD). In this algorithm, s is a solution formed by the pair of the
mutually compatible solutions sv and sc, IRDmax is the number of iterations
without improvement in f , m is a movement made in the vehicles in accordance
with the neighborhood Nv (relocation or swap), NP

v is the neighborhood struc-
ture (relocation or swap), with spreading in accordance with the modification
m, fv is the function that evaluates sv and λ, with λ ≥ 1, is a value used to

9



determine if it worth processing the most expensive part of the refinement, the
construction and the spreading of a integrated movement, in the absence of
improvement. For example, λ = 1.01 implies that if a movement generates a
solution s′v which costs more than 1% of the cost of sv, the method does not
test the movement of spreading. Otherwise, the test is performed and, if the
resulting solution s′ of the movement of spreading is better than s, then the
solution s is updated, that is, s ← s′. Tests have shown that for the instances
examined, 1.01 is a good value for λ and this is the value used in this work.

Algorithm 2: IRD
Input: Solution s, Integer IRDmax, Neighborhood Nv(.), Neighborhood

NP
v (.), Function f(.), Real λ

Output: Solution s∗ better than or equal to s according to the function
f

iter ← 1;
while (iter ≤ IRDmax) do

m ← randomMovement(s, Nv);
s′ ← neighbor(s, m);
if fv(s′) ≤ λ× fv(s) then

s′′ ← neighbor(s, NP
v , m);

if s′′ better than s according to the function f then
s ← s′′;
iter ← 0;

end
end
iter ← iter + 1;

end
s∗ ← s;
return s∗;

3.4.3. The Tabu Search with Adaptative Relaxation Procedure
The Tabu Search methods (Glover and Kockenberger, 2003) is an iterative

procedure for solving combinatorial optimization problems, which accepts non-
improvement movements to avoid be trapped in optima local.

Starting from an initial solution s0, the method explores, at each iteration,
a subset V of the neighborhood N(s), of current solution s. The member s′ ∈ V
with the best evaluation according to the function f(s′) became the current solu-
tion, even if s′ is worst than s. This strategy, however, can led the search process
to visit solutions already reached before. In order to prevent cycles, short term
memory is employed, usually in the form of a Tabu List, which forbids undoing
the last movements. Movements remain in the tabu list for a given number of it-
erations (tabu tenure). Since this strategy can be too restrictive, in order to not
disregard high quality solutions, movements with tabu status can be accepted if
the produced solution satisfies an aspiration criterion, which usually considers
the cost of the best solution found so far, that is, if the produced solution is
better than the best solution found so far, the movement can be accepted. With
the aim of reducing the risk of revisiting the same solutions, we use a dynamic
tabu list, in our case, the tabu tenure value is selected from an interval, which

10



defines a set of possible values {minTabuTenure, · · · ,maxTabuTenure}.
The procedure TSAR (Tabu Search with Adaptive Relaxation), proposed in

Marinho et al. (2004), is applied for solving the Crew Scheduling Problem. Its
pseudo-code is presented at Algorithm 3.

In the TSAR procedure we seek for the First Improvement in a subset of the
neighborhoods NR

c or NS
c , or if there is not a improvement, it returns the best

neighbor in this subset. This procedure also incorporates an Adaptive Relax-
ation (AR) mechanism. This mechanism consists in changing the weights of the
infeasibilities periodically during the search, either promoting the generation of
infeasible solutions or feasible solutions in order to explore other regions not yet
visited in the solution space.

Our AR implementation is based on the proposal of Schaerf (1996), where
weights of each source of infeasibility are dynamically updated, as originally
proposed by Gendreau et al. (1994). For each source of infeasibility i, the
corresponding weight θi in the objective function fc is multiplied by a factor δi,
which is updated as follows:

1. In the beginning of the search set δi ← 1.
2. At every k movements:

• if all k visited solutions are feasible considering constraint i then
δi ← δi/γ;
• if all k are infeasible considering constraint i then δi ← δi × γ;
• if part of k solutions are feasible, and another part is infeasible con-

sidering constraint i, δi keeps unchanged.

The parameter µ is randomly selected in the interval [1.8, 2.2]. As observed
in Schaerf (1996), this strategy tends to avoid deterministic ratios which could
bias the search.

