SOFTWARES DE OTIMIZAÇÃO: MANUAL DE REFERÊNCIA

Aloísio de Castro Gomes Júnior

Marcone Jamilson Freitas Souza

Projeto patrocinado pelo programa PRÓ-ATIVA da UFOP

DEPARTAMENTO DE COMPUTAÇÃO

UNIVERSIDADE FEDERAL DE OURO PRETO

Janeiro de 2004

Conteúdo

1	LIN	DO	1
	1.1	Introdução	1
		1.1.1 O que é o LINDO?	1
		1.1.2 Sintaxe de um Modelo LINDO	1
	1.2	Exemplos de Modelos LINDO	1
		1.2.1 Todas as variáveis são não negativas	1
		1.2.2 Existem variáveis inteiras	2
		1.2.3 Existem variáveis limitadas superiormente e inferiormente	3
		1.2.4 Existem variáveis binárias	5
		1.2.5 Existem variáveis livres	7
	1.3	Utilizando Quadros (TABLEAU) com o LINDO	7
	1.4	Análise de Sensibilidade	11
2	SOI	VER (EXCEL)	16
	2.1	O que é o SOLVER?	16
	<u></u>		
	2.2	Exemplos de como Modelar usando o SOLVER do Excel	16
	2.2	Exemplos de como Modelar usando o SOLVER do Excel	$\frac{16}{16}$
	2.2	Exemplos de como Modelar usando o SOLVER do Excel	16 16 21
	2.2	Exemplos de como Modelar usando o SOLVER do Excel	16 16 21 23
	2.2	Exemplos de como Modelar usando o SOLVER do Excel	 16 21 23 25
	2.2	Exemplos de como Modelar usando o SOLVER do Excel	 16 21 23 25 30
3	VIS	Exemplos de como Modelar usando o SOLVER do Excel	 16 21 23 25 30 34
3	VIS 3.1	Exemplos de como Modelar usando o SOLVER do Excel	 16 21 23 25 30 34 34
3	VIS 3.1 3.2	Exemplos de como Modelar usando o SOLVER do Excel	 16 21 23 25 30 34 34 34

		3.2.2	O Problema do Sítio	37
		3.2.3	STAFF SCHEDULING (Escala de Funcionários)	41
		3.2.4	O Problema de Escalonamento de Motoristas	42
		3.2.5	O Problema da Mochila	44
		3.2.6	Problema da Liga de Ferro	47
4	LIN	ſGO		50
	4.1	O que	é o LINGO?	50
	4.2	$\mathbf{Exem}_{\mathbf{I}}$	plos de como Modelar usando o LINGO	50
		4.2.1	Problema da Otimização de Padrões de Produção	50
		4.2.2	Problema da Agência de Propaganda	54
		4.2.3	Problema da Carteira de Investimento	56
		4.2.4	Problema da Mochila	61
		4.2.5	Problema da Fábrica de Brinquedos	62
B	ibliog	grafia		66

Lista de Figuras

1.1	Modelo LINDO para o problema da dieta 2	1
1.2	Solução para o problema da Dieta	F
1.3	Modelo LINDO para o problema da fábrica de móveis	F
1.4	Forma alternativa do Modelo LINDO para o problema da fábrica de móveis 4	ŀ
1.5	Modelo LINDO para o problema da confeitaria)
1.6	Modelo LINDO para o problema da defesa antiaérea	j
1.7	Modelo LINDO para o PPL usando variável livre	,
1.8	Modelo LINDO para o exemplo 1)
1.9	1^o quadro para o exemplo 1)
1.10	Janela de Pivoteamento)
1.11	2^{o} quadro para o exemplo 1)
1.12	3^{o} quadro para o exemplo 1)
1.13	Modelo LINDO para o exemplo 2)
1.14	1^{o} quadro para o exemplo 2)
1.15	2^{o} quadro para o exemplo 2)
1.16	3^{o} quadro para o exemplo 2)
1.17	Modelo LINDO para o exemplo 3	
1.18	1^{o} quadro para o exemplo 3	
1.19	2^o quadro para o exemplo 3	
1.20	3^{o} quadro para o exemplo $3 \ldots 13$;
1.21	Modelo LINDO para o PPL dos Nutrientes	;
1.22	REPORTS WINDOW para o PPL dos Nutrientes	;
2.1	Modelagem do Exemplo da seção 2.2.1 no Excel	7
2.2	Janela da ferramenta SOLVER)
2.3	Escolha da Célula de Destino)

2.4	Janela do Solver após a designação das células variáveis	20
2.5	Formato da entrada da 1^a e 2^a restrições	20
2.6	Janela de entrada dos parâmetros do SOLVER para o Exemplo da seção 2.2.1	22
2.7	Janela de Opções do SOLVER	22
2.8	Opções de Resultado da ferramenta SOLVER	22
2.9	Resultados inseridos na planilha	24
2.10	Modelagem do Exemplo da seção 2.2.2 no Excel	24
2.11	Janela de entrada dos parâmetros do SOLVER	24
2.12	Resultados inseridos na planilha para o exemplo da seção 2.2.2 \ldots	26
2.13	Modelagem do Exemplo da seção 2.2.3 no Excel	26
2.14	Janela de entrada dos parâmetros do SOLVER	26
2.15	Resultados inseridos na planilha para o exemplo da seção 2.2.3 \ldots	28
2.16	Modelagem do Exemplo da seção 2.2.4 no Excel	28
2.17	Janela de entrada dos parâmetros do SOLVER	29
2.18	Resultados inseridos na planilha para o exemplo da seção 2.2.4	29
2.19	Modelagem do Exemplo da seção 2.2.5 no Excel	31
2.20	Janela de entrada dos parâmetros do SOLVER	32
2.21	Resultados inseridos na planilha para o exemplo da seção 2.2.5	33
91	Tele Inicial de Vieuel VDPECC	94
ວ.1 2 ຄ	Madele VDDESS pare e suemple de casão 2.2.1	94 90
ა.∠ აა	Include de definição do tipo do problema	30 90
ວ.ວ ວ_∢		00 00
3.4		38
3.5	Janela mostrando a melhor solução do problema	40
3.6	Janela com os valores para a variavel de decisão x_i	40
3.7	Modelo XPRESS para o exemplo da seção 3.2.2	40
3.8	Arquivo contendo a matriz de restrições	41
3.9	Modelo XPRESS para o exemplo da seção 3.2.3	43
3.10	Arquivos contendo o vetor de restrições(b) e o vetor de custos(c) e os parâmteros .	43
3.11	Modelo XPRESS para o exemplo da seção 3.2.4	45
3.12	Arquivo contendo a matriz esparsa usada no exemplo da seção 3.2.4	45
3.13	Modelo XPRESS para o exemplo da seção 3.2.5	46
3.14	Modelo XPRESS para o exemplo da seção 3.2.6	49

Padrões de Corte para o exemplo da seção 4.2.1	52
Tela Inicial do LINGO	52
Modelo LINGO para o exemplo da seção 4.2.1	52
Janela de Resultados do LINGO	53
Relatório de Solução do LINGO para o Exemplo da seção 4.2.1	57
Modelo LINGO para o exemplo da seção 4.2.2	57
Modelo LINGO para o exemplo da seção 4.2.3	59
Janela de Opções de Configuração do LINGO	60
Análise de Sensibilidade para o exemplo da seção 4.2.3	60
Modelo LINGO para o exemplo da seção 4.2.4	64
Modelo LINGO para o exemplo da seção 4.2.5	64
Planilha do Excel usada no Exemplo seção 4.2.5	65
	Padrões de Corte para o exemplo da seção 4.2.1

Capítulo 1 LINDO

1.1 Introdução

1.1.1 O que é o LINDO?

LINDO (<u>L</u>inear, <u>IN</u>teractive, and <u>D</u>iscrete <u>O</u>ptimizer) é uma conveniente, mas poderosa ferramenta para resolver Problemas de Programação linear, inteira e quadrática.

1.1.2 Sintaxe de um Modelo LINDO

Um Modelo LINDO deverá conter os seguinte itens:

- Função objetivo (fo) que deverá iniciar com os comandos MAX para maximizar e MIN para Minimizar e à frente deverá ser colocada a função objetivo.
- A declaração SUBJECT TO (sujeito a) que pode ser substituído por st ou s.t. e logo após serão declaradas as restrições do problema.
- Para finalizar deveremos declarar o comando END.

Observação: As variáveis devem ser declaradas com no máximo 8 letras e nas linhas com as restrições deve ser colocado ")"logo após o nome da restrição.

1.2 Exemplos de Modelos LINDO

1.2.1 Todas as variáveis são não negativas

Seja o seguinte problema:

Problema da Dieta

Um nutricionista precisa estabelecer uma dieta contendo, pelo menos, 11mg de vitamina A, 70mg de vitamina C e 250 mg de vitamina D. A tabela abaixo resume a quantidade de cada vitamina em disponibilidade nos alimentos leite, carne, peixe e salada e apresenta, também, a necessidade diária dessas vitaminas e os custos de cada alimento.

Calcular as quantidades dos quatro alimentos que devem ser incluídos na dieta diária, a fim de que os seguintes requisitos nutricionais sejam satisfeitos a custo mínimo.

Tabela de Requisitos Nutricionais e Custo dos Alimentos

Alimento/	Leite	Carne	Peixe	Salada	Requisito Nutricional
Vitamina	(1)	(Kg)	(Kg)	(100g)	Mínimo
A	$2 \mathrm{mg}$	$2 \mathrm{mg}$	10 mg	$20 \mathrm{~mg}$	11 mg
C	$50 \mathrm{mg}$	$20 \mathrm{~mg}$	10 mg	$30 \mathrm{mg}$	70 mg
D	80 mg	$70 \mathrm{mg}$	10 mg	80 mg	$250 \mathrm{~mg}$
Custo (R\$)	1,20	$5,\!00$	7,00	1,00	

Modelando o problema, obtemos o seguinte PPL:

min	$1,20x_1$	+	$5,00x_2$	+	$7,00x_3$	+	$1,00x_4$		
s.a	$2x_1$	+	$2x_2$	+	$10x_{3}$	+	$20x_{4}$	\geq	11
	$50x_{1}$	+	$20x_{2}$	+	$10x_{3}$	+	$30x_{4}$	\geq	70
	$80x_{1}$	+	$70x_{2}$	+	$10x_{3}$	+	$80x_{4}$	\geq	250
	x_1	,	x_2	,	x_3	,	x_4	\geq	0

O modelo LINDO para este PPL é apresentado na figura 1.1.

🚟 <untitled></untitled>	
min $1.20x1 + 5x2 + 7x3 + x4$	^
Subject to	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	>= 11 >= 70 >=250
end	~
<	2

Figura 1.1: Modelo LINDO para o problema da dieta

Depois de digitado o modelo clique no menu SOLVE \Rightarrow COMPILE MODEL(CTRL+E), em seguida clique novamente em SOLVE \Rightarrow SOLVE(CTRL+S). Aparecerá uma tela parecida como na figura 1.2.

1.2.2 Existem variáveis inteiras

Seja o seguinte problema:

Problema da Fábrica de móveis

Uma grande fábrica de móveis dispõe de um estoque de 250m de tábuas, 600m de prancha e 500m de painéis de conglomerado. A fábrica normalmente oferece uma linha de móveis composta por um modelo de escrivaninha, uma mesa de reunião, um armário e uma prateleira. Cada tipo de móvel consome uma certa quantidade de matéria-prima, conforme a tabela abaixo. A escrivaninha é vendida por 100 u.m., a mesa por 80 u.m.,o armário por 120 u.m. e a prateleira por 20 u.m. Pede-se exibir um modelo de programação linear que maximize a receita com a venda dos móveis.

	Materia-prima consumida por cada movel								
	Quantida	de de m	aterial em	metros	Disponibilidade				
	consumido	os por u	nidade de j	produto	do recurso (m)				
	Escrivaninha	Mesa	Armário	Prateleira					
Tábua	1	1	1	4	250				
Prancha	0	1	1	2	600				
Painéis	3	2	4	0	500				
Valor de	100	80	120	20					
Revenda (u.m.)									

Matéria prima concumida por cada méval

Modelando o problema, obtemos o seguinte PPL:

max	$100x_1$	+	$80x_2$	+	$120x_{3}$	+	$20x_{4}$		
s.a	x_1	+	x_2	+	x_3	+	$4x_4$	\leq	250
			x_2	+	x_3	+	$2x_4$	\leq	600
	$3x_1$	+	$2x_2$	+	$4x_3$			\leq	500
	x_1	,	x_2	,	x_3	,	x_4	\geq	0

Para este PPL temos duas formas de modelá-lo no LINDO. Em ambas deve ser acrescentado o comando GIN [nome da variável], indicando que aquela variável é do tipo inteiro, como na figura 1.3. Quando várias variáveis são inteiras o comando GIN pode ser utilizado como mostrado na figura 1.4, ou seja, GIN [número de variáveis inteiras].

1.2.3Existem variáveis limitadas superiormente e inferiormente

Seja o seguinte problema:

Problema da Confeitaria

Uma confeitaria produz dois tipos de bolos de sorvete: chocolate e creme. Cada lote de bolo de chocolate é vendido com um lucro de 3 u.m. e os lotes de creme com o lucro de 1 u.m. Contratos com várias lojas impõem que sejam produzidos no mínimo 10 lotes de bolo de chocolate por dia e que o total de lotes fabricados nunca seja menor do que 20. O mercado só é capaz de consumir até 40 bolos de creme e 60 de chocolate. As máquinas de preparação de sorvete disponibilizam 180 horas de operação, sendo que cada lote de bolos de chocolate consome 2 horas de trabalho e cada lote de bolos de creme 3 horas. Determinar o esquema de produção que maximize os lucros com a venda dos bolos de sorvete.

Modelando o problema, obtemos o seguinte PPL:

🚟 Reports Wi	ndow					×
LP OPTIMUM	FOUND	AT STEP	1	i -		>
OBJ	ECTIVE	FUNCTION	VALUE			Γ
1)	3	125000				
VARIABLE X1 X2 X3 X4		VALUE 0.00000 0.00000 0.00000 3.12500		REDUCED COST 0.200000 4.125000 6.875000 0.000000		
ROW 2) 3) 4)	SLACI	OR SURP 51.50000 23.75000 0.00000	LUS))	DUAL PRICES 0.000000 0.000000 -0.012500		
NO. ITERAT	IONS=	1				
5					2	

Figura 1.2: Solução para o problema da Dieta

1	untitled>		Sec.			le e e e e			- IX
nax	100x1	+	80x2	•	- 120	Jx 3	+ 20x4	1	-
ST *1 3*1	+ x2 x2 + 2x2	+++	x3 x3 4x3	++	4×4 2×4	<= <= <=	250 600 500		
END									
GIN GIN GIN GIN	x1 x2 x3 x4								
K									ار //

Figura 1.3: Modelo LINDO para o problema da fábrica de móveis

22 <	uni	itled>			
nax	1(00x1	+	80x2 + 120x3 + 20x4	-
ST x1 3x1	++	*2 *2 2*2	+++	x3 + 4x4 <= 250 x3 + 2x4 <= 600 4x3 <= 500	
GIN	4				

Figura 1.4: Forma alternativa do Modelo LINDO para o problema da fábrica de móveis

max	x_1	+	$3x_2$		
s.a	$3x_1$	+	$2x_2$	\leq	180
	x_1	+	x_2	\geq	20
	x_1			\leq	40
			x_2	\leq	60
			x_2	\geq	10
	x_1	,	x_2	\geq	0

Neste modelo podemos observar a presença de variáveis limitadas superiormente e inferiormente. Neste caso, para evitar a ampliação da dimensão da base, devemos colocar após o comando END, os comandos SUB [nome da variável] [valor limite] para limitar a variável superiormente e SLB [nome da variável] [valor limite] para limitar a variável inferiormente. A figura 1.5 ilustra a utilização de variáveis canalizadas.

Figura 1.5: Modelo LINDO para o problema da confeitaria

1.2.4 Existem variáveis binárias

Seja o seguinte problema:

Problema do Sistema de Defesa Antiaérea

Um determinado conjunto de armas antiaéreas está distruibuído de forma a defender uma cidade de um ataque. São n plataformas de mísseis. Sabe-se que d_{ij} é a distância entre a plataforma da arma i e a ameaça j (avião inimigo ou míssil), que o alcance máximo dos mísseis é de r_i , que o custo de cada tiro sobre uma ameaça j é de c_{ij} e o valor de neutralização da ameaça é v_j . Em cada ataque, o sistema de defesa deve selecionar, dentre m ameças, apenas k possíveis alvos.

Elaborar o modelo matemático de alocação arma x alvo que minimiza o custo de defesa.

