
81

Problem Excess (%) in one run per instance

GLS with FLS-2Opt DB with FLS-LK DB with FI-LK
att48 0 0 0
eil51 0 0 0
st70 0 0 0
eil76 0 0 0
pr76 0 0 0
gr96 0 0 0
rat99 0 0 0
kroA100 0 0 0
kroB100 0 0 0
kroC100 0 0 0
kroD100 0 0 0
kroE100 0 0 0
rd100 0 0 0
eil101 0 0 0
lin105 0 0 0
pr107 0 0 0
pr124 0 0 0
bier127 0 0 0
pr136 0 0 0
gr137 0 0 0
pr144 0 0 0
kroA150 0 0 0
kroB150 0 0 0
pr152 0.18458 0 0
u159 0 0 0
rat195 0 0 0
d198 0 0 0
kroA200 0 0 0
kroB200 0 0 0
gr202 0 0 0
pr226 0 0 0
gr229 0 0 0
gil262 0 0 0
pr264 0 0 0
pr299 0 0 0
lin318 0 0.27124 0
fl417 0.00843 0.00843 0.42998
gr431 0 0 0.01458
pr439 0.00653 0.04104 0
pcb442 0.01182 0 0
d493 0.02 0.00857 0.09142
att532 0.06501 0 0.04696
ali535 0.02323 0.01433 0.01433
u574 0 0.08129 0.10568
rat575 0.04429 0.08859 0.05906
p654 2.04659 2.27174 0.04619
d657 0.0184 0.0368 0.13289
gr666 0.00612 0.09988 0.20315
u724 0.05727 0.09783 0.04534
rat783 0 0.06814 0.01136
dsj1000 0.31222 0.40289 0.88742
pr1002 0.12315 0.07566 0.11658
u1060 0.05132 0.15663 0.43285
pcb1173 0.14765 0.02461 0.43767
d1291 0.22244 0.63581 1.16139
rl1304 0.20241 0 0.50366
rl1323 0.18542 0.14027 0.22909
fl1400 1.56009 2.58359 3.11025
u1432 0.05295 0.27783 0.30464
d1655 0.40722 0.27846 1.19753
vm1748 0.33219 0.32387 0.75678
u1817 0.57517 0.3916 1.02096
rl1889 0.37279 0.90953 0.52443
u2152 0.61476 0.46379 0.75327
u2319 0.00726 0.25229 0.28729
pr2392 0.35209 0.27458 0.90019
Mean 0.12138 0.15575 0.20947
Standard Deviation 0.33047 0.43627 0.47296

Table 3.6 GLS with FLS-2Opt compared with variants of Iterated Lin-Kernighan (long runs).

82

As shown in Figure 3.8, the DB meta-heuristic is more effective than GLS when

combined with LK. In fact, GLS when combined with FI-LK is even worse than

Repeated FI-LK. This situation dramatically changes for fast local search variants

where GLS is better than DB when combined with the FLS-3Opt or FLS-2Opt local

searches improving the solution quality over repeated local search up to 5.14% in the

case of FLS-2Opt. The overall ranking of all the variants developed in terms of

average excess in the set of 20 TSPLIB problems is given in Figure 3.9. GLS with

FLS-2Opt was found to be best amongst the 18 algorithms tested.

0.079 0.088 0.156 0.162 0.226 0.330 0.373 0.425 0.432
0.624 0.729

1.356
1.642 1.653 1.676 1.686

4.632

5.220

0

1

2

3

4

5

6

G
LS

-F
LS

-2
O

pt

D
B

-F
LS

-L
K

G
LS

-F
LS

-3
O

pt

D
B

-F
I-

LK

D
B

-F
LS

-3
O

pt

G
LS

-F
LS

-L
K

D
B

-F
LS

-2
O

pt

R
ep

ea
te

d
F

I-
LK

R
ep

ea
te

d
F

LS
-L

K

D
B

-F
I-

3O
pt

G
LS

-F
I-

LK

G
LS

-F
I-

3O
pt

R
ep

ea
te

d
F

LS
-3

O
pt

G
LS

-F
I-

2O
pt

D
B

-F
I-

2O
pt

R
ep

ea
te

d
F

I-
3O

pt

R
ep

ea
te

d
F

I-
2O

pt

R
ep

ea
te

d
F

LS
-2

O
pt

TSP algorithm

M
ea

n
 E

xc
es

s(
%

)

Figure 3.9 Overall ranking of the algorithms in terms of solution quality when tested on a set of 20 TSPLIB problems

83

3.8.2 Genetic Local Search

In an effort to further improve the LK heuristic, Genetic Algorithms recently appeared

which internally use LK for improving offspring solutions generated by crossover

operations. These methods, although of great complexity and therefore of limited

practical use in our opinion, present theoretical interest and they will be potentially

useful when parallel computers became more accessible in the future. An example of

such a technique is the Genetic Local Search algorithm proposed by Freisleben and

Merz [FM96]. This method, in addition to using LK for improving offspring

solutions, uses a mutation operator which performs first an 4-Opt exchange on a

population solution and then runs LK to convert this solution to a local minimum.

Iterated LK mentioned above can be seen as a special case of this method. In [FM96],

results are reported for Genetic Local Search on TSPLIB instances. The authors

consider the results produced by the technique as superior to those published for any

GA approaches known to them and comparable to top quality non-GA heuristic

techniques. Fortunately, the experiments in [FM96] were also conducted on a DEC

Alpha workstation running at 175 MHz. This permits a meaningful comparison

between this GA variant and GLS. We ran GLS-FLS-2Opt on the same instances with

a = 1/6 and for an equal number of times as the GA approach. In Table 3.7, the results

from [FM96] are compared with those we obtained for GLS using FLS-2Opt.

Problem GLS with FLS-2Opt Genetic Local Search

Mean Excess Mean CPU
time (sec)

Mean Excess Mean CPU
time (sec)

eil51 (20 runs) 0% 1.2 0% 6
kroA100 (20 runs) 0% 1.59 0% 11
d198(20 runs) 0% 435 0% 253
att532 (10 runs) 0% 3526 0.05% 6076
rat783 (10 runs) 0% 5232 0.04% 14925

Table 3.7 GLS with FLS-2Opt compared with Genetic Local Search on five TSPLIB instances.

84

Except for d198 which is a hard instance for GLS (see results in section 3.6), GLS was

better than the GA approach finding solutions of better quality for att532 and rat783

while running faster between 1.7 to 6.9 times. Note here that the GA is using the best

heuristic for the TSP (i.e. DB followed by LK) while GLS the worst (i.e. 2-Opt).

Another remarkable result which emerged from these experiments was that GLS with

FLS-2Opt can consistently find the optimal solutions for problems att532 and rat783.

As far as we know, optimal solutions to such large problems can be consistently found

only by heuristic methods that are using LK (e.g. Iterated LK or its variant Large-Step

Markov Chains method).

In fact, GLS was able to find the optimal solution in even larger problems. For

example, GLS with FLS-3Opt found the optimal solution for a 2319-city problem

from TSPLIB (u2319) in less than 20 minutes while GLS with FLS-2Opt found the

optimal solution to a 1002-city problem from TSPLIB (pr1002) in 14 hours of CPU

time despite running on Sparcstation 5 workstation which is much slower than the

DEC Alpha machines used in the rest of the experiments.

3.9 Conclusions

In this chapter, the application of GLS to the TSP was examined. The combinations of

GLS with commonly used TSP heuristics were described and evaluated on publicly

available instances of the TSP. GLS with FLS-2Opt was found to be the best GLS

variant for the TSP. The variant was compared and found to be superior to general

search methods such as simulated annealing and tabu search. Furthermore, we

demonstrated that GLS with FLS-2Opt is highly competitive (if not better) than some

of the best specialised algorithms for the TSP such as Iterated Lin-Kernighan and

Genetic Local Search.

