# A GRASP for Job Shop Scheduling

#### Maurício G. C. Resende

AT&T Labs Research Florham Park, New Jersey

mgcr@research.att.com
http://www.research.att.com/~mgcr

May 1997

Joint work with S. Binato, W. J. Hery, & D. M. Loewenstern.



# Agenda

- Job shop scheduling (JSS) problem
- GRASP for JSS
  - construction method
  - local search
- Computational experience
- Future directions & conclusions



# Job shop scheduling

- schedule a set of jobs on a set of machines, such that
  - each job has a specified processing order on the set of machines
  - machines can process only one job at a time
  - each job has a specified duration on each machine
  - machine must finish processing job before it can begin processing another job (no preemption allowed)



# Job shop scheduling

 objective: minimize the maximum completion time (makespan) of jobs

#### example:

 $J_1$ :  $M_1(15)$ ,  $M_2(15)$ ,  $M_3(10)$ 

 $J_2$ :  $M_3(5)$ ,  $M_1(5)$ ,  $M_2(10)$ 



 $J_1$ :  $M_1(15)$ ,  $M_2(15)$ ,  $M_3(10)$ 

 $J_2$ :  $M_3(5)$ ,  $M_1(5)$ ,  $M_2(10)$ 







# Job shop scheduling

- NP-hard, even for
  - 2 machines with at most 3
     operations per job and for 3
     machines with at most 2 operations
     per job (Lenstra et al., 1977;
     Gonzalez & Sahni, 1978)
  - 3 machines & unit processing times (Lenstra & Rinnooy Kan, 1979)
  - 3 jobs (Sotskov, 1991)
  - preemption allowed (Gonzalez & Sahni, 1978)



# Solution approaches

- Exact methods (e.g. Applegate & Cook, 1991) solve MIP problem using:
  - lower bounds
  - polyhedral techniques
  - branching schemes



# Solution approaches

- Approximate methods, e.g.
  - list schedules (use dispatching rules)
    - Lawrence, 1984
  - simulated annealing
    - van Laarhoven et al., 1992
  - tabu search
    - Widmer, 1989
    - Dell'Amico & Trubian, 1993
    - Taillard, 1994
  - genetic algorithms
    - Dellacroce et al., 1992
    - Kobayashi et al., 1995



# GRASP (greedy randomized adaptive search procedure)

- iteratively
  - samples solution space using a greedy probabilistic bias to construct a feasible solution
  - applies local search to attempt to improve upon the constructed solution
- keeps track of the best solution found



#### **GRASP**

```
best obj = BIG;
                          bias towards greediness
                           good diverse solutions
repeat many times{
  x = grasp_construction();
  x = local\_search(x);
  if ( obj_function(x) < best_obj ){</pre>
      x^* = x:
      best_obj = obj_function(x);
```

#### Construction

- Construction is done one element at a time:
  - greedy construction
    - each candidate element is evaluated by a greedy function
    - element with the best evaluation is chosen
  - random construction
    - each candidate element is assigned an equal probability of being selected
    - one of these elements is chosen at random



#### Construction

- What is good about:
  - greedy construction
    - good quality solutions
    - local search quickly converges to local optimum
  - random construction
    - diverse solutions are generated
    - span solution space



#### Construction

- What is bad about:
  - greedy construction
    - little or no diversification
    - solution are usually sub-optimal
    - local search rarely converges to globally optimal solution
  - random construction
    - solutions are of poor quality
    - local search is slow to converge to local optimum



#### **GRASP** construction

- Tries to capture good features of
  - greedy construction
    - good quality solutions
    - fast local search convergence
  - random construction
    - diversification
- Tries to avoid bad features of
  - greedy construction
    - little or no diversification
  - random construction
    - bad quality solutions
    - slow local search convergence

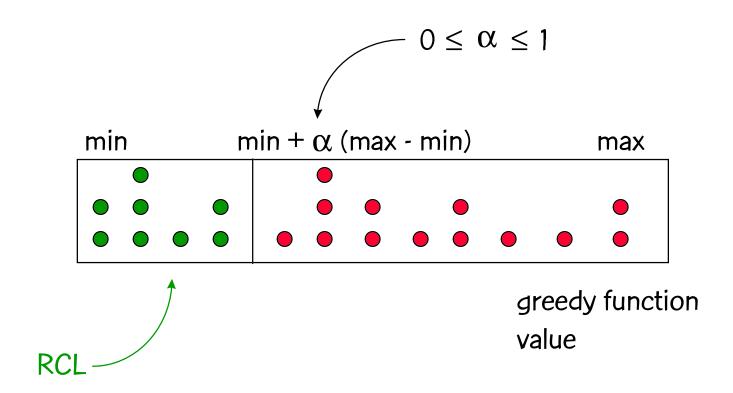


#### GRASP construction

- repeat until solution is constructed
  - For each candidate element
    - apply a greedy function to element
  - Rank all elements according to their greedy function values
  - Place well-ranked elements in a restricted candidate list (RCL)
  - Select an element from the RCL at random & add it to the solution