Para este problema tomaremos a seguinte variável de decisão:

 $x_{ij} = \begin{cases} 1 & \text{Caso a arma } i \text{ seja designada à ameaça } j, \\ 0 & \text{Caso contrário.} \end{cases}, i = 1, ..., n \in j = 1, ..., m$ Consider aremos ainda os seguintes dados:

Plataforma	Ameaça	Distância da	Alcance	Custo	Valor da
i	j	ameaça j (d_{ij})	(r_i)	(c_{ij})	neutralização (v_j)
P1	Avião1	200	150	5	30
	Avião2	100		4	30
	Míssil1	150		2	35
	Míssil2	200		1	35
P2	Avião1	150	200	5	30
	Avião2	100		5	30
	Míssil1	20		3	35
	Míssil2	80		2	35

Dados sobre as Plataformas antiaéreas

Modelando o problema obteremos o seguinte PPL:

$$\max \sum_{\substack{j=1\\m}}^{m} v_j \left(\sum_{i=1}^{n} x_{ij} - \sum_{i=1}^{n} c_{ij} x_{ij}\right)$$

s.a
$$\sum_{\substack{j=1\\m}}^{m} x_{ij} \le 1, \forall i = 1, ..., n$$
$$\sum_{\substack{i=1\\m}}^{n} x_{ij} \le 1, \forall j = 1, ..., m$$
$$\sum_{\substack{i=1\\m}}^{n} \sum_{\substack{j=1\\m}}^{m} x_{ij} = k$$
$$(r_i - d_{ij}) x_{ij} \ge 0, i = 1, ..., n; j = 1, ..., k, ..., m$$

Considerando os dados da tabela dada e sendo k = m - n = 2 (número de alvos possíveis), obtemos o modelo LINDO mostrado na figura 1.6. Há neste modelo oito variáveis binárias. Para declará-las no LINDO, devemos acrescentar após o comando END o comando INT <nome de cada variável> em cada linha ou simplesmente, INT <número de variáveis>.

🕅 <untitled></untitled>	
aax 25x11+25x21+26x12+25x22+18x13+17x23+19x14+18x24	-
st	
-50x11>=0	
50x12>=0	
0x13>=0	
-50x14>=0	
50x21>=0	
100x22>=0	
180x23>=0	
120x24>=0	
$x_{11+x_{12+x_{13+x_{14+x_{21+x_{22+x_{23+x_{24=2}}}}}$	
x11+x21<=1	
x12+x22<=1	
x13+x23<=1	
$x_{14+x_{24}<=1}$	
x11+x12+x13+x14<=1	
<21+x22+x23+x24<=1	
and	
int 8	-
<u>1</u>	1

Figura 1.6: Modelo LINDO para o problema da defesa antiaérea

Deve ser observado que o modelo apresentado na figura 1.6 é o resultado da aplicação da

formulação matemática acima sem simplificação.

1.2.5 Existem variáveis livres

Consideremos o seguinte PPL:

min	$5x_1$	+	x_2		
s.a	x_1	+	x_2	\geq	5
	x_1	_	x_2	\geq	7
	x_1			\geq	0
			x_2	qq.	

Neste exemplo estamos tomando como exemplo que a variável x_2 é livre, ou seja, pode assumir qualquer valor. Para modelarmos este PPL utilizando o LINDO devemos acrescentar após o comando END, o comando FREE <nome da variável ou número de variáveis>, conforme mostra a figura 1.7.

🚟 <untitled></untitled>	
min 5x1 + x2	-
st x1 + x2 > 5 x1 - x2 > 7	_
end	
free x2	
<u>.</u>	• •

Figura 1.7: Modelo LINDO para o PPL usando variável livre

1.3 Utilizando Quadros (TABLEAU) com o LINDO

Para resolvermos PPL's utilizando quadros do SIMPLEX (tableaus) no LINDO devemos proceder da maneira que se segue, levando em consideração as seguintes teclas de atalho:

Comando	Teclas de atalho
Compilar (Compile Model)	CTRL + E
Fazer Pivoteameneo (Pivot)	CTRL + N
Exibir quadro (Tableau)	ALT + 7

Exemplo 1:

Primeiramente devemos digitar o PPL. Vamos tomar como exemplo o PPL abaixo:

min	$-5x_{1}$	_	$3x_2$		
s.a	$3x_1$	+	$5x_2$	\leq	15
	$5x_1$	+	$2x_2$	\leq	10
	x_1	,	x_2	\geq	0

O modelo LINDO relativo à esse PPL é apresentado na figura 1.8.

Antes de gerarmos o 1° quadro devemos compilar o modelo (CTRL + E). Para gerarmos o primeiro quadro para este modelo pressionamos as teclas ALT + 7. O quadro gerado é apresentado na figura 1.9.

Agora vamos fazer o pivoteamento. Pressione as teclas CTRL + N para a aparecer a janela da figura 1.10. Nesta janela, selecionamos a opção USE MINE e escolhemos a variável que vai entrar na base (Variable Selection) e a variável que vai sair da base (Row Selection), onde SLK 2 e 3 são as variáveis de folga. Clique em CLOSE e depois em CANCEL. Gere o novo quadro usando as teclas ALT + 7. O segundo quadro é mostrado na figura 1.11.

Pela análise do quadro vemos que ainda não obtemos a melhor solução, então devemos repetir os passos citados acima até encontrar a melhor solução para o PPL, ou seja, fazemos um novo pivoteamento e geramos um novo quadro. Para isto devemos pressionar novamente CTRL + Ne selecionar a variável que deve entrar na base e aquela que deve sair, feito isso geramos o novo quadro. Para o nosso exemplo o novo quadro (ALT + 7) é apresentado na figura 1.12. Como podemos observar este quadro é ótimo, portanto encontramos a melhor para o problema.

Exemplo 2:

\min	$-6x_{1}$	—	$10x_{2}$		
s.a	$3x_1$	+	$5x_2$	\leq	15
	$5x_1$	+	$2x_2$	\leq	10
	x_1	,	x_2	\geq	0

Para este exemplo temos o modelo LINDO apresentado na figura 1.13. Vamos resolver este problema utilizando quadros tableau para isto vamos seguir os seguintes passos:

 1^{o}) Geramos o primeiro quadro pressionando as teclas ALT + 7. (Figura 1.14)

 2^{o}) Através da análise do quadro decidimos qual variável deve entrar na base e qual deve sair (CTRL + N). (Figura 1.10)

 3°) Geramos um novo quadro (ALT + 7). (Figura 1.15)

4°) Analisamos este novo quadro. Observamos para este exemplo que não existe $c_j < 0$, mas a variável X1 que não está na base tem coeficiente igual a 0. Portanto colocando X1 na base obtemos uma outra solução ótima, como mostra a figura 1.16. Para este exemplo temos várias soluções ótimas e elas são dadas pela seguinte equação:

$$y = \alpha(0,3) + (1-\alpha)(1.052, 2.368)$$
, onde $\alpha \in [0,1]$

Exemplo 3:

min	$-2x_1$	_	$2x_2$		
s.a	$-x_1$	+	x_2	\leq	1
	$-0.5x_{1}$	+	x_2	\leq	2
	x_1	,	x_2	\geq	0

Figura 1.8: Modelo LINDO para o exemplo 1

THE	TABL	EAU						
	ROU	(BAS	IS)	X1	X 2	SLK 2	SLK 3	
	1	ART	-	-5.000	-3.000	0.000	0.000	0.000
	2	SLK		3.000	5.000	1.000	0.000	15.000
ART	3	ART	3	-5,000	-3.000	0,000	0.000	0,000

Figura 1.9: 1º quadro para o exemplo 1

Pivot Variable	Pivot Row	OK
Variable Selection	- How Selection	
LINDUS	CLINDU's	Lance
• Use Mine	(* Use Mine	Help
My Variable Selection:	My Row Selection:	
X1 💌	E •	

Figura 1.10: Janela de Pivoteamento

E TABLE	UA3						
ROW 1 2 3	(BA ART SLK	SIS) 2 X1	X1 0.000 0.000 1.000	X2 -1.000 3.800 0.400	SLK 2 0.000 1.000 0.000	SLK 3 1.000 -0.600 0.200	10.000 9.000 2.000

Figura 1.11: 2^o quadro para o exemplo 1

Reports	Window						
THE TABL	EAU						-
ROW 1 2 3	(BASIS) ART X2 X1	X1 0.000 0.000 1.000	X2 0.000 1.000 0.000	SLK 2 0.263 0.263 -0.105	SLK 3 0.842 -0.158 0.263	12.368 2.368 1.053	
							~
< .							2

Figura 1.12: 3^o quadro para o exemplo 1

Re:	C:\User\Aloisio\Pesquisa 0 💶 🗖	×
min	n -6x1-10x2	^
st	3x1 + 5x2 <= 15 5x1 + 2x2 <= 10	-
<		*

Figura 1.13: Modelo LINDO para o exemplo 2

🗧 Re	ports	Windov	v					_	
THE	TABL	EAU							1
ART	ROW 1 2 3	(BAS ART SLK SLK ART	5IS) 2 3	X1 -6.000 3.000 5.000 -6.000	X2 -10.000 5.000 2.000 -10.000	SLK 2 0.000 1.000 0.000 0.000	SLK 3 0.000 1.000 0.000	0.000 15.000 10.000 0.000	
									~

Figura 1.14: 1^o quadro para o exemplo2

ROW	(BA	SIS)	X1	X2	SLK 2	SLK 3		
1	ART		0.000	0.000	2.000	0.000	30.000	
3	SLK	3	3.800	0.000	-0.400	1.000	4.000	

Figura 1.15: 2^o quadro para o exemplo2

ASIS)	X1	X2	SLK 2	SLK 3		
X2 X1	0.000	1.000 0.000	2.000 0.263 -0.105	0.000 -0.158 0.263	30.000 2.368 1.053	G
	Xi	X1 1.000	X1 1.000 0.000	X1 1.000 0.000 -0.105	X1 1.000 0.000 -0.105 0.263	X1 1.000 0.000 -0.105 0.263 1.053

Figura 1.16: 3^o quadro para o exemplo 2

Após digitarmos o modelo e o compilarmos, geraremos o 1º quadro (Figura 1.18). Logo após utilizaremos o quadro de pivoteamento e decidiremos qual variável entra e qual variável sai da base (figura 1.10) e analisamos o novo quadro (figura 1.19), decidimos qual variável entra e qual variável. Analisando o 3º quadro (figura 1.20 observamos que se a variável SLK 2 entrar na base encontraremos uma solução melhor ($\exists c_j < 0$), mas os coeficientes das restrições são negativos, portando nenhuma variável pode entrar na base, portanto este problema não tem solução.

Figura 1.17: Modelo LINDO para o exemplo 3

Ka Re	ports 1	Window							×
THE	TABL	EAU							
ART	ROW 1 2 3	(BAS ART SLK SLK ART	2 3	X1 -2.000 -1.000 -0.500 -2.000	X2 -2.000 1.000 1.000 -2.000	SLK 2 0.000 1.000 0.000 0.000	SLK 3 0.000 0.000 1.000 0.000	0.000 1.000 2.000 0.000	
5									×

Figura 1.18: 1° quadro para o exemplo 3

Reports	Windo	w						X
THE TABL ROW 1 2 3	EAU (BA ART SLK	SIS) X2 3	X1 -4.000 -1.000 0.500	X2 0.000 1.000 0.000	SLK 2 2.000 1.000 -1.000	SLK 3 0,000 0,000 1,000	2.000 1.000 1.000	
EI			31134 OK-92	313.04%	12.000			2

Figura 1.19: 2^o quadro para o exemplo 3

1.4 Análise de Sensibilidade

Para utilizarmos a análise de sensibilidade no LINDO, tomaremos o seguinte exemplo:

Um pecuarista tem disponíveis três tipos de ração para gado. Cada tipo tem sua composição em termos de quatro nutrientes. O pecuarista quer misturar essas rações para obter um produto final que satisfaça às exigências mínimas dos animais em termos de nutrientes. A composição e as exigências estão apresentadas no quadro abaixo:

		% por Kg		Exigência mínima
Nutrientes	Ração 1	Ração 2	Ração 3	em Kg por saco
				de 100 Kg
1	30	25	10	6
2	20	30	20	4
3	25	15	30	4
4	25	30	40	6
Custo/Kg	1.00	1.20	1.30	

O objetivo é conseguir uma mistura de mínimo custo. Para este exemplo responderemos as seguintes questões:

- 1) Qual o intervalo de estabilidade para o custo da primeira ração?
- 2) Qual o desconto, em reais, no preço segunda ração a partir do qual seu uso é interessante?
- 3) Qual o preço máximo da terceira ração que não altera a quantidade ótima encontrada?
- 4) Se a exigência do nutriente 1 passasse de 6 para 7 Kg em cada 100 Kg de mistura, qual a variação de preço que ocorreria?
- 5) Para cada diminuição de 1 Kg de nutriente 4 na mistura, o custo desta cai em R\$ 3,05. Essa informação vale até para quantos quilos diminuídos?
- 6) Suponha que o pecuarista pudesse usar um quarto tipo de ração ao custo de R\$ 1,10/Kg, e que essa ração tivesse 25% de cada nutriente. Valeria a pena usar esse tipo de ração?

Para responder estas questões primeiramente vamos modelar este PPL:

min	x_1	+	$1.20x_2$	+	$1.30x_3$		
s.a	$0.30x_1$	+	$0.25x_2$	+	$0.10x_{3}$	\geq	6
	$0.20x_1$	+	$0.30x_2$	+	$0.20x_{3}$	\geq	4
	$0.25x_{1}$	+	$0.15x_2$	+	$0.30x_{3}$	\geq	4
	$0.25x_{1}$	+	$0.30x_2$	+	$0.40x_3$	\geq	6
	x_1	,	x_2	,	x_3	\geq	0

O modelo LINDO para este PPL é apresentado na figura 1.21. Depois de digitado o modelo, vamos compilá-lo (CTRL+E) e depois resolvê-lo (CTRL+S), mas desta vez vamos responder sim a pergunta DO RANGE(SENSITIVITY)ANALYSIS?, ou seja, vamos fazer a análise de sensibilidade deste PPL. A janela REPORTS WINDOW mostrará a tela mostrada na figura 1.22 e é a partir desta janela que responderemos as perguntas para este PPL.

1) Para responder esta pergunta vamos analisar o campo OBJ COEFICIENT RANGES da janela REPORTS WINDOW. O campo "OBJ COEFICIENT RANGES" nos apresenta os subcampos

Reports 1	Window						X
THE TABLE	EAU						^
ROW 1 2 3	(BASIS) ART X2 X1	X1 0.000 0.000 1.000	X2 0.000 1.000 0.000	SLK 2 -6.000 -1.000 -2.000	SLK 3 8.000 2.000 2.000	10.000 3.000 2.000	
< C							*

Figura 1.20: 3^o quadro para o exemplo3

🖏 C: Wser'Aloisio Pesquisa Operacional \B 🖃 🗖 🔀									
min x1 + 1.20x2 + 1.30x3 st N1) 0.30x1 + 0.25x2 + 0.10x3 >= 6 N2) 0.20x1 + 0.30x2 + 0.20x3 >= 4 N3) 0.25x1 + 0.15x2 + 0.30x3 >= 4	< [m]								
N4) 0.25x1 + 0.30x2 + 0.40x3 >= 6 end	>								

Figura 1.21: Modelo LINDO para o PPL dos Nutrientes

🗧 Reports Wi	ndow			X
LP OPTIMUM	FOUND AT STEP	2		
OBJ	ECTIVE FUNCTION	VALUE		
1)	23.05263			
VARIABLE X1 X2 X3	VALUE 18.947369 0.000000 3.157899	REDUCED COST 0.000000 0.086842 5 0.000000		
ROW N1) N2) N3) N4)	SLACK OR SURPI 0.000000 0.421053 1.684211 0.000000	LUS DUAL PRICES 0 -0.789474 0.000000 0.000000 0.000000 0.000000 0.000000		
NO. ITERAT	IONS= 2			
RANGES IN	WHICH THE BASIS	IS UNCHANGED:		
VARIABLE X1 X2	CURRENT COEF 1.000000	OBJ COEFFICIENT RANGES ALLOWABLE INCREASE 0.117857 INFINITY	ALLOWABLE DECREASE 0.187500 0.086842	
X3	1.300000	0.300000	0.966667	
ROW	CURRENT	RIGHTHAND SIDE RANGES ALLOWABLE INCREASE	ALLOWABLE	
N1 N2 N3 N4		1.200000 0.421053 1.684211 18.000000	1.333333 INFINITY INFINITY 1.000000	
				~

Figura 1.22: REPORTS WINDOW para o PPL dos Nutrientes

ALLOWABLE INCREASE E ALLOWABLE DECREASE que se referem ao quanto o custo pode aumentar ou pode diminuir para que os valores ótimos de cada ração permaneçam o mesmo, respectivamente. Então para o nosso exemplo vamos analisar a variável x_1 , a qual se refere à Ração 1. Podemos observar que o custo desta ração pode aumentar até R\$0.117857 e diminuir em até R\$0.187500 que a quantidade ótima da ração continuará a mesma. Ou seja:

$$c_1 - 0.18 \le \bar{c}_1 \le c_1 + 0.11 \Rightarrow 0.82 \le \bar{c}_1 \le 1.11$$