85

Nonetheless, experimental results should be treated with care. Experimentation no

matter how elaborate and extensive it may be, it can only give indications of which

algorithms are better than others and that because of the many parameters involved in

the algorithms, differences in implementation, and the limited number of instances

used in experiments.

We can safely conclude that the evidence provided in this chapter is enough to place

GLS amongst what somebody will characterise as eff icient and effective methods for

the TSP. Given the simplicity of the algorithm and the ease of tuning (i.e. single

parameter), GLS with FLS-2Opt could be considered as an ideal practical method for

the TSP especially when no programming effort can be devoted in implementing one

of the complex specialised TSP algorithms.

86

4. Quadratic Assignment Problem

Chapter 4

Quadratic Assignment Problem

The TSP, examined in the last chapter, is probably the most famous problem in

combinatorial optimisation. Another problem which has also attracted the interest of

researchers for many years is the Quadratic Assignment Problem (QAP). QAP could

be probably li sted second after the TSP in the list of the most famous combinatorial

optimisation problems. The application of GLS to the QAP is examined in this

chapter. Problems in GLS arising from the use of features with variable costs are

identified and strategies for resolving them are proposed. Comparison with state of the

art QAP algorithms demonstrates the abilit y of GLS to compete on equal terms with

these methods and even to outperform them.

4.1 The Problem

Quadratic Assignment Problem (QAP) is one of the most diff icult problems in

combinatorial optimisation. The problem can model a variety of applications but it is

87

mainly known for its use in facilit y location problems. For a recent QAP survey, the

reader is referred to Pardalos, Rendl, and Wolkowicz [PRW93]. In the following, we

describe the QAP in its simplest form.

Given a set N = {1, 2, ..., n} and n × n matrices A= [aij] and B = [bkl], the QAP can be

stated as follows:

Eq. 4.1 ()min ()p
ij p i p j

j

n

i

n

N

A B
∈

==

⋅∑∑Π
11

where p is a permutation of N and ΠN is the set of all possible permutations. There are

several other equivalent formulations of the problem. In the facilit y location context,

each permutation represents an assignment of n faciliti es to n locations. More

specifically, each position i in the permutation represents a location and its contents

p(i) the facilit y assigned to that location. The matrix A is called the distance matrix

and gives the distance between any two of the locations. The matrix B is called the

flow matrix and gives the flow of materials between any two of the faciliti es. In this

work, we only consider the Symmetric QAP case for which both the distance and flow

matrices are symmetric.

4.2 Local Search for the QAP

QAP solutions are represented by permutations. A move commonly used for the

problem is simply to exchange the contents of two permutation positions (i.e. swap the

faciliti es assigned to a pair of locations). A best improvement local search procedure

starts with a random permutation. In every iteration, all possible moves (i.e. swaps)

are evaluated and the best is selected and performed. The algorithm reaches a local

minimum when there is no move which improves further the cost of the current

permutation.

88

An eff icient update scheme can be used in the QAP which allows evaluation of moves

in constant time. The scheme works only with best improvement local search. Move

values of the first neighbourhood search are stored and updated each time a new

neighbourhood search is performed to take into account changes from the move last

executed (see [BT94] or [Tai95] for details). Move values do not need to be evaluated

from scratch and thus the neighbourhood can be fully searched in roughly O(n2) time

instead of O(n3) required otherwise4. To evaluate moves in constant time, we have to

examine all possible moves in each iteration and have their values updated. Because

of that, the scheme can not be combined with FLS which examines only a number of

moves in each iteration. FLS for the QAP requires O(n) operations to evaluate a move

and therefore O(n3) to evaluate all moves in the neighbourhood. This prevented us

from developing a eff icient version of FLS for the QAP and instead we used simple

GLS without neighbourhood reduction.

4.3 Guided Local Search Applied to the QAP

Applying GLS to the QAP is a simple two-stage process of identifying the solution

features to be used and assigning costs to them. A set of features that can be used in

the QAP is the set of all possible assignments of faciliti es to locations (i.e. location-

facilit y pairs). This kind of feature is general and can be used in a variety of other

assignment problems where a number of variables are assigned values from finite

domains. In the QAP, there are n2 possible location-facility combinations (features)5.

4 To evaluate the change in the cost function Eq. 4.1 caused by a move normally requires O(n) time. Since there
are O(n2) moves to be evaluated, the search of the neighbourhood without the update scheme requires O(n3)
time.

5 Features that detect assignment combinations (i.e. combinations of location-facility pairs) are also possible but
the number of features in this case rises to O(n4) making practically impossible the storage of penalties for
problems of size n>30.

89

After deciding on the features, the next step is to assign costs to them. Assignment of

faciliti es to locations are tightly coupled one to the other because of the problem’s cost

function. For that reason, it is diff icult to isolate the effect that particular assignments

have on the solution cost. To deal with this problem, we used variable feature costs

where the cost of a feature is evaluated in the context of the solution it appears in. In

particular, feature costs are evaluated only for the features of the local minimum and

their cost is given by the expression:

Eq. 4.2 ()() ()c i p i A Bij p i p j
j

n

, ()= ⋅
=
∑

1

where i is the location and p(i) is the facilit y assigned to that location in the local

minimum solution. The above expression for the feature cost gives the cost arising

from the flow of materials from facilit y p(i) to the other faciliti es with facilit y p(i)

placed at location i. In a local minimum, features that maximise the utilit y expression

Eq. 2.5 are penalised and the corresponding location-facilit y combinations are

avoided.

To determine a range of values for the lambda parameter of GLS, we conducted a

large number of test runs on problems from the publicly available library of QAP

instances, QAPLIB [BKR91]. An equation similar to Eq. 3.6 used in the TSP was also

derived for the QAP case. In particular, we found that GLS performed well for an λ

given by the following parametric equation:

Eq. 4.3 λ = ⋅ ≤ ≤a
g

n
a

(
, /

local minimum)
 2 1 5 1

where g(local minimum) is the cost of the first local minimum found during a run and

n the size of the problem. In terms of implementation, the algorithm is given as input

90

the parameter a which is used to calculate lambda after the first local minimum and

before the first features are penalised.

4.4 The Issue of Features with Variable Costs

Features with variable costs are a potential problem for GLS. The problem arises

because decisions to penalise features are based on feature costs. If the costs of

features change during search then bad features may become good and vice versa.

Penalties imposed on bad features which turn good at a latter stage may prevent these

features from being used again in the solution.

For instance, let us consider a local minimum solution where facilit y j is assigned to

location i. If location i is far from the locations of faciliti es connected with high flows

to facilit y j then the assignment of facilit y j to location i is a bad combination. This

results in a high cost for the corresponding feature. GLS will penalise the combination

of location i with facilit y j and facilit y j will be assigned elsewhere. Although the

decision is correct in this context, it may prevent local search from assigning facilit y j

to location i at a later stage in search when the arrangement of all other faciliti es

makes location i a good choice. The GLS decision based on a single local minimum

solution is incorrectly generalised constraining many other potentially good solutions.

The result is that diversification is triggered prematurely and GLS leaves the good

areas of the search space without thoroughly searching them. To resolve this problem

a number of strategies were explored. After experimentation, three strategies were

identified as the most promising ones.

91

4.4.1 Reset Strategy

This strategy is identical to the basic GLS depicted in Figure 2.1 with the exception

that all penalties are reset to 0 every t iterations. By resetting the penalties, GLS can

revisit solutions that include features penalised earlier in the search process. This leads

to an intensification of search in the “good” areas of the search space which

compensates for the unnecessary diversification caused by the variable feature costs.

