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The Class/Teacher Timetabling Problem (CTTP) deals with the weekly scheduling of encounters

between teachers and classes of an educational institution. Since CTTP is a NP-hard problem for

nearly all of its variants, the use of heuristic methods for its resolution is justified. This paper

presents an efficient Tabu Search (TS) heuristic with two different memory based diversification

strategies for CTTP. Results obtained through an application of the method to a set of real world

problems show that it produces better solutions than a previously proposed TS found in the liter-

ature and faster times are observed in the production of good quality solutions.

Categories and Subject Descriptors: I.2.8 [Artificial Intelligence]: Problem Solving, Control

Methods, and Search—Heuristic methods

General Terms: Algorithms, Experimentation
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1. INTRODUCTION

The Class/Teacher Timetabling Problem (CTTP) embraces the scheduling of
sequential encounters between teachers and students so as to ensure that re-
quirements and constraints are satisfied. Typically, the manual solution of this
problem extends for various days or weeks and normally produces unsatisfac-
tory results because of the fact that lesson periods could be scheduled which
are inconsistent with pedagogical needs or could even serve as impediments
for certain teachers or students. CTTP, in its optimization version, is a NP-
hard problem [Even et al. 1976] for nearly all of its variants, justifying the
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usage of heuristic methods for its resolution. Therefore, various heuristic and
metaheuristic approaches have been applied with success in the solution of
this problem, such as Tabu Search (TS) [Souza et al. 2003; Costa 1994; Schaerf
1999], Genetic Algorithms [Wilke et al. 2002] and Simulated Annealing (SA)
[Abramson 1991].

The application of TS to the CTTP is specially interesting, since this method
is, as local search methods generally are, very well suited for the interactive
building of timetables. Furthermore, TS-based algorithms offer robust solution
methods for timetabling problems [Dowsland 1997], often presenting the best
known solutions, when compared to other metaheuristics [Colorni et al. 1998;
Souza 2000]. The diversification strategy is an important aspect in the design
of a TS algorithm. Since the use of a tabu list is not enough to prevent the
search process from becoming trapped in certain regions of the search space,
other mechanisms have been proposed. In particular, for the CTTP, two main
approaches have been used: adaptive relaxation [Schaerf 1999; Costa 1994] and
random restart [Souza et al. 2003]. In adaptive relaxation the costs involved in
the objective function are dynamically changed to guide the search process to
newly, unvisited, regions of the search space. In random restart, a new solution
is generated and no previous information is used.

This work employs a TS algorithm that uses informed diversification strate-
gies, which take into account the history of the search process to guide the se-
lection of diversification movements. Successful implementations of these ideas
can be found in Gendreau et al. [1994] and Sun [2006]. Although it uses only
standard TS components, it provides better results than more complex previous
proposals [Souza et al. 2003].

The article is organized as follows: Section 2 presents related works;
Section 3 introduces the problem to be treated; Section 4 presents the pro-
posed algorithm; Section 5 describes the computational experiments and their
results; and, finally, Section 6 formulates conclusions and future research
proposals.

2. RELATED WORKS

Although the CTTP is a classical combinatorial optimization problem, no widely
accepted model is used in the literature. The reason is that the characteristics
of the problem are highly dependent on the educational system of the coun-
try and the type of institution involved. As such, although the basic search
problem is the same, variations are introduced in different works (mainly in
the evaluation of timetables) [Colorni et al. 1998; Costa 1994; Schaerf 1999;
Souza et al. 2003]. Described afterward, the problem considered in this paper
derives from Souza et al. [2003] and considers the timetabling problem en-
countered in typical Brazilian high schools. In Souza et al. [2003], a GRASP-
Tabu Search (GTS-II) metaheuristic was developed to tackle this problem.
The GTS-II method incorporates a specialized improvement procedure named
“Intraclasses–Interclasses,” which uses a shortest-path graph algorithm. At
first, the procedure is activated aiming to attain the feasibility of the con-
structed solution, after which it then aims to improve the feasible solution.
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The movements made in the “Intraclasses–Interclasses” also remain with
tabu status for a given number of iterations. Diversification is implemented
through the generation of new solutions in the GRASP constructive phase. In
Souza [2000], three different metaheuristics that incorporate the “Intraclasses–
Interclasses” were proposed: Simulated Annealing, Microcanonical Optimiza-
tion (MO), and Tabu Search. The TS proposal significantly outperformed both
SA and MO.