- 2) Para responder a 2^a pergunta, vamos analisar a variável x₂ no campo REDUCED COST ou então o campo ALLOWABLE DECREASE desta variável, onde é apresentado o valor para o qual o uso desta ração é interessante. Para o nosso exemplo temos que o valor para o desconto deve ser de R\$0.09 de forma que o uso da Ração 2 seja interessante.
- 3) Para encontrar o preço máximo da 3^a ração que não altera a quantidade ótima encontrada, devemos analisar o campo ALLOWABLE DECREASE da variável x₃, lá encontramos o valor 0.3000, portanto o preço máximo da ração 3 deve ser de R\$1.60 para a que quantidade ótima permaneça o mesmo.
- 4) Esta pergunta será respondida através da análise do campo DUAL PRICE referente à restrição que envolve o nutriente 1, que neste caso é a restrição N1. Lá encontramos o valor -0.789474, que corresponde ao valor que será acrescido (ou diminuído) ao custo total se uma unidade a mais (ou a menos) do nutriente for exigida. Então se aumentarmos para 7 a exigência do nutriente 1 o custo total será aumentado em R\$0.78.
- 5) Vamos responder esta pergunta utilizando o campo RIGHTHAND SIDE RANGES, que corresponde às restrições do PPL, especificamente analisaremos o subcampo ALLOWABLE DE-CREASE referente ao nutriente 4, ou seja N4, que nos dará o valor que poderá ser diminuído para o qual a quantidade do nutriente continuará a mesma. Portanto, podemos observar que esta informação vale até para uma diminuição de 1Kg.
- 6) Para respondermos esta pergunta vamos fazer as seguintes análises:

$$c_4 - z_4$$
$$z_4 = (c^B)^t y_4$$
$$y_4 = B^{-1}a_4$$

A matriz B^{-1} pode ser encontrada através do TABLEAU final do PPL. Então pressionamos as teclas ALT + 7 para aparecer o TABLEAU na janela REPORTS WINDOW, a matriz B^{-1} se encontra abaixo das variáveis de folga e como no nosso PPL todas as restrições são de \geq então devemos multiplicar cada coluna da matriz por -1. Portanto temos que:

$$B^{-1} = \begin{bmatrix} -2.63 & 0 & 0 & 0.30\\ 0.32 & -1 & 0 & 0.20\\ 0.26 & 0 & -1 & 0.25\\ 4.21 & 0 & 0 & -1.05 \end{bmatrix}$$

Portanto, temos que:

$$y_4 = \begin{bmatrix} -2.63 & 0 & 0 & 0.30 \\ 0.32 & -1 & 0 & 0.20 \\ 0.26 & 0 & -1 & 0.25 \\ 4.21 & 0 & 0 & -1.05 \end{bmatrix} \begin{bmatrix} 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \end{bmatrix} = \begin{bmatrix} 0.13 \\ -0.065 \\ -0.015 \\ 0.79 \end{bmatrix}$$

Daí,

 $z_4 = \begin{bmatrix} 1.30 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.13 \\ -0.065 \\ -0.015 \\ 0.79 \end{bmatrix} = 0.96$

Portanto,

 $c_4 - z_4 = 1.10 - 0.96 = 0.14$

Como $c_4 - z_4 > 0 \Rightarrow$ não vale a pena usar esta ração.

Capítulo 2 SOLVER (EXCEL)

2.1 O que é o SOLVER?

O Solver faz parte de um conjunto de programas algumas vezes chamado de ferramentas de análise hipotética. Com o Solver você pode localizar um valor ideal para uma fórmula em uma célula – chamada de célula de destino – em uma planilha. O Solver trabalha com um grupo de células relacionadas direta ou indiretamente com a fórmula na célula de destino. O Solver ajusta os valores nas células variáveis que você especificar – chamadas de células ajustáveis – para produzir o resultado especificado por você na fórmula da célula de destino. Você pode aplicar restrições para restringir os valores que o Solver poderá usar no modelo e as restrições podem se referir a outras células que afetem a fórmula da célula de destino. Poderemos visualizar isto melhor através de exemplos.

No nosso curso, usaremos o SOLVER para resolver Problemas de Programação Linear.

2.2 Exemplos de como Modelar usando o SOLVER do Excel

Para familiarizarmos com o uso do SOLVER utilizaremos uma série de exemplos para a fixação de seus principais comandos.

2.2.1 Problema da Fábrica de Automóveis

Alfa Inc. deve produzir 1000 automóveis Alfa. A empresa tem quatro fábricas. Devido a diferenças na mão-de-obra e avanços tecnológicos, as plantas diferem no custo de produção unitário de cada carro. Elas também utilizam diferentes quantidades de matéria-prima e mão-de-obra. O custo de operação, o tempo necessário de mão-de-obra e o custo de matéria-prima para produzir uma unidade de cada carro em cada uma das fábricas estão evidenciados na tabela abaixo.

Fábrica	Custo Unitário	Mão-de-Obra	Matéria-Prima
	(em R\$1.000,00)	(horas de fabricação)	(unidades de material)
1	15	2	3
2	10	3	4
3	9	4	5
4	7	5	6

Um acordo trabalhista assinado requer que pelo menos 250 carros sejam produzidas na fábrica 3. Existem 3200 horas de mão-de-obra e 4000 unidades de material que podem ser alocados às quatro fábricas.

O modelo de decisão do problema é dado abaixo, onde x_j representa a quantidade de automóveis a serem fabricadas na fábrica j = 1, 2, 3, 4.

\min	$15x_{1}$	+	$10x_{2}$	+	$9x_3$	+	$7x_4$		
s.a	$2x_1$	+	$3x_2$	+	$4x_3$	+	$5x_4$	\leq	3200
	$3x_1$	+	$4x_2$	+	$5x_3$	+	$6x_4$	\leq	4000
	x_1	+	x_2	+	x_3	+	x_4	=	1000
					x_3			\geq	250
	x_1	,	x_2	,	x_3	,	x_4	\geq	0

Para resolvermos este PPL utilizando o Excel, devemos primeiramente designar uma célula para representar cada uma das seguintes entidades:

- Função Objetivo (FO) (Expressão a ser minimizada ou maximizada);
- Varáveis de Decisão (variáveis que o modelador pode alterar seu valor);
- Para cada restrição temos uma célula representando o lado esquerdo da restrição (LHS) e outra representando o lado direito darestrição (RHS).

	A	8	C	D	E	F	G
1			AL	FA IN	N C.		
2							
з	Função		Coeficiente	da Variável			
4	Objetivo	X1	X2	X3	X4		
5	and the second second	15	10	9	7		
6	Variáveis						
7	Z=	0					
8							
9	Restrições		Coeficiente	da Variável			Constantes
10	No	X1	X2	X3	X4	LHS	RHS
11	1	2	3	4	5	0	3200
12	2	3	4	5	6	0	4000
13	3	1	1	1	1	0	1000
14	4			1		0	250

Figura 2.1: Modelagem do Exemplo da seção 2.2.1 no Excel

A figura 2.1 apresenta uma das possíveis maneiras de representar o PPL em uma planilha do Excel. Nesta planilha as células a seguir designarão cada uma das entidades citadas anteriormente.

- B7 irá representar o valor da FO a ser minimizada;
- B6 a E6 representarão os valores que as variáveis de decisão assumirão na solução;
- F11 a F14 irão representar os LHS das 4 restrições;
- G11 a G14 irão representar os RHS das 4 restrições.

Para que possamos definir cada uma das células anteriormente citadas necessitamos inserir uma série de parâmetros do nosso PPL, tais como todos os coeficientes das restrições e da FO. Para lembrar o que cada célula representa é aconselhável a colocação de títulos que especifiquem o conteúdo de cada célula (células com texto). As células B5 a E5 são utilizadas para inserir os valores dos coeficientes da FO, enquanto as células de B11 a E14 representam os coeficientes das 4 restrições.

Agora devemos definir cada uma das entradas citadas anteriormente. A tabela a seguir representa as fórmulas colocadas em cada uma destas células.

Fórmulas utilizadas nas células da modelagem do Exemplo 1

B7	= B5*B6+C5*C6+D5*D6+E5*E6	FO
F11	= B11*\$B\$6+C11*\$C\$6+D11*\$D\$6+E11*\$E\$6	LHS da 1^a restrição
F12	= B12 * B 6 + C12 * C 6 + D12 * D 6 + E12 * E 6	LHS da 2^a restrição
F13	= B13*\$B\$6+C13*\$C\$6+D13*\$D\$6+E13*\$E\$6	LHS da 3^a restrição
F14	= B14*\$B\$6+C14*\$C\$6+D14*\$D\$6+E14*\$E\$6	LHS da 4^a restrição

Obs.: os símbolos \$ significam que a linha e a coluna são fixos.

Precisamos agora avisar ao Excel quais são as células que representam nossa FO, as variáveis de decisão, as restrições do modelo, e finalmente, mandar o Excel resolver para nós. Isto é feito utilizando a ferramenta SOLVER do Excel. Para tal, clique com o botão esquerdo do mouse sobre o menu *FERRAMENTAS* e logo em seguida em *SOLVER*, caso a ferramenta SOLVER não esteja disponível, clique no menu *FERRAMENTAS* e depois em *SUPLEMENTOS* e marque a opção SOLVER para que a mesma fique disponível, o Excel instalará a ferramenta tornando-a disponível para uso.

Após este procedimento aparecerá na tela a janela representada pela figura 2.2. Nesta janela é que serão informadas ao software as células que representarão a FO, as variáveis de decisão e as restrições.

Na parte superior da janela da figura 2.2 aparece um campo para a entrada de dados chamado "Definir célula de destino" que representará o valor da FO. Existem duas maneiras para designar esta célula. A primeira é clicar sobre o ícone que está do lado direito do campo, que levará você a planilha de dados, nesse ponto devemos clicar sobre a célula que representa a FO e pressionar a tecla *ENTER* para voltar a janela do SOLVER. A segunda é digitar o nome da cálula (B7 no nosso exemplo) no campo. Realizando uma das duas maneiras, a janela resultante é apresentada na figura 2.3.

Na linha seguinte são apresentadas as opções de maximizar, minimizar e atingir valor. Dependendo do problema devemos clicar sobre uma das três, no nosso exemplo devemos clicar sobre Min, pois nosso exemplo é de minimização. A opção "Valor de" pode ser utilizada em análise do tipo ponto de equilíbrio, onde desejamos que a função Lucro (por exemplo) atinja o valor de 0. Nos casos de Programação Linear esta opção não será utilizada.

Na próxima linha há um campo denominado "*Células Variáveis*". Neste campo serão inseridas as células que representarão as variáveis de decisão. Os valores podem ser inseridos como o caso da FO, isto é, clicando sobre o ícone à direita do campo e marcando as células escolhidas ou simplesmente digitando seus nomes utilizando as regras do Excel para tal. Utilizando uma das maneiras, a janela terá o formato da figura 2.4.

O próximo passo é designar as restrições do problema. Devemos inserir uma restrição ou um grupo de restrições (desde que as restrições tenham o mesmo sinal de restrição e estejam adjacentes) de cada vez. Para inserir a 1^a restrição devemos clicar no botão "Adicionar" para aparecer uma janela de entrada de restrições.

A janela de entrada de restrições tem três campos, que representam o LHS - "Referência de célula:" (à esquerda), o sinal da restrição (ao centro), e o RHS - "Restrição" (à direita). Como já mencionado anteriormente, o LHS representa a equação do lado esquerdo da restrição (o lado esquerdo do dicionário modificado). O RHS representa o lado direito da restrição (a constante do dicionário). A figura 2.5 representa a entrada da 1^a e 2^a restrições. Para entrar com os valores nos campos, deve-se proceder como nos casos anteriores, usando o ícone à direita ou digitando o nome da célula.

O passo seguinte será o de clicar no botão "OK", no caso de não haver nenhuma outra restrição, ou no botão "Adicionar" para confirmar esta restrição e abrir espaço para uma nova entrada. No nosso exemplo, devemos clicar em "Adicionar" e inserir as outra restrições. Ao final de todas as entradas a janela do SOLVER terá a forma da figura 2.6.

Devemos agora inserir as restrições de não-negatividade e definir que o modelo é de Programação Linear, para isto, devemos clicar no botão "Opções" e marcar as opções "Presumir modelo linear" e "Presumir não negativos" como é mostrada na figura 2.7 e depois clique no botão "OK" para

		Resolver
lguala: ເ≏Máx CMín_ C⊻alorde: 0 ⊆élulas variáveis:		Fechar
N	Estimar	
Submeter ås restrigões:		Opções
	Adicionar	
	Alterar	Contract of the Contract of the
	Alterar	<u>R</u> edefinir tuda

Figura 2.2: Janela da ferramenta SOLVER

Definir célula de destino: 1997	Resolver
igual a: Թ. Máx C. Mí <u>n</u> C. Valor de: 0 Células variáveis:	Fechar
Estimar	1
Submeter às restrições:	Opções
Adicionar	
Alterar	
-1 Excluir	Redefinir tudo
	Aiuda

Figura 2.3: Escolha da Célula de Destino

Definir célula de destino: \$8\$7	Resolver
lguala: ∩ Máx (* Mín_ ∩ ⊻alorde: 0 ⊆élulas variáveis:	Fechar
\$B\$6:\$E\$6	Estimar
Submeter às restrições:	Opções
-	Adicionar
10	Alterar
- I - I	Excluir Redefinir tudo
	Ajuda

Figura 2.4: Janela do Solver após a designação das células variáveis

Adicionar rest	rição		? 🔀
Referência de cél	ula:	Restrição:	
\$F\$11:\$F\$12	3 >=	• \$G\$11:\$G\$1	12 🗾
ОК	Cancelar	Adicionar	Ajuda

Figura 2.5: Formato da entrada da 1^a e 2^a restrições

confirmar.

Uma vez inserido o modelo e suas características, devemos efetivamente resolvê-lo. Para tanto basta clicar no botão "Resolver" na janela dos parâmetros do SOLVER do Excel. Se o modelo foi corretamente inserido, será processado e o resultado aparecerá automaticamente na planilha. Aparecerá uma janela como a mostrada na figura 2.8. Se observarmos valores incoerentes ou inesperados, devemos neste ponto clicar na opção "Restaurar Valores Originais" para restaurar os valores iniciais do modelo. Existe ainda a opção de requisitar três tipos de relatórios (lado direito da janela).

Ao clicar no botão "OK", a janela de Resultados do SOLVER será apagada e os resultados aparecerão na planilha como mostrado na figura 2.9.

2.2.2 Problema do Empréstimo do Banco

O Banco Municipal de Ouro Preto (BMOP) está formulando sua política de crédito para o próximo trimestre. Um total de 12 milhões será alocado às várias modalidades de empréstimo que ele pretende conceder. Sendo uma instituição de atendimento pleno, obriga-se a atender a uma clientela diversificada. A tabela abaixo prevê as modalidades de empréstimos praticadas pelo Banco, as taxas de juro por ele cobradas e a possibilidade de débitos não honrados, medida em probabilidade, com base nas experiências passadas.

Tipo de Empréstimo	Taxa de Juro	Probabilidade de Débito
		não honrado
Pessoal	0,140	0,10
Compra de automóvel	0,130	0,07
Compra de casa própria	0,120	0,03
Agrícola	0,125	0,05
Comercial	0,100	0,02

Os débitos não honrados são assumidos como irrecuperáveis e, portanto, não produzem retorno. A competição com outras instituições similares, nas áreas mencionadas, requer que o Banco aloque, pelo menos 40% do total disponível, em empréstimos agrícolas e comerciais. Para apoiar a indústria da construção civil na região, os empréstimos para compra da casa própria devem ser, pelo menos, 50% do total alocado para empréstimos pessoais e destinados a compra de carro. Além disso, o Banco deseja incluir na sua política de empréstimos a condição de que a razão entre o total de débitos não honrados em todos os empréstimos e o total emprestado, não exceda 0,04. Formule um modelo de programação linear para otimizar a política de crédito do Banco.

O modelo de decisão do problema é dado abaixo, onde x_j representa a quantidade de dinheiro alocado para empréstimos do tipo j = (1=Pessoal, 2=Compra de Automóveis, 3=Compra de Casa)

Definir célula de destino:	N	Resolver
gual a: C Máx C Mín C Células variáveis:	Valor de: 0	Fechar
\$B\$6:\$E\$6	🚹 Estimar	
Submeter às restrições:		Opções
\$F\$11:\$F\$12 <= \$G\$11:\$G\$12 \$F\$13 = \$G\$13	- Adicionar	
\$F\$14 >= \$G\$14	Alterar	
	Excluir	Redefinir tudo
1		Ajuda

Figura 2.6: Janela de entrada dos parâmetros do SOLVER para o Exemplo da seção 2.2.1

)pções do Solv	er	?
Tempo máximo:	100 segundos	OK
Iterações:	100	Cancelar
Precisão:	0,000001	Carregar modeļo
Tolgrância:	5 %	Salvar modelo
Con <u>v</u> ergência:	0,0001	Ajuda
Presumir mode	elo linear 🛛 🗖 Usar e	escala automática
Presumir não i	negativos 🗖 Mostr	ar resultado de iteração
Estimativas	Derivadas	Pesquisar
· Tangente	Adiante	Newton
C Quadrática	C Central	C Conjugado

Figura 2.7: Janela de Opções do SOLVER

Resultados do Solver			?
O Solver encontrou uma solução. Tod condições otimizadas foram atendidas.	as as restrições e	Relatórios	
 Manter solução do Solver Restaurar valores originais 		Resposta Sensibilidade Limites	*
OK Cancelar	Salvar cenário	A)	uda

Figura 2.8: Opções de Resultado da ferramenta SOLVER

Própria, 4=Agrícola e 5=Comercial).

max	$0,126x_1$	+	$0,121x_2$	+	$0,116x_3$	+	$0,119x_4$	+	$0,098x_5$		
s.a	x_1	+	x_2	+	x_3	+	x_4	+	x_5	\leq	12
							x_4	+	x_5	\geq	4,8
	$-0,05x_1$	—	$0,05x_{2}$	+	x_3					\geq	0
	$0,06x_1$	+	$0,03x_{2}$	_	$0,01x_{3}$	+	$0,01x_{4}$	_	$0,02x_5$	\leq	0
	x_1	,	x_2	,	x_3	,	x_4	,	x_5	\geq	0

Para resolvermos este PPL, devemos proceder da mesma forma apresentada no exemplo da seção 2.2.1, só que o modelo deve ser parecido com o da figura 2.10.

