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Abstract

We review three leading stochastic optimization methods—simulated annealing, genetic algorithms,
and tabu search. In each case we analyze the method, give the exact algorithm, detail advantages
and disadvantages, and summarize the literature on optimal values of the inputs. As a motivating
example we describe the solution—using Bayesian decision theory, via maximization of expected
utility—of a variable selection problem in generalized linear models, which arises in the cost-effective
construction of a patient sickness-at-admission scale as part of an effort to measure quality of hospital
care.
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1 Introduction

In the past 50 years, since the development of digital computers, many investigators have studied the
problem of numerically optimizing an objective function. One approach is stochastic optimization, in
which the search for the optimal solution involves randomness in some constructive way. If S denotes
the (finite) set of all possible solutions, the task we consider is to maximize or minimize the objective
function f: & — R. In the case of maximization, on which we focus here, the problem is to find a
configuration Ty € S which satisfies

f(zopt) > f(z) forallz €S. (1)

All of the optimization methods we consider have the character of a discrete-time search chain, in
which an initial member zg of S is chosen by some means and becomes the current configuration x; at
time ¢ = 0, and the algorithm then iteratively repeats the process of deciding on a move from z; to a
proposed configuration xiy1. Many of the algorithms we examine rely on a neighborhood structure in
deciding where to move next; this requires a rule, often based on a measure of distance, which uniquely
identifies all of the neighbors of a given current configuration.

It is easy to see that as the dimension of S increases the harder the task becomes, and more time
is needed to find the optimal, or at least a near-optimal, configuration. Another difficulty in this
problem is that it is common for the objective function to have many local optima. An algorithm
like the well-known local search (LS; e.g., Aarts and Korst 1989; Algorithm 1), which only accepts
moves with higher values of the objective function than the previous move, will not perform well in
this situation, since it is likely that the search will get stuck in a local optimum.

The disadvantages of LS algorithms can be formulated as follows:

e By definition, such algorithms terminate in a local maximum, and there is generally no informa-
tion as to the amount by which this local maximum falls short of a global maximum;

e The obtained local maximum depends on the initial configuration, for the choice of which gener-
ally no guidelines are available; and
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Algorithm 1: Local Search (LS)

Begin;
Choose a random configuration xo;
Set z := x;
Repeat:
Generate a new configuration y from the neighborhood of z;
If f(y) > f(z) then z :=y;
Until f(y) < f(z) for all y in the neighborhood of z;
End.

e [t is typically not possible to give an upper bound for the computation time.
To avoid some of these disadvantages, a number of potential improvements are possible:

e Execution of the algorithm for a large number of initial configurations, say M, at the cost of an
increase in computation time; for M — oo, in the case in which the number of elements of S
is finite, such an algorithm finds a global maximum with probability 1, if only because a global
maximum is encountered as an initial configuration with probability 1 as M — oc;

e Use of information gained from previous runs of the algorithm to improve the choice of an initial
configuration for the next run;

e Introduction of a more complex move-generation mechanism, in order to be able to “jump away
from” the local maxima corresponding to the simple approach to generating moves. To choose this
more complex move-generation mechanism properly requires detailed knowledge of the problem
itself; and

e Acceptance of moves which correspond to a decrease in the objective function in a limited way,
in the hope that this will lead to a higher local maximum.

In this paper we review three leading stochastic optimization methods (plus several variations
on them)—simulated annealing (SA), genetic algorithms (GA), and tabu search (TS)—each of which
(because of its use of ideas like the ones above) often manages to avoid the disadvantages of LS
algorithms. In Section 2 below we give details of a complicated optimization problem which serves to
illustrate the central features of each of these three methods. Sections 3-5 are devoted to the three
algorithms in turn; in each case we analyze the method, give the exact algorithm, detail advantages
and disadvantages, and summarize the literature on optimal values of the inputs. In Section 6 we
present some results on the performance of SA, GA, and TS in the optimization problem described in
Section 2, and Section 7 concludes with a comparative discussion.

2 An example: Bayesian variable selection via maximization of ex-
pected utility

An important topic in the field of health policy is the assessment of the quality of health care offered to
hospitalized patients (e.g, Jencks et al. 1988, Kahn et al. 1988, Draper et al. 1990). One way to make
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such an assessment that has gained considerable attention in countries including the US and UK over
the past 15 years (e.g., Daley et al. 1988, Draper 1995, Goldstein and Spiegelhalter 1996) is league-table
or input-output (I0) quality assessment, in which outputs of a number of hospitals—such as patient
mortality—are compared after adjusting for inputs. The principal relevant input is patient sickness
at admission, and—if this approach is to be applied at a large number of hospitals—it is important
to devise a cost-effective method of measuring admission sickness. We focus here on mortality within
30 days of admission, which is the standard outcome used in 10 quality assessment for hospitalized
patients.

The traditional way to construct an admission sickness scale (e.g., Keeler et al. 1990) is (a) to
gather a large number of sickness indicators on a representative sample of patients with a given disease
(we focus here on pneumonia), together with their 30-day death outcomes, and (b) to fit a variety of
logistic regression models (e.g., Hosmer and Lemeshow 1989) predicting death status from the sickness
variables, using standard frequentist variable-selection methods such as all-subsets regression (e.g.,
Weisberg 1985) to choose a parsimonious subset of the available predictors on which to base the scale.
In a major US study (Kahn, Rubenstein et al. 1990)—conducted by the Rand Corporation—of quality
of hospital care for elderly patients in the late 1980s, this approach was used to select a core of 14
predictors from the list of p = 83 available sickness indicators for pneumonia. When input-output
quality assessment is to be conducted under budgetary constraints, however, as will almost always be
the case, this method—which might be termed a benefit-only approach to variable selection—is sub-
optimal, because it takes no account of the costs of data collection of the available sickness predictors,
which may vary considerably in practice (for pneumonia in the Rand study the range in costs, as
measured by the time needed to abstract each variable, was from 30 seconds to 10 minutes, a factor
of 20 to 1). What is needed is a cost-benefit tradeoff (Draper 1996), in which variables that cost too
much given how well they predict death are discarded. Draper and Fouskakis (2000) and Fouskakis
(2001) detail one approach to this cost-benefit tradeoff using Bayesian decision theory, as follows.

Suppose (a) the 30-day mortality outcome y; and data on p sickness indicators (s;1,..., sip) have
been collected on 7 individuals sampled randomly from a population P of patients with a given disease,
and (b) the goal is to predict the death outcome for n* new patients who will in the future be sampled
randomly from P, (c) on the basis of some or all of the predictors s;, when (d) the marginal costs of
data collection per patient c1,...,c, for the s; vary considerably. What is the best subset of the s;
to choose, if a fixed amount of money is available for this task and you are rewarded based on the
quality of your predictions? To solve this problem we maximize expected utility, defined in a way
that trades off predictive accuracy against data collection costs. The data on which we illustrate this
method here consist of a representative sample of n = 2,532 elderly American patients hospitalized
in the period 1980-86 with pneumonia, taken from the Rand study mentioned above. Since data
on future patients are not available, we use a cross-validation approach (e.g., Gelfand et al. 1992,
Hadorn et al. 1992) in which (i) a random subset of nps observations is drawn for creation of the
mortality predictions (the modeling subsample) and (ii) the quality of those predictions is assessed on
the remaining ny = (n — nas) observations (the walidation subsample, which serves as a proxy for
future patients).

In the approach presented here utility is quantified in monetary terms, so that the data collection
utility is simply the negative of the total amount of money required to gather data on the specified
predictor subset. Letting I; = 1 if s; is included in a given model (and 0 otherwise), the data-collection

utility associated with subset I = (I1,...,I,) for patients in the validation subsample is
P
UD(I) = —nVchIj, (2)
i=1

where ¢; is the marginal cost per patient of data abstraction for variable j (these costs were obtained
by approximating the average amount of time needed by qualified nurses to abstract each variable from
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Table 1: Cross-tabulation of actual versus predicted death status. The left-hand table records the
monetary rewards and penalties for correct and incorrect predictions; the right-hand table summarizes
the frequencies in the 2 X 2 tabulation.

Rewards and

Penalties Counts
Predicted Predicted
Died Lived Died Lived
Actual Died 011 012 ni1 ni12
Lived 021 022 no1 99

medical records and multiplying these times by the mean wage (about US$20 per hour in 1990) for
the abstraction personnel).

To measure the accuracy of a model’s predictions, a metric is needed which quantifies the dis-
crepancy between the actual and predicted values, and in this problem the metric must come out
in monetary terms on a scale comparable to that employed with the data-collection utility. In the
setting of this example the actual values y; are binary death indicators and the predicted values p;,
based on statistical modeling, take the form of estimated death probabilities. We use an approach
to the comparison of actual and predicted values that involves dichotomizing the p; with respect to
a cutoff, to mimic the decision-making reality that actions taken on the basis of input-output quality
assessment will have an all-or-nothing character at the hospital level (for example, regulators must
decide either to subject or not subject a given hospital to a more detailed, more expensive quality
audit based on process criteria; see, e.g., Kahn, Rogers et al. 1990). Other, continuous, approaches to
the quantification of predictive utility are possible (e.g., a log scoring method as in Bernardo and Smith
1994; Lindley 1968 uses squared-error loss to measure predictive accuracy in a less problem-specific
framework than the one presented here). See Brown et al. (1999) for an application of decision theory
to variable selection in multivariate regression.