3. THE PROBLEM CONSIDERED

The problem considered deals with the scheduling of encounters with teachers
and classes over a weekly period. The schedule is made up of d days of the week
with h daily periods, defining the set P , with p = d ×h distinct periods. There is
a set T with t teachers, which teach to a set C of c classes and which are disjoint
sets of students with the same curriculum. The allocation of teachers to classes
is previously fixed and the workload is given in a matrix of requirements Rt×c,
where rij indicates the number of lessons that teacher i shall teach for class
j . Classes are available at any period, and must have their time schedules,
of length p, completely filled out, while each teacher i indicates his/her set of
available periods Ai. Teachers may also request a number of double lessons
per class. These lessons must be allocated in two consecutive periods on the
same day. This way a solution to the CTTP problem must satisfy the following
constraints:

1. No class or teacher can be allocated for two lessons in the same period;

2. Teachers can only be allocated respecting their availabilities;

3. Each teacher must fulfill his/her weekly number of lessons;

4. For pedagogical reasons, no class can have more than two lesson periods
with the same teacher per day.

There are also the following desirable features that a timetable should
present:

1. The time schedule for each teacher should encompass the least possible
number of days;

2. Double lessons requests must be satisfied whenever possible;

3. “Gaps” in the time schedule of teachers should be avoided, that is, periods
of no activity between two lesson periods.

3.1 Solution Representation

A timetable is represented as a matrix Qt×p, in such a way that each row
represents the complete weekly timetable for a given teacher. As such, the value
qik ∈ {0, 1, . . . , c}, indicates the class for which the teacher i is teaching during
period k (qik ∈ {1, . . . , c}), or if the teacher is available for allocation (qik = 0).
The advantage of this representation is that it eliminates the possibility for
the occurrence of conflicts for teachers. The occurrence of conflicts in classes
occurs when in a given period k, more than one teacher is allocated to that
class. Allocations are only allowed in periods with teacher availability. A partial
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Table I. Fragment of Generated Timetable

Teacher \ period 1 2 3 4 5 · · · d × h
1 1 0 0 2 2 · · ·
2 0 X X 0 1 · · ·
3 X X 1 0 3 · · ·
4 0 1 0 1 0 · · ·
5 0 0 2 3 X · · ·

sample of a timetable with five teachers can be found in Table I, with value “X”
indicating unavailabilities of teachers.

3.2 Objective Function

In order to treat CTTP as an optimization problem, it is necessary to define an
objective function that determines the degree of infeasibility and dissatisfaction
of requirements, that is, pretends to generate feasible solutions with a minimal
number of unsatisfied requisites. Thus, a timetable Q is evaluated with the
following objective function, which should be minimized:

f (Q) = ω × f1(Q) + δ × f2(Q) + ρ × f3(Q) (1)

where f1 counts, for each period k, the number of times that more than one
teacher teaches the same class in period k and the number of times that a class
has no activity in k. The f2 portion measures the number of allocations that
disregard the daily limits of lessons (constraint d). As such, a timetable can
only be considered feasible if f1(Q) = f2(Q) = 0. The importance of the costs
involved defines a hierarchy so that: ω > δ � ρ. The f3 component in the objec-
tive function measures the dissatisfaction of personal requests from teachers,
namely, double lessons, nonexistence of “gaps” and timetable compactness, as
follows:

f3(Q) =
t∑

i=1

(αi × gi + βi × vi + γi × li) (2)

where αi, βi, and γi are weights that reflect, respectively, the relative importance
of the number of “gaps” gi , the number of week days vi each teacher is allocated
for teaching, and the non-negative difference li between the minimum required
number of double lessons and the effective number of double lessons in the
current agenda for teacher i.

4. TABU SEARCH FOR THE CLASS/TEACHER TIMETABLING PROBLEM

Tabu Search (TS) is an iterative method for solving optimization problems. It
explicitly makes use of memory structures to guide a hill-descending heuristic
to continue exploration without being confused by the absence of improvement
movements. This technique was independently proposed by Glover [1986] and
Hansen [1986]. For a detailed description of TS, the reader is referred to Glover
and Laguna [1997]. This section presents a brief explanation of TS principles.
They are followed by specifications of the customized TS implementation pro-
posed in this paper.
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Fig. 1. Pseudocode for GenerateTimetable.