A figura 2.10 apresenta uma das possíveis maneiras de representar o PPL em uma planilha do Excel. Nesta planilha as células a seguir designarão cada uma das entidades:

- B7 irá representar o valor da FO a ser maximizada;
- B6 a F6 representarão os valores que as variáveis de decisão assumirão na solução;
- G11 a G14 irão representar os LHS das 4 restrições;
- H11 a H14 irão representar os RHS das 4 restrições.

As fórmulas utilizadas são apresentadas na tabela a seguir.

Fó	rmulas utilizadas nas células da modelagem do Exemplo 2
B7	$=\!B6^*B5\!+\!C6^*C5\!+\!D6^*D5\!+\!E6^*E5\!+\!F6^*F5$
G11	= B11*\$B\$6+C11*\$C\$6+D11*\$D\$6+E11*\$E\$6+F11*\$F\$6
G12	= B12*\$B\$6+C12*\$C\$6+D12*\$D\$6+E12*\$E\$6+F12*\$F\$6
G13	= B13*\$B\$6+C13*\$C\$6+D13*\$D\$6+E13*\$E\$6+F13*\$F\$6
G14	= B14*\$B\$6 + C14*\$C\$6 + D14*\$D\$6 + E14*\$E\$6 + F14*\$F\$6

A janela com os parâmetros do SOLVER é apresentado na figura 2.11 e a planilha com os resultados é mostrada na figura 2.12.

2.2.3 Problema da Fábrica de Motores

A LCL Motores Ltda., uma fábrica de motores especiais, recebeu recentemente R\$90.000,00 em pedidos de seus três tipos de motores. Cada motor necessita de um determinado número de horas de trabalho no setor de montagem e de acabamento.

Modelo	1	2	3	TOTAL
Demanda	3000 unid.	2500 unid.	500 unid.	6000 unid.
Montagem	1 h/unid.	2 h/unid.	0,5 h/unid.	6000 h
Acabamento	2,5 h/unid.	1 h/unid.	4 h/unid.	10000 h
Custo Produção	R\$50	R\$90	R\$120	
Terceirizado	R\$65	R\$92	R\$140	

A LCL pode terceirizar parte da sua produção. A tabela a seguir resume estes dados.

	A	В	С	D	E	F	G
1			ALF	AIN	IC.		
2							
3	Função		Coeficiente d	a Variável			
4	Objetivo	X1	X2	X3	X4		
5	Section	15	10	9	7		
6	Variáveis	250	500	250	0		
7	Z=	11000					-
8							
9	Restrições		Coeficiente d	a Variável			Constantes
10	Nº	X1	X2	X3	X4	LHS	RHS
11	1	2	3	4	5	3000	3200
12	2	3	4	5	6	4000	4000
13	3	1	1	1	1	1000	1000
14	4			1		250	250

Figura 2.9: Resultados inseridos na planilha

	A	B	C	D	E	F	G	н
1				BM	O P			
2				1				1
з	Função		Coefic	iente da Var	iável			
4	Objetivo	X1	X2	X3	X4	X5		
5	Summer	0,126	0,121	0,116	0,119	0,098		
6	Variáveis				0.1555			
7	Z=	0						
8								
9	Restrições		Coeficiente	da Variável				Constantes
10	Nº	X1	X2	X3	X4	X5	LHS	RHS
11	1	1	1	1	1	1	0	12
12	2	a San I		16	1	1	0	4,8
13	3	-0,05	-0,05	1			0	0
14	4	0,06	0,03	-0,01	0,01	-0,02	0	0

Figura 2.10: Modelagem do Exemplo da seção 2.2.2 no Excel

efinir célula de destino: \$8\$7	N	Resolver
guala: ເຈັMáx CMín C Células variáveis:	⊻alorde: 0	Fechar
\$B\$6:\$F\$6	🔁 Estimar	
Submeter às restrições:		Opções
\$G\$11 <= \$H\$11 \$G\$12\\$G\$13 >= \$H\$12\\$H\$13	- <u>A</u> dicionar	
\$G\$14 <= \$H\$14	Alterar	
	Excluir	Redefinir tudo
1		Ajuda

Figura 2.11: Janela de entrada dos parâmetros do SOLVER

A LCL Motores deseja determinar quantos motores devem ser produzidos em sua fábrica e quantos devem ser produzidos de forma terceirizada para atender à demanda de pedidos.

Seja F_i o número de motores fabricados pela LCL do modelo i (i=1,2,3) e T_i o número de motores terceirizados pela LCL do modelo i(i=1,2,3).

O modelo de decisão do problema é dado a seguir.

\min	$50F_{1}$	+	$90F_{2}$	+	$120F_{3}$	+	$65T_{1}$	+	$92T_{2}$	+	$140T_{3}$		
s.a	F_1	+	$2F_2$	+	$0, 5F_{3}$							\leq	6000
	$2, 5F_{1}$	+	F_2	+	$4F_3$							\leq	10.000
	F_1	+					T_1					=	3.000
			F_2	+					T_2			=	2.500
					F_3	+					T_3	=	500
	F_i, T_i	$\geq 0,$	$\forall i = 1, 2,$	3									

Para resolvermos este PPL, devemos proceder da mesma forma apresentada no exemplo da seção 2.2.1, só que o modelo deve ser parecido com o da figura 2.13.

A figura 2.13 apresenta uma das possíveis maneiras de representar o PPL em uma planilha do Excel. Nesta planilha as células a seguir designarão cada uma das entidades:

- B7 irá representar o valor da FO a ser minimizada;
- B6 a G6 representarão os valores que as variáveis de decisão assumirão na solução;
- H11 a H15 irão representar os LHS das 5 restrições;
- I11 a I15 irão representar os RHS das 5 restrições.

As fórmulas utilizadas são apresentadas na tabela a seguir.

	Fórmulas utilizadas nas células da modelagem do Exemplo 3
B7	$=\!B6^*B5\!+\!C6^*C5\!+\!D6^*D5\!+\!E6^*E5\!+\!F6^*F5\!+\!G6^*G5$
H11	= B11*\$B\$6 + C11*\$C\$6 + D11*\$D\$6 + E11*\$E\$6 + F11*\$F\$6 + G11*\$G\$6
H12	= B12*\$B\$6 + C12*\$C\$6 + D12*\$D\$6 + E12*\$E\$6 + F12*\$F\$6 + G12*\$G\$6
H13	= B13*\$B\$6 + C13*\$C\$6 + D13*\$D\$6 + E13*\$E\$6 + F13*\$F\$6 + G13*\$G\$6
H14	= B14*\$B\$6 + C14*\$C\$6 + D14*\$D\$6 + E14*\$E\$6 + F14*\$F\$6 + G14*\$G\$6
H15	= B15*\$B\$6 + C15*\$C\$6 + D15*\$D\$6 + E15*\$E\$6 + F15*\$F\$6 + G15*\$G\$6

A janela com os parâmetros do SOLVER é apresentado na figura 2.14 e a planilha com os resultados é mostrada na figura 2.15.

2.2.4 Problema da Escolha de Carteira de Investimentos

A LCL Investimentos S.A. gerencia recursos de terceiros através da escolha de carteiras de investi-

mentos para diversos clientes, baseados em bonds de diversas empresas. Um de seus clientes exige

	A	В	C	D	E	F	G	H
1				BMO) P			
2		-						
3	Função		Coeficie	nte da Vari	ável			
4	Objetivo	×1	X2	X3	X4	X5		
5	C. C. Stanson	0,126	0,121	0,116	0,119	0,098		
6	Variáveis	0	0	6	6	0		
7	Z=	1,41		1				
8								
9	Restrições		Coeficiente d	a Variável				Constantes
10	Nº	X1	X2	X3	X4	X5	LHS	RHS
11	1	1	1	1	1	1	12	12
12	2				1	1	6	4,8
13	3	-0,05	-0,05	1			6	0
14	4	0,06	0,03	-0,01	0,01	-0,02	0	0

Figura 2.12: Resultados inseridos na planilha para o exemplo da seção 2.2.2

	A	В	С	D	E	F	G	н	- L
1				LCL M	lotores	s Ltda.			
2									
3	Função		C	oeficiente	da Variáv	/el			
4	Objetivo	F1	F2	F3	T1	T2	T3		
5	S. Stranger	50	90	120	65	92	140		
6	Variáveis						- 00303		
7	Z=	0					-		
8									
9	Restrições		C	oeficiente	da Variáv	/el			Constantes
10	Nº	F1	F2	F3	T1	T2	T3	LHS	RHS
11	1	1	2	0,5			1000	0	6000
12	2	2,5	1	4				0	10000
13	3	1			1			0	3000
14	4		1			1		0	2500
15	5			1			1	0	500

Figura 2.13: Modelagem do Exemplo da seção 2.2.3 no Excel

Definir célula de dectinos		Decolver
gen miceulous us us sun or resultor miceulous us us sun or resultor de su gen ulas variáveis: ⊆élulas variáveis:	0	Fechar
\$8\$6:\$G\$6	Estimar	
Submeter às restrições:		Opções
\$H\$11:\$H\$12 <= \$I\$11:\$I\$12 \$H\$13:\$H\$15 = \$I\$13:\$I\$15	Adicionar	
	Alterar	Redefinit hude
	Excluir	Medennin cooo
		Ajuda

Figura 2.14: Janela de entrada dos parâmetros do SOLVER

- Não mais de 25% do total aplicado deve ser investido em um único investimento.

- Um valor superior a 50% do total aplicado deve ser investido em títulos de maturidades maiores que 10 anos.

- O total aplicado em títulos de alto risco deve ser, no máximo, de 50% do total investido.

A tabela a seguir mostra os dados dos títulos selecionados. Determine qual percentual do total deve ser aplicado em cada tipo de título.

	Retorno Anual	Anos para Vencimento	Risco
Título 1	8,7%	15	1 - muito baixo
Título 2	$9{,}5\%$	12	3 - regular
Título 3	12,0%	8	4 - alto
Título 4	9,0%	7	2 - baixo
Título 5	13,0%	11	4 - alto
Título 6	20,0%	5	5 - muito alto

Seja P_i o percentual do total aplicado no título do tipo $i = 1, \ldots, 6$.

max	$\sum^{6} c_j *$	P_j										
s.a	$\begin{array}{c} j=1\\ P_1 + \\ P \end{array}$	P_2	+	P_3	+	P_4	+	P_5	+	P_6	=	100
	$P_1 +$	P_2	+	P_3	+			P_5 P_5	+	P_6	\leq	$\frac{50}{50}$
	$P_i \le 25$ $P_i \ge 0,$	$, \forall i = \\ \forall i = $	$1, \ldots$., 6, 6								

onde c=
$$\begin{bmatrix} 0,00087\\ 0,00095\\ 0,00120\\ 0,00090\\ 0,00130\\ 0,00200 \end{bmatrix}$$
 e P=
$$\begin{bmatrix} P_1\\ P_2\\ P_3\\ P_4\\ P_5\\ P_6 \end{bmatrix}$$

Para resolvermos este PPL, devemos proceder da mesma forma apresentada no exemplo da seção 2.2.1, só que o modelo deve ser parecido com o da figura 2.16.

A figura 2.16 apresenta uma das possíveis maneiras de representar o PPL em uma planilha do Excel. Nesta planilha as células a seguir designarão cada uma das entidades:

- B7 irá representar o valor da FO a ser maximizada;
- B6 a G6 representarão os valores que as variáveis de decisão assumirão na solução;
- H11 a H19 irão representar os LHS das 9 restrições;
- I11 a I19 irão representar os RHS das 9 restrições.

As fórmulas utilizadas são apresentadas na tabela a seguir.

	A	В	C	D	E	F	G	н	1 K 1
1				LCL M	otores	Ltda.			
2	1								
3	Função		Co	eficiente d	la Variáve	e			
4	Objetivo	F1	F2	F3	T1	T2	T3		
5		50	90	120	65	92	140		
6	Variáveis	3000	500	500	0	2000	0		
7	Z=	439000	100 M			186. C (
8									
9	Restrições		Co	eficiente d	la Variáve	e			Constantes
10	Nº	F1	F2	F3	T1	T2	T3	LHS	RHS
11	1	1	2	0,5	28	- 28		4250	6000
12	2	2,5	1	4				10000	10000
13	3	1			1			3000	3000
14	4		1			1		2500	2500
15	5			1			1	500	500

Figura 2.15: Resultados inseridos na planilha para o exemplo da seção 2.2.3

	A	8	C	0	E	F	G	н	l l
1			LC	L Inve	stime	ntos S.	Α.		
2	-								
з	Função		Co	oeficiente	da Variáv	/el			
4	Objetivo	P1	P2	P3	P4	P5	P6		
5		0,00087	0,00095	0,0012	0,0009	0,0013	0,002		
6	Variáveis	113.023	10000	1000		100	1000		
7	Z=	0							
8									
9	Restrições		Co	oeficiente	da Variáv	/el			Constantes
10	Nº	P1	P2	P3	P4	P5	P6	LHS	RHS
11	1	1	1	1	1	1	1	0	100
12	2	1	1			1		0	50
13	3			1		1	1°	0	50
14	4	1						0	25
15	5		1					0	25
16	6			1				0	25
17	7			1974	1			0	25
18	8					1		0	25
19	9						1	0	25

Figura 2.16: Modelagem do Exemplo da seção 2.2.4 no Excel

	i ormanas atmiziadas nas certilas da moderagem do Exempto i
B7	$=\!B6^*B5\!+\!C6^*C5\!+\!D6^*D5\!+\!E6^*E5\!+\!\overline{F6^*F5}\!+\!G6^*G5$
H11	= B11*\$B\$6+C11*\$C\$6+D11*\$D\$6+E11*\$E\$6+F11*\$F\$6+G11*\$G\$6
H12	= B12*\$B\$6 + C12*\$C\$6 + D12*\$D\$6 + E12*\$E\$6 + F12*\$F\$6 + G12*\$G\$6
H13	= B13*\$B\$6 + C13*\$C\$6 + D13*\$D\$6 + E13*\$E\$6 + F13*\$F\$6 + G13*\$G\$6
H14	= B14*\$B\$6 + C14*\$C\$6 + D14*\$D\$6 + E14*\$E\$6 + F14*\$F\$6 + G14*\$G\$6
H15	= B15*\$B\$6 + C15*\$C\$6 + D15*\$D\$6 + E15*\$E\$6 + F15*\$F\$6 + G15*\$G\$6
H16	= B16*\$B\$6 + C16*\$C\$6 + D16*\$D\$6 + E16*\$E\$6 + F16*\$F\$6 + G16*\$G\$6
H17	= B17*\$B\$6 + C17*\$C\$6 + D17*\$D\$6 + E17*\$E\$6 + F17*\$F\$6 + G17*\$G\$6
H18	= B18*\$B\$6 + C18*\$C\$6 + D18*\$D\$6 + E18*\$E\$6 + F18*\$F\$6 + G18*\$G\$6
H19	= B19*\$B\$6 + C19*\$C\$6 + D19*\$D\$6 + E19*\$E\$6 + F19*\$F\$6 + G19*\$G\$6

Fórmulas utilizadas nas células da modelagem do Exemplo 4

A janela com os parâmetros do SOLVER é apresentado na figura 2.17 e a planilha com os resultados é mostrada na figura 2.18.

zennir celula de descrito: 19092	3	Resolver
guala: ເຈັMáx CMín C Células variáveis:	⊻alor de: 0	Fechar
\$B\$6:\$G\$6	🔝 Estimar	
Submeter às restrições:		Opções
H\$11 = I\$11H\$12 >= I\$12	- <u>A</u> dicionar	-
\$H\$13:\$H\$19 <= \$I\$13:\$I\$19	Alterar	Construction of the
		Dedefinir hude
	Excluir	Medennii cudo

Figura 2.17: Janela de entrada dos parâmetros do SOLVER

	A	В	C	D	E	F	G	н	1.1		
1		LCL Investimentos S.A.									
2	1										
3	Função		Co	eficiente	da Variáv	el					
4	Objetivo	P1	P2	P3	P4	P5	P6				
5	1 dilloren and	0,00087	0,00095	0,0012	0,0009	0,0013	0,002				
6	Variáveis	0	25	0	25	25	25				
7	Z=	0,12875									
8											
9	Restrições		Co	eficiente	da Variáv	el			Constantes		
10	Nº	P1	P2	P3	P4	P5	P6	LHS	RHS		
11	1	1	1	1	1	1	1	100	100		
12	2	1	1			1		50	50		
13	3			1		1	1	50	50		
14	4	1						0	25		
15	5		1					25	25		
16	6			1				0	25		
17	7				1			25	25		
18	8					1		25	25		
19	9						18	25	25		

Figura 2.18: Resultados inseridos na planilha para o exemplo da seção 2.2.4

2.2.5Problema da Mistura de Petróleo

Uma refinaria processa vários tipos de petróleo. Cada tipo de petróleo possui uma planilha de custos diferente, expressando, condições de transporte e preços na origem. Por outro lado, cada tipo de petróleo representa uma configuração diferente de subprodutos para a gasolina. Na medida em que certo tipo de petróleo é utilizado na produção da gasolina, é possível a programação das condições de octanagem e outros requisitos. Esses requisitos implicam na classificação do tipo de gasolina obtida.

