ÐÏࡱá>þÿ þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRoot Entryÿÿÿÿÿÿÿÿ*0_šîÏ»òÀð^à±ç¢|à Contentsÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿþÿÿÿÿÿÿÿ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRoot Entryÿÿÿÿÿÿÿÿ*0_šîÏ»òÀð^ ˆ5†Æ Contentsÿÿÿÿÿÿÿÿÿÿÿÿîÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿýÿÿÿþÿÿÿþÿÿÿÿÿÿÿÿÿÿÿ ÿÿÿÿ ÿÿÿÿ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ  !"#þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ\fs20\cf2 data\plain\f2\fs20\cf0 : \par \plain\f2\fs20\cf2 @ole\plain\f2\fs20\cf0 ('fluxomax.xls','solu\'e7\'e3o')=x; \par \plain\f2\fs20\cf2 enddata\plain\f2\fs20\cf0 \par \par \plain\f2\fs20\cf2 end\plain\f2\fs20\cf0 \par }   !"#þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ \plain\f3\fs20\cf1 data\plain\f3\fs20\cf0 : \par \plain\f3\fs20\cf1 @ole\plain\f3\fs20\cf0 ('fluxomax.xls','solu\'e7\'e3o')=x; \par \plain\f3\fs20\cf1 enddata\plain\f3\fs20\cf0 \par \par \plain\f3\fs20\cf1 end\plain\f3\fs20\cf0 \par } ì‹{\rtf1\ansi\deff0\deftab720{\fonttbl{\f0\fswiss MS Sans Serif;}{\f1\froman\fcharset2 Symbol;}{\f2\fmodern\fprq2 Courier New;}{\f3\fswiss\fprq2 System;}} {\colortbl\red0\green0\blue0;\red0\green175\blue0;\red0\green0\blue255;} \deflang1046\pard\plain\f2\fs20\cf2 sets\plain\f2\fs20\cf0 : \par vertices /\plain\f2\fs20\cf2 @ole\plain\f2\fs20\cf0 ('fluxomax.xls','v\'e9rtices')/:; \par matriz(vertices,vertices):x,u; \par \plain\f2\fs20\cf2 endsets\plain\f2\fs20\cf0 \par \par \plain\f2\fs20\cf1 ! ì‹{\rtf1\ansi\deff0\deftab720{\fonttbl{\f0\fswiss MS Sans Serif;}{\f1\froman\fcharset2 Symbol;}{\f2\fswiss\fprq2 System;}{\f3\fmodern\fprq2 Courier New;}} {\colortbl\red0\green0\blue0;\red0\green0\blue255;\red0\green175\blue0;} \deflang1046\pard\plain\f3\fs20\cf1 sets\plain\f3\fs20\cf0 : \par vertices /\plain\f3\fs20\cf1 @ole\plain\f3\fs20\cf0 ('fluxomax.xls','v\'e9rtices')/:; \par matriz(vertices,vertices):x,u; \par \plain\f3\fs20\cf1 endsets\plain\f3\fs20\cf0 \par \par \plain\f3\fs20\cf2 ! Importa\'e7\'e3o de dados de arquivo Excel;\plain\f2\fs20\cf0 \par \plain\f2\fs20\cf2 data\plain\f2\fs20\cf0 : \par u = \plain\f2\fs20\cf2 @ole\plain\f2\fs20\cf0 ('fluxomax.xls','capacidade'); \par \plain\f2\fs20\cf2 enddata\plain\f2\fs20\cf0 \par \par \plain\f2\fs20\cf1 !Determina\'e7\'e3o do n\'famero de v\'e9rtices;\plain\f2\fs20\cf0 \par n = \plain\f2\fs20\cf2 @size\plain\f2\fs20\cf0 (vertices); \par \par \plain\f2\fs20\cf1 !Maximizar o fluxo que chega ao \'faltimo v\'e9rtice;\plain\f2\Importa\'e7\'e3o de dados de arquivo Excel;\plain\f3\fs20\cf0 \par \plain\f3\fs20\cf1 data\plain\f3\fs20\cf0 : \par u = \plain\f3\fs20\cf1 @ole\plain\f3\fs20\cf0 ('fluxomax.xls','capacidade'); \par \plain\f3\fs20\cf1 enddata\plain\f3\fs20\cf0 \par \par \plain\f3\fs20\cf2 !Determina\'e7\'e3o do n\'famero de v\'e9rtices;\plain\f3\fs20\cf0 \par n = \plain\f3\fs20\cf1 @size\plain\f3\fs20\cf0 (vertices); \par \par \plain\f3\fs20\cf2 !Maximizar o fluxo que chega ao \'faltimo v\'e9rtice;\plain\f3\fs20\cf0 \par [fo] \plain\f2\fs20\cf2 max\plain\f2\fs20\cf0 = \plain\f2\fs20\cf2 @sum\plain\f2\fs20\cf0 (vertices(i) | i #ne# n: x(i,n)); \par \par \plain\f2\fs20\cf1 ! Restri\'e7\'f5es de equil\'edbrio;\plain\f2\fs20\cf0 \par \plain\f2\fs20\cf2 @sum\plain\f2\fs20\cf0 (vertices(j) | j #gt# 1: x(1,j)) - \plain\f2\fs20\cf2 @sum\plain\f2\fs20\cf0 (vertices(i) | i #lt# n: x(i,n)) = 0; \par \par \plain\f2\fs20\cf2 @for\plain\f2\fs20\cf0 (vertices(j) | j #ne# 1 #and# j #ne# n: \par \plain\f2\fs20\cf2 @sum\plain\f2\fs20\cf0 (vertices(i) | i #ne# j: x(i,j)) - \plain\f2\fs20\cf2 @sum\plain\f2\fs20\cf0 (vertices(i) | i #ne# j: x(j,i)) = 0 \par ); \par \par \plain\f2\fs20\cf1 ! Restri\'e7\'f5es de capacidade nos arcos;\plain\f2\fs20\cf0 \par \plain\f2\fs20\cf2 @for\plain\f2\fs20\cf0 (matriz(i,j): \plain\f2\fs20\cf2 @bnd\plain\f2\fs20\cf0 (0,x(i,j),u(i,j))); \par \par \plain\f2\fs20\cf1 ! Exporta\'e7\'e3o da solu\'e7\'e3o para arquivo Excel;\plain\f2\fs20\cf0 \par \plain\f2