Each value of δi is bounded by two constants δi,min and δi,max, which pre-
vents the adaptive relaxation from indefinitely increasing/decreasing weights for
constraints which are always unsatisfied/satisfied.

In the Algorithm 3, UpdateIteration() indicates when the dynamic weights
must be updated (In our case, every k = 10 iterations). In our implementation,
the subset V consists in 50% of the number of crews, selected at random.

3.4.4. The Two Levels Variable Neighborhood Descent
With an aim to introduce the Variable Neighborhood Descent - VND (Hansen

and Mladenovic, 2001; Hansen et al., 2008), let Nk(k = 1, ..., kmax) be a finite
set of pre-selected neighborhood structures, and Nk(s) the set of solutions in the
kth neighborhood of s. Neighborhoods Nk may be induced from one or more
metric (or quasi-metric) functions introduced into a solution space S. An opti-
mal solution is a feasible solution where a minimum of the evaluated function
f is reached. There is a local minimum s′ of f with respect to Nk(s), if there
is no solution s ∈ Nk(s′) such that f(s) < f(s′). Metaheuristics based on local
search procedures try to continue the search by other means after finding the
first local minimum. VND is based on three simple facts: (1) A local minimum
with respect to one neighborhood structure is not necessary so with another; (2)
A global minimum is a local minimum with respect to all possible neighborhood
structures; and (3) For many problems local minimum with respect to one or
several are relatively close to each other.

11



Algorithm 3: TSAR
Input: Solution s, Integer TStime, Neighborhood Nc (NR

c or NS
c ),

Function fc(.)
Output: Solution s∗ better than or equal to s according to the function

fc

s∗ ← s;
TabuList← �;
repeat

Define subset V ⊆ Nc(s)
bestMovement← RandomMovement(V )
bestCost←∞
for all Movement m ∈ V do

if fc(s⊕m) < fc(s∗) then
bestMovement← m
break

end
else

if m /∈ TabuList then
if fc(s⊕m) < fc(s) then

bestMovement← m
break

end
else

if DynamicWeightsCost(s⊕m) < bestCost then
bestMovement← m
bestCost← DynamicWeightsCost(s⊕m)

end
end

end
end

end
s← s⊕ bestMovement
if fc(s) < fc(s∗) then

s∗ ← s
end
UpdateTabuList()
if UpdateIteration() then

UpdateDynamicWeights()
end

until TStime reached ;
return s∗

12



According to these authors, this last observation, which is empirical, implies
that a local optimum often provides some information about the global one. This
may for instance be several variables with the same value in both. However, it is
usually not known which ones are such. An organized study of the neighborhood
of this local optimum is therefore in order, until a better one is found.

The Variable Neighborhood Descent (VND) approach is obtained if a change
of neighborhoods is performed in a deterministic way.

The proposed procedure to do a local search in the solution space of the
VCSP, called Two Levels Variable Neighborhood Descent (VND2L), is described
in the Algorithm 4.

Algorithm 4: VND2L
Input: Solution s, Function f(.), Function fv(.), Function fc(.)
Output: Solution s∗ better than or equal to s according to the function

f
s0 ← s;
s1 ← VRD(s0, V RDmax,NR

v , N
RP
v , fv);

[Step1]
s2 ← VRD(s1, V RSmax,NS

v , N
SP
v , fv);

if s2 better than s0 according to the fv then
s0 ← s2 and go back to Step1;

end
s3 ← TSAR(s2, TStime,NR

c , fc);
[Step2]
s4 ← TSAR(s3, TStime,NS

c , fc);
if s4 better than s2 according to the function fc then

s2 ← s4 and go back to Step2;
end
s5 ← IRD(s4, IRDmax,NR

v , N
RP
v , f, λ);

[Step3]
s6 ← IRD(s5, IRDmax,NS

v , N
SP
v , f, λ);

if s6 better than s4 according to the f then
s4 ← s6 and go back to Step3;

end
if there is an improvement in the Step3 then

Go back to Step2;
end
s∗ ← s6;
return s∗;

The algorithm 4 is based on the ideas of the VND heuristic in the sense that
not only the neighborhoods are changed, but also the local search procedures.
There are two levels because this procedure has intern levels and an extern one.