Supondo que a refinaria trabalhe com uma linha de quatro tipos diferentes de petróleo e deseje produzir as gasolinas amarela, azul e superazul, programar a mistura dos tipos de petróleo atendendo às condições que se seguem nas tabelas a seguir:

Tipo de Petróleo	Quantidade Máxima	Custos por Barril/dia
	Disponível (barril/dia)	(R\$)
1	3.500	19
2	2.200	24
3	4.200	20
4	1.800	17

Quantidade Disponível de Petróleo

Percentuais para Limites de Qualidade das Gasolinas								
Tipo de Gasolina	Especificação	Preço de Venda						
		$(\mathbf{R})/Barril)$						
Superazul	Não mais que 30% de 1	35						
	Não menos que 40% de 2							
	Não mais que 50% de 3							
Azul	Não mais que 30% de 1	28						
	Não menos que 10% de 2							
Amarela	Não mais que 70% de 1	22						

Onde $x_{ij}\equiv$ número de barris de petróleo de tipo
 j~(j~=~1,2,3,4)que serão destinados à produção da gasolina i (i = A-gasolina Amarela, Z-gasolina aZul e S-gasolina Superazul).

O modelo de decisão para este problema é apresentado a seguir:

(a) Função Objetivo:

Maximizar $Q(x) = 3x_{A1} - 2x_{A2} + 2x_{A3} - 5x_{A4} + 9x_{Z1} + 5x_{Z2} + 8x_{Z3} + x_{Z4} + 16x_{S1} + 11x_{S2} + 3x_{S1} + 3x_{S2} + 3x_{S1} + 3x_{S1$ $15x_{S3} + 8x_{S4}$

(b) Restrições Tecnológicas:

- 1) $x_{A1} + x_{Z1} + x_{S1} \le 3.500$
- 2) $x_{A2} + x_{Z2} + x_{S2} \le 2.200$
- 3) $x_{A3} + x_{Z3} + x_{S3} \le 4.200$
- 4) $x_{A4} + x_{Z4} + x_{S4} \le 1.800$
- 5) $0,7x_{S1}-0,3x_{S2}-0,3x_{S3}-0,3x_{S4} \le 0$
- 6) $-0, 4x_{S1} + 0, 6x_{S2} 0, 4x_{S3} 0, 4x_{S4} \ge 0$
- 7) $-0, 5x_{S1} 0, 5x_{S2} + 0, 5x_{S3} 0, 5x_{S4} \le 0$
- 8) $0, 7x_{Z1} 0, 3x_{Z2} 0, 3x_{Z3} 0, 3x_{Z4} \le 0$
- 9) $0,9x_{Z1}-0,1x_{Z2}-0,1x_{Z3}-0,1x_{Z4} \ge 0$
- 10) $0, 3x_{A1} 0, 7x_{A2} 0, 7x_{A3} 0, 7x_{A4} \le 0$
- 11) $x_{A1}, x_{A2}, x_{A3}, x_{A4}, x_{Z1}, x_{Z2}, x_{Z3}, x_{Z4}, x_{S1}, x_{S2}, x_{S3}, x_{S4} \ge 0$

Já definido o problema vamos agora modelá-lo no Excel.

Para resolvermos este PPL, devemos proceder da mesma forma apresentada no exemplo da seção 2.2.1, só que o modelo deve ser parecido com o da figura 2.19.

	A	8	С	D	E	F	G	H	1	J	K	L	M	N	0	P
1							MIS	STUR	A DE	PETR	ÓLEC)				nu.
2	1	(1.000		10000					1		
3		Função					Co	eficiente	da Varia	ivel			_			
4		Objetivo	XA1	XA2	XA3	XA4	X21	XZ2	XZ3	XZ4	XS1	XS2	XS3	XS4		
5			3	-2	2	-5	9	5	8	1	16	11	15	8		
6		Variáveis												1		
7	1	Z=					8								2	
9	-	Restrições	- 0				Co	eficiente	da Varia	ivel						Constantes
10		Nº	XA1	XA2	XA3	XA4	XZ1	XZ2	XZ3	XZ4	XS1	XS2	XS3	X54	LHS	RHS
11		1	1				1				1	1			0	3500
12		2		1				1				1			0	2200
13		3			1				1		1		1		0	4200
14		4				1				1				1	0	1800
15		5									0,7	-0,3	-0,3	-0,3	0	0
16		6									-0,4	0,6	-0,4	-0,4	0	0
17		7									-0,5	-0,5	0,5	-0,5	0	0
18		8				100	0,7	-0,3	-0,3	-0,3	1.000	1.000	10000	1.000	0	0
19		9	- and the			1. Sec. 1.	0,9	-0,1	-0,1	-0,1					0	0
20		10	0,3	-0,7	-0,7	-0,7		1.46.2.2.	1.000						0	0

Figura 2.19: Modelagem do Exemplo da seção 2.2.5 no Excel

A figura 2.19 apresenta uma das possíveis maneiras de representar o PPL em uma planilha do

Excel. Nesta planilha as células a seguir designarão cada uma das entidades:

- C7 irá representar o valor da FO a ser maximizada;
- C6 a N6 representarão os valores que as variáveis de decisão assumirão na solução;
- O11 a O20 irão representar os LHS das 10 restrições;

• P11 a P20 irão representar os RHS das 10 restrições.

As fórmulas utilizadas são apresentadas na tabela a seguir.

	Fórmulas utilizadas nas células da modelagem do Exemplo 5	
,	=C6*C5+D6*D5+E6*E5++M6*M5+N6*N5	

	0 1
C7	$= C6*C5 + D6*D5 + E6*E5 + \ldots + M6*M5 + N6*N5$
P11	= C11*\$C\$6+D11*\$D\$6+E11*\$E\$6++M11*\$M\$6+N11*\$N\$6
P12	$= C12 * C + D12 * D + E12 * E + \dots + M12 * M + N12 * M + N12 * M + N12 * M + M12 * M + M + M12 * M + M + M12 * M + M + M + M + M + M + M + M + M + M$
P13	$\label{eq:constraint} = C13^{\$}C^{$6+D13^{\$}D^{$6+E13^{\$}E^{$6+\ldots+M13^{\$}M^{$6+N13^{\$}N^{$6}}} \\$
P14	$= C14 * SC + D14 * DS6 + E14 * ES6 + \dots + M14 * MS6 + N14 * NS6$
P15	= C15*\$C\$6+D15*\$D\$6+E15*\$E\$6++M15*\$M\$6+N15*\$N\$6
P16	= C16*\$C\$6+D16*\$D\$6+E16*\$E\$6++M16*\$M\$6+N16*\$N\$6
P17	= C17*\$C\$6+D17*\$D\$6+E17*\$E\$6++M17*\$M\$6+N17*\$N\$6
P18	= C18 * \$C\$6 + D18 * \$D\$6 + E18 * \$E\$6 + + M18 * \$M\$6 + N18 * \$N\$6 + N18 * \$N
P19	= C19*\$C\$6+D19*\$D\$6+E19*\$E\$6++M19*\$M\$6+N19*\$N\$6
P20	$= C20^{*}C^{6} + D20^{*}D^{6} + E20^{*}E^{6} + \dots + M20^{*}M^{6} + N20^{*}N^{6}$

A janela com os parâmetros do SOLVER é apresentado na figura 2.20 e a planilha com os resultados é mostrada na figura 2.21.

zerinin celula de descrito:	N	Resolver
guala: ເຈັ <u>M</u> áx C Mí <u>n</u> C Gélulas variáveis:	Valor de: 0	Fechar
\$C\$6:\$N\$6	🔁 Estimar	
Submeter às restrições:		Opções
\$0\$11:\$0\$15 <= \$P\$11:\$P\$15	- <u>A</u> dicionar	8
	Alterar	
totto - totto		- 1 C - 1 - 1
\$0\$19 >= \$P\$19 \$0\$20 <= \$P\$20	Excluir	Redefinir tudo

Figura 2.20: Janela de entrada dos parâmetros do SOLVER

	A B	C	D	E	F	G	H	1	J	K	L	M	N	0	P
1						MIS	STUR	A DE	PETR	ÓLEC)				
2															
3	Função					Co	eficiente	da Varia	ivel						
4	Objetivo	XA1	XA2	XA3	XA4	XZ1	XZ2	XZ3	XZ4	XS1	XS2	XS3	XS4		
5		3	-2	2	-5	9	5	8	1	16	11	15	8		
6	Variáveis	0	0	0	0	1850	0	4200	150	1650	2200	0	1650		
7	Z=		114200						1				1. A 1.		
9	Restrições					Co	eficiente	da Varia	ivel						Constantes
10	Nº	XA1	XA2	XA3	XA4	X21	X22	XZ3	XZ4	XS1	XS2	XS3	XS4	LHS	RHS
11	1	1				1				1				3500	3500
12	2		1				1			1	1			2290	2200
13	3			1				1	·			1		4200	4200
14	4				1	1.1			1				1	1800	1800
15	5									0,7	-0,3	-0,3	-0,3	0	0
16	6					1.0				-0,4	0,6	-0,4	-0,4	0	0
17	7				1					-0,5	-0,5	0,5	-0,5	-2750	0
18	8		1.0		100	0,7	-0,3	-0,3	-0,3	10000		1000	1.000	-10	0
19	9	11 (11 (11 (11 (11 (11 (11 (11 (11 (11			1.4.00	0,9	-0,1	-0,1	-0,1					1230	0
20	10	0,3	-0,7	-0,7	-0,7	Service and						S	1.00	D	0

Figura 2.21: Resultados inseridos na planilha para o exemplo da seção 2.2.5

Capítulo 3

VISUAL XPRESS

3.1 O que é o Visual XPRESS?

O XPRESS-MP, assim como o LINDO, é uma poderosa ferramenta de modelagem e otimização matemática. Para o nosso curso utilizaremos o Visual XPRESS (versão para o Windows do XPRESS-MP) e cuja tela é apresentada na figura 3.1.

Figura 3.1: Tela Inicial do Visual XPRESS

3.2 Exemplos de como Modelar usando o Visual XPRESS

Para familiarizarmos com o uso do Visual XPRESS utilizaremos uma série de exemplos para a fixação de seus principais comandos.

3.2.1 O Problema do Atleta Indeciso

Um jovem atleta indeciso sente-se atraído pala prática de dois esportes: natação e ciclismo. Sabe por experiência que:

A natação exige um gasto em mensalidade do clube e deslocamento até a piscina que pode ser expresso em um custo médio de 3 reais por seção de treinamento de 2 horas.

O ciclismo, mais simples, acaba custando cerca de 2 reais pelo mesmo tempo de prática.

O orçamento do rapaz dispõe de 70 reais para seu treinamento.

Seus afazeres de aluno de graduação na universidade lhe dão liberdade de empregar, no máximo,

18 horas mensais e 80.000 calorias para os esforços físicos.

Cada seção de natação consome 1.500 calorias, enquanto cada etapa ciclística dispende 1.000 calorias. Considerando que o rapaz goste igualmente de ambos os esportes o problema consiste em planejar seu treinamento de forma a maximizar o número de seções de treinamento.

O modelo de decisão para este problema é apresentado a seguir:

Onde x_i é o número de práticas da natação (i = 1) e do ciclismo (i = 2).

max	x_1	+	x_2		
s.a	$3x_1$	+	$2x_2$	\leq	70
	$1.500x_1$	+	$1.000x_2$	\leq	80.000
	$2x_1$	+	$2x_2$	\leq	18
	x_1	,	x_2	\geq	0
	$x_j \in \mathcal{Z}^+$				

Outra forma de representar este PPL é:

$$\max \sum_{\substack{j=1\\n}}^{n} c_j * x_j$$

s.a
$$\sum_{\substack{j=1\\x_j \ge 0}}^{n} a_{ij} * x_j \le b_i \ \forall i = 1, \dots, m$$
$$x_j \ge 0, \ \forall j = 1, 2 \ \mathbf{e} \ x_j \in \mathcal{Z}^+$$

Onde:

n=2; m=3; c=
$$\begin{bmatrix} 1 & 1 \end{bmatrix}$$
; a= $\begin{bmatrix} 3 & 2 \\ 1500 & 1000 \\ 2 & 2 \end{bmatrix}$; b = $\begin{bmatrix} 70 \\ 80.000 \\ 18 \end{bmatrix}$; x = $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
O modelo XPRESS para este exemplo é apresentado na figura 3.2.

Onde:

 $LET \Rightarrow$ Define símbolos que podem ser usados depois no modelo. Aqui estamos definindo o número de variáveis (n) e o número de restrições do tipo \leq (m). $VARIABLES \Rightarrow$ Define variáveis de decisão a serem usadas na especificação modelo. Para o nosso exemplo temos apenas a variável de decisão x e entre parêntesis é definido o número de variáveis a serem utilizadas, neste caso, n.

 $\mathbf{TABLES} \Rightarrow \mathbf{Define}$ as tabelas de dados a serem usadas no modelo. No nosso exemplo usaremos três tabelas de dados: *a* representando a matriz com o coeficiente das restrições, *b* representando o vetor com os termos independentes relativos às restrições e *c* representando o vetor de custos da função objetivo.

 $\mathbf{BOUNDS} \Rightarrow \operatorname{Aqui}$ são especificados os valores pelos quais as variáveis são limitados inferiormente ou superiormente, e também o tipo de variável a ser utilizado (.**UI.** \rightarrow inteiras; .**BV.** \rightarrow binária; .**FR.** \rightarrow variáveis livres). No nosso exemplo, estamos especificando que as variáveis x_1 e x_2 são variáveis inteiras (x(i = 1 : n) .**UI**.).

DATA \Rightarrow Usado para ler, dentro do próprio modelo, valores que serão usados nas tabelas de dados. No nosso exemplo, estamos lendo os valores para as tabelas de dados já especificadas anteriormente (a, b e c). Para a matriz *a* especificamos entre parêntesis o número da linha e depois o número da primeira coluna, a partir da qual serão atribuídos os dados. Ex.: $a(1,1)=3,2 \rightarrow a_{11}=3$ e $a_{12}=2$.

CONSTRAINTS ⇒ Define a função objetivo e as restrições que agem nas variáveis de decisão do modelo. A função objetivo deve ser especificada com o símbolo \$ no final, indicando que aquela especificação é a função objetivo. Para o nosso exemplo temos:

RESTR(i=1:m) : SUM (j=1:n) a(i,j)*x(j) <= b(i)

A especificação das restrições é feita na forma de somatório, onde a matriz com os coeficientes das restrições é multiplicada pelas variáveis de decisão. É importante observar que cada restrição recebe um nome. No exemplo considerado o nome da 1^a restrição é restr(1) e o da 2^a , restr(2).

O mesmo acontece com a função objetivo, só que a multiplicação é do vetor de custos pelas variáveis de decisão, como é mostrado abaixo:

fo: SUM (j=1:n) c(j)*x(j)\$

 $\mathbf{END} \Rightarrow \mathbf{Indica}$ que as especificações do modelo estão completas.

Observação: Para fazer comentários no Visual XPRESS digite ! e logo após o comentário.

Depois de digitado o modelo devemos informar ao Visual XPRESS se o problema é de maximização ou de minimização. O Visual XPRESS considera o problema de minimização como padrão. Caso o problema seja de maximização devemos proceder da seguinte maneira:

 Clique no menu OPTIONS e depois em OPTIMISER, aparecerá uma janela como a mostrada na figura 3.3.

2. Clique com o mouse no campo ressaltado na figura 3.3 para mudar de minimização para maximização e vice-versa.

3. Clique no botão OK para fechar a janela.

Após informado qual é o tipo do problema, vamos agora executar o modelo. Para executá-lo o modelo devemos levar em conta com quais tipos de variáveis estamos trabalhando. Caso haja pelo menos uma variável do tipo inteiro ou binário, devemos clicar em RUN e depois SOLVE GLOBAL para indicar que estamos resolvendo um problema de programação inteira mista. Caso contrário devemos clicar em RUN e depois SOLVE LP, isto é, estamos assumindo que todas as variáveis são contínuas. Depois de solucionado o problema é apresentado uma janela como a mostrada na figura 3.4. Clique no botão OK para fechar a janela.