The drawback of the approach is that GLS looses some of its diversification abilit y

which drives the algorithm to unexplored regions of the search space when enough

effort is spent in the promising areas. In the following, we will refer to this GLS

variant as Reset-GLS.

4.4.2 Restart Strategy

Instead of resetting the penalties, the algorithm is restarted from a “good” solution

every t iterations. The objective is the same as with Reset-GLS, that is to intensify

search in the “good” areas of the search space. The new starting points are generated

by combining the K best solutions found during search prior to reaching the restart

point, in a way that very much resembles Genetic Algorithm approaches. The

approach is similar to intensification schemes used in the Vehicle Routing Problem by

tabu search methods [RT95] (see section 1.5.3).

In particular, the K best solutions found during search prior to the restart point are

organised in a list which is then sorted by the solution cost. A selection probabilit y is

assigned to each solution depending on its position in the list. In the version of the

procedure implemented, the ten best solutions were used and the probabiliti es

assigned from best to worst solution were 0.36, 0.18, 0.12, 0.09, 0.07, 0.06, 0.05, 0.04,

92

0.02, and 0.01 respectively. New solutions were generated using the following

procedure.

Starting from an empty permutation and scanning the locations from left to right, each

location is assigned the same facilit y as in a solution pseudo-randomly selected from

the list of the best solutions according to the above probabiliti es. After all l ocations

have been assigned faciliti es, the permutation is again scanned from left to right and

faciliti es which appear more than once are randomly replaced by the unassigned

facilities. GLS is restarted from the solution generated without resetting the penalties.

To recapitulate, the restart strategy tries to achieve search intensification in the “good”

areas of the search space by restarting the algorithm from a solution which is formed

by combining the best local optima visited up to the restart point. Although variable

feature costs may mislead the algorithm into unpromising areas, the restart strategy

tries to bring the method back to the areas of the good solutions. Moreover, different

search trajectories are tried in these areas after each restart because of the memory of

the algorithm (i.e. penalties) which is not cleared. In the following, we will refer to

this GLS variant as Restart-GLS.

4.4.3 Multiple Feature Sets Strategy

In the QAP, GLS decides which features to penalise using the costs of features as

measured in the context of a particular local minimum. As the algorithm leaves this

local minimum and swaps are performed, feature costs gradually change up to the

point where they have totally different values from those calculated in the local

minimum. In other words, the information used in GLS decisions gradually becomes

invalid after the point these decisions are made. A sensible thing to do is to remove

93

the effects of decisions as soon as the information they were based on becomes

invalid.

In a more global perspective, information which is valid only for a certain period of

time should lead to restrictions of equal duration on local search. When information

becomes invalid or out of context, the restrictions imposed on the basis of this

information should be retracted. Tabu search as originally presented by Glover

[Glo89, Glo90] makes extensive use of this principle. This same principle can be also

used to explain why dynamic tabu lists are preferable over their static counterparts in

many problems [Tai91, LG93]. The former, by varying the duration of restrictions,

match better than the latter the duration for which search history information is valid.

We put to use the above ideas and developed a strategy which overcomes the problem

of variable feature costs in GLS. The strategy uses a tabu list [Glo89] to retract the

effects of decisions made earlier in the search process. More specifically, penalties

increased are decreased after a certain number of penalty increases is performed. The

scheme uses an array of size t where the t most recent features penalised are recorded.

The array is treated as a circular li st, adding elements in sequence in positions 1

through t and then starting over at position 1. Each time the penalty of a feature is

increased (by one unit), the feature is inserted in the array and the penalty of the

feature previously stored in the same position is decreased (by one unit).

One problem with this approach is that GLS totally loses its long term memory and

therefore is unable to diversify search. This is the opposite problem from that with the

Reset-GLS and Restart-GLS variants which either reset long-term memory after a

relatively large number of iterations (Reset-GLS) or do not reset it at all (Restart-

GLS). A simple way to work around the problem is to introduce a second set of

features identical to the first feature set. This feature set is to undertake the task of

94

long term diversification by exploiting search history information that is the local

minima visited.

Penalties for this second set are neither reset nor decreased but only increased as in the

basic GLS providing the long-term memory needed to drive search to new regions.

Moreover, features costs are considered constant and equal to 1.0 such that the search

effort is uniformly distributed amongst the features in the set.

GLS works on the two feature sets independently and in parallel. This merely means

that in a local minimum both sets are examined and the features with the highest

utilit y value in each set are penalised. Additionally, two different regularisation

parameters λ1 and λ2 are used, one for each feature set to allow appropriate balancing

of short-term and long-term penalties. In implementation terms, two parameters a1 and

a2 are fed as inputs to the algorithm and the calculation of λ1 and λ2 takes place after

the first local minimum using Eq. 4.3.

In the penalty incrementation procedure of GLS for the second set (i.e. long-term

penalties), ties amongst features are frequent especially at the beginning of search

because of the equal feature costs. In order to avoid penalising too many features, ties

are broken deterministically and the first feature found to maximise the utilit y function

is penalised. Experimentation with random tie-breaking strategies showed no

improvement in performance.

Summarising, the multiple feature sets strategy uses two identical feature sets but with

different feature costs and with penalties of different duration to accomplish the

objectives of intensification and diversification of search. The first set with variable

feature costs is utili sed to impose short-term penalties for the purposes of

intensification. The second set with constant feature costs is utili sed to impose

long-term penalties for the purposes of diversification. Two independent GLS

95

processes working on these sets are used which, when combined, achieve the overall

goal of the distribution of search effort according to promise. The separation of

intensification and diversification became necessary in this case because the

information used to achieve each of these two sub-goals is valid for different periods

of time. In the following, we will refer to this GLS variant as Multiple-GLS.

4.5 Experimental Evaluation of Basic GLS and its Variants

We conducted many experiments in order to develop the basic GLS and the various

strategies for resolving the problem with the variable feature costs. Problems included

in QAPLIB [BKR91] were used in the experiments. A typical value for a which

worked well for most problems tested and all variants was a = 0.5 (a1 = 0.5 in the case

of Multiple-GLS). In addition to that, we found that the a2 parameter used only in

Multiple-GLS for the second feature set needed to be smaller than the a1 used for the

first feature set. A value a2 = 0.25 combined very well with the value a1 = 0.5.

For the t parameter required by all three GLS variants, multiples of the problem size n

were tried. For Reset-GLS and Restart-GLS large values performed better. In

particular, a value t = 200n performed well for Reset-GLS while the value t = 100n

was a good choice for Restart-GLS. Multiple-GLS required much lower values for t.

This is because the parameter serves a different purpose in this case (i.e. sets the

duration of the short-term penalties). A range of values for t which resulted in good

performance for Multiple-GLS was n ≤ t ≤ 10n. The value t = 4n was used to generate

all the results reported in this chapter.

The results presented in this section refer to a set of ten QAP instances of sizes from

15 to 40, all from QAPLIB. The set is a mixture of problems of different nature and

size intended to test the basic GLS and its variants on different types of f low and

96

distance matrices. For each algorithm, ten runs were performed on each instance,

starting from random solutions. The algorithms were allowed to run for 100,000

iterations (i.e. full neighbourhood searches) or until a solution with cost equal or less

than the best known solution6 was found. Repeated local search was also implemented

to give a point of reference for measuring the success of algorithms. This last

algorithm was simply restarting local search after a local minimum.

A run was characterised as successful i f it resulted in the best known solution. The

solution quality was measured in per cent excess above the best known solution (see

Eq. 3.5). Table 4.1 illustrates the results obtained.