The intern levels consist in three VND applications. The first one has the
objective of improve the vehicles; the second one, to improve the crews and, the
last one, to improve both, vehicles and crews.

The extern level is an application of VND considering that each intern level
is an iteration of the external part of the VND2L.

In this algorithm, s, as we will see in the section 3.4.5, is a resulting solution

13



of the perturbation in a local optimum. The VRD is the Vehicle Random
Descent procedure described in the section 3.4.1. The IRD is the Integrated
Vehicle and Crew Random Descent Procedure presented in the section 3.4.2.
These random approaches, VRD and IRD, are interrupted if no improvements
are found in V RDmax and IRDmax iterations, respectively. The TSAR is
the Tabu Search with Adaptive Relaxation procedure, described in the section
3.4.3.

3.4.5. The proposed algorithm for solving VCSP
The proposed algorithm for solving VCSP is based on Iterated Local Search

(ILS) metaheuristic. ILS (Lourenço et al., 2003; Stützle, 2006) is a metaheuristic
with four basic components: GenerateInitialSolution, LocalSearch, Perturbation
and AcceptanceCriterion. The GenerateInitialSolution is a module that consists
in building a good solution to the problem. LocalSearch is the module that
starts the search from a solution and returns a local optimum. Perturbation
consists in realizing modifications on the local optimum in order to escape from
it. Finally, the procedure AcceptanceCriterion consists in determining whether
the new solution is accepted or not as the new current solution. According to
these authors, a reasonable first guess for the acceptance criterion is to force the
cost to decrease. AcceptanceCriterion has a strong influence on the nature and
effectiveness of the walk in the space of solutions. Roughly, it can be used to
control the balance between intensification and diversification of that search. In
our case, a perturbation of level i consists in making i + 2 random movements
in a given neighborhood structure.

The Algorithm 5 presents the ILS-VND-TSAR algorithm applied to solve
the VCSP. In this algorithm, s is the initial solution; ILStime defines the time
limit; ILSmax is the maximum number of iterations without improvement in
the same level and f is the function to be minimized. We observe that whenever
there are some improvement in the current solution, the parameter level returns
to its first value.

4. Computational results

The proposed algorithm, so-called ILS-VND-TSAR, was implemented in
C++ language using the Borland C++ Builder environment, version 5.0 and
tested in a PC Intel Pentium IV, with 3.0 GHz and 1 GB of RAM running
Windows XP Professional Edition.

Preliminary tests were performed to calibrate the parameters of the proposed
algorithm. The number of iterations without improvement of the ILS (ILSmax)
was fixed at 50, as well as the number of iterations without improvement of IRD
(IRDmax). The number of iterations without improvement of VRD (VRDmax)
was fixed at 100. The time limit to apply TSAR was fixed at 20 seconds. The
total processing time was limited to 20 minutes.

The first phase of the traditional sequential approach uses ILS algorithm
described in Souza et al. (2007) and second one uses the TSAR algorithm de-
scribed in Marinho et al. (2004). Both algorithms stop after 10 minutes of
execution. In this approach, ILSmax was fixed at 50, and one perturbation of
level i é made applying i + 2 moves at the neighborhood NR

v , the local search
of ILS uses two nestled random descents, the first using the neighborhood NR

v

and the second, NS
v .

14



Algorithm 5: ILS-VND-TSAR
Input: Solution s, Integer ILStime, Integer ILSmax, Function f(.)
Output: Solution s∗ better than or equal to s according to the function

f
s∗ ← VND2L(s, f, fv, fc);
level← 0;
while ILStime not satisfied do

iter ← 0;
while iter < ILSmax and ILStime not satisfied do

s′ ← perturbation(s∗, level);
s′′ ← VND2L(s′, f, fv, fc);
if s′′ better than s∗ according to the function f then

s∗ ← s′′;
level ← 0;
iter ← 0;

end
else

iter ← iter + 1;
end

end
level← level + 1;

end
return s∗;

In order to test the algorithms, we examined twelve scheduling problems for
nine public transportation company that operates in a Brazilian city. The data
are available at http://www.decom.ufop.br/prof/marcone/pt/instances/VC.zip.