Starting from an initial solution x, the method systematically explores a sub-
set V(x) of the neighborhood N (x) and selects the best admissible movement m,
so that the application of m in the current solution x (denoted by x ⊕ m) pro-
duces the new current solution x ′ ∈ V(x). Movements that deteriorate the cost
function are also permitted. Thus, to try to avoid cycling, a mechanism called
short-term memory is employed. The objective of short-term memory is to try to
forbid movements toward already visited solutions, which is usually achieved
by the prohibition of undoing the last performed movements. These movements
are stored in a tabu list and remain forbidden (with tabu status), for a given
number of iterations, called tabu tenure. Since this strategy can be too restric-
tive, so as not to disregard high-quality solutions, movements with tabu status
can be accepted if the new solution produced satisfies an aspiration criterion.
Intensification and diversification procedures can also be used. These proce-
dures, respectively, aim to investigate promising regions of the search space
in depth and to ensure that no region of the search space remains neglected.
Following is a description of the constructive algorithm and the customized TS
implementation proposed in this paper.

4.1 Constructive Algorithm

The constructive algorithm basically consists of a greedy randomized construc-
tive procedure [Resende and Ribeiro 2003]. Although in other works the option
for a randomized construction is to provide diversification, through multiple
re-initializations, in our implementation the only purpose is to have control
of the randomization degree of initial solution. The construction procedure
(Figure 1) is somewhat similar to the human way of building timetables. To
build a solution, step-by-step, the principle of allocating first the most urgent
lessons in the most appropriate periods is used. Receiving problem data A,
R, and P (Section 3), the algorithm computes, at each iteration, the urgency
degree θij of allocating a lesson from teacher i for class j considering available
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Fig. 2. Pseudocode for tabu search algorithm to the class/teacher timetabling problem.

periods Vi from teacher i, available periods W j from class j , and the number

of unscheduled lessons ζij of teacher i for class j , as follows: θij = ζij
|Vi∩W j |+1

. The

algorithm then builds a restricted candidate list (RCL) with ordered pairs (i, j )
with highest urgency degrees, such that RCL = {(i, j ) | θij ≥ θ − (θ − θ ) × α},
where θ = max{θij | i ∈ T, j ∈ C} and θ = min{θij | i ∈ T, j ∈ C}. At each
iteration, one lesson from teacher i and class j , such that (i, j ) ∈ RCL, is
randomly selected for allocation. The α parameter (0 ≤ α ≤ 1) allows tuning the
randomization degree of the algorithm, varying from the pure greedy lesson se-
lection (α = 0) to a completely random (α = 1) selection of teacher and class for
allocation.

The selection of the period in which the selected lesson will be allocated is
done in free periods of teachers, trying to prevent clashes in classes timetables
(this constraint is violated whenever W j ∩ Vi = ∅). To provide another level
of diversity in the initial solution, the selection of period for allocation is also
probabilistic, in a way that periods with low availability of teachers will have
an exponentially bigger probability of being chosen [Bresina 1996].

At each iteration, the number of unscheduled lessons, availabilities of teach-
ers and classes, and urgency degrees are recomputed. The process continues
until no more unscheduled lessons are found (i.e.: ζij = 0, i ∈ T, j ∈ C).
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4.2 Tabu Search Components

The TS procedure (Figure 2) starts from the initial timetable Q provided by
the constructive algorithm and, at each iteration, fully explores the neighbor-
hood N (Q) (in this implementation V(Q) = N (Q)) to select the next move-
ment m. The movement definition used here is the same as in Schaerf [1999],
and involves the swapping of two values in the timetable of a teacher i ∈ T ,
which can be defined as the triplet 〈i, p1, p2〉, such that qip1

= qip2
, p1 < p2 and

p1, p2 ∈ {1, . . . , p}. Clearly, any timetable can be reached through a sequence of
these movements that is, at most, the number of lessons in the requirements
matrix. The time complexity of exploring N (x) is O(t · p2 · EV), where EV is
the cost of evaluating each neighbor solution, which can be efficiently done by
recomputing only costs related to teacher i and conflicts in periods p1 and p2.