The results clearly demonstrate that basic GLS is better than repeated local search.

The algorithm finds the best known solution in 66% of the runs, twice the success rate

of local search without GLS. The strategies for resolving the problem of variable

feature costs had a varied success. Reset-GLS, although improved over basic GLS in

terms of successful runs, had a worse mean solution quality. This can be attributed to

6 Exact methods generally find it difficult to solve QAP problems of size greater than 20. QAPLIB includes many
instances with size greater than 20 and therefore out of range for exact methods. These problems have been

Problem
Name

best
known
solution

Basic GLS
a = 0.5

Reset-GLS
a = 0.5,
t = 200n

Restart-GLS
a = 0.5,
t = 100n

Multiple-GLS
a1 = 0.5,
a2 = 0.25,
t = 4n.

Repeated
Local Search

successful runs
(Mean Excess)

successful runs
(Mean Excess)

successful runs
(Mean Excess)

successful runs
(Mean Excess)

successful runs
(Mean Excess)

nug15 1150 10 (0) 10 (0) 10 (0) 10 (0) 10 (0)
nug20 2570 10 (0) 10 (0) 10 (0) 10 (0) 10 (0)
rou20 725522 5 (0.022) 8 (0.002) 7 (0.015) 10 (0) 4 (0.055)
nug30 6124 10 (0) 10 (0) 9 (0.007) 10 (0) 2 (0.31)
tho30 149936 9 (0.004) 10 (0) 8 (0.046) 10 (0) 1 (0.355)
kra30a 88900 10 (0) 10 (0) 10 (0) 10 (0) 3 (0.966)
kra30b 91420 4 (0.056) 7 (0.023) 5 (0.049) 8 (0.015) 0 (0.163)
ste36a 9526 7 (0.069) 6 (0.086) 5 (0.206) 9 (0.01) 0 (1.148)
ste36b 15852 1 (1.156) 4 (2.324) 8 (0.343) 10 (0) 3 (0.574)
tho40 240516 0 (0.169) 0 (0.076) 0 (0.142) 0 (0.051) 0 (0.849)
Total successes 66/100 75/100 72/100 87/100 33/100
Mean solution quality 0.1476% 0.2511% 0.0808% 0.0076% 0.442%

Table 4.1 Comparison of GLS variants for the QAP.

97

the inferior diversification strategy because of the penalties being reset. On the other

hand, Restart-GLS had fewer successful runs than Reset-GLS, though significantly

improved over basic GLS’s mean solution quality.

The sophisticated Multiple-GLS strategy paid off f inding the best known solution in

87% of the runs. Moreover, the Multiple-GLS strategy achieved a remarkable mean

excess of 0.0076% unmatched by any of the other algorithms tested. Much of this

success can be attributed to the second feature set of Multiple-GLS responsible for

diversification. In fact, we performed experiments with no short-term penalties (i.e. a1

= 0). For a2 = 0.5, the algorithm was still able to show a very good performance,

finding the optimal solution in 82% of the runs with a mean excess of 0.0306%.

Lower and higher values for a2 resulted in slightly worse performance. This suggests

another strategy for overcoming the problem of features with variable feature costs

that is to set all feature costs to the same value (i.e. use only the second feature set of

Multiple-GLS). However, this strategy could be improved further by using short-term

penalties based on variable costs to play the crucial refinement role needed in order

for the algorithm to reach a performance such as that presented in Table 4.1.

4.6 Efficient Heuristic Methods for the QAP

Eff icient heuristic methods for the QAP are based on tabu search. Two very successful

tabu search methods for the QAP are Robust Taboo Search (Ro-TS) due to Taill ard

[Tai91] and Reactive Tabu Search (RTS) due to Battiti and Tecchiolli [BT94]. Other

works applying tabu search to the QAP not examined here include Skorin-Kapon

[Sko90] and Chakrapani and Skorin-Kapov [CS93] to name but two. Moreover, the

tackled in the past by many approximation methods and very good solutions are already known for them.
Whether these solutions are also optimal is an open question.

98

Genetic Hybrids (GH) method due to Fleurent and Ferland [FF94] which found the

best known solutions for many of the large problems in QAPLIB is based on Ro-TS.

In this case, Ro-TS is used as the mutation operator which improves solutions

produced by GH’s crossover operator.

We compared GLS with Ro-TS and RTS and also GH. Before proceeding to examine

these results. We briefly describe Ro-TS and RTS. For a description of GH the reader

can refer to the original paper by Fleurent and Ferland [FF94] or to Taill ard’s

excellent review and comparison of Ro-TS, RTS and GH on both symmetric and

asymmetric QAPs [Tai95].

4.6.1 Robust Taboo Search

Robust Taboo Search uses the same local search procedure as GLS (see section 4.2).

Additionally, tabu restrictions are imposed which exclude specific moves from being

selected. A move is non admissible (i.e. tabu) if at least one of the following

conditions is satisfied (u and t are the parameters of the algorithm) [Tai91, GTW93,

Tai95]:

• if during the last u iterations, a solution had facilit y i placed at location r and

facilit y j placed at location s then a move which places both i at location r and j at

location s again is forbidden (unless this move results in a new best solution).

• if the number of iterations performed is greater than t and facilit y i has never been

at location r during the last t iterations then a move which does not place facilit y i

at location r is forbidden.

99

The parameter u changes during search taking random values in the range 0.9n < u <

1.1n. This leads to a dynamic tabu list strategy [GTW93, GL93]. A good range of

values for parameter t is 2n2 ≤ t ≤ 5n2 [Tai95].

The short-term tabu restrictions based on parameter u prevent the reversal of moves

previously executed, enabling the algorithm to escape from local minima and at the

same time intensify search in the “good” areas of the search space. On the other hand,

tabu restrictions using parameter t aim to diversify search in the long term forcing it to

enter new regions of the search space. This is achieved by incorporating in the

solution, location-facilit y combinations not visited in the near past. The two objectives

of the algorithm are the same as the objectives of Multiple-GLS, though different

means are used to accomplish them.

For our experiments, we implemented Ro-TS in C++. The parameter u was

dynamically changing as described above while the parameter t was set to 3.5n2 which

is in the middle of the range suggested by the author.

4.6.2 Reactive Tabu Search

Reactive Tabu Search uses the same short-term memory as Ro-TS though the choice

of parameter u is different. The parameter u is dynamically controlled using a simple

feedback mechanism. In particular, if the search returns to a solution already visited

then the value of u is increased to force local search out of the domain of attraction of

the current local minimum. On the other hand, if u is not changed for a number of

iterations then it is decreased.

On the diversification front, if solutions are often visited then a number of random

exchanges is made to force local search to explore new regions. All random exchanges

executed are made tabu to prevent a return. For our experiments, we obtained and

100

used the original source code in C of Battiti and Tecchiolli [BT94]. The default

parameters provided by the authors were used in our experiments.

4.7 Comparison of GLS with Efficient QAP Heuristic Methods

In this section, we compare Multiple-GLS, found to be the best GLS variant, with

Ro-TS, RTS and also GH on problems of different size and nature. We first compare

GLS with Ro-TS and RTS on the set of small to medium used for comparing the GLS

variants. This problem set represents a good mixture of real-world and randomly

generated problems. Following that, we report results for GLS on a set of random

large QAP instances with sizes up to 100 generated by Skorin-Kapov [Sko90] and

compare our results with those reported by Talli ard [Tai95] for Ro-TS, RTS and GH

on the same set of problems.