Após executar o modelo, para visualizarmos o resultado do problema devemos clicar em RUN e depois em VIEW RESULTS. Assim poderemos visualizar a melhor solução obtida para o problema, como mostra a figura 3.5.

Para visualizar o resultado clique duas vezes sobre o campo que se deseja verificar o resultado, na figura 3.6, por exemplo, estamos visualizando os valores para a variável de decisão x_i .

Nos campos SHADOW PRICE e REDUCED COST são informados, respectivamente, os valores duais das restrições e os custos reduzidos das variáveis, isto é, os valores que devem ser abatidos (ou acrescidos) aos custos das variáveis de forma a torná-las atrativas.

3.2.2 O Problema do Sítio

Um sitiante está planejando sua estratégia de plantio para o próximo ano. Por informações obtidas nos órgãos governamentais, sabe que as culturas de trigo, arroz e milho serão as mais rentáveis na próxima safra. Por experiência, sabe que a produtividade de sua terra para as culturas desejadas é a constante na tabela a seguir:

S Visual XPRESS - [C	:\User\Aloi	sioVesqui	sa Oper	acionalV	Bolsa\XI	PRESS\Exempl 🖃 🗖 🔀
Eile Edit Options	Run <u>W</u> indow	Help				- 8 ×
	B 8	000	9/1	60	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	No purchase authorisation found. S
LET n=2						-
LET m=3						-
VARIABLES						
x (n)						
TABLES						
a (m, n)						
b (m)						
cini						
BOUNDS						
x(i=1:n) .	UI.					
DATA						
a(1,1)=	3, 2					
a(2,1) = 13	500, 1000					
a(3,1)=	2. 2					
b= 70, 800	000, 18					
c= 1, 1						
CONSTRAINTS						
RESTR (i=1:	m) : SUM	(j=1:n)	ali,	(f) ** (j)	<= b1	1)
fo:	SUM	(j=1:n)	e (1)	x (1) 1	1.00.000	040
END						
						-
1 C	1					•
IP Optimal				MAX	(Ln 1, C	ol 1

Figura 3.2: Modelo XPRESS para o exemplo da seção 3.2.1

ptimiser Options		
Algorithm	Sense	
Primal Simplex	• •	
	MAX	Cancel
Presolve	_	Defaults
Presolve	•	
Advanced	Barrier	Help

Figura 3.3: Janela de definição do tipo de problema

Statistics				
Rows: 4		Columns: 104	Non-Zeroes: 8	
Entities: 2		Sets: 0	Set Members: 0	
Branch and Boun	d			
Node:	1	Active Nodes: 0	Best Bound: 9	
Solution(s):	1	Best Solution: 9	at node: 1	
Status				
Search Comple	ete - in	teger solutions found		

Figura 3.4: Janela com a solução do problema

Cultura	Produtividade em kg por m^2	Lucro por kg de Produção
	$(experi{\hat{e}}ncia)$	(Informações do Governo)
Trigo	0,2	10,80 centavos
Arroz	0,3	4,20 centavos
Milho	0,4	2,03 centavos

Por falta de um local de armazenamento próprio, a produção máxima, em toneladas, está limitada a 60. A área cultivável do sítio é de $200.000m^2$. Para atender as demandas de seu próprio sítio, é imperativo que se plante $400m^2$ de trigo, $800m^2$ de arroz e $10.000m^2$ de milho.

O modelo de decisão para este problema é apresentado a seguir:

\max	$2,16x_{T}$	+	$1,26x_A$	+	$0,812x_M$		
s.a	x_T					\geq	400
			x_A			\geq	800
					x_M	\geq	10.000
	x_T	+	x_A	+	x_M	\leq	200.000
	$0, 2x_T$	+	$0, 3x_A$	+	$0, 4x_M$	\leq	10.000
	x_T	,	x_A	,	x_M	\geq	0

Onde x_i é a quantidade de unidades de área a serem plantadas na cultura do tipo i = (T-trigo, A-arroz e M-milho).

Os coeficientes da função objetivo deverão ser calculados multiplicando-se a produtividade por quilo pelo lucro previsto para cada quilo. O resultado do coeficiente será uma unidade monetária, no caso, o centavo.

Outra forma de representar este PPL é:

$$\max \sum_{\substack{j=1 \\ n}}^{n} c_j * x_j$$

s.a
$$\sum_{\substack{j=1 \\ n}}^{n} a_{ij} * x_j \le b_i \; \forall i = 1, 2$$
$$x_1 \ge 400$$
$$x_2 \ge 800$$
$$x_3 \ge 10.000$$
$$x_j \ge 0 \;, \forall j = 1, 2, 3$$

Observação: Vamos considerar para este exemplo que $x_1 = x_T$, $x_2 = x_A$ e $x_3 = x_M$. Onde:

n=3; c=[2,16 1,26 0,812]; a=
$$\begin{bmatrix} 1 & 1 & 1 \\ 0,2 & 0,3 & 0,4 \end{bmatrix}$$
; b= $\begin{bmatrix} 200.000 \\ 10.000 \end{bmatrix}$; x= $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$.

O modelo XPRESS para este exemplo é apresentado na figura 3.7.

As diferenças deste exemplo para o exemplo anterior são:

1. O campo BOUNDS contém os valores nas quais as variáveis x_1 , x_2 e x_3 são limitadas inferiormente. Note que entre parêntesis está o índice da variável.

2. A matriz de restrições *a* é lida em um arquivo chamado "a.dat", já digitado anteriormente contendo os valores desta matriz. Ele é lido pelo comando DISKDATA (ler tabela de dados

Problem Statistics:	Rows: 1	Columns: 104	Non-Zeroes: 2
Global Statistics:	Entities: 2	Sets: 0	Set Members: 0
Solution Summary:	Iterations: N/A	Objective Value: 9	
Tables:	Variables:	Constraints:	
a b c	8	fo RESTR	
m			Copy Result

Figura 3.5: Janela mostrando a melhor solução do problema

Figura 3.6: Janela com os valores para a variável de decisão x_i

🖏 Visual XPRESS - [C:\User\Aloisio\Pesquisa	Operacional\Bolsa\XPRESS\Exemplos 🖃 🗖 🔀
File Edit Options Run Window Help	- 8 ×
	/ C 🕲 🖼 No purchase authorisation found. Str
LET n=3	_
LET m=2	-
VARIABLES	
x (n)	
TABLES	
a (m, n)	
b (m)	
c (n)	
BOUNDS	
x(1) >= 400	
x(2) >= 800	
x(3) >=10000	
DATA	
b= 200000 , 10000	
c= 2.16 , 1.26, 0.812	
DISKDATA	
a-a.dat	
CONSTRAINTS	
RESTR(i=1:m) : SUM (j=1:n) a	(i,j)*x(j) <= b(i)
fo: SUN (j=1:n) c	(j) ** (j) \$
END	
11	, Č
LP Optimal	MAX Ln 17, Col 12

Figura 3.7: Modelo XPRESS para o exemplo da seção 3.2.2

armazenadas em arquivos no formato texto) e não pelo comando DATA como foi visto no exemplo anterior.

NOTA: Se o arquivo de dados a ser lido não está armazenado no mesmo diretório (pasta) do modelo do XPRESS além do nome do arquivo deve ser informado também o caminho indicando em que local do computador ele se encontra. Ex.: a=a:\a.dat (arquivo armazenado no disquete) ou c:\Teste\a.dat (arquivo armazenado no diretório teste no computador).

O arquivo que contém a matriz de restrições deve ser igual ao mostrado na figura 3.8, ele pode ser digitado em qualquer processador de texto simples, como o Bloco de Notas (NotePad) do Windows, no formato texto.

Figura 3.8: Arquivo contendo a matriz de restrições

Para executar o modelo e visualizar o resultado, proceda como foi descrito no exemplo da seção 3.2.1.

3.2.3 STAFF SCHEDULING (Escala de Funcionários)

Uma empresa necessita da segunite quantidade mínima de funcionários por dia:

Dia	SEG	TER	QUA	QUI	SEX	SAB	DOM
Funcionários Requeridos	20	20	13	10	12	16	18

Cada funcionário trabalha 5 dias consecutivos e tem 2 dias de folga e pode começar em qualquer dia da semana.

Cada funcionário recebe \$300,00 por semana. Se trabalhar aos sábados recebe em extra de \$25,00 e se for aos domingos um extra de \$35,00.

Faça uma escala de funcionários de forma a minimizar o gasto com pessoal.

O modelo de decisão para este problema é apresentado a seguir:

Onde x_i é a quantidade de funcionários necessários para iniciar o trabalho no dia i = (1 = DOM;

2=SEG; 3=TER; 4=QUA; 5=QUI; 6=SEX; 7=SAB).

\min	$335x_1$	$+ 300x_2$	$+ 325x_3$	$+ 360x_4$	$+ 360x_5$	$+ 360x_6$	$+ 360x_7$		
s.a	x_1			$+ x_4$	$+ x_5$	$+ x_{6}$	$+ x_7$	\geq	20
	x_1	$+ x_2$			$+ x_5$	$+ x_{6}$	$+ x_7$	\geq	20
	x_1	$+ x_2$	$+ x_3$			$+ x_{6}$	$+ x_7$	\geq	13
	x_1	$+ x_2$	$+ x_3$	$+ x_4$			$+ x_7$	\geq	10
	x_1	$+ x_2$	$+ x_3$	$+ x_4$	$+ x_5$			\geq	12
		x_2	$+ x_3$	$+ x_4$	$+ x_5$	$+ x_{6}$		\geq	11
			x_3	$+ x_4$	$+ x_5$	$+ x_{6}$	$+ x_7$	\geq	18
	x_1 ,	x_2 ,	x_3 ,	x_4 ,	x_5 ,	x_6 ,	x_7	\geq	0
	$x_j \in \mathcal{Z}^-$	F							

Outra forma de representar este PPL é:

min
$$\sum_{j=1}^{n} c_j * x_j$$

s.a
$$\sum_{j=1}^{n} a_{ij} * x_j \ge b_i \quad \forall i = 1, \dots, m$$
$$x_j \ge 0 , \quad \forall j = 1, 2, \dots, 7 \in x_j \in \mathbb{Z}^+$$

Onde:

$$\begin{array}{c} \mathbf{n} = 7; \ \mathbf{m} = 7; \ \mathbf{c} = \begin{bmatrix} 335 & 300 & 325 & 360 & 360 & 360 & 360 \end{bmatrix}; \\ \\ \mathbf{a} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}; \ \mathbf{b} = \begin{bmatrix} 20 & 20 & 13 & 10 & 12 & 16 & 18 \end{bmatrix}^{t}; \\ \mathbf{x} = \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} \end{bmatrix}^{t}.$$

O modelo XPRESS para este exemplo é apresentado na figura 3.9.

Neste exemplo todas as tabelas de dados são lidas através de arquivos armazenados no computador, inclusive os parâmetros que definem as dimensões do problema.

O arquivo contendo a matriz de restrições pode ser digitada como foi mostrada no exemplo anterior. O vetor de termos independentes das restrições (b) e o vetor de custos (c) deve ser digitado como mostra a figura 3.10, utilizando o Bloco de Notas ou outro processador de textos ASCII.

3.2.4 O Problema de Escalonamento de Motoristas

Um gerente de uma empresa de transporte urbano deseja determinar o escalonamento de seus motoristas. Para isto ele divide o dia em 6 períodos de 4 horas. Cada motorista trabalha no máximo 8 horas. A tabela a seguir mostra o número mínimo de motoristas que devem estar presentes em cada horário.

Horário	23-3	3-7	7-11	11 - 15	15 - 19	19-23
Motoristas	15	30	26	32	30	19
Custos	120	110	100	100	100	110

Figura 3.9: Modelo XPRESS para o exemplo da seção 3.2.3

🍺 b.dat - Bloco de notas 🖃 🗖 🔀	🍺 c.dat - Bloco de notas 🖃 🗖 🔀	🍺 parametros.dat - Bloc 🖃 🗖 🔯
Arquivo Editar Eormatar Egibir Ajuda 20 23 13 10 12 11 18	Arquivo Editar Eormatar Egibir Ajuda 335 300 325 360 360 360 360	Arquivo Editar Eormatar Exibir Ajuda
XI DI	<u>×</u>	

Figura 3.10: Arquivos contendo o vetor de restrições(b) e o vetor de custos(c) e os parâmteros

Como o gerente deve escalar os motoristas, minimizando os custos?

O modelo de decisão para este problema é apresentado a seguir, onde x_i é a quantidade de motoristas necessários para iniciar o trabalho no horário i = (23, 3, 7, 11, 15, 19).

 $+ 110x_3 + 100x_7 + 100x_{11} + 100x_{15}$ $120x_{23}$ $+ 110x_{19}$ \min 15s.a x_{23} $+ x_{19}$ 30 x_{23} $+ x_{3}$ x_3 $+ x_{7}$ 2632 x_7 $+ x_{11}$ 30 x_{11} $+ x_{15}$ 19 x_{15} $+ x_{19}$ > x_{11} , x_{19} 0 x_{23} , x_3 , x_7 , x_{15} , $x_i \in \mathcal{Z}^+$

Consideraremos para este exemplo que: $x_{23} = x_1$, $x_3 = x_2$, $x_7 = x_3$, $x_{11} = x_4$, $x_{15} = x_5$ e $x_{19} = x_6$.

Outra forma de representar este PPL é:

$$\begin{array}{ll} \min & \displaystyle \sum_{j=1}^{n} c_{j} \ast x_{j} \\ \text{s.a} & \displaystyle \sum_{j=1}^{n} a_{ij} \ast x_{j} \geq b_{i} \; \forall i = 1, \dots, m \\ & \displaystyle x_{j} \geq 0 \;, \; \forall j = 1, 2, \dots, 6 \; \text{e} \; x_{j} \in \mathcal{Z}^{+} \end{array}$$

Onde:

$$\begin{array}{l} \mathbf{n} = 6; \ \mathbf{m} = 6; \ \mathbf{c} = \begin{bmatrix} 120 & 110 & 100 & 100 & 110 \end{bmatrix}; \\ \mathbf{a} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}; \\ \mathbf{b} = \begin{bmatrix} 15 & 30 & 26 & 32 & 30 & 19 \end{bmatrix}^{t}; \ \mathbf{x} = \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \end{bmatrix}^{t} \end{array}$$

O modelo XPRESS para este exemplo é apresentado na figura 3.11.

Neste exemplo a matriz de restrição é uma matriz esparsa, ou seja, muitos de seu valores são iguais a zero. O Visual XPRESS permite ler este formato de dados de uma maneira muito simples através do comando **DISKDATA** -s. O arquivo a ser lido deve ser colocado no formato mostrado na figura 3.12. O 1° índice deve representar o número da linha i, o 2° o número da coluna j e o 3° o valor a_{ij} .

3.2.5 O Problema da Mochila

Dado n objetos, cada qual com um peso w_i e importância p_i , alocá-los em uma mochila de capacidade b maximizando a importância dos objetos colocados. Assumi-se que há apenas uma unidade de cada objeto.

Figura 3.11: Modelo XPRESS para o exemplo da seção 3.2.4

📕 a.da	t - Blo	co de not	as	- 0	×
Arquivo	Editar	Eormatar	Exibir	Ajuda	
1,1,1 1,6,1 2,2,2,1 3,3,1 4,4,1 5,5,1 6,6,1					*
5				>	100

Figura 3.12: Arquivo contendo a matriz esparsa usada no exemplo da seção 3.2.4

A modelagem deste PPL é apresentado a seguir:

$${
m Seja} \; x_i = egin{cases} 1; & {
m se \ o \ objeto \ i \ e \ alocado \ na \ mochila,} \ 0; & {
m caso \ contrário.} \end{cases}$$

$$\max \sum_{\substack{i=1\\n}}^{n} p_i * x_i$$

s.a
$$\sum_{\substack{i=1\\x_j \in \{0,1\}}}^{n} \forall i = 1, ..., n$$

Para este problema da mochila vamos considerar a seguinte tabela de dados:

Objeto (x_i)	1	2	3	4	5	6	7	8	9	10
Peso (w_i) (em kg)	2	3	3	2	4	5	2	2	3	3
Importância (p_i)	1	1	4	2	3	4	1	2	5	4

Capacidade da mochila (b) = 20 kg

O modelo XPRESS para este exemplo é apresentado na figura 3.13.

Figura 3.13: Modelo XPRESS para o exemplo da seção 3.2.5

Uma diferença deste problema para os anteriores é que aqui estamos trabalhando com variáveis binárias. Para informar este fato ao Visual XPRESS basta introduzir a seção BOUNDS com o comando x(i=1:n).BV. onde .BV. significa "Binary Value".

3.2.6 Problema da Liga de Ferro

Uma liga especial constituída de ferro, carvão, silício e níquel pode ser obtida usando a mistura desses minerais puros além de 2 tipos de materiais recuperados:

Material Recuperado 1(MR1): Composição: 60% de ferro, 20% de carvão e 20% de silício. Custo por Kg: \$0,20.