In the first step of our approach, given a particular predictor subset I, we fit a logistic regression
model to the modeling subsample M and apply this model to the validation subsample V' to create
predicted death probabilities ﬁf . In more detail, letting y; = 1 if patient ¢ dies and 0 otherwise,
and taking s;1,...,S; to be the k sickness predictors for this patient under model I, the statistical
assumptions underlying logistic regression in this case are

ind
(i | ) "~ Bernoulli(p}),

T
10g(1f;,1) = fBo + Bisit + - - - + BrSik-

(3)

We use maximum likelihood to fit this model (as a computationally efficient approximation to Bayesian
fitting with relatively diffuse priors), obtaining a vector /3 of estimated logistic regression coefficients,
from which the predicted death probabilities for the patients in subsample V are given by

-1

k
Pr=|l4exp| =) Bsy : (4)
i=0

where s;0 = 1 (] may be thought of as the sickness score for patient i under model I).

In the second step of our approach we classify patient ¢ in the validation subsample as predicted
dead or alive according to whether p! exceeds or falls short of a cutoff p*, which is chosen—by searching
on a discrete grid from 0.01 to 0.99 by steps of 0.01—to maximize the predictive accuracy of model I.
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Figure 1: FEstimated expected utility as a function of number of predictors retained, with p =
14, (nM nV) = (%, %), and (Ci1,C12,C1,C9) = (34.8,—139.2,—69.6,8.7).
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We then cross-tabulate actual versus predicted death status in a 2 X 2 contingency table, rewarding
and penalizing model I according to the numbers of patients in the validation sample which fall into
the cells of the right-hand part of Table 1. The left-hand part of this table records the rewards and
penalties in US$. The predictive utility of model I is then

UP(I) = Z Z Clm Nim- (5)

We use values of the C,;, based on expert judgment guided by the decision-making realities of incorrectly
conducting or failing to conduct an expensive process audit at a given hospital (see Fouskakis 2001 for
details). The overall expected utility function to be maximized over I is then simply

EUI)] = E[Up(I) +Up(I)], (6)

where this expectation is over all possible cross-validation splits of the data. The number of such splits
is far too large to evaluate the expectation directly; in practice we therefore use Monte Carlo methods
to evaluate it, averaging over N random modeling and validation splits. When different optimization
methods are compared to see which is the best at finding the global maximum of (6), to make the
comparison fair they must all be given the same amount of CPU time with which to perform the search,
and then the choice of N becomes another optimization variable: if N is small a given method can
visit a large number of models but will obtain a noisy estimate of how good those models are, whereas
if N is large the estimate of a model’s quality will be more precise but the number of models that can
be visited given the time constraint will be much smaller.

Figure 1, from Fouskakis (2001), provides an illustration of this methodology in action. Since the
best way to compare optimization methods on the quality of the configurations they find is to know
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the truth in advance, we evaluated (6) using N = 500 modeling/validation splits for all 2!* = 16, 384
possible subsets of the p = 14 variables in the Rand pneumonia sickness scale mentioned above (this
choice of N was large enough to yield a Monte Carlo standard error for each expected utility estimate
of only about US$0.05, which is small enough to reliably identify the good models), and Figure 1
presents parallel boxplots of all 16,384 estimated expected utility values as a function of the number
k of variables included in the scale (in this problem a configuration is a binary vector of length p). It
can be seen, as is intuitively reasonable, that as k increases from 0 the models get better on average
up to a maximum or near-maximum at k = 3-7 and then get steadily worse up to k = 14.

Of course, we have the luxury of knowing the right answer here only because the space of possible
configurations was relatively small. Searching through this space with all p = 83 available sickness
variables, where the total number of possible subsets is 282 = 9.7-10%4, is out of the question, motivating
the need for global optimization methods such as simulated annealing, to which we now turn.

3 Simulated annealing (SA)

Simulated annealing (SA; Kirkpatrick et al. 1983) is a discrete optimization method that was developed
in the early 1980s. Its genesis was a set of ideas first put forward by Metropolis et al. (1953) to simulate
a system of particles undergoing a change in temperature. Under perturbation such a system attempts
to find an equilibrium point that minimizes the total energy, and Metropolis et al. tried to predict this
equilibrium point using statistical thermodynamics (annealing refers to the cooling of materials under
controlled conditions in a heat bath). Kirkpatrick et al. noticed that an analogy could be made between
system states in the Metropolis problem and possible configurations in a more general optimization
problem, with the value of the objective function playing the role of energy and Metropolis’ temperature
corresponding to a control parameter in the optimization process.

SA is a stochastic local search technique which approximates the maximum of the objective function
f: & — R over a finite set S. It operates iteratively by choosing an element y from a neighborhood
N(z) of the present configuration z; the candidate y is either accepted as the new configuration or
rejected. SA may accept y with positive probability even if y is worse than z, which permits the
algorithm to avoid getting stuck in local maxima by “climbing downhill.” SA has proven successful in
many applications (e.g., Van Laarhoven and Aarts 1988); a large theoretical and empirical literature
can thus be drawn upon for ideas on the implementation of SA in any given problem.

Let p(z,y,T) be the probability of accepting a candidate move to y given the present configuration
z. This probability is controlled by the temperature T, a choice of terminology made by analogy to the
physical cooling process described above. Typically the temperature values are chosen independently
of the current value of the objective function as a fixed sequence T} indexed by time ¢, the cooling
schedule. A common choice for p(z,y,T) is the Metropolis acceptance probability; for T > 0 this is

given by
1 if f(y) > f(=)
exp [TOZE] it f(y) < f() |

From the form of (7) it is evident that better moves are always accepted, but it is also possible to
f(y);f(m)]_ At

p(z,y,T) := (7)

accept a move to a worse configuration than the present one with probability exp [

high temperatures, the system accepts moves almost randomly, regardless of whether they are uphill
or down. As the temperature is lowered, the probability of accepting downhill moves drops and the
probability of accepting uphill moves rises. Eventually the system “freezes” in a locally or globally
maximum state, and no further moves are accepted. The rate at which T decreases as the number of
iterations increases is crucial. We discuss the choice of cooling schedule below.

In SA (Algorithm 2), moves away from the current configuration are chosen according to a proposal
distribution, such as the uniform distribution on the neighborhood N(z). The algorithm is very general,
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Algorithm 2: Simulated Annealing (SA)

Begin;
Choose a configuration zo;
Select the initial and final temperatures Ty, Ty > 0;
Select the temperature schedule;
Set = : =z and T := Tj;
Repeat:
Repeat:
Choose a new configuration y from the neighborhood of z;
If f(y) > f(z) then z := y;
Else
Choose a random u uniformly in the range (0,1);
If u < exp [M] then z :=y, else = := x;
Until iteration count = njzer;
Decrease T' according to the temperature schedule;
Until stopping criterion = true;
z is the approximation to the optimal configuration;
End.

and a number of decisions must be made in order to implement it for the solution of a particular
problem. These can be divided into two categories:

e generic choices about inputs to the SA algorithm, such as the cooling schedule, the initial and
final temperatures, the stopping criterion, and the parameter n;.,; and

e problem-specific choices, which mainly have to do with the neighborhood structure.

It is clear from the literature that both types of choices can affect the performance of the algorithm.
There has been much research into the theoretical convergence properties of SA (e.g., Aarts and Korst
1989). This work provides pointers as to what factors should be considered in making both generic
and problem-specific decisions, but of course these choices depend on the nature of the problem under
study.

3.1 Generic and problem-specific decisions

The generic decisions in SA basically concern the cooling schedule. The most commonly used schedule
in practice involves geometric temperature reduction:

Thew = Toid (1 - 6)- (8)

Small values of € often appear to perform best (e.g., Stander and Silverman 1994); many success stories
in the literature take 0.01 < € < 0.2, which leads to rather slow cooling. € can also be defined in terms
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Table 2: Families of temperature schedules for simulated annealing.

Family Temperature T;
Straight U2 —1) + Ty
=1
Geometric T % "
. Ty To(M—1)
Reciprocal (TTfT Aﬁ_q(“%zl+(1;0 —le)ﬁ'
. . 0Tf[log(M+1)—log 2
Logarithmic T} Tog(M+1)—T log 2+ (To— T ) log(i+1)

of the upper and lower limits for the temperature parameter—7Tp and T, respectively—and the final

number of iterations M:
TA\M™
=1— (=L . 9
e=1- () (9

Another popular choice, suggested by Lundy and Mees (1986), performs only one iteration per tem-
perature but forces slow cooling by specifying

Toia

’ 10
1+ B8Tua (10)

Thew =
where [ is a suitably small value that can be chosen in a manner analogous to equation (9). The total
number of iterations M serves as a stopping criterion once an overall CPU limit is set and an estimate
is made of the rate in CPU-seconds at which iterations are made.

A large variety of cooling schedules have been proposed in the literature. In Table 2 we give
the most common ones—straight, geometric, reciprocal, and logarithmic—indexed by the initial and
final temperatures Ty and T, the run-length M and the current iteration ¢, and Figure 2 plots these
four schedules with Ty = 1.0,7y = 0.1, and M = 1,000. It appears both from success stories and
from theoretical work in the literature that the rate of cooling is more important than the precise
schedule used. Thus when SA is used on a new problem a reasonable plan would be to start with a
commonly-used schedule such as the geometric and concentrate on fine-tuning the rate parameter (or
equivalently the initial and final temperatures), holding the non-geometric schedules in reserve as a
further possible source of improvement if satisfactory performance is not immediately attained. Tp = 1
and 0.01 < Ty < 0.1 are popular specifications for initial and final temperatures in the literature (e.g.,
Fouskakis 2001), although of course the final choices may well need to be problem-specific. Note that
there is some redundancy in the combined choice of cooling schedule and (T, Ty); for example, the
geometric and reciprocal schedules in Figure 2 may be made to look more like the logarithmic curve
in that plot by choosing a smaller value of T’.