#### **GRASP** construction





#### Local search

- There is no guarantee that constructed solutions are locally optimal w.r.t. simple neighborhood definitions.
- It is usually beneficial to apply a local search algorithm to find a locally optimal solution.



#### Local search

#### Let

- N(x) be set of solutions in the neighborhood of solution x.
- f(x) be the objective function value of solution x.
- x<sup>0</sup> be an initial feasible solution built by the construction procedure
- Local search to find local minimum

```
while (there exists y \in N(x) \mid f(y) < f(x)){
 x = y;
```



#### **GRASP** for JSS

- To define the GRASP, we need to specify
  - construction mechanism
  - greedy function
  - ullet candidate list restriction parameter  $\alpha$
  - local neighborhood structure
  - local search algorithm



#### Construction mechanism

- Each job has a set of operations to be scheduled
- Schedules are constructed one operation at a time
- At each step of the construction, the candidates are operations that can be feasibly scheduled



#### Construction mechanism

- k-th operation of job j, is scheduled at a time that is the max of
  - completion time of (k-1)-th operation of job j
  - completion time of latest job to be processed on same machine as k-th operation of job j.

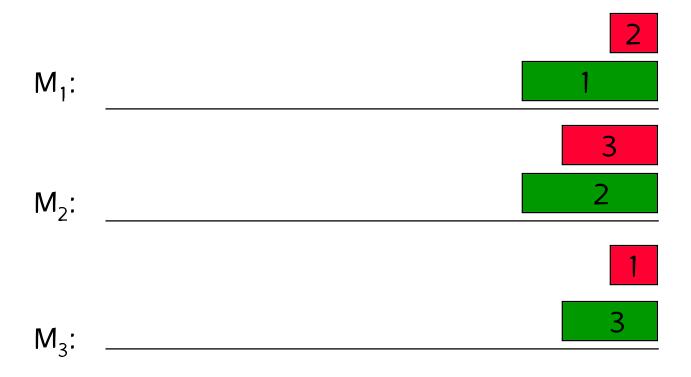


 For all candidate operations o, apply greedy function greedy(o): maximum{

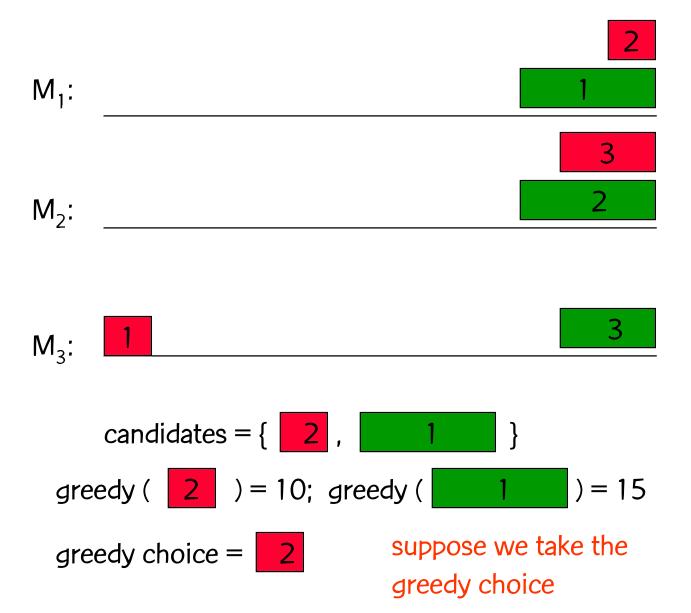
- maximum completion time of all previously scheduled operations
- completion time of operation o, if
   operation o were to be next scheduled