Material Recuperado 2(MR2): Composição: 70% de ferro, 20% de carvão 5% de silício e 5% de níquel. Custo por Kg: \$0,25.

A liga deve ter a seguinte composição final:

Matéria Prima	% Mínima	% Máxima
Ferro	60	65
Carvão	15	20
Silício	15	20
Níquel	5	8

O custo dos materiais puros são (por Kg): ferro: \$0,30; carvão: \$0,20; silício: \$0,28; níquel: \$0,50. Deseja-se produzir 1000 Kg desta liga. Qual deve ser a composição da mistura em termos dos materiais disponíveis, com menor custo por Kg?

O modelo de decisão para este problema é apresentado a seguir:

on	de x_i é	a quantidad	le de materia	al i = $\begin{cases} 1 = \\ 2 = \\ 3 = \\ 4 = \\ 5 = \end{cases}$	ferro carvão silício níquel MR1	n Kg a ser u	tilizado na n	nistu	ra.
				6 =	MR2				
	min	$0,30x_1$	$+0,20x_{2}$	$+0,28x_3$	$+0.50x_{4}$	$+0,20x_{5}$	$+0,25x_{6}$		
	s.a	$0,40x_{1}$	$-0,60x_{2}$	$-0,60x_3$	$-0,60x_4$. , 0	$+0,10x_{6}$	\geq	0
		$0,35x_{1}$	$-0,60x_2$	$-0,65x_3$	$-0,65x_4$	$-0,05x_5$	$+0,05x_{6}$	\leq	0
		$-0,15x_1$	$+0,85x_{2}$	$-0,15x_3$	$-0,15x_4$	$+0,05x_{5}$	$+0,05x_{6}$	\geq	0
		$-0,20x_1$	$+0,80x_{2}$	$-0,20x_3$	$-0,20x_4$			\leq	0
		$-0,15x_1$	$-0,15x_2$	$+0,85x_{3}$	$-0,15x_4$	$+ 0,05x_5$	$-0,10x_{6}$	\geq	0
		$-0,20x_1$	$-0,20x_2$	$+0,80x_{3}$	$-0,20x_4$		$-0,15x_{6}$	\leq	0
		$-0,05x_1$	$-0,05x_2$	$-0,05x_3$	$+ 0,95x_4$	$-0,05x_5$		\geq	0
		$-0,08x_1$	$-0,08x_2$	$-0,08x_3$	$+0,92x_4$	$-0,08x_5$	$-0,03x_{6}$	\leq	0
		x_1	$+ x_2$	$+ x_3$	$+ x_4$	$+ x_5$	$+ x_{6}$	=	1000
		x_1 ,	x_2 ,	x_3 ,	x_4 ,	x_5 ,	x_6	\geq	0

Outra forma de representar este PPL é:

min
$$\sum_{j=1}^{n} c_j * x_j$$

s.a
$$\sum_{j=1}^{n} a_{ij} * x_j \ge 0 \quad \forall i = 1, \dots, m1$$
$$\sum_{j=1}^{n} b_{ij} * x_j \le 0 \quad \forall i = 1, \dots, m2$$
$$\sum_{j=1}^{n} x_j = 1000$$
$$x_j \ge 0 , \quad \forall j = 1, \dots, 6$$

Onde:

Neste exemplo, informamos três parâmetros. O primeiro (n) informa o número de variáveis, o segundo(m1) o número de restrições do tipo \geq e o terceiro(m2) o número de restrições do tipo \leq . O restante é idêntico aos demais problemas.

Figura 3.14: Modelo XPRESS para o exemplo da seção 3.2.6

Capítulo 4 LINGO

4.1 O que é o LINGO?

O LINGO é uma ferramenta simples para utilizar o poder da otimização linear ou não-linear para formular problemas grandes concisamente, resolvê-los e analisar a solução.

Neste curso aprenderemos algumas noções básicas de utilização deste poderoso software, trabalheremos com modelos simples e modelos comlexos, onde a leitura dos dados poderá ser feita diretamente no LINGO ou num arquivo do bloco de notas e até mesmo em uma planilha do Excel.

4.2 Exemplos de como Modelar usando o LINGO

Para familiarizarmos com o uso do LINGO utilizaremos uma série de exemplos para a fixação de seus principais comandos.

4.2.1 Problema da Otimização de Padrões de Produção

Uma determinada fábrica produz panelas de metal médias e grandes a partir de elementos circulares de diâmetros circulares de 0,25 e 0,40 metros, respectivamente. A primeira operação para obter as panelas é um corte desses elementos circulares sobre chapas de dimensão de 1,40 x 0,50 metros. Os elementos planos circulares são transformados em panelas em uma segunda operação de estamparia. Para o corte existem quatro tipo de matrizes conforme mostra a figura 4.1. A fábrica deseja uma produção diária mínima de 500 panelas médias (obtidas do elemento circular 0,25) e 350 grandes (obtidas do elemento circular de diâmetro 0,40). Os custos em reais por chapa pelo uso de cada matriz de corte são respectivamente: 1,2,3,2. Elaborar o modelo de Programação Linear que planeje a produção de modo a minimizar o custo com o uso de chapas.

Seja x_i a quantidade de chapas cortadas de acordo com a matriz, i = 1, ..., 4 a serem utilizadas na produção.

O modelo de decisão do problema é dado a seguir.

min	x_1	+	x_2	+	x_3	+	x_4		
s.a	$8x_1$	+	$4x_2$	+	$2x_3$			\geq	500
			x_2	+	$2x_3$	+	$3x_4$	\geq	350
	$x_i \ge$	$0, \forall$	i = 1,	.,4 e	$x_j \in$	\mathcal{Z}^+			

Outra forma de representar o modelo de decisão deste problema é:

$$\begin{array}{c} \min & \sum_{j=1}^{n} c_{j} * x_{j} \\ \text{s.a} & \sum_{\substack{j=1 \\ n}}^{n} a_{ij} * x_{j} \ge b_{i} \; \forall i = 1, 2 \\ & x_{j} \ge 0 \;, \; \forall j = 1, \dots, 4 \; \text{e} \; x_{j} \in \mathcal{Z}^{+} \end{array}$$

onde: n=4; c=
$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 2 \end{bmatrix}$$
; a=
$$\begin{bmatrix} 8 & 4 & 2 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$
; b=
$$\begin{bmatrix} 500 \\ 350 \end{bmatrix}$$
 e x=
$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} .$$

Para este exemplo, usaremos uma modelagem simples, parecida muito com a modelagem utilizada pelo LINDO.

Primeiramente devemos abrir o LINGO, depois de aberto o LINGO mostrará uma tela em branco, parecida com o da figura 4.2 onde será digitado o modelo.

Um modelo LINGO é muito parecido com o LINDO, conforme podemos observar através da figura 4.3.

Aqui neste modelo estamos declarando a Função-Objetivo (FO) a qual deve ser minimizada, daí o comando MIN. Caso este PPL fosse de maximização o comando a acompanhar a FO deveria ser o comando MAX. Nas duas linhas abaixo estão sendo declaradas as restrições do problema. Note que no final de cada comando devemos colocar ";". Não há necessidade de digitar END ao final do modelo. As quatro últimas linhas estão informando ao LINGO que as variáveis são do tipo inteiro, o que é feito através do comando @GIN(nome da variável). Os tipos de variáveis que podem ser usadas com o LINGO são apresentadas na tabela a seguir. Vale lembrar que os nomes das variáveis têm que ser iniciados por letras e podem ser seguidos por qualquer caracter alfanumérico.

Observação:

1. Caso queira fazer algum comentário basta digitar "!"seguido do comentário.

2. Você pode dar nome às linhas das restrições, para isto, basta digitar o nome da restrição entre colchetes. Ex.: [Rest1]

Figura 4.1: Padrões de Corte para o exemplo da seção 4.2.1

LINGO - [LINGO Model - LINGO2]	_ 🗆 🛛
File Edit LINGO Window Help	- 8 ×
For Help, press F1	NUM

Figura 4.2: Tela Inicial do LINGO

Figura 4.3: Modelo LINGO para o exemplo da seção 4.2.1

COMANDO	EXPLICAÇÃO
@GIN(VAR)	usado para designar variáveis inteiras
@BIN(VAR)	usado para designar variáveis binárias
@FREE(VAR)	usado para designar que a variável é livre
@BND(LI,VAR,LS)	usado para designar os valores pelos quais a variável VAR é
	limitada inferiormente e superiormente. Aqui temos que LI
	é valor mínimo da variável e LS é o valor máximo, ou seja,
	$ $ LI \leq VAR \leq LS.

No nosso exemplo todas as variáveis são inteiras, daí a necessidades da inclusão das últimas quatro linhas ao modelo. Agora só falta resolvê-lo, para isto basta clicar no menu "LINGO" e logo em seguida em "SOLVE", ou simplesmente clique no botão "SOLVE" na barra de ferramentas. Se tudo estiver digitado corretamente aparecerá uma janela como a mostrada na figura 4.4.

/ariables		Constraints	
Total	4	Totak	0
Nonlinear:	0	Nonlinear	
Integers:	4	Noninear.	
Optimizer Status		Nonzeros	
State: Globa	1 Optimum	Total	10
Objective:	180	Nonlinear	0
Infeasibility:	0	Generator Memory U	sed (K)
Iterations:	6	1	}
Branches:	1		
Best IP:	180	- Elapsed Runtime (hh	(mm:ss) —
IP Bound:	180	00:00:0	01

Figura 4.4: Janela de Resultados do LINGO

Clique no botão "CLOSE" para fechar esta janela, aparecerá na tela uma janela com os resultados do problema obtidos pelo LINGO, conforme pode ser observado na figura 4.5.

Em um relatório de solução do LINGO você encontrará uma parte denominada REDUCED COST (custo reduzido) para cada variável do problema. Ela pode ser interpretada da seguinte maneira:

O custo reduzido de uma variável do tipo real pode ser interpretado como a quantia de penalidade (positiva ou negativa, dependendo do problema) que você teria que pagar para introduzir uma unidade daquela variável na solução. No nosso exemplo, a variável x2 (caso ela fosse do tipo real) teria como custo reduzido 1, significando que se diminuirmos uma unidade do coeficiente da variável na FO, seu uso se tornaria interessante.

Já a coluna SLACK or SURPLUS, indica o excesso em restrições do tipo \geq ou a folga em

restrições do tipo \leq . No nosso exemplo podemos observar que temos uma folga de 4 unidades na 1^a restrição e 1 unidade na 2^a restrição.

A coluna DUAL PRICE pode ser interpretada como a quantia pela qual a função objetivo FO melhoraria (pioraria) quando o lado direito das restrições (constantes) é aumentado (diminuído) em uma unidade. Ele também pode ser entendido como o que estamos dispostos a pagar por unidades adicionais de um recurso. Por isto ele também é chamado de SHADOW PRICE. Essas informações, no entanto, só tem sentido se as variáveis envolvidas no modelo forem do tipo real e essa análise tem validade apenas em um certo intervalo de variação das restrições (vide final da seção 4.2.3 sobre como proceder para fazer esta análise).

4.2.2 Problema da Agência de Propaganda

Uma agência de propaganda planeja uma campanha de publicidade em três meios de comunicação: televisão, rádio e revistas. O propósito da propaganda é de alcançar tantos "fregueses em potencial"quanto possível. Os resultados de um estudo de mercado estão no quadro a seguir:

Meios de Comunicação \	T	V		
Itens	Horário	Horário	Rádio	$\mathbf{Revistas}$
	Comum	Nobre		
Custo de uma unidade	40.000	75.000	30.000	15.000
de propaganda				
n^o de fregueses em poten-				
cial alcnçados por	400.000	900.000	500.000	200.000
unidade de propaganda				
n^o de fregueses do sexo				
feminino alcançados	300.000	400.000	200.000	100.000
por unidade de propaganda				

A empresa que encomendou a campanha não quer gastar mais que \$800.000 com propaganda. Além disso, requer:

- a) que pelo menos 2 milhões de pessoas alcançadas sejam do sexo feminino;
- b) que a propaganda vinculada pela TV seja limitada a um custo de \$500.000;
- c) que pelo menos 3 unidades de propaganda sejam vinculadas no horário comum e pelo menos 2 durante horário nobre;
- d) que o número de unidades de propaganda no rádio e na revista fique individualmente entre 5 e 10.

A modelagem para este PPL é apresentada a seguir:

max	$400.000x_1$	+	$900.000x_2$	+	$500.000x_3$	+	$200.000x_4$		
s.a	$40.000x_1$	+	$75.000x_2$	+	$30.000x_3$	+	$15.000x_4$	\leq	800.000
	$300.000x_1$	+	$400.000x_2$	+	$200.000x_3$	+	$100.000x_4$	\geq	2.000.000
	$40.000x_1$	+	$75.000x_2$					\leq	500.000
	$x_1 \ge 3$;	$x_2 \ge 2$;	$5 \le x_3 \le 10$;	$5 \le x_4 \le 10$		
	$x_j \ge 0, \forall j$	=1,	$., 4 \in x_i \in \mathcal{Z}$	+					

Onde $x_j \equiv$ número de unidades de propaganda a serem veiculadas no meio de comunicação j=(1: horário comum na TV; 2: horário nobre na TV; 3: rádio; 4: revista).

Outra forma de representar o modelo de decisão deste problema é:

$$\begin{array}{c} \max & \sum_{j=1}^{n} c_{j} * x_{j} \\ \text{s.a} & \sum_{j=1}^{n} a_{ij} * x_{j} \leq b_{i} \; \forall i = 1, 2 \\ & \sum_{j=1}^{n} d_{j} * x_{j} \geq 2.000.000 \\ & x_{1} \geq 3 \; ; \; x_{2} \geq 2 \; ; \; 5 \leq x_{3} \leq 10 \; ; \; 5 \leq x_{4} \leq 10 \\ & x_{j} \geq 0 \; , \; \forall j = 1, \dots, 4 \; e \; x_{j} \in \mathbb{Z}^{+} \end{array} \right)$$
onde: n=4; c=
$$\begin{bmatrix} 400.000 \\ 900.000 \\ 500.000 \\ 200.000 \end{bmatrix} ; a = \begin{bmatrix} 40.000 & 75.000 & 30.000 & 15.000 \\ 40.000 & 75.000 & 0 & 0 \end{bmatrix} ; b = \begin{bmatrix} 800.000 \\ 500.000 \\ 200.000 \end{bmatrix} d = \begin{bmatrix} 300.000 \\ 400.000 \\ 200.000 \\ 100.000 \end{bmatrix} e x = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} .$$

Para modelarmos este PPL no LINGO, usaremos uma forma diferente da proposta no exemplo anterior. Usaremos neste problema o conceito de SETS (grupos de objetos relacionados) que normalmente são utilizados em problemas de grande porte. Em um modelo LINGO, uma seção SETS é definida da seguinte forma:

SETS:

setname [/ member_list /] [: variable_list];

ENDSETS

onde:

setname \Rightarrow é o nome que você escolhe para designar o grupo de objetos.

 $[/{\rm member_list}/] \Rightarrow$ lista de membros que constituem o grupo de objetos.

rabola de chemples de insta de membres de um Stape de objetes								
Lista de Membros	Exemplo	Membros do grupo						
na forma implícita								
1n	15	1, 2, 3, 4, 5						
StringMStringN	TR3TR204	TR3, TR4,,TR204						
dayMdayN	MONFRI	MON,TUE,WED,THU,FRI						
monthMmonthN	OCTJAN	OCT, NOV,DEC,JAN						
monthYearMmonthYearN	OCT2001DEZ2001	OCT2001,NOV2001,DEC2001						

Tabela de exemplos de lista de membros de um grupo de objetos

 $[:variable_list] \Rightarrow$ lista de variáveis (ou constantes) que tem as mesmas características do grupo de objetos. Quando há mais de uma variável (ou constante), elas devem ser separadas por vírgula.

Observação: os colchetes indicam que essas informações são opcionais.

Exemplo:

v1 / 1..4 /: x, C, D ;

Neste exemplo estamos definindo um grupo de objetos com nome v1, cujos membros são 1, 2, 3 e 4. x, C e D são variáveis (ou constantes) que têm esses membros em seu domínio de definição $(x(1), \dots, x(4), C(1), \dots, C(4), D(1), \dots, D(4)).$

Um grupo de objetos também pode ser derivado de outros grupos, como é o caso do exemplo abaixo, onde temos o grupo Matriz que depende dos grupos v1 e v2 e A é uma constante (no caso, uma matriz) que tem como domínio o conjunto dos membros dos grupos anteriores(A(1,1),A(1,2),...).

matriz(v2, v1): A;

Observação: Um SET pode ser entendido, fazendo uma analogia com a linguagem PASCAL, como uma estrutura de dados do tipo vetor (SETS simples) ou matriz (SETS derivado), onde cada posição é um membro do grupo de objetos.

Também usaremos os comando @SUM e @FOR, que são utilizados em conjunto com os grupos de objetos definidos na seção SETS. @SUM é utilizado para calcular um somatório e @FOR é um comando de repetição.

Usaremos também a seção DATA para ler os valores das constantes definidas na seção SETS.