Another parameter is the number of iterations at each temperature, n;.,, which is often linked
to neighborhood size (or even the size of the configuration space §) and may also be a function of
temperature (to make sure that a given local maximum has been fully explored it appears to be crucial
to ensure that SA spends a lot of time at low temperatures). This can be done by increasing the
value of n, either geometrically (by multiplying by a factor greater than one) or arithmetically (by
adding a constant factor) at each new temperature. Also m;, can be determined based on feedback
from the process; one strategy that is sometimes used involves accepting a fixed number of moves
before the temperature is dropped. The algorithm will typically spend a short amount of time at high
temperatures when the acceptance rate is high, but on the other hand it may take an infeasible amount
of time to reach the required total number of accepted moves when the temperature is low and the
acceptance rate is small.
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Figure 2: The four temperature schedules in Table 2, with Ty = 1.0,Ty = 0.1, and M = 1,000.
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On the problem-specific choices, as with the generic decisions, it is difficult to identify rules that
guarantee good performance, but several themes emerge from the literature. Concerning the neigh-
borhood structure, it is good to be symmetric (i.e., all configurations should have the same number of
neighbors), and obviously if y is a neighbor of z, then z should be a neighbor of y as well. To keep the
computing time as low as possible it is important for the neighborhood structure to be chosen in such
a way that the calculations to be made in every iteration can be carried out quickly and efficiently;
thus it is good if the neighborhoods are not large and complex. This has the advantage of rapid neigh-
borhood search but tends to preclude large improvements in a single move. The need to find a middle
way between these extremes seems to have been met in the literature mainly by the choice of smaller
simpler neighborhoods (Fouskakis 2001).

3.2 Modifications

Here we examine a number of modifications which have proved useful in adapting SA for a variety of
different problems. These modifications appear in the literature in only a few examples, so it may be
better to consider them only in the case that generic SA fails to provide satisfactory results.

3.2.1 The cooling schedule

If SA is started at an extremely high temperature from a random initial configuration, virtually all
moves will be accepted at the beginning, independently of their quality, which means that such moves
are no better than the random starting point. One way to avoid this is to cool rapidly at first, for
instance by reducing the temperature after a fixed number of acceptances, a strategy that devotes
most of the run time to the middle part of the temperature range at which the rate of acceptance
is relatively small. Connolly (1990) suggested a constant temperature approach as a different way to
solve the high-temperature problem, but the optimal compromise temperature to use throughout the
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run may well vary not only across problem types but also even within problem type. Dowsland (1993)
suggested a potentially useful variation on standard temperature schedules: when a move is accepted,

cool the temperature by T' — %, and after each rejection heat it by T — #T), for B,y > 0.
The choice S = kv causes SA to make k iterations of heating per iteration of cooiing. When the ratio

of accepted moves to rejected moves is less than k the system cools down, otherwise it heats. k can
be chosen as a function of neighborhood size to ensure that areas close to local optima are searched
without a noticeable temperature rise.

3.2.2 The neighborhood structure

SA as described so far uses the assumption that the neighborhood structure is well-defined and un-
changing throughout the algorithm, but this need not be true. Improvements may be possible if the
neighborhood structure is adjusted as the temperature decreases. One way is to put restrictions on
the neighborhood: an example is given by Sechen et al. (1988) in solving the problem of how computer
chips should be designed to minimize wasted space on the chip. The task is to optimally place rectan-
gular blocks on the chip area, and these authors permit horizontal and vertical translations of any block
to define the neighborhood structure of valid moves. At low temperatures small moves (translations)
are the only ones accepted, so to avoid wasting time by proposing and rejecting large moves a limit is
created on maximum transition size and this limit is forced to go down as the system cools. Also see
Tovey (1988) for an approach in which different neighborhoods are used with probabilities that change
as the run unfolds.

3.2.3 The acceptance probability

The use of the Metropolis form (7) for the acceptance probability arises entirely from the laws of
thermodynamics; there is no guarantee that this is optimal in any given problem, although theorems
about rates of discovery of local optima are available for this schedule (e.g., Aarts and Korst 1989).
(7) does at least have the advantage that it accepts downhill moves in such a way that large declines
in f have virtually no chance of acceptance, whereas small ones may be accepted regularly.

The biggest problem with Metropolis acceptance probabilities is the algorithm speed. The calcula-

tion of exp [M] at every iteration is a time-consuming procedure, and so it might be better to

evaluate a cheaper function. Johnson et al. (1989) suggests two possible methods of improvement, one
of which is to use the function

1 it £(y) > f(2)
</ }, (11)

T
which approximates the exponential (but note that (11) can go negative for small T'). This may be
further improved by calculating a look-up table at a series of fixed values over the range of possible
values of M Several other researchers have also found that simpler functions can give good
results; for example, Brandimarte et al. (1987) use the form

1 if 2 flz
a(z,y,T) = { H@)_ 1) ﬁﬁ@gﬁ < ;EIB; }

(but again note that this can exceed 1 for small T'). Ogbu and Smith (1990) and Vakharia and Chang
(1990) both use probabilities which are independent of [f(y) — f(z)], for problems concerning the
optimal sequence in which a given set of tasks should be performed in time.

(12)
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3.2.4 Parallel implementations: speeding up SA

A major disadvantage of SA is that application of the algorithm may require large amounts of com-
putation time, motivating an interest in accelerating it. In this respect, the increasing availability of
parallel machines offers an interesting opportunity to explore. Research on parallel implementations
of SA has evolved quickly in recent years. The key idea in designing parallel SA algorithms is to
efficiently distribute the execution of the various parts of SA over a number of communicating parallel
Processors.

Aarts and Korst (1989) have considered three approaches to creating parallel versions of SA, of
which we consider two. The simplest and most common method is to permit all of the processors
to carry out the algorithm with independent sets of random values until it is time to reduce the
temperature; then the “master” processor chooses the best configuration found by all of the “slave”
processors and all of the slaves begin again from this configuration at the lowered temperature. With
this method, when the temperature is high, we expect to have significantly different chains of solutions
among the different processors, but when the temperature is low we expect that the processors will end
up with solutions very close in terms of neighborhood structure and value of the objective function.

A second method of parallel implementation is to use the processors to visit neighbors at random
and independently propose moves. When a move is accepted a signal is sent to the other processors,
which turn their attention to the neighborhood of the new current configuration. Again with this
strategy almost all proposed configurations will be accepted at high temperatures, so that at this point
in the algorithm the potential of parallelism is largely wasted, but at low temperatures most proposals
will be rejected, accelerating the search. These two methods can also be combined, by starting with
approach one and switching to the second method when the ratio of rejections to acceptances exceeds
a specified level.

3.2.5 Hybridization

Many researchers have noted that SA can perform better if it is used in combination with other
optimization methods. In general this can be done by running these methods before the annealing
process is invoked (or after, in order to make an improvement to the configurations encountered by
SA). However there are examples of heuristics (adaptive, feedback-based search methods) being used
as a part of the annealing algorithm. The most common is the use of a pre-processing heuristic to
determine a good starting configuration for SA. It is important if this approach is adopted to start
the run at a lower temperature than with a random starting value, because otherwise the system
will quickly move away from the carefully-chosen initial value in a haphazard way; but if an initial
temperature that is too low is used the process may be unable to move away from the good initial
configuration. The use of a post-processing heuristic is also common; for example, a local search
(Section 1) can be implemented at the end so that the final configuration reported is at least a local
maximum.

3.2.6 Sampling

It is standard in SA to sample randomly from the neighborhood of the current configuration. When
the search process is near a local optimum, however, most of the neighbors will by definition be worse
than where the process is now, so random sampling can lead to acceptance of a downhill move before
the local optimum is found. One solution to this problem (e.g., Connolly 1990) is to move through the
neighbors cyclically rather than randomly, so that all neighbors have a chance to be chosen before any
of them are reconsidered. A second type of problem involving sampling can occur near the end of the
SA process: at that point the system is quite cool and a great deal of time can be wasted evaluating
potential moves that get rejected out of hand. One way to overcome this (Greene and Supowit 1986)
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Figure 3: Performance of a run of simulated annealing in the Bayesian decision theory problem of
Section 2 (reprinted by permission from Draper and Fouskakis 2000). The top panel plots apparent
estimated expected utility (left-hand scale) and N (right-hand scale), and the bottom panel displays
the model dimension (left-hand scale) and current temperature (right-hand scale), in both cases versus
iteration number.
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is to work out the acceptance probability for every possible move in the neighborhood, sample in a
weighted fashion using these probabilities as weights, and automatically accept the chosen move.

3.3 Example: Bayesian utility maximization

As an example of SA in action we return to the Bayesian decision theory problem of Section 2, in
which the goal was variable selection via maximization of expected utility. As mentioned in that
section, expected utility is estimated across N splits of the data into modeling and validation subsets,
and (given a fixed budget of CPU time) the choice of N becomes another tuning constant in the search
for the global optimum configuration. To explore the tradeoff between visiting many models (small N)
and evaluating each model accurately (large N), Figure 3 presents an example of the performance of SA,
in a run—Dbased on the p = 14 variables in the Rand admission sickness scale for pneumonia—in which
SA found the global optimum solution identified in Figure 2. We used a geometric cooling schedule
from a starting temperature of 1 to a final temperature of 0.001, and the neighborhood structure was
defined by allowing moves from one model to another based on 1-bit flips: changinga Otoaloral
to a 0 in any single position!. Visits to 4,989 models were proposed in the run, with N increasing on
an independent geometric schedule from 1 to 50, and the starting value was the null model (with no
predictors).

