
Guided Local Search for
Combinatorial Optimisation Problems

Christos Voudouris

A thesis submitted for the degree of Ph.D

Department of Computer Science

University of Essex

1997

To my wife, Stella

Acknowledgements

I would like to express my gratitude to my supervisor Edward Tsang for his constant

support and guidance throughout my years at Essex University. He introduced me to

the fields of constraint satisfaction and combinatorial optimisation and he enormously

helped in the evolution and refinement of the ideas presented in this thesis by his

constant feedback and supervision. I would like to thank my manager at BT

Laboratories Nader Azarmi, without his encouragement and support this thesis may

have never been completed. Many thanks to John Ford for his comments on an earlier

draft of this thesis and for supervising me during my last months of study.

I would like to thank the Department of Computer Science for the harmonious

environment and the Computing Service at the University of Essex for the excellent

computer faciliti es without which it would have been impossible to perform the

computational experiments reported here. Many thanks to BT plc which supported me

during my final year.

This research has been conducted in the framework of the GENET project funded by

the EPSRC grant (GR/H75275).

Abstract

In this thesis, we present the heuristic technique of Guided Local Search for

combinatorial optimisation problems. The technique sits on top of local search

procedures and has as a main aim to guide these procedures in exploring eff iciently

and effectively the vast search spaces of combinatorial optimisation problems. This is

achieved by exploiting prior information known about the problem in conjunction

with historical information gathered during the search process. Information is

converted to constraints which take the form of penalties and modify the cost function

to be minimised. Local search is guided by these constraints, focusing on solutions of

high quality. Guided Local Search can be combined with the neighbourhood reduction

scheme of Fast Local Search which significantly speeds up the operations of the

algorithm.

In this thesis, Guided Local Search is applied to the Travelli ng Salesman Problem,

Quadratic Assignment Problem, Radio Link Frequency Assignment Problem,

Workforce Scheduling and Function Optimisation. Experimental evaluation and

comparisons with a variety of other heuristic methods on benchmarks instances of the

these problems shows that Guided Local Search compares very favourably to famous

general and specialised heuristic algorithms outperforming many of them on the

benchmark instances considered.