Before proceeding with the comparisons, we would like to clarify some issues relating

to the computation times required by Multiple-GLS. In particular, Multiple-GLS,

Ro-TS and RTS need around the same time to complete an iteration (i.e. complete

search of the neighbourhood). The dominant computation is the evaluation of the

O(n2) moves in the neighbourhood. This computation is conducted in almost exactly

the same way for all three methods. Actually, GLS is performing fewer moves than

the other two methods if allowed to run for the same the number of iterations. This is

because to escape from a local minimum GLS may perform more than one iteration

(i.e. neighbourhood searches) without executing a move. In between these iterations,

each penalty modification cycle requires O(n2) time to compute the feature costs and

utiliti es for the first feature set and O(n) time for the second feature set. Although, one

may think that GLS requires more time than tabu searches to complete the same

number of iterations because of the intervening penalty modification cycles that is not

101

the case. The reason is that the iteration following a penalty modification cycle

requires less time for GLS than an iteration for tabu search since no move value

updates are made during this iteration. In addition, evaluating tabu restrictions on

moves requires in general more time than the corresponding calculation of penalty

differences in GLS. In fact, our implementation of Multiple-GLS proved to need less

time to complete the same number of iterations than our corresponding

implementation of Ro-TS7 for all but very large problems (e.g. n =100) and even in

that case, Ro-TS was less than half second per minute faster than Multiple-GLS. In

general, Multiple-GLS, Ro-TS and RTS can be considered to require roughly the same

amount of time to complete the same number of iterations. This is very important

since it allows us to make a fair comparison of these techniques based on the number

of iterations they perform.

4.7.1 Small To Medium Size QAPs

We compared Multiple-GLS with Ro-TS and RTS on the set of small to medium size

QAP instances used for the comparison of the GLS variants in section 4.5. Ro-TS and

RTS were allowed to run for 100,000 iterations on each problem and the results from

10 runs were averaged. The performance of Ro-TS and RTS was measured in terms of

the number of successful runs (i.e. runs that resulted in the best known solution) and

also solution quality (i.e. per cent excess above the best known solution). Given that

Ro-TS and RTS required roughly the same time to complete 100,000 iterations as

Multiple-GLS, results for Ro-TS and RTS can be directly compared with each other

7 The implementations of Multiple-GLS and Ro-TS were both in C++ and they were sharing large parts of the
code. We tried to optimise as much as possible the non-shared parts of both methods.

102

and with those for Multiple-GLS reported in Table 4.1. This comparison is made in

Table 4.2.

In this table, we see that GLS is highly competitive with Ro-TS and both methods are

much better than Re-TS. Ro-TS had just one more successful run than GLS while in

terms of solution quality, Ro-TS was better than GLS by just 0.0016%. This result is

so close that neither of these techniques can be said to be better than the other on this

set of problems.

RTS lagged behind both Re-TS and Multiple-GLS. This can be partly attributed to the

fact that the default parameters were used for Re-TS and partly to the case that the

method may not be suitable for these types of problems.

4.7.2 Large QAPs

Multiple-GLS uses the long-term penalties to distribute the search effort over the

whole of the search space. Long-term penalties are supported by the short-term

penalties which intensify search as the algorithm progresses into new regions. One

would expect, that for larger problems this may be an advantageous strategy to follow,

because of the systematic exploration strategy introduced by the long-term penalties.

Problem
Name

best
known
solution

Multiple-GLS
a1 = 0.5, a2 = 0.25,
t = 4n.

Robust Tabu Search
(Ro-TS)

Reactive Tabu Search
(Re-TS)

successful
runs

solution
quality

successful
runs

solution
quality

successful
runs

solution
quality

nug15 1150 10 0 10 0 10 0
nug20 2570 10 0 10 0 2 0.506
rou20 725522 10 0 10 0 10 0
nug30 6124 10 0 10 0 1 0.441
tho30 149936 10 0 10 0 10 0
kra30a 88900 10 0 10 0 9 0.134
kra30b 91420 8 0.015 10 0 7 0.039
ste36a 9526 9 0.01 7 0.019 0 1.094
ste36b 15852 10 0 10 0 9 0.025
tho40 240516 0 0.051 1 0.041 3 0.024
Total Successes 87/100 0.0076% 88/100 0.006% 61/100 0.2263%

Table 4.2 Comparison of Multiple-GLS with Robust Tabu Search and Reactive Tabu Search.

103

To investigate the benefits of using Multiple-GLS on large problems, we tested

Multiple-GLS on a set of 12 large QAP instances from QAPLIB with sizes from 49 to

100 which have been randomly generated by Skorin-Kapov (see [Sko90] for details).

Talli ard [Tai95] reports results for these instances for Ro-TS, RTS, and also GH. In

the competitive tests which Taill ard performed on these problems, he allocates 1000n

iterations for the tabu searches and a roughly equivalent amount of time to the GH

method. We allowed Multiple-GLS to run for the same number of iterations. The

results from ten runs were averaged in each instance.

In Table 4.3, we compare the solution quality (i.e. mean excess) of Multiple-GLS with

those reported by Taill ard for Ro-TS, RTS, and GH. The results are averaged when

several problems of the same size and type are solved.

In this table, we see that Multiple-GLS achieves the best solution quality with RTS

second, Ro-TS third and GH the worst method amongst the four. As Taill ard points

out, the GH needs long computation times to be competitive on these problems. In

general, GH performs better on structured rather than random problems. However, the

comparison clearly indicates that GLS is competitive with all these state of the art

QAP methods and able to outperform them at least on the these particular problems

with the particular limit on the number of iterations. One possible explanation for this

is that using the long-term penalties, GLS more systematically diversifies search in

Problem Multiple-GLS Ro-TS Re-TS GH Best known Solution
Sko49 0.068 0.096 0.068 0.120 23386
Sko56 0.104 0.090 0.145 0.181 34458
Sko64 0.098 0.063 0.125 0.174 48498
Sko72 0.147 0.181 0.110 0.200 66256
Sko81 0.117 0.088 0.110 0.250 90998
Sko90 0.158 0.179 0.164 0.314 115534
Sko100a-f 0.118 0.162 0.141 0.264 150252.7
Mean Solution Quality 0.117 0.139 0.131 0.235

Table 4.3 Comparison of Multiple-GLS with Ro-TS, Re-TS and GH on large QAPs.

104

large search spaces than the other methods while the intensification strategy adopted

by Multiple-GLS enables the algorithm to produce good solutions is short time.

4.8 Conclusions

In this chapter, we clearly demonstrated the applicabilit y of the GLS algorithm to the

famous Quadratic Assignment Problem. The structure of the problem provided an

ideal candidate for examining the problem of variable feature costs and allowed us to

propose various strategies to resolve it. Retracting the effects of GLS decisions, when

the information they were based on becomes invalid, proved to be the best strategy for

resolving the problem. The use of parallel GLS processes aimed separately at the

intensification and diversification of search was also proposed in this context. The

final GLS variant adopting these modifications was compared to state of the art

techniques for the QAP. GLS proved to be highly competitive with these methods in

the experiments carried out, even outperforming them in large QAPs when time

resources are limited.

105

5. Radio Link Frequency Assignment Problem

Chapter 5

Radio Link Frequency Assignment
Problem

In the last two chapters, we focused on two challenging but nonetheless simple

problems in terms of objectives and constraints. Modern applications frequently

require solving more complex problems than the TSP and QAP. Some of these

problems are not pure optimisation problems but also involve some aspects of

constraint satisfaction. In such cases, we sometimes seek solutions which violate the

minimum number of constraints. In more realistic settings, constraint violations incur

different costs and solutions are sought that minimise the total cost from constraint

violations and possibly other criteria. In this chapter, we examine how Guided Local

Search and Fast Local Search can be applied to such problems often referred to as

Partial Constraint Satisfaction Problems (PCSPs) or constrained optimisation

problems. The Radio Link Frequency Assignment Problem (RLFAP) is examined as a

representative problem in this class. RLFAP stems from real-world situations in

106

military telecommunications. The effectiveness and eff iciency of the GLS technique is

demonstrated on publicly available instances of the problem. Comparison with other

search techniques demonstrates the advantages of the GLS method over alternative

approaches to PCSPs.