'This was accomplished (a) by defining and updating a pointer that scanned cyclically from position 1 to 14 and then
back again to 1 (and so on) in the binary string defining the models, and (b) changing a 1 at the current pointer position
to 0 or vice versa to create the proposed new model. For example, if the current model is 01100011101001 and the pointer
is currently at position 14, the model we consider moving to is 011100011101000; the pointer is then reset to 1; and if this
move is accepted the new proposed move is to 11100011101000, otherwise the new proposed move is 11100011101001.
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Figure 3 plots four summaries of the run: apparent estimated expected utility (based on N model-
ing/validation splits) and N (the upper panel), and temperature and dimension & of the current model
(the lower panel), in all cases as a function of iteration number. During roughly the last half of the
run SA mainly examined models with 3-7 predictors (the optimal range in Figure 2), but in the first
half SA looked principally at models which, with the hindsight of Figure 2, were far from optimal. In
part this is because the early part of the run was based on values of N that were too small: note that
in the first 1,000 iterations (when N was at most 2) SA visited a number of models with apparent
estimated expected utility in excess of —7, whereas no model has actual expected utility greater than
about —7.9 (Figure 2).

4 Genetic algorithms (GA)

The genetic algorithm (GA) was first introduced by Holland (1975), and since then has become a
popular method for solving large optimization problems with multiple local optima. Many researchers
since have claimed success for GA in a broad spectrum of applications. Holland and his associates at
the University of Michigan began to develop GA in the late 1960s, but it was Holland’s 1975 book that
contained the first full, systematic and theoretical treatment of GA. See Goldberg (1989) and Davis
(1991) for a useful description of the algorithm and a number of applications in a range of problems.
Interesting applications of the algorithm can also be found in Michalewicz and Janikow (1991), South
et al. (1993), Rawlins (1991), Whitley (1992), and Franconi and Jennison (1997). The phrase “genetic
algorithm” is more aptly used in the plural, because of the wealth of variations on the basic idea that
has grown up since the 1970s; here we will use the abbreviation GA to stand for any of these variations.

4.1 Biological terminology

GA got its name from the process of drawing an analogy between components of the configuration
vector  and the genetic structure of a chromosome. In this subsection we introduce some of the
biological terminology that will appear throughout this section.

Each cell in every living organism contains one or more strings of DNA collected together in
chromosomes, which in turn may be divided into one or more genes, the parts of the DNA that
contain instructions for making proteins. For example, a gene could be responsible for the eye color
of the organism. Then the different settings that this eye color can take (e.g., brown, blue, and
so on) are the alleles of this gene. The position of each gene on the chromosome is that gene’s
locus. The organism may have multiple chromosomes in each cell. The complete collection of genetic
material is the organism’s genome. Two individuals that have identical genomes are said to have
the same genotype. The organism’s phenotype—its mental and physical attributes—are determined,
under the action of its development before and after birth, by its genotype. Organisms can be diploid,
when their chromosomes are arrayed in pairs, or haploid otherwise. To produce a new off-spring in
diploid organisms, a crossover operation occurs. In each parent, genes are chosen from the pairs of
chromosomes to produce a single chromosome—a gamete—and a full collection of chromosomes is
then created by pairing up gametes from each parent. The resulting chromosomes are then potentially
further modified by mutation, in which individual nucleotides (the building blocks of DNA) are changed
as the parental genetic material is passed on to the offspring. It is convenient to define the fitness of the
organism either by its probability of living long enough to reproduce or by computing some function
of its number of offspring.

In GA the analogy is typically made between a chromosome and a configuration that may be
a solution to the optimization problem; most often this is a binary string. The elements of the
configuration that play the role of genes are then either single bits or short blocks of adjacent bits,
and each allele is a 1 or 0. The crossover operation applied to two given configurations is simply
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Algorithm 3: Genetic Algorithm (GA)

Begin;
Randomly generate an even number 7 of individuals z* of length p;
Evaluate the fitness g of each individual;
Repeat:

Select n new individuals 4* with replacement and probability
proportional to g(z');

For every pair of 3 do:
Generate random r; uniformly in the range (0, 1);

If r1 < p. then generate a uniform random integer k in the range
from 1 to (p — 1) inclusive and exchange the (p — k)
elements of each parent y;

For every individual 4* do:
For every binary digit in the individual do:
Generate random 75 uniformly in the range (0,1);
If ro < p,p, switch the current element from 0 to 1 or vice versa;

Save the best 100y% individuals for the next run, with y,p; the
current best;

Generate the remaining n(1 — ) individuals randomly and
calculate their fitness g;

Until stopping criterion = true;
Yopt is the approximation to the optimal configuration;
End.

an exchange of sections of these possible solutions, while mutation is a random flipping of a bit at a
random location along the configuration.

4.2 The basic algorithm

As before the goal is to maximize a function f(z) of the vector x = (z1,z2,...,zp), where here each
x; is binary. (If instead the elements of the configuration vectors are real-valued, one approach is to
replace the elements by binary expansions; see Sections 4.4.7-8 below for more ideas in this case.) The
basic GA (Algorithm 3) starts by randomly generating an even number n of binary strings of length p
to form an initial population:

of o .. a)
2 2l ... 2

. (13)
n n n
3}'1 iL'2 xp.

A positive fitness g then is calculated as a monotone increasing function of f for each string in the
current generation and n parents for the next generation are selected,
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Y Y% - Y
. . (14)
yroYs - Yp

with replacement, with the probability p; of choosing string j in the current population proportional
to its fitness g;, i.e.,

__ 9
b D190 (15)
The new parents are considered in pairs, and for each pair a crossover operation is performed with a
pre-selected probability p.. If crossover occurs, an integer k is generated uniformly at random between
1 and (p — 1) (inclusive) and the last (p — k) elements of each parent are exchanged to create two
new strings. For example, for the first pair of parents, suppose that crossover occurred; then two new
strings are created,
YI Y2 oo Yk Yk Yee2 o Yy (16)
2 .2 2 1 1 1
b1 Y2 - Yk Ykt1 Y42 - Yp-
If crossover does not occur, the parents are copied unaltered into two new strings. After the crossover
operation, mutation is performed with a pre-selected probability p,,. If mutation occurs, the value at
each string position is switched from 0 to 1 or vice versa, independently at each element of each string.
The algorithm is allowed to continue for a specified number of generations. On termination, the string
in the final population with the highest value of f can be returned as the solution of the optimization
problem. But, since a good solution may be lost during the algorithm, a more efficient strategy is to
note the best, or even better the 1004% best, configurations seen at any stage (for some reasonable )
and return these as the solution. The population size n, parameters p. and p,,, and fitness function g
must be specified before GA is applied. It is often reasonable to take g equal to f, but in some problems
a more careful choice may be required (see Sections 4.3 and 4.4.3 below). Note that GA proposes moves
away from the configurations currently under examination using a “neighborhood structure” that is
completely different from the approach used in SA.

4.3 Implementation of GA

As was the case with SA, the implementer of GA has to make a variety of choices about how to
execute the algorithm. For instance, how many times should the algorithm be run, and how should
the generations be allowed to evolve? The best number of runs, or of generations, would be a choice
large enough to find the optimal solution, but also as small as possible to minimize computation time.
One crucial issue in this choice is how many configurations to randomly generate in each repetition of
GA; another is how much of the previous population should be retained in the next generation. In one
approach the current population is cleared at the end of each repetition and a new initial population
is produced randomly at the beginning of the next repetition. By doing this the algorithm is forced to
look into new regions, but if the random production of the new population is computationally expensive
time is lost. The other extreme is to retain the final population of the previous repetition in the new
repetition unchanged; a compromise is to keep a specific percentage (1007%, say) of models from the
current population in the new repetition and randomly generate the rest.

Another decision has to do with the population size n, which should depend on the length of
the binary strings defining the configurations. Some researchers use small population sizes in order
to afford more repetitions of the algorithm (running the risk of under-covering the solution space and
failing to find a near-optimal solution), but others prefer to repeat the algorithm fewer times in order to
use large population sizes. Neither choice universally dominates in all optimization settings; it appears
necessary to spend some effort in the tuning phase of GA, making runs with (small n, large number
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of generations) and vice versa, to see what works best. Goldberg (1989) claims that the optimal size
for binary-coded strings grows exponentially with the length of the string p, but other authors have
found that population sizes as small as 30 are often quite adequate in practice even with fairly large
p, and Alander (1992) suggests that a value of n between p and 2p is not far from optimal for many
problems.