Table of Contents

1.Introduction ..12

1.1 Combinatorial Optimisation and NP-Hard Problems...12

1.2 Exact and Heuristic Search Techniques...15

1.3 Local Search..16

1.4 Simulated Annealing (SA)...18

1.4.1 Cooling Schedules...20

1.5 Tabu Search (TS)...21

1.5.1 The Basis for Tabu Search...21

1.5.2 Recency-Based Memory..22

1.5.3 Intensification Strategies..23

1.5.4 Diversification Strategies...24

1.5.5 Candidate List Strategies...25

1.6 Genetic Algorithms..27

1.6.1 A Basic GA Algorithm..27

1.6.2 Hybrid GAs..29

1.7 GENET and Other Weighting Methods for CSPs..30

1.7.1 The GENET Neural Network..32

1.8 Overview of the Thesis..33

2. Guided Local Search ..35

2.1 History of Guided Local Search...35

2.2 Guided Local Search Principles...37

2.3 Local Search..37

2.4 Solution Features...38

2.5 Augmented Cost Function..39

2.6 Penalty Modifications..40

2.7 Regularisation Parameter...42

2.8 Fast Local Search and Other Improvements..43

2.9 Connections with Other General Optimisation Techniques...47

2.9.1 Simulated Annealing..47

2.9.2 Tabu Search...48

2.10 GLS Applications...51

3. Travelling Salesman Problem..52

3.1 The Problem...52

3.2 Local Search Heuristics for the TSP..53

3.3 Fast Local Search Applied to the TSP...57

3.3.1 Local Search Procedures for the TSP..58

3.4 Guided Local Search Applied to the TSP..60

3.4.1 Solution Features and Augmented Cost Function..60

3.4.2 Combining GLS with TSP Local Search Procedures...61

3.4.3 How GLS Works on the TSP...62

3.5 Evaluation of GLS in the TSP..63

3.5.1 Experimental Setting..64

3.5.2 Regularisation Parameter λ ..64

3.6 Guided Local Search and 2-Opt...66

3.6.1 Comparison with General Methods for the TSP..68

3.6.2 Simulated Annealing..69

3.6.3 Tabu Search...70

3.6.4 Simulated Annealing and Tabu Search Compared with GLS..71

3.7 Efficient GLS Variants for the TSP...72

3.7.1 Results for GLS with First Improvement Local Search...73

3.7.2 Results for GLS with Fast Local Search..74

3.8 Comparison with Specialised TSP algorithms...76

3.8.1 Iterated Lin-Kernighan...76

3.8.2 Genetic Local Search...83

3.9 Conclusions..84

4. Quadratic Assignment Problem...86

4.1 The Problem...86

4.2 Local Search for the QAP..87

4.3 Guided Local Search Applied to the QAP...88

4.4 The Issue of Features with Variable Costs...90

4.4.1 Reset Strategy..91

4.4.2 Restart Strategy..91

4.4.3 Multiple Feature Sets Strategy...92

4.5 Experimental Evaluation of Basic GLS and its Variants..95

4.6 Efficient Heuristic Methods for the QAP...97

4.6.1 Robust Taboo Search...98

4.6.2 Reactive Tabu Search..99

4.7 Comparison of GLS with Efficient QAP Heuristic Methods...100

4.7.1 Small To Medium Size QAPs..101

4.7.2 Large QAPs...102

4.8 Conclusions..104

5. Radio Link Frequency Assignment Problem..105

5.1 Partial Constraint Satisfaction Problem...106

5.2 The Radio Link Frequency Assignment Problem..108

5.3 Local Search for Partial PCSPs..110

5.4 Guided Local Search for Partial CSPs...111

5.4.1 Constraints...112

5.4.2 Assignment Costs...114

5.4.3 Minimise the Number of Different Values Used..114

5.4.4 Minimise Maximum Value Used...116

5.5 Fast Local Search for Partial CSPs..116

5.6 Performance of Guided Local Search on the RLFAP Instances...118

5.7 Comparison with Extended GENET and a Tabu Search Variant...120

5.8 Comparison with the CALMA Project Algorithms..122

5.9 Discussion..123

5.10 Conclusions..123

6. Workforce Scheduling..125

6.1 BT's Workforce Scheduling Problem...126

6.2 Local Search for Workforce Scheduling..127

6.3 Fast Local Search for Workforce Scheduling..128

6.4 Guided Local Search for Workforce Scheduling...129

6.5 Experimental Results and Comparison with GAs, SA and CLP..130

6.6 The Role of FLS in BT’s Workforce Scheduling Problem..132

6.7 Remarks...133

6.8 Conclusions..134

7. Nonconvex Optimisation..135

7.1 Nonconvex Optimisation and Global Optimisation Methods...135

7.2 Local Search for Continuous Optimisation Problems..136

7.3 The Sine Envelope Sine Wave (F6) Function..137

7.4 Guided Local Search for Global Optimisation...139

7.5 Experimentation with the F6 Function...141

7.6 Conclusions..144

8. Summary and Conclusions..145

8.1 Summary of the Research Conducted..146

8.2 Concluding Remarks on GLS and FLS..147

8.2.1 Guided Local Search..148

8.2.2 The Role of Parameter λ ..149

8.2.3 Fast Local Search...149

8.3 Future Research...150

9. References...152

10. Appendix A ..164

List of Figures

Figure 2.1 Guided Local Search in pseudocode..41

Figure 2.2 Guided Local Search combined with Fast Local Search in pseudocode......................................46

Figure 3.1 k-Opt moves for the TSP...54

Figure 3.2 The first three steps of the Lin-Kernighan edge exchange mechanism..55

Figure 3.3 Lin-Kerhighan’s infeasibility moves..56

Figure 3.4 Performance of GLS variants using first improvement local search procedures..........................73

Figure 3.5 Performance of GLS variants using fast local search procedures..74

Figure 3.6 Improvements introduced by the application of GLS to the simple FLS-2Opt............................75

Figure 3.7 Iterated Lin-Kernighan as described by Johnson in [Joh90]..76

Figure 3.8 Improvements in solution quality by the GLS and DB meta-heuristics in a set of 20 TSPLIB

problems...80

Figure 3.9 Overall ranking of the algorithms in terms of solution quality when tested on a set of 20

TSPLIB problems...82

Figure 5.1 Local Search for PCSPs in pseudocode...111

Figure 6.1 Algorithm for mapping job permutations into complete schedules..128

Figure 7.1 Cross section of F6 function..138

Figure 7.2 Changes in cost due to penalising the features exhibited by a local minimum...........................140

Figure 7.3 All the points visited during the first 10,000 iterations of local search......................................142

Figure 7.4 3-D View of Figure 7.3..143

List of Tables

Table 2.1 Links between Guided Local Search and Tabu Search methods...50

Table 3.1 Local search procedures implemented for the study of GLS on the TSP......................................59

Table 3.2 Suggested ranges for parameter a when GLS is combined with different TSP heuristics.............65

Table 3.3 Performance of 2-Opt based variants of GLS on small to medium size TSP instances.................67

Table 3.4 GLS, Simulated Annealing, and Tabu Search performance on TSPLIB instances.......................71

Table 3.5 GLS with FLS-2Opt compared with variants of Iterated Lin-Kernighan......................................79

Table 3.6 GLS with FLS-2Opt compared with variants of Iterated Lin-Kernighan (long runs)....................81

Table 3.7 GLS with FLS-2Opt compared with Genetic Local Search on five TSPLIB instances.................83

Table 4.1 Comparison of GLS variants for the QAP..96

Table 4.2 Comparison of Multiple-GLS with Robust Tabu Search and Reactive Tabu Search..................102

Table 4.3 Comparison of Multiple-GLS with Ro-TS, Re-TS and GH on large QAPs................................103

Table 5.1 Characteristics of RLFAP instances. The domains of variables consist of 6-44 integer values..109

Table 5.2 Associations between features penalised and variables activated...118

Table 5.3 Average performance of GLS on the RLFAP instances..119

Table 5.4 Best solutions for RLFAP found by GLS..119

Table 5.5 Comparison of GLS with tabu search and extended GENET. Results for tabu search and

extended GENET are from Boyce et al. [BDST95]..121

Table 5.6 GLS and extended GENET on insoluble instances. Results for extended GENET are from

[Sch95]..121

Table 5.7 Comparison of GLS with the CALMA project algorithms. Results for the CALMA project

algorithms are from Tiourine et al. [THL95]..124

Table 6.1 Results obtained in BT's benchmark workforce scheduling problem..132

Table 6.2 Evaluation of the efficiency of FLS..133

Table 6.3 Ordering heuristics used in starting permutation...133

Table 7.1 GLS performance on F6 (Time in CPU seconds on a DEC Alpha 3000/600 175MHz).............141

Table A.1 Results for GLS on the TSP...165

Table A.2 Results for Iterated Local Search on the TSP...165

Table A.3 Results for Repeated Local Search on the TSP..166

12

1. Introduction

Chapter 1

Introduction

In this thesis, we are going to present a technique called Guided Local Search (GLS)

which is suitable for a class of diff icult computational problems known as

combinatorial optimisation problems. In this introductory chapter, we will explain the

terminology used in the field, examine combinatorial optimisation problems and

outline some of the most popular techniques suggested so far for tackling them.

