ÐÏࡱá>þÿ þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRoot Entryÿÿÿÿÿÿÿÿ*0_šîÏ»òÀð^`Q?:§mà ContentsÿÿÿÿÿÿÿÿÿÿÿÿÞÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿ þÿÿÿÿÿÿÿ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRoot Entryÿÿÿÿÿÿÿÿ*0_šîÏ»òÀð^0^@UG4ÀContentsÿÿÿÿÿÿÿÿÿÿÿÿmÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿýÿÿÿþÿÿÿ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿì‹{\rtf1\ansi\deff0\deflang1046{\fonttbl{\f0\fmodern\fcharset0 Courier New;}} {\colortbl ;\red0\green0\blue255;\red0\green0\blue0;\red0\green175\blue0;} \viewkind4\uc1\pard\cf1\f0\fs20 MODEL\cf2 : \par \cf1 TITLE\cf2 PCV; \par \cf1 SETS\cf2 : \par \tab CIDADES/\cf1 @OLE\cf2 ('dadosPCV.xls','CIDADES')/:; \par \tab MATRIZ(CIDADES,CIDADES):X,Y,D; \par \cf1 ENDSETS\cf2 \par \cf1 DATA\cf2 : \par \tab D=\cf1 @OLE\cf2 ('dadosPCV.xls','DISTANCIAS'); \par \cf1 ENDDATA\cf2 \par \cf1 MIN\cf2 = FO; \par FO = \cf1 @SUM\cf2 (MATRIZ(I,J)|J#NE#I:D(I,J)*X(I,J)); \par \cf1 @FOR\cf2 (CIDADES(J): \par \tab\cf1 @SUM\cf2 (CIDADES(I)|I#NE#J: \par \tab\tab X(I,J) \par \tab )=1 \par ); \par \cf1 @FOR\cf2 (CIDADES(J): \par \tab\cf1 @SUM\cf2 (CIDADES(I)|I#NE#J: \par \tab\tab X(J,I) \par \tab )=1 \par ); \par \cf1 @FOR\cf2 (CIDADES(J)|J#NE#1: \cf3 !@FOR(CIDADES(J)|J#NE#@INDEX(MONTREAL):;\cf2 \par \tab\cf1 @SUM\cf2 (CIDADES(I)|I#NE#J:Y(I,J)) \par \tab - \cf1 @SUM\cf2 (CIDADES(I)|I#NE#J:  !"#þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿSUM\plain\f4\fs20\cf0 (CIDADES(I)|I#NE#J:Y(I,J)) \par \tab - \plain\f4\fs20\cf2 @SUM\plain\f4\fs20\cf0 (CIDADES(I)|I#NE#J:Y(J,I))=1 \par ); \par \par N=\plain\f4\fs20\cf2 @SIZE\plain\f4\fs20\cf0 (CIDADES); \par \plain\f4\fs20\cf2 @FOR\plain\f4\fs20\cf0 (MATRIZ(I,J): \par \tab Y(I,J)<=(N-1)*X(I,J) \par ); \par \par \plain\f4\fs20\cf2 @FOR\plain\f4\fs20\cf0 (MATRIZ(I,J):\plain\f4\fs20\cf2 @BIN\plain\f4\fs20\cf0 (X(I,J))); \par \plain\f4\fs20\cf2 @FOR\plain\f4\fs20\cf0 (MATRIZ(I,J):X(I,I)=0); \par \par \plain\f4\fs20\cf2 DATA\plain\f4\fs20\cf0 : \par \tab \plain\f4\fs20\cf2 @OLE\plain\f4\fs20\cf0 ('dadosPCV.xls','SOLUCAO','FO')=X,FO; \par \plain\f4\fs20\cf2 ENDDATA\plain\f4\fs20\cf0 \par \par } \par \tab \plain\f4\fs20\cf2 @SUM\plain\f4\fs20\cf0 (CIDADES(I)|I#NE#J: \par \tab \tab X(I,J) \par \tab )=1 \par ); \par \par \plain\f4\fs20\cf2 @FOR\plain\f4\fs20\cf0 (CIDADES(J): \par \tab \plain\f4\fs20\cf2 @SUM\plain\f4\fs20\cf0 (CIDADES(I)|I#NE#J: \par \tab \tab X(J,I) \par \tab )=1 \par ); \par \par \plain\f4\fs20\cf2 @FOR\plain\f4\fs20\cf0 (CIDADES(J)|J#NE#1: \plain\f4\fs20\cf1 !@FOR(CIDADES(J)|J#NE#@INDEX(MONTREAL):;\plain\f4\fs20\cf0 \par \tab \plain\f4\fs20\cf2 @Y(J,I))=1 \par ); \par N=\cf1 @SIZE\cf2 (CIDADES); \par \cf1 @FOR\cf2 (MATRIZ(I,J): \par \tab Y(I,J)<=(N-1)*X(I,J) \par ); \par \cf1 @FOR\cf2 (MATRIZ(I,J):\cf1 @BIN\cf2 (X(I,J))); \par \cf1 @FOR\cf2 (MATRIZ(I,J):X(I,I)=0); \par \cf1 DATA\cf2 : \par \tab\cf1 @OLE\cf2 ('dadosPCV.xls','SOLUCAO','FO')=X,FO; \par \cf1 ENDDATA\cf2 \par \par } \f2\fs20\cf2 !@FOR(CIDADES(J)|J#NE#@INDEX(MONTREAL):;\plain\f2\fs20\cf0 \par \tab \plain\f2\fs20\cf1 @SUM\plain\f2\fs20\cf0 (CIDADES(I)|I#NE#J:Y(ì‹{\rtf1\ansi\deff0\deftab720{\fonttbl{\f0\fswiss MS Sans Serif;}{\f1\froman\fcharset2 Symbol;}{\f2\fmodern Courier New;}{\f3\fswiss\fprq2 System;}{\f4\fmodern\fprq2 Courier New;}} {\colortbl\red0\green0\blue0;\red0\green175\blue0;\red0\green0\blue255;} \deflang1046\pard\plain\f4\fs20\cf2 MODEL\plain\f4\fs20\cf0 : \par \plain\f4\fs20\cf2 TITLE\plain\f4\fs20\cf0 PCV; \par \plain\f4\fs20\cf2 SETS\plain\f4\fs20\cf0 : \par \tab CIDADES/\plain\f4\fs20\cf2 @OLE\plain\f4\fs20\cf0 ('dadosPCV.xls','CIDADES')/:; \par \tab MATRIZ(CIDADES,CIDADES):X,Y,D; \par \plain\f4\fs20\cf2 ENDSETS\plain\f4\fs20\cf0 \par \par \plain\f4\fs20\cf2 DATA\plain\f4\fs20\cf0 : \par \tab D=\plain\f4\fs20\cf2 @OLE\plain\f4\fs20\cf0 ('dadosPCV.xls','DISTANCIAS'); \par \plain\f4\fs20\cf2 ENDDATA\plain\f4\fs20\cf0 \par \par \plain\f4\fs20\cf2 MIN\plain\f4\fs20\cf0 = FO; \par FO = \plain\f4\fs20\cf2 @SUM\plain\f4\fs20\cf0 (MATRIZ(I,J)|J#NE#I:D(I,J)*X(I,J)); \par \par \plain\f4\fs20\cf2 @FOR\plain\f4\fs20\cf0 (CIDADES(J):