5.1 Partial Constraint Satisfaction Problem

The Partial Constraint Satisfaction Problem can model a variety of constraint

satisfaction problems with various forms of optimisation. In the classic CSP, one is

trying to assign values to finite domain variables such that a set of linear and/or

non-linear constraints on these variables are satisfied. In PCSP, the satisfaction of

constraints becomes the subject of optimisation and solutions that minimise the

number of constraint violations or more complex optimisation criteria are sought.

Before formally defining the PCSP, we introduce some terminology used in the CSP

related literature.

The assignment of a value to a variable is called a label. The label which involves the

assignment of a value v to the variable x (where v is in the domain of x) is denoted by

the pair <x,v>. A simultaneous assignment of values to a set of variables is called a

compound label and is represented as a set of labels, denoted by

(<x1,v1>,<x2,v2>,...,<xk,vk>). A complete compound label is a compound label

which assigns a value to every variable in the CSP. The goal in CSP is to find one or

all complete compound labels that satisfy the constraints.

A Partial Constraint Satisfaction Problem (PCSP) is a Constraint Satisfaction

Problem in which one is prepared to settle for partial solutions solutions which

may violate some constraints or assignments of values to some, but not all variables

 when solutions do not exist (or, in some cases, cannot be found) [FW92, Tsa93].

107

This kind of situation often occurs in applications like industrial scheduling where the

available resources are not enough to cover the requirements. Under these

circumstances, partial solutions are acceptable and a problem solver has to find the

one that minimises an objective function.

The objective function is domain-dependent and may take various forms. In one of its

simplest forms, the optimisation criterion may be the number of the constraint

violations. For more realistic settings, some constraints may be characterised as "hard

constraints" and they must be satisfied whilst others, which are referred to as "soft

constraints", may be violated if necessary. Moreover, constraints may be assigned

violation costs which reflect their relative importance. Partly following Tsang [Tsa93],

we define the Partial Constraint Satisfaction Problem formally as follows:

Definition 5.1:

A partial constraint satisfaction problem (PCSP) is a quadruple:

()Z D C g, , ,

where

• { }Z x x xn= 1 2, ,..., is a finite set of variables,

• { }D D D Dx x xn
=

1 2
, ,..., is a set of finite domains for the variables in Z,

• { }C c c cm= 1 2, ,..., is a finite set of constraints on an arbitrary subset of variables in

Z,
• g is the objective function which maps every compound label to a numerical value.

The goal in a PCSP is to find a compound label (partial or complete) which optimises

(minimises or maximises) the objective function g. Given the above definition,

standard CSPs and Constraint Satisfaction Optimisation Problems (CSOPs) (where

optimal solutions are required in CSPs, see [Tsa93]) can both be cast as PCSPs. Under

108

the Partial CSP formulation, all compound labels (partial or complete) are candidate

solutions since constraint violations are part of the cost function.

Versions of branch and bound and other complete methods have been suggested for

tackling PCSPs [FW92, WF93, JFM96]. But complete algorithms are inevitably

limited by the combinatorial explosion problem. A heuristic method for the related

MAX-SAT problem has also been recently proposed by Jiang, Kautz, and Selman

[JKS95]. The method is a direct descendant of GSAT [SLM92] and uses random walk

for escaping local minima. To use the method for PCSPs, the PCSP problem has to be

converted to MAX-SAT. This conversion is not always straightforward and normally

result in a MAX-SAT problem with an even bigger search space than the original

PCSP8. Also, Wallace and Freuder [WF96] have tested restart, random walk and tabu

search variants of the min-conflicts heuristic [MJPL92] on random PCSPs of sizes up

to 100 variables minimising the number of constraint violations.

General heuristic methods such as Genetic Algorithms, Tabu Search and Simulated

Annealing have also been tried on PCSPs and in particular on the RLFAP problem.

The performance of these techniques is going to be examined later in this chapter.

5.2 The Radio Link Frequency Assignment Problem

The Radio Link Frequency Assignment Problem was abstracted from the real li fe

application of assigning frequencies (values) to radio links (variables). Eleven

instances of the problem, which involve various optimisation criteria, were made

publicly available by the French Centre d'Electronique l'Armament [RLFAP94]. The

8 In fact, a PCSP with n variables each with domain size m will have a search space m
n
. The equivalent MAX-SAT

problem will have 2
mn

 which in normally bigger than m
n
 (because m < 2

m
 when m ≥ 1).

109

problem is NP-Hard and it is a variant of the T-graph colouring problem as introduced

by Hale [Hal80]. Two different types of binary constraints are involved in the RLFAP:

• The absolute difference between two frequencies must be greater than a given
number k (i.e. for two frequencies X and Y, |X - Y| > k);

• The absolute difference between two frequencies must be exactly equal to a
given number k (i.e. for two frequencies X and Y, |X - Y| = k).

The above constraints are either hard or soft constraints. A problem specifies the

variables which are subject to these constraints and the constraint graph is not

complete (i.e. not every variable is constrained by every other variable). If all the

constraints can be satisfied then either:

• (C1) the solution which assigns the fewest number of different values to the
variables,

• (C2) or the solution where the largest assigned value is minimal

is preferred. For insoluble problems, violation costs are defined for the constraints.

Furthermore, for some insoluble problems, default values are defined for some of the

variables. If any of the default values is not used in the solution returned, then a

predetermined mobility cost applies. Table 5.1 depicts the characteristics of the

RLFAP instances.

The eleven RLFAPs are ideal for testing the effectiveness of GLS in PCSPs because

they contain both soluble and insoluble problems and non-trivial optimisation criteria

RLFAP
Instance

No.
Variables

No.
Constraints

Soluble Minimise

Scen01 916 5,548 Yes number of different values used (C1)
Scen02 200 1,235 Yes number of different values used (C1)
Scen03 400 2,760 Yes number of different values used (C1)
Scen04 680 3,968 Yes number of different values used (C1)
Scen05 400 2,598 Yes number of different values used (C1)
Scen06 200 1,322 No maximum value used (C2)
Scen07 400 2,865 No weighted constraint violations
Scen08 916 2,744 No weighted constraint violations
Scen09 680 4,103 No weighted constraint violations + mobility costs
Scen10 680 4,103 No weighted constraint violations + mobility costs
Scen11 680 4,103 Yes number of different values used (C1)

Table 5.1 Characteristics of RLFAP instances. The domains of variables consist of 6-44 integer values.

110

are defined for both soluble and insoluble problems. Besides, results from other

research exists, which could be used to measure the success of GLS. In RLFAP,

complete compound labels are sought. For PCSPs where partial compound labels are

sought, the reader can refer to chapter 6 where GLS is used to tackle a real world

workforce scheduling problem in this last category.