1.1 Combinatorial Optimisation and NP-Hard Problems

Combinatorial optimisation problems appear in many areas such as resource

allocation, routing, packing and scheduling. The objective is that of assigning values

to a set of decision variables such that a function of these variables is minimised

perhaps in the presence of some constraints. A combinatorial optimisation problem

can be formulated as follows [Ree96]:

Eq. 1.1 minimise f(x), x∈ X ⊂ Rn

 subject to gi(x) ≥ bi, i = 1,..., m.

13

where x is a vector of decision variables and f(⋅) and gi(⋅) are general functions. The

condition x∈ X is assumed to constrain decision variables to discrete values. Here, we

have presumed that the problem is that of minimisation but the modification of Eq. 1.1

for maximisation problems is straightforward.

A class of problems of particular interest in combinatorial optimisation is that of

‘hard’ combinatorial optimisation problems. This class includes problems famous for

their diff iculty such as the Travelli ng Salesman Problem (TSP), the Quadratic

Assignment Problem (QAP) and the Vehicle Routing Problem (VRP). Back in the late

60s, many researches recognised the diff iculty of such problems and tried to identify

whether ‘polynomial’ algorithms (i.e. algorithms which require a polynomial number

of steps) can be devised to solve them. Nobody since then has been able to devise

such an algorithm for any of these problems and that despite many man-centuries of

research effort invested on the subject by some of the most brilli ant researchers. In

fact, there seems to be the case that problems such as the TSP are inherently diff icult

to solve, exhibiting an exponential growth in computing time with the size of the

problem.

The hypothesis that no polynomial algorithm exists for solving these problems has

been further supported by advances in the field of computational complexity. We

briefly describe the findings. The interested reader is referred to classical texts on the

subject by Papadimitriou and Steiglitz [PS82] and Garey and Johnson [GJ79] for a

more formal and extensive description of these findings.

In brief, problems which have known polynomial algorithms are said to be in the class

P. A superset of class P is the class NP where NP stands for “non-deterministic

polynomial” . NP consists of all problems that can be solved in polynomial time on a

non-deterministic Turing machine. This includes all problems in P but also ‘hard’

14

problems such as the TSP, QAP, VRP, Satisfiabilit y etc. for which all known

algorithms require exponential time.

Hard problems can be transformed one to the other in polynomial time. This property

has been used to define a separate sub-class in NP that of NP-complete problems. All

famous hard combinatorial problems such as the TSP, QAP, Satisfiabilit y, Graph

Colouring, Graph Partitioning, Vehicle Routing etc. belong to this class (see [CK95]

for a comprehensive list of NP-complete problems). If we were to find a polynomial

algorithm for any of these problems, we would have found a polynomial algorithm for

all problems in NP. No polynomial algorithm has been found so far and that despite

considerable efforts and thus it is widely conjectured that no NP-complete problem is

polynomially solvable.

There is a subtle difference here. The above results refer to the ‘decision’ version of

combinatorial optimisation problems where the problem is not that of f inding the

optimal solution but finding an answer to a question such as ‘ is there a solution with

cost less than C?’ . It is obvious that an algorithm for the decision version can be used

to solve the optimisation version by asking a series of questions to this algorithm.

Concluding, optimisation problems as such are not in NP. For the optimisation

versions of NP-complete problems, we will use the term NP-hard1 adopted by many

authors [RB93]. In addition to that and unless otherwise stated, the terms

combinatorial problems and combinatorial optimisation problems will be used to refer

to NP-hard optimisation problems.

1 In general, a problem is said to be NP-hard if any problem in NP is polynomialy transformable to it even if the
problem itself is not in NP. If the problem also belongs in NP then it is NP-complete. If you could reduce an NP
problem to an NP-hard problem and then solve it in polynomial time, you could solve all NP problems in
polynomial time.

15

1.2 Exact and Heuristic Search Techniques

The simplest approach to solve a NP-hard optimisation problem is to li st all the

feasible solutions, evaluate their objective function values and chose the best. This

approach of complete enumeration, although widely applicable, is unusable in practice

because of the vast number of possible solutions to any problem of reasonable size.

In the early days of combinatorial optimisation, most of the efforts were focused on

Linear Programming (LP). The problem was reformulated by using integer variables

usually taking the values 0 or 1 to produce an integer programming (IP) formulation.

Such a problem can be then solved by variants of a method generally known as

“Branch & Bound” (B&B). Branch and Bound is an eff icient enumeration scheme

which avoids complete enumeration of solutions by building a search tree of the

solutions to be evaluated. This tree is pruned during search, so reducing the number of

solutions that need to be evaluated before the optimal solution is found and proved to

be optimal.

The worst case computational complexity of IP algorithms grows exponentially with

the size of the problem. As a result of that, general IP codes usually do not scale well

to large instances of problems. Furthermore, for some problems it is diff icult to find

an IP formulation and even if one is found it sometimes results in a large number of

variables and constraints. IP is much more diff icult than LP and that because the

problems of concern are NP-hard optimisation problems.

Given the diff iculty of NP-hard optimisation problems, many researchers have

focused on another class of techniques known as heuristic techniques or simply

heuristics. These techniques sacrifice the proof of optimality for solutions and instead

focus on finding good near optimal solutions at a reasonable computational cost. In

the early days of Operations Research, heuristics were treated with scepticism.