Tables 1 and 2 show the value of the parameters used in the evaluation
function, described in section 3.1.3.

Table 3 contains the evaluation function values of the traditional sequential
and integrated approaches. The two first columns “Best” show the best value
for f found in 20 runs of the algorithms, while the two first columns “Avg.”
indicate the average value in these runs. Column “’Gap‘’ means the gap between
the average value and the best known value to the respective instance. The last
columns “Best” and “Avg.” indicate the improvement of the integrated approach
over the sequential one with respect to the best and average solution found for
each algorithm, respectively. It can be observed that the proposed algorithm
was able to reduce both best and average values, as well the gap between the
average value and the best known value to each instance. In addition, the gap
is also small, ratifying that the proposed algorithm is robust, and there was
an improvement of up to 1.64% if compared to the best solution found in the
sequential approach and up to 2.39% if compared to the average one.

Tables 4 to 7 present some characteristics of the best solutions found on each
instance, in respect of the sequential (Seq.) and integrated (Int.) approaches.

From these tables it can be verified that the proposed algorithm was able
to reduce the number of crews in one unit in the instances VC52, VC260a and
VC498. In the instances VC90 and VC639a, the number of crews increased in
one unit; however, there was a significative reduction on the overtime payment

15



Table 3: Evaluation function values from the traditional sequential and integrated approaches
Sequential Integrated Improvement

Instance Best Avg. Gap Best Avg. Gap Best Avg
VC52 3936.96 3988.46 2.97 3873.31 3895.43 0.57 1.64 2.39
VC90 7519.20 7561.96 1.14 7476.57 7518.14 0.56 0.57 0.59
VC98a 9638.79 9675.39 1.16 9564.95 9594.67 0.31 0.77 0.84
VC98b 9500.16 9514.50 1.47 9376.67 9398.28 0.23 1.32 1.24
VC260a 28479.80 28714.00 1.43 28310.50 28329.11 0.07 0.60 1.36
VC260b 28064.80 28215.82 0.54 27921.40 27950.78 0.11 0.51 0.95
VC498 32673.50 32756.81 0.26 32500.10 32612.90 0.35 0.53 0.44
VC538 18917.00 18964.83 0.25 18887.20 18939.01 0.27 0.16 0.14
VC639a 39478.10 39586.00 0.27 39301.30 39398.46 0.25 0.45 0.48
VC639b 42557.60 42608.22 0.12 42336.20 42436.66 0.24 0.52 0.40
VC1036 48764.60 48840.86 0.16 48669.10 48778.18 0.22 0.20 0.13
VC1038 49223.90 49335.35 0.23 49085.40 49140.27 0.11 0.28 0.40

Table 4: Best schedules to instances VC52, VC90 and VC98a
Instance VC52 VC90 VC98a
Algorithm Seq. Int. Seq. Int. Seq. Int.
Number of vehicles 5 5 10 10 13 13
Vehicle waiting time (hh:mm) 12:57 12:57 16:13 16:13 11:58 11:58
Dead trip time (hh:mm) 03:50 03:50 08:24 08:24 15:20 15:20
Number of split blocks 0 0 4 4 7 7
Number of crews 12 11 20 21 27 27
Crew idleness (hh:mm) 11:31 08:31 18:44 14:28 17:05 13:29
Overtime payment (hh:mm) 02:25 05:52 14:13 10:00 06:38 05:09
Number of split duties 2 2 1 3 7 7
fv 2640.4 2640.4 5168.4 5168.4 6809.8 6809.8
fc 1296.6 1232.9 2350.8 2308.2 2829.0 2755.2
fv + fc 3937.0 3873.3 7519.2 7476.6 9638.8 9565.0

and on the crew idleness. For the other instances, o number of crews was
the same in both algorithms. An interesting observation is that the integrated
approach produced worse solutions to instances VC498 and VC538, but on the
other hand the crew solution was better, resulting in a schedule with smaller
cost. Also, the final solution produced by the integrated approach was better
than the sequential one in all the instances.

