ÐÏࡱá>þÿ  þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ9.250, 37.500, 37.750, 42.000, 44.000, 49.750, 42.750, 42.000, 38.625, 41.000, 40.750; ! The current share price; S = 40.75; ! Time until expiration of the option, expressed in years; T = .3644; ! The exercise price at expiration; K = 40; ! The yearly interest rate; I = .163; ENDDATA SETS: ! We will have one less week of differences; WEEK1( WEEK)| &1 #LT# @SIZE( WEEK): LDIF; ENDSETS ! Take log of each week's price; @FOR( WEEK: LOGP = @LOG( P)); ! and the differences in the logs; @FOR( WEEK1( J): LDIF( J) = LOGP( J + 1) - LOGP( J)); ! Compute the mean of the differences; MEAN = @SUM( WEEK1: LDIF)/ @SIZE( WEEK1); ! and the variance; WVAR = @SUM( WEEK1: ( LDIF - MEAN)^2)/ ( @SIZE( WEEK1) - 1); ! Get the yearly variance and standard deviation; YVAR = 52 * WVAR; YSD = YVAR^.5; ! Here is the Black-Scholes option pricing formula; Z = (( I + YVAR/2) * T + @LOG( S/ K))/( YSD * T^.5); ! where VALUE is the expected value of the option; VALUE = S *@PSN( Z) - K *@EXP( - I * T) * @PSN( Z - YSD *T^.5); ! LDIF may take on negative values; @FOR( WEEK1: @FREE( LDIF)); ! The price quoted in the Wall Street Journal for this option when there were 133 days left was $6.625; END MODEL: ! Computing the value of an option using the Black Scholes formula (see "The Pricing of Options and Corporate Liabilities", Journal of Political Economy, May-June, 1973); SETS: ! We have 27 weeks of prices P( t), LOGP( t) is log of prices; WEEK/1..27/: P, LOGP; ENDSETS DATA: ! Weekly prices of National Semiconductor; P = 26.375, 27.125, 28.875, 29.625, 32.250, 35.000, 36.000, 38.625, 38.250, 40.250, 36.250, 41.500, 38.250, 41.125, 42.250, 41.500, 3þÿÿÿýÿÿÿþÿÿÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRoot Entryÿÿÿÿÿÿÿÿ0CONTENTSÿÿÿÿÿÿÿÿÿÿÿÿ0ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRoot Entryÿÿÿÿÿÿÿÿ*0_šîÏ»òÀð^°%3©eþÄ Contentsÿÿÿÿÿÿÿÿÿÿÿÿê ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿÿýÿÿÿþÿÿÿ þÿÿÿ  ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ  !"#$%&'()*+þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿt the yearly variance and standard deviation;\cf2 \par YVAR = 52 * WVAR; \par YSD = YVAR^.5; \par \par \cf3 ! Here is the Black-Scholes option pricing formula;\cf2 \par Z = (( I + YVAR/2) * \par T + \cf1 @LOG\cf2 ( S/ K))/( YSD * T^.5); \par \par \cf3 ! where VALUE is the expected value of the option;\cf2 \par VALUE = S *\cf1 @PSN\cf2 ( Z) - K *\cf1 @EXP\cf2 ( - I * T) * \par \cf1 @PSN\cf2 ( Z - YSD *T^.5); \par \par \cf3 ! LDIF may take on negative values;\cf2 \par \cf1 @FOR\cf2 ( WEEK1: \cf1 @FREE\cf2 ( LDIF)); \par \par \cf3 ! The price quoted in the Wall Street Journal for \par this option when there were 133 days left was \par $6.625;\cf2 \par \cf1 END\cf2 \par \par } ì‹{\rtf1\ansi\ansicpg1252\deff0\deflang1033{\fonttbl{\f0\fnil\fcharset0 Courier New;}} {\colortbl ;\red0\green0\blue255;\red0\green0\blue0;\red0\green175\blue0;} \viewkind4\uc1\pard\cf1\f0\fs20 MODEL\cf2 : \par \cf3 ! Computing the value of an option using the Black \par Scholes formula (see "The Pricing of Options and \par Corporate Liabilities", Journal of Political \par Economy, May-June, 1973);\cf2 \par \cf1 SETS\cf2 : \par \cf3 ! We have 27 weeks of prices P( t), LOGP( t) is log \par of prices;\cf2 \par WEEK/1..27/: P, LOGP; \par \cf1 ENDSETS\cf2 \par \par \cf1 DATA\cf2 : \par \cf3 ! Weekly prices of National Semiconductor;\cf2 \par P = 26.375, 27.125, 28.875, 29.625, 32.250, \par 35.000, 36.000, 38.625, 38.250, 40.250, \par 36.250, 41.500, 38.250, 41.125, 42.250, \par 41.500, 39.250, 37.500, 37.750, 42.000, \par 44.000, 49.750, 42.750, 42.000, 38.625, \par 41.000, 40.750; \par \par \cf3 ! The current share price;\cf2 \par S = 40.75; \par \par \cf3 ! Time until expiration of the option, expressed \par in years;\cf2 \par T = .3644; \par \par \cf3 ! The exercise price at expiration;\cf2 \par K = 40; \par \par \cf3 ! The yearly interest rate;\cf2 \par I = .163; \par \cf1 ENDDATA\cf2 \par \par \cf1 SETS\cf2 : \par \cf3 ! We will have one less week of differences;\cf2 \par WEEK1( WEEK)| &1 #LT# \cf1 @SIZE\cf2 ( WEEK): LDIF; \par \cf1 ENDSETS\cf2 \par \par \cf3 ! Take log of each week's price;\cf2 \par \cf1 @FOR\cf2 ( WEEK: LOGP = \cf1 @LOG\cf2 ( P)); \par \par \cf3 ! and the differences in the logs;\cf2 \par \cf1 @FOR\cf2 ( WEEK1( J): LDIF( J) = \par LOGP( J + 1) - LOGP( J)); \par \par \cf3 ! Compute the mean of the differences;\cf2 \par MEAN = \cf1 @SUM\cf2 ( WEEK1: LDIF)/ \cf1 @SIZE\cf2 ( WEEK1); \par \par \cf3 ! and the variance;\cf2 \par WVAR = \cf1 @SUM\cf2 ( WEEK1: ( LDIF - MEAN)^2)/ \par ( \cf1 @SIZE\cf2 ( WEEK1) - 1); \par \par \cf3 ! Ge