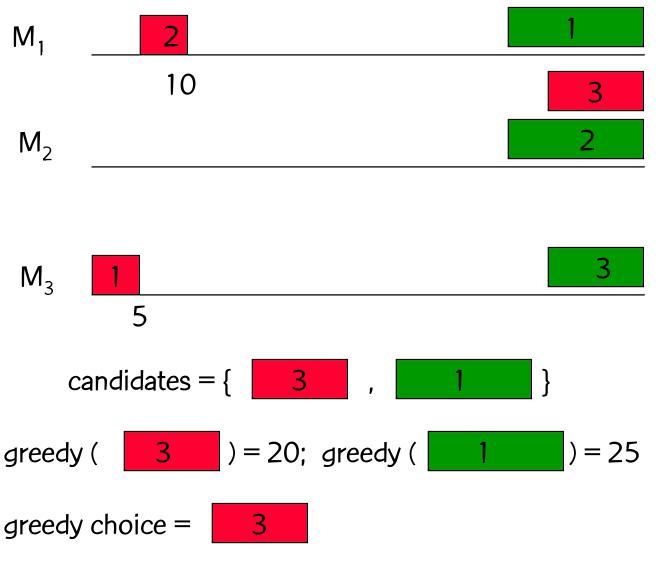
}



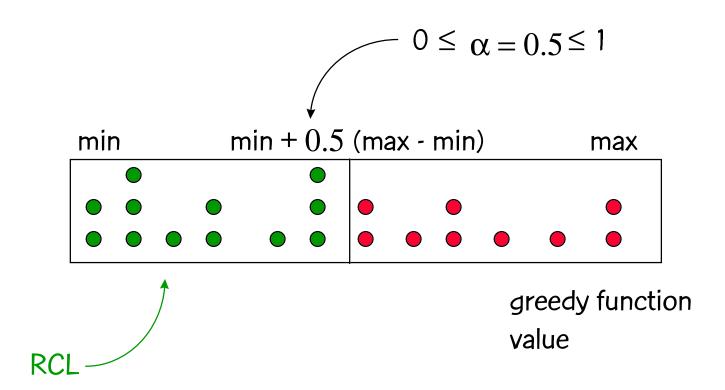








# Candidate list restriction parameter α



$$\alpha = 0.5$$



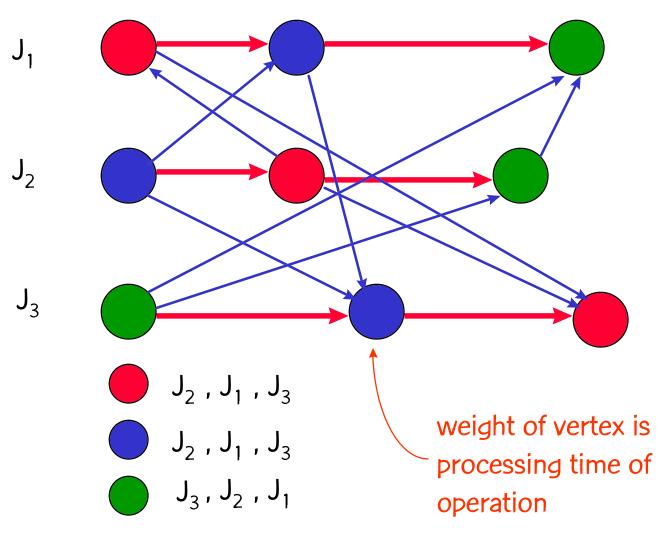
# Local neighborhood structure

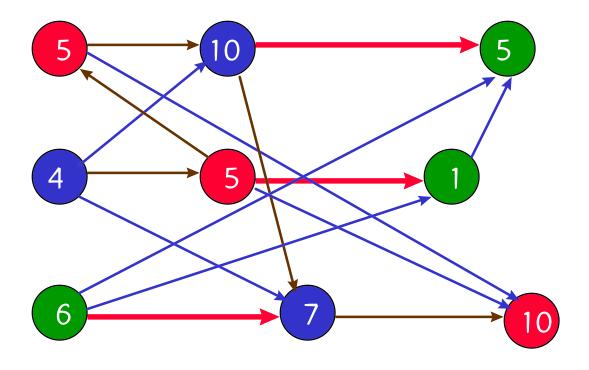
- We use standard disjunctive graph representation of job shop schedule [Roy & Sussmann, 1964]
- *G* = (V, A, E), where
  - V is set of operations
  - A is set of arcs connected consecutive operations of the same job
  - E is set of edges connecting operations that must be executed on the same machine