5. Conclusions

This paper dealt with the Integrated Vehicle and Crew Scheduling Prob-
lem. In order to solve it, an algorithm based on Iterated Local Search, Variable
Neighborhood Descent and Tabu Search with Adaptive Relaxation, so-called
ILS-VND-TSAR, is proposed. It is an adaptation of the ILS algorithm de-
scribed in Souza et al. (2007) for solving the vehicle scheduling problem and the
TSAR algorithm developed by Marinho et al. (2004) for the crew scheduling
problem. Two new neighborhoods are introduced, which consist in reassigning
and swapping the trips of vehicles followed by the reconstruction of the duties
affected by the moves.

16



Table 5: Best schedules to instances VC98b, VC260a and VC260b
Instance VC98b VC260a VC260b
Algorithm Seq. Int. Seq. Int. Seq. Int.
Number of vehicles 13 13 40 40 39 39
Vehicle waiting time (hh:mm) 10:21 10:21 19:15 19:15 13:22 22:02
Dead trip time (hh:mm) 14:34 14:34 37:54 37:54 37:54 37:54
Number of split blocks 6 6 22 22 23 23
Number of crews 25 25 76 75 76 76
Crew idleness (hh:mm) 12:50 09:29 91:31 83:03 84:10 79:07
Overtime payment (hh:mm) 15:13 10:59 07:14 08:46 11:28 07:19
Number of split duties 5 5 17 17 17 17
fv 6744.1 6744.1 20189.0 20189.0 19785.3 19785.3
fc 2756.1 2632.6 8290.8 8121.5 8279.5 8136.19
fv + fc 9500.2 9376.7 28479.8 28310.5 28064.8 27921.4

Table 6: Best schedules to instances VC498, VC538 and VC639a
Instance VC498 VC538 VC639a
Algorithm Seq. Int. Seq. Int. Seq. Int.
Number of vehicles 47 47 24 24 55 55
Vehicle waiting time (hh:mm) 37:38 39:27 65:26 65:28 50:36 51:45
Dead trip time (hh:mm) 23:36 24:48 18:59 20:23 52:03 52:37
Number of split blocks 25 26 3 3 25 25
Number of crews 94 93 53 53 109 110
Crew idleness (hh:mm) 55:03 44:51 50:55 47:57 57:47 51:29
Overtime payment (hh:mm) 24:36 22:17 33:17 29:48 30:10 17:48
Number of split duties 19 19 2 2 22 22
fv 22851.1 22942.8 12755.6 12830.1 28133.0 28180.9
fc 9822.4 9557.3 6161.4 6057.1 11345.1 11120.3
fv + fc 32673.5 32500.1 18917.0 18887.2 39478.1 39301.3

A comparison between the integrated approach and the traditional sequential
one was performed. The first considers both problems simultaneously, while the
later first solves the vehicle scheduling and then solves the crew scheduling. The
results showed that the integrated approach was able to produce better results,
with global improvement of up to 1.64% in relation to the best solution and
up to 2.39% in relation to the average solution. In addition, it can be verified
that the proposed algorithm is robust since the maximum variation of the final
solutions is quite small, namely, 0.57%.

6. AKNOWLEGEMENTS

The authors thank CNPq (process 474831/2007-8), FAPEMIG (grant CEX
00357/09) and the Federal University of Ouro Preto for the support given to
the development of this study.

References

Borndröfer, R., Grötschel, M., Pfetsch, M., 2006. Public transport to the fore!
ORMS Today 33 (2), 30–40.

17



Table 7: Best schedules to instances VC639b, VC1036 and VC1038
Instance VC639b VC1036 VC1038
Algorithm Seq. Int. Seq. Int. Seq. Int.
Number of vehicles 60 60 69 69 70 70
Vehicle waiting time (hh:mm) 50:42 52:16 66:07 69:13 67:41 69:10
Dead trip time (hh:mm) 32:59 56:06 50:28 51:41 50:32 51:46
Number of split blocks 25 27 35 35 32 33
Number of crews 116 116 136 136 137 137
Crew idleness (hh:mm) 59:44 49:23 67:57 60:41 78:26 67:10
Overtime payment (hh:mm) 31:06 22:01 43:20 37:16 30:50 26:25
Number of split duties 24 24 28 27 28 28
fv 30525.4 30608.8 34552.2 34664.8 35027.3 35115.6
fc 12032.2 11727.4 14212.4 14004.4 14196.6 13969.8
fv + fc 42557.6 42336.2 48764.6 48669.1 49223.9 49085.4

Bouzada, C. F., 2003. Costs of the Public Transport System by Bus (in por-
tuguese). FUMEC, Brazil.