Exemplos dos comandos @FOR e @SUM e da seção DATA são mostrados na figura 4.6, onde é apresentado a modelagem LINGO para este PPL.

Vale notar que as variáveis x1 e x2 são limitadas apenas inferiormente. Neste caso, o limite superior é representado por um número arbitrariamente grande, por exemplo, 1E19 (1×10^{19}) .

Para resolver o problema procede-se da mesma forma do exemplo da seção 4.2.1.

4.2.3 Problema da Carteira de Investimento

Um investidor possui \$18.000 e tem a sua disposição três opções para aplicar seu capital, além de deixá-lo, todo ou em parte, no banco, rendendo 6% ao ano.

ALTERNATIVA 1: Comprar um lote de ações cujo preço unitário é de \$4,50 e cuja rentabilidade anual esperada é de 47%.

ALTERNATIVA 2: Comprar letras de câmbio cujo preço unitário é \$3,00 e cuja rentabilidade

LINGO - [Solution Report - Padroes]		
Eile Edit LINGO Window Help		- 8 ×
		9 EB 2 NO
Global optimal solution found at	step:	6
Objective value:	180.0000	0
Branch count:	1	1
Variable	Value	Reduced Cost
X1	63.00000	1.000000
X2	0.000000	1.000000
X3	0.0000000	1.000000
X4	117.0000	1.000000
Row	Slack or Surplus	Dual Price
1	180.0000	0.000000
2	4.000000	0.0000000
3	1.000000	0.000000
For Help, press F1	NUM	Ln 1, Col 1 3:19p /

Figura 4.5: Relatório de Solução do LINGO para o Exemplo da seção 4.2.1

Figura 4.6: Modelo LINGO para o exemplo da seção 4.2.2

anual é de 32%.

ALTERNATIVA 3: Comprar Obrigações do Tesouro, cujo preço unitário é \$1,50 e cuja rentabilidade anual é de 8%.

Supondo que o investidor não desaja adquirir mais do que 1.750 ações e/ou letras de câmbio; que seu corretor só possa conseguir até 1.000 ações e 1.500 letras de câmbio; que o investidor queira - por medida de segurança quanto à liquidez - deixar, pelo menos, \$2.000 no banco; que o investimento feito em obrigações do Tesouro não ultrapasse 1,7 vezes o depósito deixado no banco, que quantidades o investidor deve alocar a cada alternativa, considerando que o seu objetivo é maximizar o seu capital no fim do ano? Formule um modelo de Programação Linear para responder esta pergunta.

A modelagem para este PPL é apresentada a seguir:

max	$6,62x_1$	+	$3,96x_2$	+	$1,62x_3$	+	$1,06x_4$		
s.a	$4,50x_1$	+	$3,00x_2$	+	$1,50x_{3}$	+	x_4	=	18.000
							x_4	\geq	2.000
	$2, 12x_1$	+	$0,96x_2$	+	$0, 12x_3$	_	$0,06x_4$	\geq	0
	x_1	+	x_2					\leq	1.750
	x_1							\leq	1.000
			x_2					\leq	1.500
	$7,65x_1$	+	$5,10x_2$	+	$4,05x_{3}$			\leq	30.600
	$x_j \ge 0,$	$\forall j = 1$	$1, \dots, 4$						

Onde $x_4 \equiv$ total deixado no banco e $x_j \equiv$ número de opções do tipo j=(1: ações; 2: letras de câmbio; 3: obrigações do tesouro).

Outra forma de representar o modelo de decisão deste problema é:

$$\begin{array}{c} \max & \sum_{j=1}^{n} c_j \ast x_j \\ \text{s.a} & \sum_{j=1}^{n} a_j \ast x_j = 18.000 \\ & \sum_{j=1}^{n} b_j \ast x_j \ge 0 \\ & \sum_{j=1}^{n} d_{ij} \ast x_j \le e_i \ \forall i = 1, 2 \\ & x_1 \le 1.000, \ x_2 \le 1.500, \ x_4 \ge 2.000 \\ & x_j \ge 0, \ \forall j = 1, \dots, 4 \end{array}$$

onde: n=4; c=
$$\begin{bmatrix} 6, 62 \\ 3, 96 \\ 1, 62 \\ 1, 06 \end{bmatrix}$$
; a=
$$\begin{bmatrix} 4, 50 \\ 3, 00 \\ 1, 50 \\ 1, 00 \end{bmatrix}$$
; b=
$$\begin{bmatrix} 2, 12 \\ 0, 96 \\ 0, 12 \\ -0, 06 \end{bmatrix}$$
; d=
$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 7, 65 & 5, 1 & 4, 05 & 0 \end{bmatrix}$$
; e=
$$\begin{bmatrix} 1.750 \\ 30.600 \end{bmatrix}$$

e x=
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$
.

A diferença da modelagem deste PPL para os anteriores, reside no fato de que aqui os parâmetros são lidos através do comando DATA em um arquivo de texto já previamente digitado. Utiliza-se para isto o comando @FILE('nome do arquivo'). O nome do arquivo deve estar entre aspas simples e estar no diretório onde foi salvo o modelo. Caso contrário, deverá ser informado o caminho completo onde o mesmo se encontra (ex.: c=@FILE('C:\LINGO\SAMPLES\teste.txt'). Os valores nestes arquivos devem ser digitados um em cada linha.

Na figura 4.7 é apresentado a modelagem LINGO para este PPL usando este comando.

Figura 4.7: Modelo LINGO para o exemplo da seção 4.2.3

Para resolvê-lo, devemos proceder conforme foi explicado no exemplo da seção 4.2.1.

Neste exemplo mostraremos como fazer a análise de sensibilidade no LINGO. Inicialmente é necessário ativar esta opção. Para tanto, clique no menu *LINGO* e logo em seguida em *OPTIONS*. Vá até a aba *GENERAL SOLVER* e escolha a opção *PRICES & RANGES* no campo *DUAL COMPUTATIONS*. A figura 4.8 ilustra tal procedimento.

Após resolvido o modelo e ativada a opção *PRICES & RANGES* para o LINGO apresentar a análise de sensibilidade é necessário clicar no menu *LINGO* e em seguida em *RANGE* tendo como janela ativa a janela do modelo. A figura 4.9 apresenta a tela com o resultado da análise de sensibilidade deste exemplo.

Figura 4.8: Janela de Opções de Configuração do LINGO

Ranges in which the basis	is unchanged:		
	Objec	tive Coefficient	Ranges
	Current	Allowable	Allowable
Variable	Coefficient	Increase	Decrease
FO	1.000000	INFINITY	1.000000
X(1)	0.0	INFINITY	1.051111
X(2)	0.0	1.051111	0.7422222
X(3)	0.0	0.5894118	0.300000E-01
X(4)	0.0	0.200000E-01	INFINITY
		Righthand Side Ra	nges
Row	Current	Allowable	Allowable
	RHS	Increase	Decrease
2	0.0	INFINITY	21656.67
3	18000.00	52611.11	4166.667
4	0.0	3156.667	INFINITY
5	1750.000	750.0000	750.0000
6	30600.00	11250.00	11025.00

Figura 4.9: Análise de Sensibilidade para o exemplo da seção 4.2.3

Referências sobre análise de sensibilidade são encontradas no capítulo referente ao estudo do software LINDO.

4.2.4 Problema da Mochila

Dado n objetos, cada qual com um peso w_i e importância p_i , alocá-los em uma mochila de capacidade b maximizando a importância dos objetos colocados. Assumi-se que há apenas uma unidade de cada objeto.

A modelagem deste PPL é apresentado a seguir:

Seja $x_i = \begin{cases} 1; & ext{se o objeto i \acute{e} alocado na mochila,} \\ 0; & ext{caso contrário.} \end{cases}$

$$\begin{array}{|c|c|c|} \max & \sum_{i=1}^n p_i \ast x_i \\ \text{s.a} & \sum_{i=1}^n w_i \ast x_i \leq b \\ & x_j \in \{0,1\} \; \forall \; i = 1, ..., n \end{array}$$

Para este problema da mochila vamos considerar a seguinte tabela de dados:

Objeto (x_i)	01	02	03	04	05	06	07	08	09	10
Peso (w_i) (em kg)	2	3	4	5	1	5	4	2	3	7
Importância (p_i)	7	4	4	6	2	3	7	3	2	8
$Objeto(x_i)$	11	12	13	14	15	16	17	18	19	20
Peso (w_i) (em kg)	3	4	8	9	2	4	5	5	6	9
Importância (p_i)	4	2	9	8	3	5	6	7	7	9
$Objeto(x_i)$	21	22	23	24	25	26	27	28	29	30
Peso (w_i) (em kg)	1	2	5	4	3	7	9	2	4	3
Importância (p_i)	1	3	5	3	2	6	8	3	3	1
Objeto (x_i)	31	32	- 33	34	35	36	37	38	39	40
Peso (w_i) (em kg)	9	8	7	6	5	4	3	2	1	5
Importância (p_i)	4	7	9	7	7	7	5	3	2	2
Objeto (x_i)	41	42	43	44	45	46	47	48	49	50
Peso (w_i) (em kg)	2	3	4	5	1	5	4	2	3	7
Importância (p_i)	2	4	5	6	1	8	9	5	5	8

Capacidade da mochila (b) = 150 kg

A modelagem LINGO deste PPL é apresentado na figura 4.10. Aqui podemos observar que a única diferença é que os parâmetros usados nos SETS são lidos através de arquivos textos com base no comando @FILE('nome do arquivo') e as soluções são geradas em arquivo texto através do comando @TEXT('nome do arquivo'). Para ler os parâmetros $m \in n$ em um único arquivo, basta separá-los por til, no caso, 50~150.

Notamos que este PPL seria de difícil modelagem usando a forma apresentada no exemplo da seção 4.2.1, daí a comodidade da utilização da seção SETS em problemas deste porte.

4.2.5 Problema da Fábrica de Brinquedos

A companhia Coelho S.A. fabrica motores para brinquedos e pequenos aparelhos. O departamento de marketing está prevendo vendas de 6100 unidades do motor Roncam no próximo semestre. Esta é uma nova demanda e a companhia terá que testar sua capacidade produtiva. O motor Roncam é montado a partir de três componentes: o corpo, a base e a blindagem. Alguns destes componentes podem ser comprados de outros fornecedores, se houver limitações da Coelho S.A. Os custos de produção e os custos de aquisição em R\$/unidade estão resumidos na tabela a seguir.

Componente	Custo de Aquisição	Custo de Produção
	(em R \$)	(em R \$)
Corpo	10	8
Base	20	20
Blindagem	16	10

A fábrica da Companhia Coelho S.A. tem três departamentos. O requisito de tempo em minutos que cada componente consome em cada departamento está resumido na tabela a seguir. O tempo disponível na companhia para cada componente está listado na última linha.

-					
Componente	Tempo de Preparação	Tempo de molde	Tempo de fabricação		
	(em minutos)	(em minutos)	(em minutos)		
Corpo	2	4	2		
Base	5	2	4		
Blindagem	4	5	5		
Disponibilidade	49200	49200	49200		

O modelo de decisão do problema é dado abaixo, onde x_{ij} representa a quantidade de componentes i=(1=se o componente for o Corpo, 2=se o componente for a Base e 3=se o componentefor a Blindagem) a serem utilizados no modo j = (A=se o componente for adquirido e F=Se o componente for fabricado).

min	$8x_{1F}$	+	$20x_{2F}$	+	$10x_{3F}$	+	$10x_{1A}$	+	$20x_{2A}$	+	$16x_{3A}$		
s.a	$2x_{1F}$	+	$5x_{2F}$	+	$4x_{3F}$							\leq	49200
	$4x_{1F}$	+	$2x_{2F}$	+	$5x_{3F}$							\leq	49200
	$2x_{1F}$	+	$4x_{2F}$	+	$5x_{3F}$							\leq	49200
	x_{1F}					+	x_{1A}					\geq	6100
			x_{2F}					+	x_{2A}			\geq	6100
					x_{3F}					+	x_{3A}	\geq	6100
	x_{1F}	,	x_{2F}	,	x_{3F}	,	x_{1A}	,	x_{2A}	,	x_{3A}	\geq	0

Outra forma de representar este modelo é apresentado abaixo:

min
$$\sum_{\substack{j=1\\n}}^{n} c_j * x_j$$

s.a
$$\sum_{\substack{j=1\\n}}^{n} a_{ij} * x_j \le 49.200 \ \forall i = 1, 2, 3$$
$$\sum_{\substack{j=1\\j=1\\x_j \ge 0}}^{n} d_{ij} * x_j \ge 6.100 \ \forall i = 1, 2, 3$$
$$x_j \ge 0, \ \forall j = 1, \dots, 6$$

onde: n=6; c =
$$\begin{bmatrix} 8\\20\\10\\10\\20\\16 \end{bmatrix}$$
; a =
$$\begin{bmatrix} 2 & 5 & 4 & 0 & 0 & 0\\4 & 2 & 5 & 0 & 0 & 0\\2 & 4 & 5 & 0 & 0 & 0 \end{bmatrix}$$
; d =
$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0\\0 & 1 & 0 & 0 & 1 & 0\\0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$
 e x =
$$\begin{bmatrix} x_1\\x_2\\x_3\\x_4\\x_5\\x_6 \end{bmatrix}$$
.

Para efeito de cálculo, estamos adotando que $x_{1F}=x_1$, $x_{2F}=x_2$, $x_{3F}=x_3$, $x_{1A}=x_4$, $x_{2A}=x_5$ e $x_{3A}=x_6$.

O modelo LINGO para este PPL é apresentado na figura 4.11.

A diferença deste modelo para os outros está no fato de estarmos lendo as constantes da seção SETS através de uma planilha do Excel e depois exportando o resultado para a mesma, utilizando a seção DATA. Tanto a leitura quanto a exportação dos dados para a planilha é feita através do comando @OLE('nomearq.xls', 'nome do conjunto de células'). Para a utilização de uma planilha do Excel, devemos definir um nome para cada conjunto de células referenciadas no modelo. Considerando a planilha apresentada na figura 4.12, temos os seguintes conjuntos de células com seus respectivos nomes:

Conjunto de células	Nome
B3 a G3	custo
I5 a I7	Coef1
I8 a I10	Coef2
C16	FO
B5 a G7	$\operatorname{Rest1}$
B8 a G10	$\operatorname{Rest2}$
B14 a G14	x

Figura 4.10: Modelo LINGO para o exemplo da seção 4.2.4

🖴 LINGO - [LINGO Model - fabrica]
File Edit LINGO Window Help
DATA:
n=6;
m=3;
ENDDATA
SETS:
v1 /1n/ : c, x;
v2 /1m/ : b, e;
m1(v2,v1): a, d;
ENDSETS
DATA:
c,a,d,b,e =
<pre>@OLE('coelhos.xls','custo','Rest1','Rest2','Coef1','Coef2'); ENDDATA</pre>
MIN = FO:
FO = 0SUM(v1(j):c(j)*x(j));
<pre>@FOR(v2(i):@SUM(v1(j):a(i,j)*x(j))<=b(i));</pre>
<pre>@FOR(v2(i):@SUM(v1(j):d(i,j)*x(j))>=e(i));</pre>
DATA:
<pre>@OLE('coelhos.xls','x','FO') = x,FO;</pre>
ENDDATA
For Help, press F1 Ln 1.

Figura 4.11: Modelo LINGO para o exemplo da seção 4.2.5

	A	8	С	D	E	F	G	H	1
1	Companhia Coelho S.A.								
2		X1F	X2F	X3F	X1A	X2A	X3A		
3	Custo	8	20	10	10	20	16		
4									
5	Disponilidade de Tempo	2	5	4	0	0	0	33750	49200
6		4	2	5	0	0	0	49200	49200
7		2	4	5	0	0	0	39850	49200
8	Quantidade a ser Produzida	1	0	0	1	0	0	6100	6100
9		0	1	0	0	1	0	6100	6100
10		0	0	1	0	0	1	6100	6100
11									
12	Quantidade a ser Produzida e/ou Adquirida e Custo Total								
13	C 200 C	X1F	X2F	X3F	X1A	X2A	X3A	0. 22 CA	
14	1. S	4675	0	6100	1425	6100	0		
15									
16	8	FO	R\$ 234.650,00						

Figura 4.12: Planilha do Excel usada no Exemplo seção 4.2.5

Bibliografia

- Dash Optimization Co., http://www.dashoptmization.com. XPRESS-MP User Guide Release 10, 1999.
- [2] M. C. Goldbarg e H. P. L. Luna. Otimização Combinatória e Programação Linear: Modelos e Algoritmos. Editora Campus, Rio de Janeiro, 2000.
- [3] Helmut Kopka and Patrick W. Dale. A Guide to LATEX. Addison-Wesley, Harlow, England, 3rd edition, 1999.
- [4] Gerson Lachtermacher. Pesquisa Operacional na Tomada de Decisões. Editora Campus, Rio de Janeiro, 2002.
- [5] Lindo Systems Inc., Chicago. LINDO: User's Manual, 1996.
- [6] Lindo Systems Inc., Chicago. LINGO: the modeling language and optmizer, 2001.