16

Nowadays, mainly due to the theoretical developments in computational complexity

indicating the inherent diff iculty of NP-hard problems, heuristics have gained a

prominent position amongst optimisation methods. Following Reeves [Ree96], we

give the following general definition for a method to qualify as a heuristic:

Definition 1-1:

A heuristic technique is a method which seeks good (i.e. near optimal solutions) at a

reasonable computational cost without being able to guarantee optimality, and

possibly not feasibilit y. Unfortunately, it may not even be possible to state how close

to optimality a particular heuristic solution is.

Despite the rather pessimistic definition, modern heuristics can find high quality

solutions for problems many times larger that those solved to optimality by exact

search methods. From a historical perspective, the ‘gamble’ with heuristics has paid

off leading to many real world systems tackling NP-hard optimisation problems in

resource allocation, routing, scheduling and many other domains. In the rest of the

chapter, we examine some the most famous heuristic techniques starting with Local

Search [PS82] perhaps the oldest heuristic method.

1.3 Local Search

Local Search, also referred to as Neighbourhood Search or Hill Climbing, is the basis

of many heuristic methods for combinatorial optimisation problems. In isolation, it is

a simple iterative method for finding good approximate solutions. The idea is that of

trial and error. For the purposes of explaining local search, we will consider a slightly

different definition of a combinatorial problem to that given in Eq. 1.1.

17

A combinatorial optimisation problem is defined by a pair (S, g), where S is the set of

all feasible solutions (i.e. solutions which satisfy the problem constraints) and g is the

objective function that maps each element s in S to a real number. The goal is to find

the solution s in S that minimises the objective function g. The problem is stated as:

Eq. 1.2 min g(s), s∈ S.

In the case where constraints diff icult to satisfy are also present, penalty terms may be

incorporated in g(s) to drive toward satisfying these constraints. A neighbourhood N

for the problem instance (S, g) can be defined as a mapping from S to its powerset:

Eq. 1.3 N: S → 2S.

N(s) is called the neighbourhood of s and contains all the solutions that can be reached

from s by a single move. Here, the meaning of a move is that of an operator which

transforms one solution to another with small modifications. A solution x is called a

local minimum of g with respect to the neighbourhood N iff:

Eq. 1.4 () ()g x g y y N x≤ ∀ ∈, () .

Local search is the procedure of minimising the cost function g in a number of

successive steps in each of which the current solution x is being replaced by a solution

y such that:

Eq. 1.5 () ()g y g x y N x< ∈, () .

A basic local search algorithm begins with an arbitrary solution and ends up in a local

minimum where no further improvement is possible. In between these stages, there are

many different ways to conduct local search. For example, best improvement (greedy)

local search replaces the current solution with the solution that improves most in cost

18

after searching the whole neighbourhood. Another example is first improvement local

search which accepts a better solution when it is found. The computational complexity

of a local search procedure depends on the size of the neighbourhood and also the

time needed to evaluate a move. In general, the larger the neighbourhood, the more the

time one needs to search it and the better the local minima.

Local minima are the main problem with local search. Although these solutions may

be of good quality, they are not necessarily optimal. Furthermore if local search gets

caught in a local minimum, there is no obvious way to proceed any further toward

solutions of better cost. Methods that build on local search to remedy this problem are

sometimes referred to as meta-heuristics. One of the first methods in this class is

Repeated Local Search where local search is restarted from a new arbitrary solution

every time it reaches a local minima until a number of restarts is completed. The best

local minimum found over the many runs is returned as an approximation of the

global minimum. Modern meta-heuristics tend to be much more sophisticated than

repeated local search pursuing a range objectives that go beyond simply escaping from

local minima. In the following sections, we examine some of the most successful

modern meta-heuristic techniques.

1.4 Simulated Annealing (SA)

Simulated Annealing (SA) is perhaps the most widely used meta-heuristic. Mainly

because of its simplicity, SA has attracted the interest of many researchers and

practitioners from a wide range of disciplines. The technique has its origins in

statistical mechanics and it was inspired by the physical process of annealing used for

the “cooling” of solids such that they form perfect crystals. Metropolis et al.

[MRRTT53] first described an algorithm for simulating the annealing process.

19

Kirkpatrick et al. [KGV83] proposed the use of this simulation algorithm for

searching the solutions of a combinatorial problem.

SA could be described as a randomised scheme which reduces the risk of getting

trapped in local minima by allowing moves to inferior solutions. Given the

neighbourhood N(s) of a combinatorial problem, moves are randomly selected from

this set. A move from a solution s to solution s′ is only accepted if:

• s′ is better than s or

• s′ is worse than s but e R
g s g s

T

− − ′

>
(() ())

,

where T is a control parameter called ‘ temperature’ and R∈ [0,1] is a uniform random

number. The temperature parameter T is initially set to a high value, allowing many

non-improving moves to be accepted and it is gradually reduced to a value where

nearly all non-improving moves are rejected. In this way, the algorithm avoids getting

trapped in local minima until the final stages of search when the temperature is very

low and the algorithm has already settled in a good solution.

There have been many studies on the convergence properties of SA. Research using

the theory of Markov chains has proved that if the temperature is lowered slowly

enough, SA will eventually converge to a global minimum. Unfortunately, the same

research shows that this will , in general, require more iterations than exhaustive

search. For detailed information on convergence results for SA, the reader is referred

to two excellent books by van Laarhoven and Aarts [LA88] and Aarts and Korst

[AK89]. Additionally, Johnson et al. [JAMS89, JAMS91] provide excellent

experimental results for SA on a variety of problems which also may be very useful to

the interested reader.

20

1.4.1 Cooling Schedules

In practice, the temperature is lowered according to a scheme referred to as the

annealing (or cooling) schedule. A cooling schedule specifies [Osm95]:

• the initial starting value of the temperature parameter T,

• the cooling rate a and the temperature update rule,

• the number of iterations to be performed at each temperature,

• the termination criterion of the algorithm.