Once a movement m is selected, it will be kept in the tabu list during the
next tabuTenure(m) iterations. In order to hinder the occurrence of cycling,
tabuTenure(m) is not a fixed value, but is randomly selected from values close
to a central value (ctenure input parameter). The allowable deviation from this
value is defined by the ϕ input parameter (ϕ ∈ [0, 1]), such that it will determine
the range of possible values for tabu tenure (line 19). Insertions and removals
in tabu list can be made at every iteration (line 20). The aspiration criterion
defined is that the movement will lose its tabu status if its application produces
the best solution found so far (line 11).

Since short-term memory is not enough to prevent the search process from
becoming trapped in certain regions of the search space, some diversification
strategy is necessary. In the proposed method, long-term memory is used to
guide the diversification procedure. The motivation to employ a memory-guided
diversification procedure instead of random restart is twofold: first, information
loss incurred from random restart is avoided and, second, the use of memory
to guide the diversification process, hopefully, diminishes the risk of revisiting
the same region of the search space.

Two types of long-term memory are proposed. The first type involves the
storage of transition measures, counting the frequency of movements involving
each teacher and class. The second type involves the storage of residency mea-
sures counting the number of times in which each lesson has occupied a given
period. Every time a movement is done, long-term memory information is up-
dated (line 17), and every time the best solution is updated, long-term memory
is cleared (line 23).

While the diversification strategy is active, long-term memory information
is used to guide the selection of movements, so that movements in slightly
modified timetables and/or movements which make unusual allocations are
encouraged. This is done through the incorporation of penalties in the evalu-
ation of movements (line 8). In the following paragraphs a description of the
proposed long-term memories and how they are used to compute penalties in
the diversification strategy is presented.

4.2.1 Transition-Based Long-Term Memory. In this type of memory, tran-
sition measures are stored in a matrix Zt×c, counting how many movements
zij were done involving teacher i and class j . Using these values, transition
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ratios are computed. Let z = max{zij | i ∈ T, j ∈ C}, the transition ratio εij for
teacher i and class j is:

εij = zij

z
(3)

Since a movement can involve two lesson periods, or a lesson period and a free
period, the penalty used in the diversification strategy ψia1a2

associated with a
movement in the timetable of teacher i, in periods p1 and p2 with allocations
a1 = qip1

and a2 = qip2
, respectively, considering the cost of the current solution

f (Q) is:

ψia1a2
=

⎧⎨
⎩

εia1
× f (Q) if a1 = 0 and a2 = 0

εia2
× f (Q) if a1 = 0 and a2 = 0

(εia1
+ εia2

)/2 × f (Q) if a1 = 0 and a2 = 0

Initialization of Z requires O(t · c) operations. Updates and look-ups can be
done in O(1).

4.2.2 Residence-Based Long-Term Memory. In this type of memory, resi-
dence measures are stored for each lesson, in a Yt×c×u×p matrix (u = max{rij |
i ∈ T, j ∈ C}), where yijmk expresses how many iterations the mth lesson of
teacher i on class j occupied period k. Although it is a fourth-dimensional ma-
trix, this is a very sparse matrix, in a way that efficient implementations make
its use practical for problems considered in this paper. To compute the residence
ratio ηijmk of the mth lesson of teacher i and class j on period k, the maximum
value of yijmk (i ∈ T, j ∈ C, m ∈ {1, 2, . . . , u}, j ∈ P ) y is considered, as follows:

ηijmk = yijmk

y
(4)

Thus, the penalty μijmk for allocating the mth lesson of teacher i and class j
on period k is:

μijmk = ηijmk × f (Q) (5)

By using hash tables, look-ups for the residence ratio can be done in O(1)
average time. Update has O(t · p) time complexity.

For movements that involve two allocations in a timetable of a given teacher,
the penalty will be the average penalty of the involved lessons.

The diversification strategy is applied whenever signals that regional en-
trenchment may be in action are detected. In this case, the number of non-
improvement iterations is evaluated before starting the diversification strat-
egy (line 7). The number of nonimprovement iterations necessary to start the
diversification process (divActivation) and the number of iterations that the
process will remain active (iterationsDiv) are input parameters. The process
is cyclic and restarts whenever a multiple of divActivation nonimprovement
iterations is reached. Movements performed in this phase can be viewed as in-
fluential movements [Glover and Laguna 1997], since these movements try to
modify the solution structure in a influential (nonrandom) manner. The function
computePenalt y (line 8) can use one of the proposed long-term memory-
based penalties. In the following sections, the tabu search implementation with
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Table II. Characteristics of Problem Instances