Darby-Dowman, K., Jachnik, J. K., Lewis, R. L., Mitra, G., 1988. Integrated
decision support systems for urban transport scheduling: Discussion of im-
plementation and experience. In: Daduna, J. R., Wren, A. (Eds.), Computer-
Aided Transit Scheduling: Proceedings of the Fourth International Workshop.
Springer Verlag, Berlin, pp. 226–239.

Freling, R., Huisman, D., Wagelmans, A., 2003. Models and algorithms for
integration of vehicle and crew scheduling. Journal of Scheduling 6 (1), 63–
85.

Freling, R., Wagelmans, A. P. M., ao, J. M. P. P., 1999. An overview of models
and techniques for integrating vehicle and crew scheduling. In: Wilson, N.
H. M. (Ed.), Computer-Aided Transit Scheduling. Springer Verlag, Berlin,
pp. 441–460.

Freling, R. C., Boender, G. E., ao, J. M. P. P., 1995. An integrated approach
to vehicle and crew scheduling. Tech. Rep. 9503/A, Econometric Institute,
Erasmus University Rotterdam, Rotterdam.

Garey, M. R., Johnson, D. S., 1979. A Guide to the Theory of NP-Completeness.
W. H. Freeman and Company, New York.

Gendreau, M., Hertz, A., Laporte, G., 1994. A tabu search heuristic for the
vehicle routing problem. Management science 40 (10), 1276–1290, linthicum.

Glover, F., Kockenberger, G., 2003. Handbook of Metaheuristics. Kluwer Aca-
demic Publishers.

Haase, K., Friberg, C., 1999. An exact branch and cut algorithm for the vehicle
and crew scheduling problem. In: Wilson, N. H. M. (Ed.), Computer-Aided
Transit Scheduling. Springer Verlag, Berlin, pp. 63–80.

Hansen, P., Mladenovic, N., 2001. Variable neighborhood search: Principles and
applications. European Journal of Operational Research 130, 449–467.

18



Hansen, P., Mladenovic, N., Pérez, J. A. M., 2008. Variable neighborhood
search. European Journal of Operational Research (191), 593–595.

Lourenço, H. R., Martin, O. C., Stützle, T., 2003. Iterated local search. In:
Glover, F., Kochenberger, G. (Eds.), Handbook of Metaheuristics. Kluwer
Academic Publishers, Boston.

Marinho, E. H., Ochi, L. S., Drummond, L. M. A., Souza, M. J. F., Silva,
G. P., 2004. Tabu search applied to the bus driver scheduling problem (in
portuguese). In: Proceedings of the XXXVI SBPO. São João Del Rey, Brazil,
pp. 1471–1482.

Reis, J. V. A., 2008. Heuristics based on variable neighborhood search for the
bus vehicle crew scheduling problem (in portuguese). Master’s thesis, Escola
Politécnica da USP, São Paulo, Brazil.

Schaerf, A., 1996. Tabu search techniques for large high-school timetabling prob-
lems. In: IEEE Transactions on Systems, Man, and Cybernetics. pp. 363–368.

Scott, D., 1985. A large linear programming approach to the public transport
scheduling and cost model. In: Rousseau, J. M. (Ed.), Computer Scheduling
of Public Transport 2. North Holland, Amsterdan, pp. 473–491.

Souza, M. J. F., Silva, G. P., oes, E. M. L. S., 2007. Vehicle scheduling: an
heuristic approach (in portuguese). In: Transporte em transformação XI: tra-
balhos vencedores do prêmio CNT de Produção Acadêmica 2006. Positiva,
Brasília, Ch. 2, pp. 39–57.

Stützle, T., 2006. Iterated local search for the quadratic assignment problem.
European Journal of Operational Research 174, 1519–1539.

19