Implementation of GA also requires two probabilities, p. for crossover and p,, for mutation. Here
the literature is clearer on the best choices. Almost all researchers agree that the probability of crossover
must be fairly high (above 0.3), while the probability of mutation must be quite small (less than 0.1).
Many investigators have spent a lot of effort trying to find the best values of these parameters. De
Jong (1975), for instance, ran many simulation experiments and concluded that the best population
size was 50-100 individuals, the best single-point crossover rate was 0.6 per pair of parents, and the
best mutation rate was 0.001 per bit. These settings became widely used in the GA community, even
though it was not clear how well GA would perform with these inputs on problems outside De Jong’s
test suite. Schaffer et al. (1989) spent over a year of CPU time systematically testing a wide range
of parameter combinations. They found that the best settings for population size, crossover rate and
mutation rate were independent of the problems in their test suite (but improvements to GA since
1989 have since superseded their results). Finally Grefenstette (1986), after much effort, suggested
that in small populations (30, for example) it is better to use high values of the crossover rate, such as
0.88. The best crossover rate decreased in his simulations to 0.50 for population size 50 and to 0.30 for
population size 80. Finally in most of his runs he used a mutation rate of 0.01. Runs with mutation
rate above 0.1 are more like a random search, but values of p,, near 0 were also associated with poor
performance.

Finally the GA implementer has to choose a good fitness function g. Theory says that g must be
positive and a monotone increasing function of the objective function f. Some researchers prefer their
fitness function to take values in the interval [0, 1]. The choice is wide; the only guide is that g must
provide sufficient selectivity to ensure that the algorithm prefers superior solutions to the extent that
it eventually produces an optimal (or at least near-optimal) answer. On the other hand, selectivity
must not be so strong that populations polarize at an early stage and the potential advantages of
maintaining a diverse collection of solutions are lost. A frequent choice is the simplest—g = f—but
more complicated fitness functions are sometimes advantageous, e.g., ¢ = exp(f), or g = M + f for a
suitable constant M. If a positive, monotone increasing function of f which has values from 0 to 1 (at
least approximately) is desired, a natural choice is

f(X) — min[f(X)]
max[f(X)] — min[f(X)]’

where max[f(X)] and min[f(X)] are (at least rough estimators of) the maximum and minimum values
of f, respectively.

9(X) =

(17)

4.4 Modifications

In this section we examine the most frequent and most effective modifications of the basic GA idea in
the literature.

4.4.1 Seeding

What kind of population to use initially—how to seed GA—is the subject of some discussion in the
literature. The most common idea is to randomly generate strings of Os and 1s to create the initial
population. Some researchers (e.g., Reeves 1992, Kapsalis et al. 1993) believe that starting GA in-
stead with a population of high-quality solutions (obtained, for instance, from another optimization
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technique) can help the algorithm to find a near-optimal solution more quickly, but this runs the risk
of premature convergence to a local optimum that may be far from globally best.

4.4.2 Selection mechanisms

In the original GA, parents are chosen in some random fashion from the population, and then a new
set of offspring is generated to replace the parents. One alternative is the generation gap of De Jong
(1975), in which a proportion R of the population is selected for reproduction and their offspring,
when generated, replace an element in the current population at random. From available studies
of this question, GA seems to perform best with non-overlapping populations, but with incremental
replacement we have the advantage of preventing the occurrence of duplicates, which avoids (a) having
to compute the same fitness repeatedly and (b) distorting the process of selection (otherwise duplicate
patterns have an increased chance to reproduce).

A second worthwhile alternative is to force the best member(s) of the current population to be
member(s) of the next as well. With this method we keep track of the best solution(s) through the
whole algorithm. Another useful idea is to compare the parents with the offspring, and instead of
copying the offspring directly to the new population, to copy the two best among the four (the two
parents and the two children) to the new population, so that (for instance) if the parents are “fitter”
than their children, then they both survive. This is called an elitist strategy.

Finally, consider the problem of having two chromosomes which are close to different optima and the
result of a crossover operator on them is worse than either. To address this Goldberg and Richardson
(1987) defined a sharing function, such as

1-4 if d<D
— D
o={ o " § 95D} (18)

where d is the distance between 2 chromosomes (an obvious measure is Hamming distance—a count
of the number of discrepant bits—but this may cause problems; for more details refer to Goldberg and
Richardson 1987) and D is a parameter. For each pair of chromosomes we evaluate h(d) and calculate

aj =y h(d) (19)
i#]
for each chromosome j. Then we divide the fitness of each chromosome j by o;, and we replace the
old fitnesses with the new values. The result of this will be that the fitnesses of close chromosomes will
be diminished when compared with those that are far apart.

4.4.3 The fitness calculation

In Section 4.3 we offered several ideas for specifying the fitness function. An alternative approach (e.g.,
Goldberg 1989) is to use a scaling procedure based on the transformation

g=oaf +5, (20)
where f is the objective function and « and § are specified by conditions such as

mean(g) = mean(f)
max(g) = p—max(f), (21)

where p is a constant. A second alternative (e.g., Baker 1985, Whitley 1989, Reeves 1992) is to
ignore the objective function altogether and base the selection probabilities on ranks. In this approach
children are chosen with probability

2k

P([k]) = ma

(22)
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where [k] is the k%" chromosome ranked in ascending order. The best chromosome [n] will be selected
with probability n%_l, roughly twice that of the median, whose chance of selection is %

Finally a third alternative is to use tournament selection (Goldberg and Deb 1991). Suppose we
have n chromosomes, and successive blocks of C' chromosomes are compared. We choose only the
best one as a parent, continuing until the n chromosomes have all been examined, at which point we
generate another random permutation. This procedure is repeated until n parents have been chosen,
after which each parent is mated with another at random. With this approach the best chromosome
will be chosen C times in any series of n tournaments, the worst not at all, and the median on average

once.

4.4.4 Crossover operators

In most applications, the simple crossover operator described previously has proved effective, but there
are problems where more advanced crossover operators have been found useful. First of all consider
the string-of-chance crossover. Suppose we have the two chromosomes

11010001
11011100 (23)

These chromosomes have the same elements in the first four positions. Cases like this are quite
common, especially in the later stages of the algorithm. If the crossover point is any of these four first
positions, then the new string will not be a different chromosome. To overcome this, the suggestion
was made by Booker (1987) and Fairley (1991) to identify crossover points yielding different offspring
before undertaking the crossover operation. To implement this Fairley proposed the string-of-chance
crossover, which calculates an ezclusive-or (XOR) between the parents and only permits crossover
points at locations between the outermost 1s of the XOR string. In the above example, the result of
the XOR operation is

00001101. (24)

So only the last four positions will give rise to a different offspring.

In the simple crossover operator we randomly choose a single position and exchange the elements of
the two parents, but there is no reason why the choice of crossover points should be restricted to a single
position. Many researchers have claimed large improvements with the use of multi-point crossovers.
Consider the simplest case of two—point crossover and suppose we have the following strings:

0 1|1 0 1 1,0 O
1 0/0 0 0 11 O

If the chosen positions are the third and the seventh then we can produce the offspring

01000100
10101110 (25)

by taking the first two and the last two elements from one parent and the rest from the other each time,
but this is of course by no means the only possible exchange; another potentially useful outcome would
result from holding the middle block of binary text (positions 3 through 6) constant and exchanging
the outer blocks between parents, yielding

10101110
01000100. (26)
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The operator that has received the most attention in recent years is the wuniform crossover. It was
studied in some detail by Ackley (1987) and popularized by Syswerda (1989). Suppose we have the
following strings:

10001010
0101001 1. (27)

Then at each position randomly (with probability 0.5, say) pick each bit from either of the two parent
strings, repeating if it is desired to produce two offspring. One possible outcome is

00010010
1100101 1. (28)

In the first offspring, we have chosen the second, third, sixth, seventh, and eighth element from the
first parent, and the rest from the second, and in the second offspring we have chosen the first, third,
fourth, fifth, sixth and seventh bit from the first parent, and the rest from the second.

A modified version of the uniform crossover is the method used by the CHC Adaptive Search
Algorithm (Eshelman 1991), which will here be called highly uniform crossover. This version crosses
over half (or the nearest integer to %) of the non-matching alleles, where the bits to be exchanged are
chosen at random without replacement. For example, if we again have as parents the strings

10001010
01010011, (29)

there are five non-matching alleles (the first, second, fourth, fifth, and eighth); under highly uniform
crossover the recommendation would be to cross three of them randomly, (say) the first, second and
fourth, with

01011010
10000011 (30)

as the resulting children. With this operator we always guarantee that the offspring are the maximum
Hamming distance from their two parents.

Sirag and Weisser (1987) proposed a different kind of generalized crossover, which uses ideas from
simulated annealing. In this approach the crossover process is based on a threshold energy 6. which
determines the choice of individual bits. In creating the child chromosome a bias toward taking bit
(1 + 1) from the same parent as bit  is introduced, by choosing bit (i + 1) from the other parent with

probability
—0.
— 1
exp (7). (31)

where T is a temperature parameter that is decreased slowly via an annealing schedule. When T is
high this behaves like uniform crossover; as 7' drops the number of switches between parents decreases,
mimicking simple crossover; and for low 7' one of the parents is simply copied. Experimentation is
needed as usual with SA to choose 6., the initial temperature, and the cooling schedule.

4.4.5 Inversion

Inversion is an operator which takes account of order relationships. It can be used together with
the crossover operator to produce a larger variety of offspring. Consider, for instance, the following
chromosome:

1011001 0. (32)
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We randomly choose two positions with different elements (the second and seventh, say), and exchange
these two positions (a two-bit swap), yielding

11110000. (33)

Two-bit swaps can also be used in SA to enrich the neighborhood structure (for instance, by first
scanning along the bit string using one-bit flips and following this by a round of two-bit swaps), but
this use of inversion is different from that in GA.