# Local neighborhood structure

disjunctive graph representation of schedule

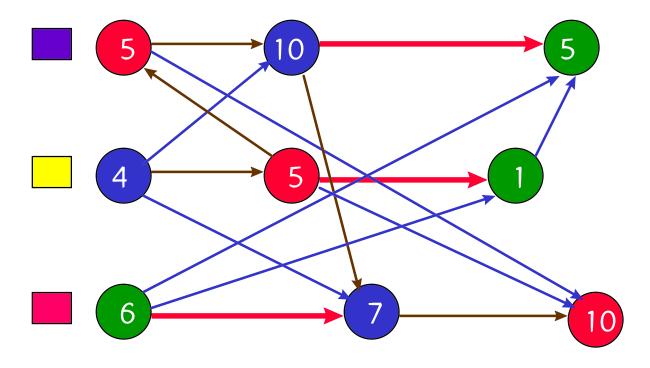




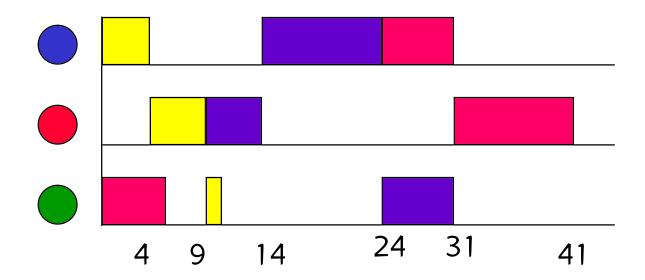
critical path: longest path in digraph

length of critical path = makespan = 41





critical path: longest path in digraph length of critical path = makespan = 41

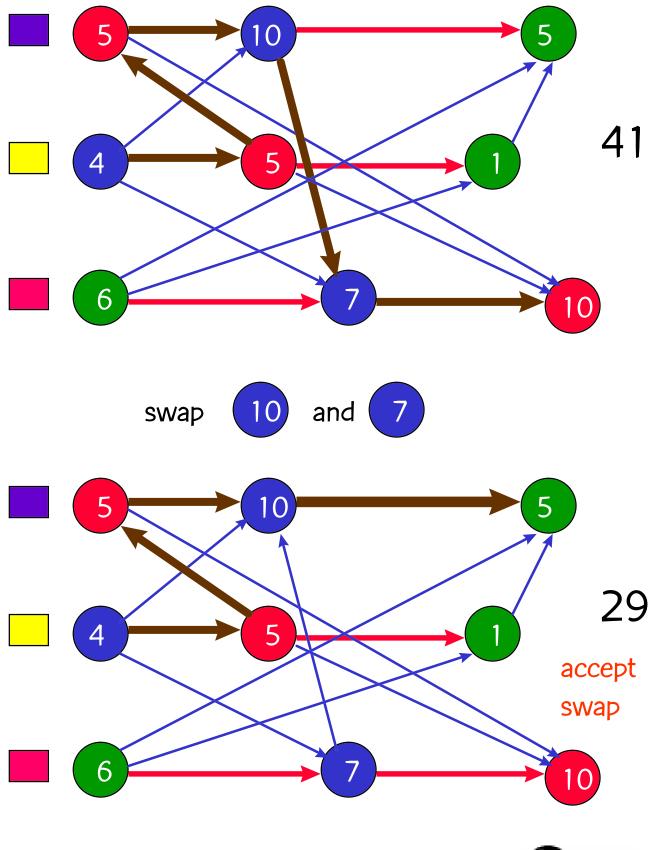


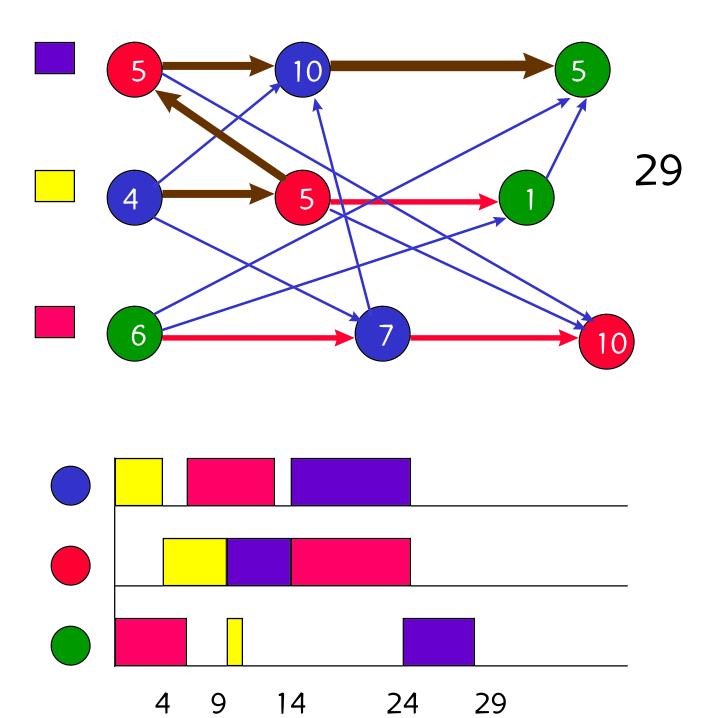


#### Local search

- For every pair of operations \(\nu\) and
   \(\nu\), such that:
  - v and w are successive operations on a machine
  - (v,w) are is in the critical path
    - swap order of ν and w, i.e. make arc
       (ν, w) into (w, ν)
    - find critical path
    - if critical path length is shorter, accept swap, else reject it