The performance of SA strongly depends on the cooling schedule. Not surprisingly,

many different types of cooling schedules have been suggested. Osman [Osm95]

classifies SA cooling schedules in three categories:

• Stepwise temperature reduction. In this case, the temperature remains constant for

a number of iterations (i.e. selection of a random move followed by the acceptance

test) before it is updated according to the update rule. The update rule commonly

used is a geometric reduction function which reduces the temperature to a(t) = a⋅t,

where a < 1. That is why this type of cooling is often called geometric cooling.

Best performances are reported in the literature for values of a in the range 0.8 ≤ a

≤ 0.99 [Dow93]. The number of iterations at each temperature is related to the size

of the neighbourhood but may also vary from temperature to temperature.

• Continuous temperature reduction [LM86]. In this type of cooling schedule, the

temperature is reduced after every iteration. The reduction of the temperature is

very slow and it is conducted according to the rule a(t) = t/(1+b⋅t) where b is a

small value.

• Non-monotonic temperature reduction [Dow93, Osm93]. The temperature is

reduced after each iteration though occasional increases are also allowed.

21

The SA algorithm terminates when the number of uphill moves accepted becomes

negligible or some other type of stopping criterion is satisfied.

1.5 Tabu Search (TS)

Tabu Search (TS) has been developed by Glover [Glo86] and, independently, by

Hansen [Han86]. TS is a meta-heuristic that combines a local search procedure with a

number of anti-cycling rules which prevent the search from getting trapped in local

minima. Over the years, the method has evolved and incorporated many new elements

which further enhance its overall performance.

In this section, we will present the most important elements of TS. The interested

reader may refer to one or more of the excellent survey papers available on the

technique [Glo89, Glo90, GTW93, GL93, Glo94, Glo95, Glo96]. These survey papers

examine in more detail the elements of TS described in this chapter and also outline

some less frequently used elements not examined here.

1.5.1 The Basis for Tabu Search

The basis for tabu search is described by Glover in [Glo95] as follows. Given a

function f(x) to be optimised over a set X, TS begins in the same way as ordinary local

search, proceeding iteratively from one point (solution) to another until a chosen

termination criterion is satisfied. Each x∈ X has an associated neighbourhood N(x) ⊂ X

and each solution x′∈ N(x) is reached from x by an operation called a move.

TS goes beyond local search by employing a strategy of modifying N(x) as the search

progresses, eff iciently replacing it by another neighbourhood N*(x). A key aspect of

tabu search is the use of special memory structures which serve to determine N*(x),

and hence to organise the way in which the space is explored.

22

We will start our brief account of TS by examining the so-called recency-based

memory which can be used as a stand-alone device or as the basis for more advanced

TS schemes.

1.5.2 Recency-Based Memory

Recency-based memory is utili sing information pertaining to the moves executed by

local search to avoid reversing changes created by these moves. The information used

is the “attributes” of solutions (i.e. solution properties) that change state (i.e. deleted

or added) when a move is executed. These attributes are used to define the “tabu

status” of moves at future iterations, that is, moves which are forbidden to be

executed. For example, if a move m changes the value of a 0-1 variable xj from 0 to 1

then the solution attribute xj = 0 can be used to prevent the reversal of the changes

created by the move. After move m is executed the solution attribute xj = 0 becomes

tabu-active rendering tabu (i.e. forbidden) all moves that reinstate this attribute in the

solution. These restrictions are temporary and they last only for a small number of

iterations. For that purpose, tabu-active attributes are assigned appropriate tabu-

tenures which determine for how many iterations local search is prevented from

reinstating these attributes. This mechanism is sometimes implemented using a data

structure called a tabu list [Glo89].

A move may change the state of more than one solution attribute. In such cases, tabu

restrictions on moves can be defined by rendering a move tabu only if all (or some

number) of its component solution attributes are tabu-active [Glo95]. By deciding on

the combinations of attributes that render a move tabu, we have the flexibilit y to

strengthen or weaken the tabu restrictions. The choices may vary from a disjunction

between the attributes (more restrictive) to a conjunction (less restrictive). Another

23

way of controlli ng tabu restrictions is to assign different tabu-tenures to different types

of attributes. Furthermore, tabu-tenures may vary during search leading to a dynamic

and robust form of search [Tai91, GTW93].

Another part of recency-based memory are the so-called aspiration criteria which

mainly aim at adding flexibilit y to compensate for the hard nature of constraints in

recency-based memory. Aspiration criteria are sets of conditions which if satisfied

overrule the tabu restrictions. The most commonly used aspiration criterion is to

accept a move which is classified as tabu if the move generates a solution better than

any previously seen. The interested reader may refer to [GL93] where a more

extensive account is given on the different types of aspiration criteria.

In many applications, recency-based memory is suff icient to produce high quality

solutions. However, this type of memory is of a short-term nature and therefore

insuff icient to support a long-term strategy necessary for a more systematic

exploration of the search space. For that purpose, a set of additional tabu search

elements have been developed which are known as long-term memory components.

The two main goals for these components are the intensification and diversification of

search.

1.5.3 Intensification Strategies

The purpose of intensification strategies is to concentrate the search on good regions

of the search space or good solution features. This usually manifests itself in a

solution recording mechanism which keeps a copy of high quality solutions found

during the search. These solutions, often referred to as elite solutions, are used each

time the search progresses slowly to restart it from the good regions which lie around

these elite solutions. The state of the recency-based memory (when the elite solution

24

was recorded) may also be saved and partially or fully restored when starting from this

elite solution. Such approaches have been successfully used in vehicle routing [XK96]

and telecommunications network design problems [XCG95].