5.3 Local Search for Partial PCSPs

A local search procedure for Partial CSPs can be based on the min-conflicts heuristic

of Minton et al. [MJPL92] and the computational model of the GENET network

[WT91, Tsa93, DTWZ94]. An 1-optimal type move can be used which changes the

value of one variable at a time. Starting from a random and complete assignment,

variables are examined in an arbitrary static order. Each time a variable is examined,

the current value of the variable changes to the value which yields the minimum value

for the cost function. Ties are randomly resolved allowing moves which transit to

solutions with equal cost. These moves, often called sideways moves [SLM92],

enable local search to examine plateau of states occurring in the landscapes of many

CSPs and Partial CSPs. One problem with sideways moves is that of detecting local

minima. This problem can be overcome using the limited sideways scheme described

in [VT94] and also [Dav97]. In particular, we characterise a solution as a local

minimum when all variables have been examined and no change occurred in the value

of the cost function. Although we allow sideways moves to occur locally, if these

moves do not result in a better solution after all variables have been examined then a

local minimum is concluded.

111

The pseudocode in Figure 5.1 depicts a basic local search procedure for PCSPs. The

procedure starts with a solution Si (which is a compound label as described in section

5.1) and returns a local minimum solution Si+1.

5.4 Guided Local Search for Partial CSPs

Applying guided local search to a problem simply requires the existence of a local

search procedure, preferably a version of fast local search, and also a set of features

which will be used to bias local search. Both prerequisites are domain dependent

allowing the GLS algorithm to adapt to particular combinatorial optimisation

problems. A local search procedure for PCSPs has been described in the last section.

Fast local search for PCSPs will be explained later in this chapter. For the moment,

we focus our attention on the features to be used in PCSPs. In particular, we examine

the features used in the RLFAP instances. The same or similar features can be used in

many other problems in the PCSP class.

procedure LocalSearch(Z, D, g, Si)

begin
S ← Si;

repeat
gbefore ← g(S);

for each variable x in Z do
begin

S ← S - {<x,vi>};

for each value v in Dx do
gv ← g(S + {<x,v>});

BestSet ← set of values with minimum gv;

vi+1 ← random value in BestSet; (* sideways moves *)

S ← S + {<x,vi+1>};

end
gafter ← g(S);

until (gafter = gbefore) (* local minimum is concluded *)

Si+1 ← S;

return Si+1;
end

Figure 5.1 Local Search for PCSPs in pseudocode

112

5.4.1 Constraints

The main cost factor in PCSPs is constraint violation costs (sometimes described as

relaxation costs). In a simple setting, all the problem’s constraints have violation costs

defined (high for hard constraints) which denote their relative importance. The cost of

a solution is given by the sum of violation costs for the constraints violated by the

solution. To define a basic cost function for the problem, each constraint ci in the

problem is represented by an indicator functionI ci
which takes the value 1 (if the

constraint is violated) or the value 0 (if the constraint is satisfied). This indicator

function has the following form:

Eq. 5.1 ()I Sci
=

î

1

0

,

,

if S violates constraint c

if S satisfies constraint c
i

i

where S is a compound label as described in section 5.1.

A cost function accounting only for constraint violations can be defined as follows:

Eq. 5.2 () () ()g S I S ViolationCost cc i
i

m

i
= ⋅

=
∑

1

where ViolationCost is a function which maps each constraint to its violation cost.

A basic set of features can be defined for this cost function by considering the

representation of constraints as indicator functions. Each constraint in the problem is

interpreted as a feature with an indicator function as given by Eq. 5.1 and a feature

cost as given by the violation cost of the constraint. The augmented cost function for

Eq. 5.2 has the following form:

Eq. 5.3 () () () ()h S I S ViolationCost c I S pc i
i

m

c c
i

m

i i i
= ⋅ + ⋅ ⋅

= =
∑ ∑

1 1

λ .

113

Essentially, the above augmented cost function introduces an extra penalty parameter

pci
for each constraint ci in the problem. The role of these extra penalty parameters is

to enable GLS to guide local search towards the satisfaction of all or particular

constraints. Note here, that feature costs although equal to the violation costs are not

incorporated for a second time in the augmented cost function. They are solely used to

determine which features (i.e. constraints) are to be further penalised in a local

minimum. In the case of PCSPs, the utilit y function of GLS (see Eq. 2.5) takes the

following form:

Eq. 5.4 () () ()
Util S c I S

ViolationCost c

pi c

i

c
i

i

, = ⋅
+1

.

GENET’s learning scheme is essentially a version of the above penalty modification

mechanism where () ()Util S c I Si ci
, = and thus all violated constraints are penalised.

Let us consider now the RLFAP. In the RLFAP, a set of constraints is given for each

instance. Apart from relaxing each constraint and including its violation cost in the

cost function using an indicator function, each constraint defines a feature which is

used to guide local search. Feature costs are set equal to the corresponding violation

costs and the cost function is augmented with a set of modifiable penalty parameters

one for each constraint (see Eq. 5.3). Initially, the penalty parameters are set to 0 and

each constraint (if violated) accounts only for its violation cost. Each time local search

settles in a local minimum, the penalties for some of the constraints violated (the

corresponding features are exhibited) are increased according to the general scheme

described in section 2.6 using the utilit y function Eq. 5.4. Constraints with high

violation costs are penalised more frequently than those with low costs because of Eq.

5.4. In the short term, local search escapes from the local minimum while in the long

114

term, it is biased to spend more time on solutions that satisfy high cost constraints

rather than low cost constraints.

5.4.2 Assignment Costs.

Some of the insoluble RLFAP instances (Scen09 and Scen10) involve assignment

costs. In particular, a cost is incurred when a variable is assigned a value which is

different from a default value provided. These costs are called mobility costs and

apply to only some of the variables. RLFAP mobilit y costs are comparable to

constraint violation costs and are linearly combined with constraint violation costs to

form the objective function.

The local search of Figure 5.1 remains unchanged for these problems. If GLS were

also to remain unchanged then the distribution of the search effort would only be

determined by the constraint violation costs ignoring the extra mobilit y costs to be

minimised. This will not result to the best possible performance. Extra information

pertaining to mobilit y costs may be exploited to affect the distribution of the search

effort. The set of features based on constraints is augmented with extra features that

detect assignments of particular values to variables which incur mobilit y costs. The

costs of these new features are set equal to the corresponding mobilit y costs. GLS

operates on the combined set of features which now contains both constraints and

assignments.

5.4.3 Minimise the Number of Different Values Used

In resource allocation problems, the main concern is the eff icient utili sation of

resources. In many cases, this translates into satisfying all requests using the minimum

number of resources possible. Frequencies are the resources in RLFAP. As mentioned

115

in section 5.2. some of the RLFAP instances are soluble (Scen01-05 and Scen11). For

these instances, solutions are sought that satisfy all constraints and also use as few

frequencies as possible. In other words, the goal is to find a solution which satisfies all

constraints and also minimises the number of different values used. The problem is

similar to finding the minimum number of colours (i.e. chromatic number) needed to

colour a graph.

One possibilit y is to include this criterion in the cost function as it is described for

graph colouring by Johnson et al. [JAMS91]. The alternative approach examined here

is not to include this criterion in the objective function but instead to bias local search

using penalties such that this criterion is minimised. In particular, a feature is defined

for each value in the union of the domains. This feature is exhibited only when the

corresponding value is assigned to at least one of the variables. By penalising the

feature, we can discourage the associated value from being assigned to any of the

variables. The costs of these features should be such that we prefer to penalise values

that are assigned to only a few of the variables. The motivation is that values that are

assigned to only a few of the variables could be swapped for values that are assigned

to many of the variables, so decreasing the total number of values used. The fewer the

number of variables that are assigned a value the higher should be the cost of the

related feature. For a value v in the union of domains the cost of the associated feature

fv is given by:

Eq. 5.5 ()c s fv
v

* , = total number of variables

(number of variables assigned value in s*) + 1

where s* is the local minimum solution in the context of which the feature cost is

evaluated. The above feature costs are not constant like those in sections 5.4.1 and

5.4.2. This is because we cannot be sure which value can be avoided unless a solution

116

has been found that satisfies all the constraints. If the solution violates some of the

constraints, these constraints are penalised first, taking precedence over the value

features in the penalty modification scheme. This leads to a feature set hierarchy

where feature sets at the lower levels of the hierarchy are only penalised if no features

of higher levels are exhibited.