4.4.6 Adaptive operator probabilities

In simple GA the probability of using either crossover or mutation is fixed throughout, and usually
crossover is applied with a high probability (above 30-50%) while mutation is applied with low fre-
quency (less than 1%). Reeves (1992) found it useful to change this approach, and allow the mutation
rate to change during the run. To diminish the chance of premature convergence to a local sub-optimum
he suggested making the mutation rate inversely proportional to the population diversity. By contrast
Booker (1987) used a characteristic called percent involvement to create an adaptive crossover rate.

Davis (1991) has further proposed that one or the other of crossover or mutation should be applied
at each iteration but not both. With this approach at each step GA chooses which operator to use
based on a probability distribution called operator fitness. The user can select a value like 75% for
crossover fitness, so that crossover would be chosen three times as often as mutation. The idea can be
extended by allowing operator fitness to change during the run. One might begin with a high value
of crossover fitness, because crossover’s importance is higher at the beginning of the run when the
population is diverse, and then as diversity decreases the importance of mutation increases as the main
way to propose completely new configurations.

4.4.7 Chromosome coding

GA has its most obvious application with binary configurations, but it may also be applied in problems
with real-valued inputs. One approach is to simply map the real numbers onto binary strings of desired
precision. Thus if an input takes values in the interval [a,b] and is mapped to a string of length p,
then the precision is

a—b

2» -1
The problem in this case is that values which are close in the original space may be far away in the
new binary-mapped space. For instance, suppose that the optimal real-valued input string is 8, which
would be coded (1 0 0 0) with 4-bit chromosomes. The input string 7, which is nearly optimal, comes
out (0 11 1) in this coding, as far away in Hamming distance from its real-valued neighbor as possible.
To overcome this problem Caruna and Schaffer (1988) proposed a gray-scale mapping, but the lack of
a simple method for decoding a gray scale introduces further difficulties with their approach.

Examples of comparisons between binary coding and real-valued or even multiple-character coding

include the Kitano (1990) many-character representation for graph-generation grammars, the Meyer
and Packard (1992) real-valued representation for condition sets, the Montana and Davies (1989)
real-valued representation for neural-network weights, and the Schultz—Kremer (1992) real-valued rep-
resentation for torsion angles in proteins.

(34)

4.4.8 Sequence representation

Many situations of interest, such as the traveling salesman problem (e.g., Aarts and Korst 1989), can
be most naturally represented through permutations of the integers from 1 to k. The drawback for GA
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in such cases is that the original crossover operator does not work. As an example, suppose we have
the following two parents:

152436
25364 1. (35)

Then if we take the crossover point to be the fourth position we end up with the offspring

152641
253436, (36)

which are of course invalid.

Several researchers have tried to solve this problem by defining new operators. Goldberg and
Lingle (1985) proposed the partially mapped crossover. This operator uses two crossover points, and
the section between these points defines an interchange mapping. In the above example suppose that
the two crossover points are the second and fifth:

115 2 4|3 6
215 3 6|4 1

These crossover points define the interchange mapping

R )
243
46 (37)
leading to the offspring
153624
352461 (38)

via the following rules: (i) the integers between the crossover points are interchanged between the
parents, and (ii) the remaining integers in each parent are ranked and replaced by the unused integers
in the same rank order.

Reeves (1992) used a C1 operator to solve a flowshop sequencing problem. This operator randomly
chooses a point, takes the first part from one parent and completes the chromosome by taking each
legitimate element from the other parent in order. In the example above if we randomly choose the
third position

1 512 4 3 6

2 5|3 6 4 1
then we (i) create the “temporary offspring” 1525 3 6 4 1 (by taking the 1 5 from the first parent
and the rest from the second) and 2 515 2 4 3 6, and (ii) eliminate duplicates reading from left to

right, yielding as the new offspring under the C1 operator

152364
251436. (39)

Finally, as was the case with binary inputs, a uniform crossover is also useful with permutation
problems. We randomly generate a crossover template of 0s and 1s, where 1s define elements taken
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from one parent, while the other elements are copied from the other parent in the order in which they
appear in that chromosome. Returning to the example in (35) above, if we generate the template

101100 (40)

then we again (i) create the “temporary offspring” 1?7 247 ? 253 6 4 1 (by selecting positions
1, 3, and 4 from parent 1 and the rest from parent 2) and 2?7 36 7 ? 1524 3 6, and (ii) use the
non-duplicate values in positions 7-12 to fill in the question marks (reading from left to right), yielding
as the two new offspring under uniform crossover

152436
21365 4. (41)

Mutation also needs to be reconsidered with permutation problems. Reeves (1992) proposed an
exchange mutation, in which two randomly chosen elements are interchanged (a two-bit swap). Another
idea is the shift mutation, in which a randomly chosen element is moved a random number of places to
the left or right. Finally Davis (1991) used the idea of a scramble sublist mutation, in which two points
on the string are chosen at random and the elements between these positions are randomly scrambled.

4.4.9 Parallel implementations: speeding up GA

A serious drawback of GA is its inefficiency when implemented on a sequential machine. However, due
to its inherent parallel properties, it can be successfully executed on parallel machines, in some cases
resulting in a considerable acceleration. One simple idea (e.g., Talbi and Bessiére 1991; Miihlenbein et
al. 1988) for parallelizing GA is to calculate the fitness of all chromosomes in the current population in
parallel. A second approach divides the current population at random into k& subpopulations and lets
each processor run GA independently on parallel subpopulations for a specified number of generations,
perhaps seeding each subpopulation with the best configuration found so far. Pettey et al. (1987) use a
version of this idea in which the best configuration is passed along and harvested once per generation;
Cohoon et al. (1987) instead wait a fairly large number of generations and then copy randomly chosen
subsets of configurations between the subpopulations.

4.4.10 Hybridization

One possible approach to enhancing the effectiveness of GA is to hybridize it with another optimization
method. For example, many researchers have described ways in which local neighborhood search or
extensions such as SA can be embedded in GA in order to make it more effective.

Goldberg (1989) described G—bit improvement, a method for incorporating neighborhood search
into a GA (also see Suh and Van Gucht 1987 for a similar hybrid). In this method promising patterns
periodically serve as the basis of a neighborhood search defined by 1-bit flips. On completion of
the neighborhood search, locally optimal configurations found in this way are re-introduced into the
population for the next phase of GA. Kapsalis et al. (1993) and Beaty (1991) divided the search for
an optimal configuration into two parts—“top-level” decisions about the form of a solution (made by
GA) and problem-specific search methods which refine the GA output.

Two of the best-known hybrids are genetic local search (GLS; Algorithm 4) and genetic simulated
annealing (GSA, e.g., Murata et al. 1996; this is identical to GLS except that SA replaces LS in
Algorithm 4). The first of these has been proposed by several authors, mainly for solving the traveling
salesman problem (e.g, Jog et al. 1989, Ulder et al. 1991). The problem with both of these algorithms
is that it can take a long time to find the locally optimal configurations defining each generation. One
way to decrease this computation time can be to search only a part of each neighborhood examined.
In GLS, for instance, one can search at random through only a small portion (5-20%, say) of each



Stochastic optimization: a review 23

Algorithm 4: Genetic Local Search (GLS)

Begin;
(Initialization);
(Local Search and termination test). Apply Local Search (LS; Algorithm
1) to each of the n configurations in the current population. If the overall
stopping criterion (e.g., total CPU time) is met during any of these searches,
stop. Otherwise let the current population consist of the best configurations
from each local search and continue;

(Selection);
(Crossover);
(Mutation);

Keep the best 1007% individuals and randomly generate the remaining
n(1l — ) individuals to create the new population;

Return to the second step.

neighborhood during each of the LS phases, with a given local search concluding if nothing is found
that improves on the current local optimum. In GSA it appears to be best (e.g., Murata et al. 1996)
to apply SA with constant moderate temperature to each of the n solutions in the current population
to avoid losing the value of the current configuration by annealing at high temperatures. To improve
the performance of GSA Ishibuchi et al. (1995) suggested a way to modify SA, by selecting a small
subset of the current neighborhood and choosing the best configuration in this subset as the candidate
for the next transition in SA.

4.5 The genitor algorithm

The genitor algorithm (Whitley 1989) has been referred to by Syswerda (1989) as the first of the
“steady-state” genetic algorithms. It differs from the original (or “vanilla”) version of GA in three
ways: during reproduction only one offspring is created; this offspring directly re-enters the population,
displacing the currently least fit member (thus after each cycle through the population it will consist
of half of the parents (the fittest ones) and all the offspring); and fitness is evaluated by rank (see
section 4.4.3), to maintain a more constant selective pressure over the course of the search.

4.6 The CHC adaptive search algorithm

The CHC adaptive search algorithm was developed by Eshelman (1991). CHC stands for cross-
generational elitist selection, heterogeneous recombination and cataclysmic mutation. This algorithm
uses a modified version of uniform crossover, called HUX, where exactly half of the different bits of the
two parents are swapped. Then with a population size of n, the best n unique individuals from the
parent and offspring populations are drawn to create the next generation. HUX is the only operator
used by CHC adaptive search; there is no mutation.

In CHC adaptive search two parents are allowed to mate only if they are a specified Hamming
distance (say d) away from each other, an attempt to encourage diversity by “preventing incest.” The
usual initial choice is d = %, where p is the length of the string. If the new population is exactly the
same as the previous one, d is decreased and the algorithm is rerun. If d becomes negative this invokes
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a divergence procedure, in which the current population is replaced with n copies of the best member of
the previous population, and for all but one member of the current population r X p bits are flipped at
random, where r is the divergence rate (a reasonable compromise value for r is 0.5). d is then replaced
by d = r(1 — r)p and the algorithm is restarted.

