A GRASP for Job Shop Scheduling

Maurício G. C. Resende

AT&T Labs Research Florham Park, New Jersey

mgcr@research.att.com
http://www.research.att.com/~mgcr

May 1997

Joint work with S. Binato, W. J. Hery, & D. M. Loewenstern.

Agenda

- Job shop scheduling (JSS) problem
- GRASP for JSS
 - construction method
 - local search
- Computational experience
- Future directions & conclusions

Job shop scheduling

- schedule a set of jobs on a set of machines, such that
 - each job has a specified processing order on the set of machines
 - machines can process only one job at a time
 - each job has a specified duration on each machine
 - machine must finish processing job before it can begin processing another job (no preemption allowed)

Job shop scheduling

 objective: minimize the maximum completion time (makespan) of jobs

example:

 J_1 : $M_1(15)$, $M_2(15)$, $M_3(10)$

 J_2 : $M_3(5)$, $M_1(5)$, $M_2(10)$

 J_1 : $M_1(15)$, $M_2(15)$, $M_3(10)$

 J_2 : $M_3(5)$, $M_1(5)$, $M_2(10)$

Job shop scheduling

- NP-hard, even for
 - 2 machines with at most 3
 operations per job and for 3
 machines with at most 2 operations
 per job (Lenstra et al., 1977;
 Gonzalez & Sahni, 1978)
 - 3 machines & unit processing times (Lenstra & Rinnooy Kan, 1979)
 - 3 jobs (Sotskov, 1991)
 - preemption allowed (Gonzalez & Sahni, 1978)

Solution approaches

- Exact methods (e.g. Applegate & Cook, 1991) solve MIP problem using:
 - lower bounds
 - polyhedral techniques
 - branching schemes

Solution approaches

- Approximate methods, e.g.
 - list schedules (use dispatching rules)
 - Lawrence, 1984
 - simulated annealing
 - van Laarhoven et al., 1992
 - tabu search
 - Widmer, 1989
 - Dell'Amico & Trubian, 1993
 - Taillard, 1994
 - genetic algorithms
 - Dellacroce et al., 1992
 - Kobayashi et al., 1995

GRASP (greedy randomized adaptive search procedure)

- iteratively
 - samples solution space using a greedy probabilistic bias to construct a feasible solution
 - applies local search to attempt to improve upon the constructed solution
- keeps track of the best solution found

GRASP

```
best obj = BIG;
                          bias towards greediness
                           good diverse solutions
repeat many times{
  x = grasp_construction();
  x = local\_search(x);
  if ( obj_function(x) < best_obj ){</pre>
      x^* = x:
      best_obj = obj_function(x);
```

Construction

- Construction is done one element at a time:
 - greedy construction
 - each candidate element is evaluated by a greedy function
 - element with the best evaluation is chosen
 - random construction
 - each candidate element is assigned an equal probability of being selected
 - one of these elements is chosen at random

Construction

- What is good about:
 - greedy construction
 - good quality solutions
 - local search quickly converges to local optimum
 - random construction
 - diverse solutions are generated
 - span solution space

Construction

- What is bad about:
 - greedy construction
 - little or no diversification
 - solution are usually sub-optimal
 - local search rarely converges to globally optimal solution
 - random construction
 - solutions are of poor quality
 - local search is slow to converge to local optimum

GRASP construction

- Tries to capture good features of
 - greedy construction
 - good quality solutions
 - fast local search convergence
 - random construction
 - diversification
- Tries to avoid bad features of
 - greedy construction
 - little or no diversification
 - random construction
 - bad quality solutions
 - slow local search convergence

GRASP construction

- repeat until solution is constructed
 - For each candidate element
 - apply a greedy function to element
 - Rank all elements according to their greedy function values
 - Place well-ranked elements in a restricted candidate list (RCL)
 - Select an element from the RCL at random & add it to the solution

GRASP construction

Local search

- There is no guarantee that constructed solutions are locally optimal w.r.t. simple neighborhood definitions.
- It is usually beneficial to apply a local search algorithm to find a locally optimal solution.

Local search

Let

- N(x) be set of solutions in the neighborhood of solution x.
- f(x) be the objective function value of solution x.
- x⁰ be an initial feasible solution built by the construction procedure
- Local search to find local minimum

```
while (there exists y \in N(x) \mid f(y) < f(x)){
 x = y;
```


GRASP for JSS

- To define the GRASP, we need to specify
 - construction mechanism
 - greedy function
 - ullet candidate list restriction parameter α
 - local neighborhood structure
 - local search algorithm

Construction mechanism

- Each job has a set of operations to be scheduled
- Schedules are constructed one operation at a time
- At each step of the construction, the candidates are operations that can be feasibly scheduled

Construction mechanism

- k-th operation of job j, is scheduled at a time that is the max of
 - completion time of (k-1)-th operation of job j
 - completion time of latest job to be processed on same machine as k-th operation of job j.

 For all candidate operations o, apply greedy function greedy(o): maximum{

- maximum completion time of all previously scheduled operations
- completion time of operation o, if
 operation o were to be next scheduled

}

Candidate list restriction parameter α

$$\alpha = 0.5$$

Local neighborhood structure

- We use standard disjunctive graph representation of job shop schedule [Roy & Sussmann, 1964]
- *G* = (V, A, E), where
 - V is set of operations
 - A is set of arcs connected consecutive operations of the same job
 - E is set of edges connecting operations that must be executed on the same machine

Local neighborhood structure

disjunctive graph representation of schedule

critical path: longest path in digraph

length of critical path = makespan = 41

critical path: longest path in digraph length of critical path = makespan = 41

Local search

- For every pair of operations \(\nu\) and
 \(\nu\), such that:
 - v and w are successive operations on a machine
 - (v,w) are is in the critical path
 - swap order of ν and w, i.e. make arc
 (ν, w) into (w, ν)
 - find critical path
 - if critical path length is shorter, accept swap, else reject it

Recomputing critical path

- use variation of Bellman's labelling algorithm (Taillard, 1994)
- critical path can be recomputed in O(N) operations, where
 - *N* is the number of operations

Computational experience

- Tested GRASP on large number of standard JSS test problems
- Ran GRASP
 - with RCL parameter $\alpha = 0.5$
 - for at most 10,000,000 iterations
 - on 10 SGI R10000 processors in parallel
- Stop when
 - max number of iterations is reached
 - best known solution is found

Percentage error on all instances

seconds (log-scale)