Another form of intensification is based on identifying “consistent and strongly

determined” variables. A strongly determined variable is one whose value cannot be

changed except by inducing a disruptive effect on the objective function value or the

values of the other variables. On the other hand, a consistent variable is one that is

frequently assigned the same value in good solutions. The idea is to identify the most

consistent and strongly determined variables and assign to these variables their

“preferred” values by reference to a set of elite solutions. This is usually done in the

framework of a multi -start approach where new starting points are generated by

assigning consistent and strongly determined variables to their “preferred” values.

This approach has been successfully applied to the vehicle routing problem [RT95].

1.5.4 Diversification Strategies

Diversification strategies are designed to drive the search into new regions. Often they

are based on modifying choice rules to bring attributes into the solutions that are

infrequently used. More of these schemes are based on type of memory called

frequency-based memory. In short, frequency-based memory is a long-term memory

which either

• records the frequency at which solution attributes occur in the solutions generated

(residence frequencies)

• or records the frequency different moves are executed (transition frequencies).

25

Residence frequencies are used to encourage the incorporation in the solution of

infrequently used attributes while transition frequencies are used to encourage the

execution of less frequently performed moves.

One way to use the information recorded in residence frequencies is to periodically

restart the search from solutions that incorporate the less frequently used solution

attributes. More often, residence frequencies are used in a continuous fashion by being

directly incorporated in the cost function multiplied by a penalty factor. Attributes

with high frequencies have higher penalties than those with lower frequencies. Thus

the use of the later is encouraged while the use of the former is discouraged.

Transition frequencies are used in a similar way to residence frequencies and penalties

are usually introduced that discourage the execution of frequently executed moves

while encouraging the execution of less frequently executed moves.

Residence or transition frequencies have been successfully used in problems such as

maximum clique [SG96], bin packing [LG93], network design [XCG95], quadratic

assignment [Sko90], machine scheduling [LG93b], vehicle routing [GHL94,

TBGGP95, XK96] and others.

1.5.5 Candidate List Strategies

For many problems, the amount of computational effort required to search the

complete neighbourhood in every iteration is prohibitive. Candidate list strategies are

aiming at reducing this effort by restricting the number of solutions examined on a

given iteration. The different types of candidate list strategies are the following

[Glo95]:

26

• Random Strategy. The neighbourhood is randomly sampled until enough moves are

evaluated to give some assurance that some good choices were examined.

• Subdivision Strategy. Moves that involve more than one component are

decomposed and moves which incorporate good components only are examined.

• Aspiration Plus Strategy. This approach establishes a threshold based on the search

history for the quality of moves to be selected and examines moves until finding

one which satisfies this threshold.

• Elite Candidate Lists. A list of elite moves is constructed after searching a large

part of the neighbourhood. At subsequent iterations only solutions from this elite

list are examined until the quality of moves drops below a specified threshold. At

this point a new list is constructed and the process is repeated.

• Sequential Fan Strategy. The idea is to generate some p best alternative moves at a

given step and then to create a fan of solution streams, one for each alternative. The

best available moves for each stream are again examined and only the p best moves

overall provide the p new streams at the next step. This technique is very much

oriented towards parallel processing.

Candidate list strategies conclude our account of Tabu Search. Other elements not

examined here include strategic oscill ation, path re-linking, ejection chains,

vocabulary building and probabili stic tabu search. The reader may refer to [GL93,

Glo95, Glo96] for information on these variants. Additionally, the reader may also

refer to [XCG96] on the use of statistical tests to determine the many parameter values

that need to be specified when various elements of TS are integrated together to solve

a combinatorial problem.

27

1.6 Genetic Algorithms

Genetic Algorithms (GAs) are a class of methods based on a highly abstract model of

natural evolution. They were developed by Holland in the 70s [Hol75, Gol89, Dav91]

and since then they have been applied to numerous domains. Only recently their

potential application to combinatorial optimisation problems has been investigated.

We first examine some of the terminology used in the GA literature.

A solution to a combinatorial optimisation problem is often called a chromosome,

string or vector. Variables of the problem are called genes and their possible values

alleles. The position of a variable in a chromosome is called its locus. Each

chromosome encodes a solution to the optimisation problem and it is evaluated

according to some fitness function. The fitness function is related to the cost function

of the combinatorial optimisation problem. The fitness value given to a chromosome

by this function represents the suitabilit y of this chromosome (after decoding) as a

solution to the combinatorial problem. For a review of Genetic Algorithm techniques

in the context of combinatorial optimisation the reader may refer to [Ree93].

1.6.1 A Basic GA Algorithm

A basic GA algorithm for a combinatorial problem functions in the following way.

Initially, a finite population of solutions is generated randomly or by other means.

After that, an iterative process is applied to the population which at each step

transforms the current population to a new population. This involves selecting pairs of

parent solutions from the population according to a selection scheme which takes into

account their fitness values and combining them to generate offspring solutions. The

combination of the parents is performed by a special type of operator called the

crossover or recombination operator. After the generation of the ‘children’ random

28

changes are infli cted upon them by a second type of operator called the mutation

operator. The children are finally inserted in the population by either replacing their

parents (Canonical GAs) or the weakest individuals in the population (Steady State

GAs2). This completes one iteration of the GA which transforms one generation of

solutions to the next. The algorithm iterates until a termination criterion is satisfied

based either on computational resources, the convergence of the population (high

similarity between the solutions contained in the population) or both. In the following,

we examine more closely the various elements of a GA.

1.6.1.1 Initial Population

The initial population is normally generated at random. Yet in most of the successful

GAs for combinatorial optimisation, solutions in the initial population are

heuristically generated (by a construction heuristic, local search, or sometimes by local

search applied to a solution generated by a construction heuristic) and they are already

of good quality. Particular attention must be paid that the size of this initial population

is not too small to avoid premature convergence of the GA.