Total Double Sparseness

Instance Teachers Classes lessons lessons ratio (sr)

1 8 3 75 21 0.43

2 14 6 150 29 0.50

3 16 8 200 4 0.30

4 23 12 300 66 0.18

5 31 13 325 71 0.58

6 30 14 350 63 0.52

7 33 20 500 84 0.39

transition-based long-term memory will be referred as TST, while the implemen-
tation with residence-based long-term memory will be referred as TSR. Another
implementation, which maintains both types of long-term memory will be re-
ferred as TSTR. In TSTR, penalties computed using transition-based long-term
memory and residence-based long-term memory are summed and used in the
diversification strategy.

For comparison purposes, an implementation without any diversification
strategy (TS), also will be considered in next sections.

5. COMPUTATIONAL EXPERIMENTS AND DISCUSSION

Experiments were done in the set of instances originated from Souza et al.
[2003], and the data referred to Brazilian high schools, with 25 lesson peri-
ods per week for each class, in different shifts. In Table II, some of the char-
acteristics of the instances can be verified, such as dimension and sparse-
ness ratio (sr), which can be computed considering the total number of
lessons (#lessons) and the total number of unavailable periods (#u): sr =
[t × p − (#lessons + #u)]/t × p. Lower sparseness values indicate more restric-
tive problems and, likewise, problems in which it is more difficult to find feasible
timetables.

Three objectives guided the selection of computational experiments to be
included in this work: first, to search for the best parameters and modules com-
position (which diversification strategy gives better results), second, verify how
the proposed tabu search heuristic compares to the previously proposed GTS-II
algorithm, and, third, verify how good are the provided solutions, considering
its practical application.

The algorithms were coded in C++ and the implementation of GTS-II was
the same presented in Souza et al. [2003]. The compiler used was GCC 3.2.3
using flag -O2. Experiments were performed on microcomputers with AMD
Athlon XP 1533 MHz processors, 512 MB of RAM, running the Linux operating
system.

The weights in the objective function were defined as in Souza et al. [2003]:
ω = 100, δ = 30, ρ = 1, αi = 3, βi = 9 and γi = 1, ∀i = 1, . . . , t.

Initially, experiments to verify which is the best parameter configuration
for the proposed algorithms were done (parameters for GTS-II were the same
used in Souza et al. [2003]). Average results of 10 independent executions (dif-
ferent random seeds) in each instance for different central tabu tenure values
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Table III. Average Distance from Best Known

Solution—TS

Central tabu tenure

Instance 15 20 25 30 Average

1 5.13 2.32 0.78 1.28 2.38

2 3.47 2.21 1.15 1.72 2.14

3 7.94 6.68 2.48 0.92 4.50

4 0.97 0.96 0.82 0.24 0.75

5 4.83 6.32 1.96 0.45 3.39

6 3.45 2.14 0.94 0.30 1.71

7 1.75 1.65 0.54 0.82 1.19

Average 3.93 3.18 1.24 0.82 2.29

Table IV. Average Distance from Best Known

Solution—TST

Central tabu tenure

Instance 15 20 25 30 Average

1 0.35 0.30 0.15 0.10 0.22

2 0.00 0.12 0.52 0.38 0.25

3 0.46 1.03 0.27 0.00 0.44

4 0.36 0.27 0.27 0.31 0.30

5 0.22 0.21 0.24 0.37 0.26

6 0.19 0.27 0.45 0.45 0.34

7 0.00 0.19 0.43 0.55 0.29

Average 0.22 0.34 0.33 0.31 0.30

(ctenure) and instances were computed (other parameters remain fixed: α = 0.1,
ϕ = 0.1, divActivation = 500, and iterationsDiv = 10). Executions had fixed
time limits, as proposed in Souza et al. [2003], which are for instances {1, . . . , 7},
respectively: {90, 280, 380, 870, 1930, 1650, 2650} s. In Tables III–VI, the aver-
age distance of the cost of generated solutions from the best known solution is
shown, for strategies with and without the diversification component. As it can
be seen, for TS (without diversification strategy), better results were obtained
with the highest ctenure values. Nevertheless, implementations with the pro-
posed diversification strategies obtained better results, with any ctenure value,
than the simple TS. While, in average, TST performed better than TSR, the best
results were obtained in the implementation which considers both types of long-
term memory, using low ctenure values, since TSTR with ctenure = 15 generated
solutions, on average, only 0.20% distant from best known solution. Henceforth,
results of the proposed algorithms consider experiments with parameters that
produced better average results (i.e., for ctenure : 30 for TS and 15 for TST, TSR,
and TSTR).