# Recomputing critical path

- use variation of Bellman's labelling algorithm (Taillard, 1994)
- critical path can be recomputed in O(N) operations, where
  - *N* is the number of operations

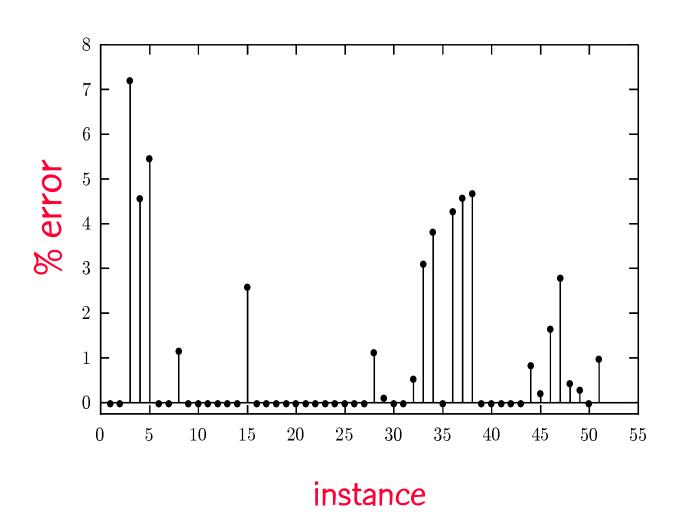


# Computational experience

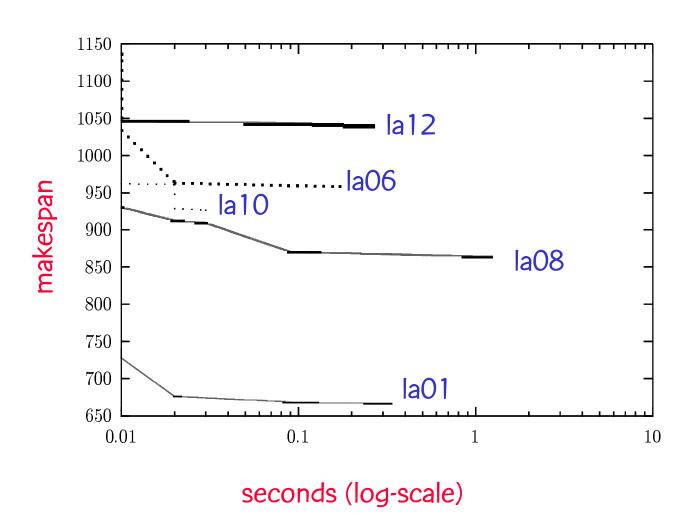
- Tested GRASP on large number of standard JSS test problems
- Ran GRASP
  - with RCL parameter  $\alpha = 0.5$
  - for at most 10,000,000 iterations
  - on 10 SGI R10000 processors in parallel
- Stop when
  - max number of iterations is reached
  - best known solution is found



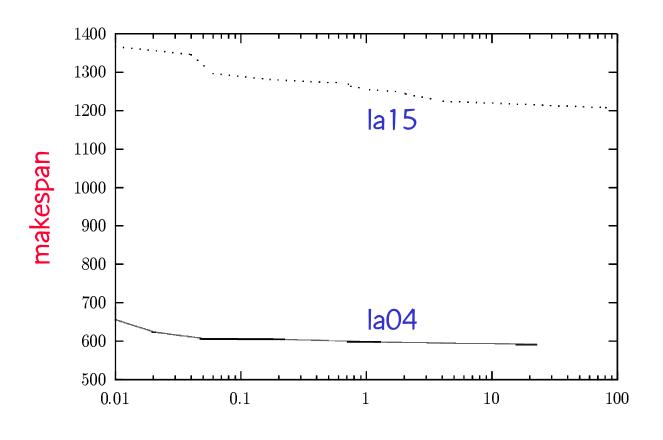
# Percentage error on all instances











seconds (log-scale)