5 Tabu search (TS)

Tabu search (TS) is a “higher-level” heuristic procedure for solving optimization problems, designed
(possibly in combination with other methods) to escape the trap of local optima. Originally proposed
by Glover (1977) as an optimization tool applicable to nonlinear covering problems, its present form was
proposed 9 years later by the same author (Glover 1986), and with even more details several years later
again by Glover (1989). The basic ideas of TS have also been sketched by Hansen (1986). Together with
SA and GA, TS was singled out by the Committee on the Next Decade of Operations Research (1988)
as “extremely promising” for future treatment of practical applications. This stochastic optimization
method is well established in the optimization literature but does not appear to be as well known to
statisticians (Fouskakis and Draper 1999).

The two key papers on TS are probably Glover (1989, 1990a); the first analytically describes the
basic ideas and concerns of the algorithm and the second covers more advanced considerations. Glover
(1990b), a tutorial, and Glover et al. (1993), a users’ guide to TS, are also helpful. Other authors
who have made contributions include Cvijovic and Klinowski (1995), who specialized the algorithm for
solving the multiple minima problem for continuous functions, and Reeves (1995).

In a variety of problem settings, TS has found solutions equal or superior to the best previously
obtained by alternative methods. A partial list of TS applications is as follows: employee scheduling
(e.g., Glover and McMillan 1986); maximum satisfiability problems (e.g., Hansen and Jaumard 1990);
telecommunications path assignment (e.g., Oliveira and Stroud 1989); probabilistic logic problems (e.g.,
Jaumard et al. 1991); neural network pattern recognition (e.g., de Werra and Hertz 1989); machine
scheduling (e.g., Laguna, Barnes, et al. 1991); quadratic assignment problems (e.g., Skorin—-Kapov
1990); traveling salesman problems (e.g., Malek et al. 1989); graph coloring (e.g., Hertz and de Werra
1987); flow shop problems (e.g., Taillard 1990); job shop problems with tooling constraints (e.g.,
Widmer 1991); just-in-time scheduling (e.g., Laguna and Gonzalez-Velarde 1991); electronic circuit
design (e.g., Bland and Dawson 1991); and nonconvex optimization problems (e.g., Beyer and Ogier
1991).

5.1 The algorithm

Webster’s dictionary defines tabu or taboo as “set apart as charged with a dangerous supernatural power
and forbidden to profane use or contact ...” or “banned on grounds of morality or taste or as constituting
a risk ...”. TS’s name comes from a milder version of this definition based on the idea of imposing
restrictions to prevent a stochastic search from falling into infinite loops and other undesirable behavior.
TS is divided into three parts: preliminary search, intensification, and diversification. Preliminary
search, the most important part of the algorithm, works as follows. From a specified initial configuration
TS examines all neighbors and identifies the one with the highest value of the objective function.
Moving to this configuration might not lead to a better solution, but TS moves there anyway; this
enables the algorithm to continue the search without becoming blocked by the absence of improving
moves and to climb out of local optima. If there are no improving moves (indicating a kind of local
optimum), TS chooses one that least degrades the objective function. In order to avoid returning
to the local optimum just visited, the reverse move now must be forbidden. This is done by storing
this move, or more precisely a characterization of this move, in a data structure—the tabu list—often
managed like a circular list, empty at the beginning and with a first-in-first-out mechanism, so that
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the latest forbidden move replaces the oldest one. This list contains a number s of elements defining
forbidden (tabu) moves; the parameter s is called the tabu list size. The tabu list as described may
forbid certain relevant or interesting moves, as exemplified by those that lead to a better solution than
the best one found so far. In view of this, an aspiration criterion is introduced to allow tabu moves to
be chosen anyway if they are judged to be sufficiently interesting.

Suppose for illustration that we wish to maximize a function of a binary vector of length 5, and
take (0,1,0,0,1) with objective function value 10 as the initial configuration. Then if we define the
neighbors as those vectors obtained by one-bit flips, we obtain the following configurations (z1,...,zs),
with hypothetical objective function values:

Configuration | (1,1,0,0,1) (0,0,0,0,1) (0,1,1,0,1) (0,1,0,1,1) (0,1,0,0,0)
Value | 9 8 5.4 7.1 7.3

From the above possible moves, none leads to a better solution. But in TS we keep moving anyway,
so we accept the best move among the five in the neighborhood, which is the vector (1,1,0,0,1) with
value 9. In order to avoid going back to the previous configuration we now mark as tabu the move
that changes z; from 1 back to zero. So among the next five neighbors,

Configuration | (0,1,0,0,1) (1,0,0,0,1) (1,1,1,0,1) (1,1,0,1,1) (1,1,0,0,0)
Value | 10 8.1 9.7 7.9 6.9

the first one is tabu, the rest non-tabu. The aspiration criterion is simply a comparison between the
value of the tabu move and the aspiration value, which is usually the highest value found so far (in our
example 10). Because the tabu move has value not larger than the aspiration value, it remains tabu;
thus the available choice is among the other four. From these the one with the best solution is the
third neighbor, (1,1,1,0,1), with value 9.7. So now the move that changes z3 from 1 to 0 is marked
as tabu as well. Suppose that the tabu list size has been set to 4 for this example, and continue the
algorithm. The next neighbors are

Configuration | (0,1,1,0,1) (1,0,1,0,1) (1,1,0,0,1) (1,1,1,1,1) (1,1,1,0,0)
Value | 54 9.2 9 3 6.5

The first and the third neighbors now are tabu, with values less than the aspiration value for both,
and so we have to search among the other three. Between these three moves the best one is the second
neighbor, (1,0,1,0, 1), with value 9.2. So now the move that changes x5 from 0 to 1 is marked as tabu
as well. Going one more step produces the next neighborhood,

Vector | (0,0,1,0,1) (1,1,1,0,1) (1,0,0,0,1) (1,0,1,1,1) (1,0,1,0,0)
Cost |  10.8 9.7 8.1 7.1 6.1

The first, second, and third moves according to the tabu list are tabu. But the first move has value
larger that the aspiration value, and so its tabu status is cancelled. So the non-tabu moves now are
the first, fourth, and fifth, and among these the best one is the first one, (0,0,1,0,1), with value
10.8, which also replaces the best one found so far. Continuing this process for a specified number of
iterations completes the preliminary search.

The next stage is intensification, which begins at the best solution found so far and clears the tabu
list. The algorithm then proceeds as in the preliminary search phase. If a better solution is found,
intensification is restarted. The user can specify a maximum number of restarts; after that number the
algorithm goes to the next step. If the current intensification phase does not find a better solution after
a specified number of iterations, the algorithm also goes to the next stage. Intensification provides a
simple way to focus the search around the current best solution.
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The final stage, diversification, again starts by clearing the tabu list, and sets the s most frequent
moves of the run so far to be tabu, where s is the tabu list size. Then a random state is chosen and the
algorithm proceeds to the preliminary search phase for a specified number of iterations. Diversification
provides a simple way to explore regions that have been little visited to date. After the end of the third
stage, the best solution (or k best solutions) found so far may be reported, or the entire algorithm may
be repeated (always storing the k best solutions so far) either a specified number of times or until a
preset CPU limit is reached.

5.2 Implementation and modifications of TS

From the above description, it is clear that there are a number of potentially crucial user-defined choices
in TS, including neighborhood sizes, types of moves, tabu list structures, and aspirations conditions,
and the specification of a variety of inputs (see Algorithm 5) including mazmoves, nint, Nimpr, Ndiy and
rep. There appears to be surprisingly little advice in the literature about how to make these choices.
We summarize what is known in what follows; see Fouskakis (2001) for more details.

5.2.1 Neighborhood sizes and candidate lists

When the dimension of the problem is high, a complete neighborhood examination may be computa-
tionally expensive, which suggests examining only some regions of it that contain moves with desirable
features. One way of doing this is to use a neighborhood decomposition strategy, which breaks down
the neighborhood at each iteration into coordinated subsets and uses some means (such as an aspi-
ration threshold) of linking how the subsets are examined in order to visit less appealing regions less
often. Success stories with this approach include Laguna, Barnes, et al. (1991), Semet and Taillard
(1993), and Fiechter (1994). Another technique is elite evaluation candidate lists, in which a collection
of promising moves is stored; at each iteration these elite moves are considered first, after which a
subset of the usual neighborhood is examined and the worst of the elite moves are replaced by any
new moves found which dominate them. From time to time, based on an iteration count or when all
of the “elite” moves fail to satisfy an aspiration threshold (Glover, Glover, et al. 1986), the algorithm
pauses and spends time refreshing the candidate list with good moves. A final idea that lends itself
well to parallel processing (see Section 5.2.3) is a sequential fan candidate list (Glover et al. 1993), in
which the [ best alternative moves are computed at specified points in TS and a variety, or “fan,” of
solution trajectories is maintained independently.

5.2.2 Tabu list size

The choice of tabu list size is crucial; if its value is too small, cycling may occur in the search process,
while if its value is too large, appealing moves may be forbidden, leading to the exploration of lower
quality solutions and producing a larger number of iterations to find the solution desired. Empirically,
tabu list sizes that provide good results often grow with the size of the problem. However, there
appears to be no single rule that gives good sizes for all classes of problems.

Rules for determine s, the tabu list size, are either static or dynamic, according to whether s is
fixed or permitted to vary as the TS run unfolds. Table 3 gives examples of these rules. The values
of 7 and /p (where p is the dimension of the problem) used in this table are merely for illustration,
not meant as a rigid guide to implementation; but TS practitioners often use values between 7 and 20,
or between % p and 2,/p, and in fact these values appear to work well for a large variety of problems
(Glover 1990b).