A different view of the results of the previously described experiment is pre-
sented in Table VII. Average solution costs generated by proposed algorithms
are compared to average results of GTS-II within the same time limits. Best
results are shown in bold.

Results in Table VII demonstrate that although only minor differences can
be observed among implementations that use different penalty functions in

ACM Journal of Experimental Algorithmics, Vol. 10, Article No. 2.9, 2006.
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Table V. Average Distance from Best Known

Solution—TSR

Central tabu tenure

Instance 15 20 25 30 Average

1 0.59 0.15 0.00 0.20 0.23

2 0.61 0.32 0.20 0.41 0.39

3 0.14 0.60 0.76 1.17 0.66

4 0.24 0.21 0.34 0.37 0.29

5 0.30 0.00 0.35 0.31 0.24

6 0.00 0.39 0.39 0.41 0.30

7 0.45 0.63 0.38 0.72 0.55

Average 0.33 0.33 0.34 0.51 0.38

Table VI. Average Distance from Best Known

Solution—TSTR

Central tabu tenure

Instance 15 20 25 30 Average

1 0.25 0.10 0.15 0.25 0.19

2 0.26 0.44 0.61 0.61 0.48

3 0.73 0.30 0.53 0.53 0.52

4 0.00 0.15 0.19 0.43 0.19

5 0.05 0.09 0.56 0.55 0.31

6 0.08 0.19 0.53 0.59 0.35

7 0.04 0.20 0.36 0.44 0.26

Average 0.20 0.21 0.42 0.49 0.33

the diversification strategy, versions using informed diversification strategies
perform significantly better than GTS-II and TS.

In order to evaluate the quality of the solutions obtained by the pro-
posed method, taking into account its practical application, and to ver-
ify how significant is the improvement of TSTR over the solution received
from the constructive algorithm, Table VIII presents the average costs in-
volved in each objective function component, for the solution provided by
the constructive algorithm and for the improved solution from TSTR. The
three last columns are related to the f3 component of the objective function
(Section 3.2), where %l is the percentage of unsatisfied double lessons con-
sidering the number of double lessons requests and %g represents the per-
centage of “gaps” in the timetable of teachers considering the total number
of lessons; cr measures the compactness ratio of timetable of teachers. To
compute cr, the summation of the actual number of days ad that each
teacher must attend to some lessons in the school and the lower bound for
this value ad are used. The ad value considers the minimum number of
days

mdi =
⌈∑c

j=1 rij

h

⌉

that each teacher i must attend some lectures in the school, such that ad =∑t
i=1 mdi. This way, cr = ad/ad . Values close to one indicate that the timetable

is as compact as it can be. As can be seen in Table VIII, the solution provided
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Table VII. Average Results, Runs with Fixed Time Limit

Instance GTS-II TS TST TSR TSTR

1 204.80 205.30 203.40 203.00 203.20

2 350.10 349.20 343.30 344.40 344.20

3 455.70 440.90 438.90 439.50 440.10

4 686.30 670.50 671.30 670.30 668.90

5 796.30 782.70 780.90 779.20 779.60

6 799.10 781.50 780.70 782.20 779.80

7 1,076.20 1,063.80 1,055.20 1,061.90 1,055.60

Table VIII. Average Costs of Objective Function

Components Obtained by Constructive Algorithm at the

End of the Tabu Search Heuristic

Constructive algorithm

f3(Q∗)