1.6.1.2 Genetic Operators

As mentioned above, the crossover operator is used to combine two parent solutions.

There are many versions of this operator. The simplest case is that of the 1-point

crossover. A cut-point X is selected at random and each offspring consists of the pre-

X section from one parent followed by the post-X section from the other. The 1-point

crossover can be extended to 2-point crossover, 3-point crossover or even k-point

crossover. Another useful crossover operator is the uniform crossover where the value

of each variable in each parent is equally likely to be passed to the offspring.

2 Steady State GAs also generate one child instead of two children as in Canonical GAs.

29

Many combinatorial optimisation problems require special types of operators which

can combine sequences or permutations (often used to represent solutions) to produce

feasible offspring solutions. An example of such an operator for the TSP is the PMX

operator (Partially Mapped Crossover). Many other special operators exist for

different types of combinatorial optimisation problems (see [Ree93] for some

examples).

In addition to crossover and after the generation of the children, a mutation operator is

employed to modify the population of solutions by introducing small random

modifications to solutions randomly selected from the population. If bit vectors are

used for representing the solutions, this frequently means flipping the bits of some of

the solutions. In general, the probability of mutation is very low.

1.6.2 Hybrid GAs.

As Davis states in the Handbook of Genetic Algorithms [Dav91], “Traditional genetic

algorithms, although robust, are generally not the most successful optimisation

algorithm on any particular domain” . For that reason, Davis and many others have

argued that hybridising GAs with the most successful optimisation methods for

particular problems gives one the best of both worlds.

The idea of including in the initial population solutions constructed by a

problem-specific heuristic, mentioned above, can be viewed as a primitive form of

hybridisation.

Several GA approaches which have produced very good results for famous

combinatorial optimisation problems go one step further, utili sing local search

algorithms to optimise the solution generated by crossover or mutation operators (see

[MGK88, FF94, FM96]). These GA algorithms essentially work on local minima

30

constructed by local search trying to recombine them to produce new and hopefully

better local minima. The rationale is that local minima solutions consist of good

solution fragments which if properly combined by crossover type operators will l ead

to solutions where these fragments are combined even better and therefore be of

higher quality. This leads to a type of search intensification around the areas of good

solutions. Diversification of search is also important and is performed by the

particular mutation operator used. From another viewpoint, Hybrid GAs can be seen

as a type of local search which explores the space of good solution fragment

combinations. There are similarities there with tabu search variants which also try to

identify and recombine good solution fragments [RT95]. These tabu search variants

are sometimes seen as part of a wider framework of techniques called Adaptive

Memory Programming [Glo96].

1.7 GENET and Other Weighting Methods for CSPs

Guided Local Search (GLS) studied in this thesis is a meta-heuristic which guides

local search in exploring the vast search spaces of combinatorial problems. The

technique extends to general optimisation problems methods applied with

considerable success to Constraint Satisfaction [Tsa93]. In this section, we will briefly

refer to these methods and in particular to the GENET neural network [WT91, Tsa93,

DTWZ94] which is a direct predecessor of GLS.

The Constraint Satisfaction Problem (CSP) is that of assigning values to a number of

variables with finite domains such that a set of linear or non-linear constraints

involving one or more variables are satisfied. CSP is in general NP-Hard and it is

closely related to the propositional satisfiabilit y or SAT problem [GJ79]. In contrast to

most combinatorial optimisation problems, the goal in CSPs is to find one or all

31

feasible solutions. Real world CSPs usually involve diff icult non-linear constraints

spanning two or more variables of the problem. Amongst other techniques, local

search has been considered for solving CSPs.

A local search approach to constraint satisfaction treats a CSP as an optimisation

problem. The objective function, which is to be minimised, is the number of

constraints being violated. A typical local search method assigns an arbitrary value to

each variable in the CSP. Then it proceeds iteratively to reduce the number of

constraint violations by re-assigning values to variables, using a heuristic known as

the min-conflict heuristic [MJPL92]. This iterative improvement of the number of

unsatisfied constraints leads either to a solution to the CSP or to a local minimum

where some constraints are still being violated but no further improvement is possible

by changing the value of any of the variables. Local minima are of littl e use in CSPs

since they violate hard problem constraints.

A successful approach to escape local minima, proposed in the context of CSPs, is to

assign weights to the problem constraints (clauses for SAT) and increase these

weights in a local minima for the violated constraints (unsatisfied clauses for SAT) in

a effort to ‘fill up’ the local minimum until local search escapes from it.

Various algorithms based on this scheme have been developed in the last few years

and applied either to the CSP or the SAT problem. Amongst them GENET [WT91,

Tsa93, DTWZ94], Weighted GSAT [SK93, Fra96], and also the Breakout Method

[Mor93]. Here, we briefly examine GENET which was the point of origin for this

work.

32

1.7.1 The GENET Neural Network

GENET is a connectionist approach to constraint satisfaction with a basic operation

that resembles the min-conflicts heuristic. Basically a CSP is represented by a network

in which the nodes represent possible assignments to the variables and the edges

represent constraints. One of the innovations in GENET was the use of and

manipulation of weights assigned to the edges (constraints). All edges are inhibitory

connections which have weights initialised to -1. GENET will continuously select

assignments which receive the least inhibitory input (which roughly means violating

the least number of constraints). The operation of the network is designed in such a

way that will ensure its convergence to some states, which could be solutions or local

minima (in terms of number of constraints violated). Each time the network converges

to a local minimum, the weights associated with the violated constraints are

decreased, and the network is then allowed to converge again. Since GENET always

makes moves which improve the number of constraint violations, decreasing the

weights allows it to escape from the local minimum to states which have lower cost.