5.4.4 Minimise Maximum Value Used

This last criterion is involved in only one of the RLFAP instances (Scen05). The

approach taken for this criterion was to penalise constraints first and if these were

satisfied to penalise the maximum value used without considering the utilit y function

(Eq. 2.5).

5.5 Fast Local Search for Partial CSPs

A greedy local search for PCSPs evaluates all possible 1-optimal moves over all

variables before selecting and performing the best move. The local search procedure

described in section 5.3 is already a faster alternative to greedy local search since the

neighbourhood is confined to the values of each variable. In spite of that, further

improvements may be introduced in the algorithm of Figure 5.1 using the activation

bits technique of Fast Local Search described in section 2.8.

In the case of PCSPs, a bit is attached to each problem variable. If the bit of a variable

is 1 then the variable is called active and it is examined for improving moves

otherwise it is called inactive and it is ignored by local search. Whenever a variable is

examined and a move is performed the activation bit of the variable remains set to 1

otherwise it turns to 0 and the variable is not examined in future iterations.

Additionally, if a move is performed, activation spreads to other variables which have

117

their bits set to 1. In particular, we set to 1 the bit of variables where improving moves

may occur as a result of the move just performed. In general, such variables are those

that are connected via a constraint to the variable where the current move was

performed. Three main schemes for the spreading of activation may be used. The

schemes determine which variables are to be activated when the value of a variable

changes and they are the following:

S1. Activate all variables connected via a constraint to the variable which changed value.
S2. Activate only variables that are connected via a constraint which is violated.
S3. Activate only variables that are connected via a constraint that changed state (i.e. violated
→ satisfied or satisfied → violated) as a result of the move.

S2 and S3 are the more approximate schemes among the three, activating fewer

variables than S1.

The overall procedure starts with all the bits set to 1. The variables are continuously

scanned from first to last. Only variables with the bit set to 1 are being searched. Each

time a variable is searched and its value is changed, the variable remains active and

also activation spreads to other related variables according to one of the activation

schemes (S1, S2, or S3). On the other hand, if the value of the variable is not changed

the variable becomes inactive (i.e. the bit is set to 0). The process stops under the

same conditions that apply to local search without activation bits depicted in section

5.3.

 Each time local search settles in a local minimum, GLS penalises some of the

features. A limited number of variables are activated and a fresh fast local search cycle

starts. Depending on the features penalised, we activate variables relating to these

features such that moves examined aim at removing the penalised features from the

solution. Table 5.2 gives the relation between features penalised and variables

activated.

118

Next, we give results indicative of the performance of GLS on the RLFAP instances.

Some of these results were up to recently the best known solutions for these instances.

5.6 Performance of Guided Local Search on the RLFAP Instances

To evaluate the performance of GLS, we apply it to the eleven instances of RLFAPs in

the public domain [RLFAP94]. The objective is to evaluate the above mentioned

different activation schemes for GLS, find out whether GLS could possible find

solutions in all soluble problems, and find good quality solutions in all the problems.

Experiments performed on the RLFAP using each of the three activation schemes

showed that all schemes perform equally well i n terms of solution quality with S3

having a slight advantage in run times over scheme S2 and being much faster than

scheme S1. The results reported here give the average performance of the algorithm

using the activation scheme S3.

Ten runs were performed on each instance starting from random initial solutions. In

each run, the algorithm was allowed to complete 100,000 penalty cycles (i.e. GLS

iterations as in Figure 2.2) before being stopped. Hard constraints in all i nstances were

assigned a high violation cost of 1,000,000. The regularisation parameter λ was also

set to this value though values of λ in the range [2×105, 2×106] also performed well .

Table 5.3 presents the results obtained. Experiments were performed on a DEC Alpha

3000/600 (175 MHz) with GLS implemented in C++.

Feature penalised Activate
Constraint Variables associated with the constraint
Assignment Variable the assignment refers to
Value Variables assigned the value

Table 5.2 Associations between features penalised and variables activated.

119

The tunnelli ng algorithm, a predecessor of GLS, significantly improved the best

known solutions on the RLFAP that accompanied the initial release of the instances

(see [VT94]). GLS with fast local search found even better solutions, improving over

the tunnelli ng algorithm in many instances. Table 5.4 summarises the best solutions

found by GLS for the RLFAP instances. Note here that solutions for Scen02-Scen05

have been proven optimal by complete search techniques [THL95].

RLFAP
Instance

Best
Solution

Average Cost (Std. Dev.)Worst Solution Average
Iterations

Average Time
(CPU sec.)

Scen01 16 18.6 (2.3) 22 1,895 8.77
Scen02 14 14 (0.0) 14 233 0.59
Scen03 14 15.4 (1.3) 18 1,626 5.62
Scen04 46 46 (0.0) 46 60 0.46
Scen05 792 792 (0.0) 792 1,584 8.50
Scen06 3,628 4,333.8 (766.0) 6,042 34,365 120.87
Scen07 427,054 530,641.1 (79,666.7) 700,685 20,412 78.79
Scen08 294 335.7 (34.7) 377 50,626 232.88
Scen09 15,805 15,999.7 (194.7) 16,340 31,150 129.4
Scen10 31,533 31,686.6 (146.1) 31,942 64,258 297.29
Scen11 28 not applicable Not solved 21,577 93.97

Table 5.3 Average performance of GLS on the RLFAP instances.

RLFAP Instance Best solutions
 found by GLS

Scen01 16
Scen02 14
Scen03 14
Scen04 46
Scen05 792
Scen06 3,570
Scen07 374,705
Scen08 282
Scen09 15,680
Scen10 31,517
Scen11 28

Table 5.4 Best solutions for RLFAP found by GLS.

120

5.7 Comparison with Extended GENET and a Tabu Search Variant.

Independently from this work another method also based on the GENET neural

network has been developed for the RLFAP by G. vom Scheidt [Sch95]. The method

is li ke GENET a neural network architecture and is described in the paper by Boyce et

al. [BDST95] where it is compared with a tabu search variant. For convenience, we

shall call this method extended GENET. Extended GENET in pure algorithm terms

(after removing the neural network element) has many similarities as well as

differences with GENET [WT91, DTWZ95] and GLS. Although it uses an augmented

cost function (minimised by the NN), it penalises all constraint violations by

increasing penalties proportionally to the constraint violation costs. No scheme is used

for distributing the search effort (no memory of past actions) though a similar effect is

attempted by varying penalty increments amongst constraints. Minimisation of the

number of different values used is achieved by incorporating an additional cost term

to the cost function weighted by an appropriate coeff icient. The algorithm has not

been applied to instances involving mobilit y costs (Scen09 and Scen10). Extended

GENET makes use of a fast local search procedure using an activation scheme similar

to S1 but does not consider sideways moves.

Table 5.5 contrasts the results reported in Boyce et. al [BDST95] for tabu search and

extended GENET with those reported for GLS in Table 5.3. Experiments in

[BDST95] were also performed on DEC Alpha machines with the algorithms

implemented in C++ and therefore a relatively fair comparison in running times can

be made. As one can see in Table 5.5, GLS outperforms both extended GENET and

the tabu search variant. For problems (Scen01-Scen05), GLS succeeded more times in

finding the optimum than either tabu search or extended GENET. Moreover, GLS

found better solutions than these two methods in all the insoluble instances