Experience has shown that dynamic rules often provide benefits in solution quality which exceed
the costs of implementing the greater flexibility, and many researchers prefer to use non-fixed values

for the tabu list size. For example Taillard (1991), in order to solve the quadratic assignment problem,
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Algorithm 5: Tabu Search (TS)

Begin;
Randomly choose a configuration %gsq,¢, S€t @ := ig44r¢, and evaluate the objective function

f(i); set the aspiration value « := lo, a small number; determine s := Listlength,
the length of the tabu list; set Move := 0 and ez = Zstart;

Repeat:

‘ Preliminary Search

Add 7 to the tabu list at position s; set s := s — 1. If s = 0 then set s := Listlength,;
set Move := Move + 1, i,ppq := %, and cuppq = low, a small number;

For each neighbor j of 7 do:
If f(5) > a do:
If f(5) > cnpha then set inpng := j and cppng := f(5);
If f(5) < ado;
If 5 is in the tabu list go to the next neighbor;
Else if j is non-tabu and f(j) > cppnqg then set inpng := 7 and cupna :== f(4);
Set a := min (@, ¢yppg) and @ := ipppg;
T€ £(3) > f(imaz) then ime i= is
If Move # maxmoves go back to Preliminary Search;

Else go to Intensification;

| Intensification |

Repeat:
Set 7 := 44, and clear the tabu list;
Repeat:
Do the Preliminary Search;

Until a better solution than i,,,, is found. If no improvements after n;,; iterations
go to the next stage;

Until npp- replications;

‘ Diversification ‘

Clear the tabu list and set the s most frequent moves to be tabu;
Randomly choose a configuration ¢;
Evaluate f(4);
Repeat:
Do the Preliminary Search;

Until ng;,, repetitions have occurred;

Until the whole algorithm has been repeated rep times;

Tmaz 18 the approximation to the optimal solution;

End.

27



28 D. Fouskakis and D. Draper
Table 3: Illustrative rules for tabu list size.
Static Rules
e Choose s to be a constant such as s =7 or s = ,/p, where p is the problem’s dimension.

Dynamic Rules

o Simple dynamic: Choose s to vary randomly or by systematic pattern, between bounds s, and
Smaz With Syin = 5 and S0, = 11 (for example) or sy = 0.9,/p and sy40 = 1.1,/p.

o Attribute-dependent dynamic: Choose s as in the simple dynamic rule, but determine s,,;, and
Smaz tO be larger for attributes (move types) that are more attractive (based for example on
quality or influence considerations).

selected the size randomly from the interval [0.9 p, 1.1 p| and kept it constant for 2.2 p iterations before
selecting a new size by the same process. Laguna, Barnes, et al. (1991) have effectively used dynamic
rules that depend on both attribute type and quality, while a class of dynamic rules based on moving
gaps was also used effectively by Chakrapani and Skorin—Kapov (1993). Finally Laguna and Glover
(1993) systematically varied the list size over three different ranges (small, medium and large), in order
to solve telecommunications bandwidth packing problems.

5.2.3 DParallel implementations: speeding up TS

To speed up TS, again consider the case of parallel runs. According to Glover et al. (1993), concurrent
examination of different moves from a neighborhood often leads to a multiplicative improvement in
total runtime that is close to the ideal speed-up

Int 7w (42)
B+ T

where P is the number of processors and 7}, and T, are the amounts of algorithmic time that can and
cannot be parallelized, respectively. The basic idea is to divide the neighborhood into P parts of roughly
equal size and give one part to each processor to evaluate. The processors all send messages to a master
processor identifying the best moves they have found; the master node selects the overall best move
and makes it, and the cycle begins again. Another natural and even simpler parallelization process is
to let the processors work totally independently, each starting with its own initial configuration and
perhaps also using different input settings to the tabu search. This process has no need of coordination
and can be applied with any optimization problem; it has proven surprisingly effective in environments
with P < 20. Taillard (1989, 1990, 1991) applied this method in three different kinds of problems with
considerable success.

6 Example: Bayesian utility maximization

We have performed a large simulation experiment in the context of the Bayesian variable selection
example of Section 2, to compare the performance of simulated annealing (SA), genetic algorithms
(GA), and tabu search (TS) and to learn how sensitive each of these methods is to user-defined input
settings in a complex optimization problem with binary configurations z. See Fouskakis (2001) for
details and Draper and Fouskakis (2001) for the main conclusions; here we give a brief summary of
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Figure 4: Parallel bozxplots comparing GA, SA, and TS in the 1/-variable case.
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some of our findings, in the case with p = 14 for which Figure 1 describes the results of an exhaustive
enumeration of the quality of all 2P = 16,384 models (possible subsets of predictor variables). From
Figure 1 it is straightforward to pick out the & best models (with, e.g., & = 20) and use as a performance
measure how many of these best models each optimization method can find with a limited budget of
CPU time.

For each of a large variety of input settings with each of GA, SA, and TS, we restricted each
method to 20 minutes of CPU time at 400 Unix MHz and recorded the mean, over 30 repetitions
(using different random numbers each time), of the percentage of the actual 20 best models it was able
to identify. With all three optimization methods we used an adaptive approach (details are available
in Fouskakis 2001) to specifying N, the number of modeling/validation splits on which the estimated
expected utility of any given model is based. With TS we varied six user inputs (the total number of
repetitions of the algorithm, the maximum number N* of random modeling/validation splits used in the
adaptive method just mentioned for estimating the expected utility, the number of preliminary searches
per repetition, the number of intensification searches per repetition, the maximum number of random
restarts in each intensification search, and the number of diversification searches per repetition) across
49 different combinations in a partial factorial design. With SA we examined a total of 108 different
choices of five user inputs (the total number of iterations, N*, the initial and final temperatures, and
the cooling schedule) in a nearly complete full-factorial design. With GA we implemented a complete
full-factorial experiment over six user inputs (the total number of repetitions, N*, the population size,
the crossover strategy—simple, uniform, highly uniform—and crossover probability, elitist versus non-
elitist strategies, and whether or not the population was cleared and regenerated at random at the end
of each repetition) involving a total of 144 different combinations of inputs.

Figure 4 summarizes the results of this experiment by providing parallel boxplots for each opti-
mization method across all combinations of input settings examined. Versions of GA employing elitist
strategies, uniform or highly uniform crossover behavior, and smaller values of the population size were
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the overall winners, followed closely by versions of T'S with input settings detailed in Fouskakis (2001).
The performance of “vanilla” versions of SA was disappointing in this problem; Draper and Fouskakis
(2001) describe an approach to making SA more “intelligent”—by accepting or rejecting a proposed
move to a new model based on a simple measure of the desirability of that model in a cost-benefit
sense—which exhibits greatly improved performance. While input settings can be chosen for GA with
good performance in this problem, it is also true that GA performed very poorly (the worst of all three
methods) with many other input settings. It is evident from Figure 4 that tabu search possesses a
kind of robustness to mis-specification of input settings in this problem: the best TS performance was
among the best of all optimization methods studied, and the worst was approximately as good as the
median performance of “vanilla” SA.

7 Discussion

The literature comparing the performance of stochastic optimization methods such as simulated an-
nealing (SA), genetic algorithms (GA), and tabu search (TS) has grown considerably in recent years.
Three sets of authors working in different problem areas have recently made detailed comparisons of
SA and GA: Franconi and Jennison (1997) in image analysis, Bergeret and Besse (1997) in problems
involving the use of a sample to minimize the expectation of a random variable, and Glass and Potts
(1996) in scheduling jobs in a permutation flow shop to minimize the total weighted completion time.
These comparisons yield a somewhat complex picture: Franconi and Jennison find (1) that “GAs are
not adept at handling problems involving a great many variables of roughly equal influence” and (2)
that a GA-SA hybrid outperforms either method individually in the problem they examine; Bergeret
and Besse demonstrate the superiority of SA over GA in their class of problems; and Glass and Potts
find that a hybrid genetic descent algorithm performs best in their flow-shop context.

Westhead et al. (1997) compare GA and TS in problems of flexible molecular docking, concluding
that GA “performs best in terms of the median energy of the solutions located” but that TS “shows
a better performance in terms of locating solutions close to the crystallographic ligand conformation,”
suggesting that a GA-TS hybrid might outperform either method. Augugliaro et al. (1999) compare
SA, GA, and TS in problems involving the reconfiguration of radial distribution electric power networks
and find that TS performs best in this class of problems. Finally, Fu and Su (2000), Fudo et al. (2000),
Ganley and Heath (1998), Manoharan and Shanmuganathan (1999), Sinclair (1993), and Youssef et
al. (2001) compare SA, GA, and TS in problems involving the minimization of assembly time in printed
wiring assembly, service restoration in electricity distribution systems, graph partitioning, structural
engineering optimization, balancing hydraulic turbine runners, and the floor-planning of very large
scale integrated (VLSI) circuits, respectively, in many cases without identifying any clear winners.

Two basic themes emerge from this literature: (a) the winning optimization method is highly
context-specific, and (b) hybridization of competing algorithms often narrows the performance gap
between methods, and sometimes yields an approach that is superior to any of the algorithms being
hybridized. What has not yet emerged from this literature is an unambiguous identification of regions
in the space of optimization problems in which one method clearly dominates the others, and an
intuitive explanation for such dominance when it can be found.
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