Instance f1(Q∗) f2(Q∗)
∑t

i=1 li(%l )
∑t

i=1 gi(%g ) cr
1 0.0 0.5 15.1(71.5) 17.2(22.9) 1.6

2 0.0 0.0 24.3(83.8) 24.8(16.5) 1.3

3 0.3 2.5 2.0(50.0) 31.2(15.6) 1.4

4 4.3 0.9 35.5(53.8) 21.0(7.0) 1.2

5 0.0 0.2 54.1(76.1) 46.4(14.3) 1.5

6 0.2 0.0 53.7(85.2) 53.4(15.3) 1.4

7 0.5 0.2 69.6(82.9) 74.1(14.8) 1.3

At the end of the TSTR heuristic

1 0.0 0.0 1.9(9.0) 4.1(5.5) 1.2

2 0.0 0.0 7.3(25.2) 1.3(0.9) 1.0

3 0.0 0.0 0.4(10.0) 5.4(2.7) 1.1

4 0.0 0.0 19.4(29.4) 3.8(1.3) 1.0

5 0.0 0.0 13.7(19.3) 3.5(1.1) 1.1

6 0.0 0.0 15.4(24.4) 8.8(2.5) 1.0

7 0.0 0.0 23.0(27.4) 10.6(2.1) 1.0

by the constructive algorithm usually contains some type of infeasibility.
These problems were always solved by the TSTR algorithm, in a way that no
infeasible timetable was produced. Regarding the preferences of teachers, the
timetable compactness, which has the highest weight in the f3 component of
the objective function, it can be seen that, in most cases, the optimal value was
reached (cr = 1). Small percentage values were also obtained for “gaps” and
unsatisfied double lessons.

In another set of experiments, the objective was to verify the empirical prob-
ability distribution of reaching a given suboptimal target value (i.e., find a solu-
tion with cost at least as good as the target value) in function of time in different
instances. The suboptimal values were chosen in a way that the slowest algo-
rithm could terminate in a reasonable amount of time. In these experiments,
TSTR and GTS-II were evaluated and the execution times of 150 independent
runs for each instance were computed. The experiment design follows the pro-
posal of Aiex et al. [2002]. The results of each algorithm were plotted associat-
ing with the ith smallest running time ti a probability pi = (i − 1

2
)/150, which

generates points zi = (ti, pi), for i = 1, . . . , 150. The results shown that TSTR
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Tabu Search Heuristic for the Class/Teacher Timetabling Problem • 13

Fig. 3. Empirical probability distribution of finding target value in function of time for instances

3 and 4.

achieves high-probability values (≥50%) of reaching the target values in signif-
icantly smaller times than GTS-II, for all instances. Representative results are
presented in Figures 3 and 4.

This difference is enhanced mainly in instance 4, which presents a very low
sparseness ratio. This result may be related to the fact that the “Intraclasses–
Interclasses” procedure of GTS-II works with movements that use free periods,
which are hard to find in this instance. Another analysis, taking into account
all test instances, shows that at the time when 95% of TSTR runs have achieved
the target value, on average, only 64% of GTS-II runs have achieved the target
value. Considering the time when 50% of TSTR runs have achieved the target
value, only 11%, on average, of GTS-II runs have achieved the target value.
Table IX presents the execution times needed by GTS-II and TSTR to achieve
different probabilities of reaching the target values.
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Fig. 4. Empirical probability distribution of finding target value in function of time for instances

5 and 7.

Table IX. Time (s) for 25%, 50%, and 75% of Runs Achieve the

Target Solution Values

GTS-II TSTR

Instance 25% 50% 75% 25% 50% 75%

1 7.64 9.57 12.15 2.13 3.36 6.39

2 21.39 26.57 34.68 9.03 13.48 19.71

3 28.57 46.84 85.41 16.29 27.66 46.47

4 49.22 92.57 146.50 2.65 3.40 5.45

5 47.79 62.85 102.20 27.63 37.85 54.51

6 35.81 48.00 72.12 25.20 33.97 44.38

7 92.41 150.72 287.48 89.57 118.82 155.72
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6. CONCLUDING REMARKS

This paper presented a new tabu search heuristic to solve the class/teacher
timetabling problem. Experiments on real-world instances showed that the
proposed method significantly outperforms a previously developed hybrid tabu
search algorithm and it has the advantage of a simpler design.

Contributions of this paper include the empirical verification that although
informed diversification strategies are not commonly employed in tabu search
implementations for the class/teacher timetabling problem, their incorporation
can significantly improve the robustness of the method. The proposed method
not only produced better solutions for all test instances, but also performed
faster than a hybrid tabu search approach.

Although in the proposed algorithm long-term memory was used to guide
diversification procedures, intensification strategies, which use this type of
information, can be formulated, and their application is worthy of receiving
further investigation.

Other interesting enhancement to the algorithm could be the combination
of the “Intraclasses–Interclasses” procedure with an informed diversification
strategy, which could lead to even better results.
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