Such convergence-learning cycles continue until a solution is found or a stopping

condition is satisfied.

GENET's mechanism for escaping from local minima resembles reinforcement

learning [BSA83]. Basically, patterns in a local minimum are stored in the constraint

weights and are discouraged to appear thereafter. For this reason, the mechanism was

named "learning". GENET's learning scheme can be viewed as a method to transform

the objective function (i.e. the number of constraint violations) so that a local

minimum gains an artificially higher value. Consequently, local search will be able to

leave the local minimum state and search other parts of the space.

33

In the CSP context, modifying the weights for unsatisfied constraints in local minima

modifies the cost function of the problem though that does not affect the cost of an

optimal solution which if exists satisfies all the constraints by definition and therefore

always has zero cost.

Guided Local Search (GLS) presented in this thesis utili ses a similar approach to

tackle famous combinatorial problems. In these problems, modifications to the cost

function, although they may affect the cost of many solutions of a combinatorial

problem including the optimal can effectively guide local search in the search space.

Apart from escaping local minima in a way similar to GENET and other techniques

for CSP and SAT problems, GLS introduces additional functionality for distributing

the search efforts over the various areas of the search space, taking into account the

promise of these areas to contain the optimal solution. Furthermore, it uses

sophisticated neighbourhood reduction techniques which can speed up the algorithm

many times.

1.8 Overview of the Thesis

In this thesis, we describe the technique of GLS and examine its application to a

comprehensive set of traditional and modern real world combinatorial optimisation

problems. The performance of the technique is experimentally evaluated on

benchmark instances of these problems. Extensive comparisons are conducted with

general and specialised heuristic algorithms including all the general heuristic

methods examined in this chapter. The thesis is structured as follows. In the next

chapter, we present GLS and discuss various extensions to the method. Following

that, five applications of the algorithm are examined in the following order:

34

• Travelling Salesman Problem (chapter 3),

• Quadratic Assignment Problem (chapter 4),

• Radio Link Frequency Assignment Problem (chapter 5),

• Workforce Scheduling (chapter 6),

• Non-convex Optimisation (chapter 7).

The thesis concludes with chapter 8 where the work on GLS is summarised and future

research directions are suggested.

Most of the findings in chapter 5 have appeared in the Proceedings of the 2nd

International Conference on Practical Application of Constraint Technology [VT96]

while the results in chapter 6 have appeared in the journal of Operations Research

Letters [TV97]. Earlier results for GLS on the Travelli ng Salesman Problem,

Quadratic Assignment Problem and Nonconvex Optimisation have been reported in

two Essex University technical reports [VT95a, VT95b].

35

2. Guided Local Search

Chapter 2

Guided Local Search

Embarking on this research almost three years ago, the main objective was to extend

GENET for Constraint Satisfaction Problems (CSPs) to a more general class of

problems known as Partial Constraint Satisfaction Problems (PCSPs). Through the

process of trying to apply GENET to PCSPs, we soon realised that a more general

optimisation technique was hidden under GENET’s neural network architecture. This

technique, namely Guided Local Search, is the subject of this chapter and the core of

the thesis.

2.1 History of Guided Local Search

Partial CSPs are CSPs where no solution satisfies all the constraints and one is

interested in solutions which minimise the number of constraint violations and

possibly other application dependent criteria (see section 5.1 for a formal definition).

36

The RLFAP problem described in chapter 5 was one of the first problems we tried to

solve using extensions of GENET. The problem is a PCSP and requires the

minimisation of constraint violations combined with domain specific optimisation

criteria. Minimising constraint violations was within the capabiliti es of the GENET

neural network but minimising the other RLFAP optimisation criteria seemed diff icult

and required extra complexity in the neural network architecture. Because of that, we

decided at the time to convert GENET to a pure algorithm, abandoning any efforts to

solve the problem by extending the model of the neural network. This resulted in the

Tunnelli ng Algorithm [VT94] which was very successful in the RLFAP instances and

moreover preserved the good performance of GENET on classic CSPs. While

experimenting with the tunnelli ng algorithm, we had the idea to apply the method to

the Travelli ng Salesman Problem (TSP), utili sing some of the work we did on the

modelli ng of RLFAP’s optimisation criteria. To our surprise, the method worked

extremely well on the TSP and some preliminary results on that were included in the

paper on the tunnelling algorithm [VT94].

The success on the TSP convinced us of the great potential of the algorithm. We

generalised the Tunnelli ng Algorithm even further, so that it could be applied to the

bulk of combinatorial optimisation. The result of this generalisation was Guided Local

Search. Guided Local Search exceeded all our expectation. We applied the method to

seven Combinatorial Optimisation problems and obtained very good results both in

terms of solution quality and running times. The method and five of its applications

will be presented in this thesis. We start by introducing the principles of Guided Local

Search.

37

2.2 Guided Local Search Principles

Guided Local Search is a general and compact optimisation technique suitable for a

wide range of combinatorial optimisation problems. Guided Local Search takes

advantage of problem and search-related information to guide local search in a search

space. This is made possible by augmenting the cost function of the problem to

include a set of penalty terms. Local search is confined by the penalty terms and

focuses attention on promising regions of the search space. Iterative calls are made to

local search. Each time local search gets caught in a local minimum, the penalties are

modified and local search is called again to minimise the modified cost function.

Penalty modifications regularise the solutions generated by local search to be in

accordance with prior information or information gathered during search. The

approach taken by GLS is analogous to that of regularisation methods for ‘ ill -posed’

problems [TAJ77, Hay94]. The idea behind regularisation methods and GLS, to an

extent, is the use of prior information to help us solve an approximation problem.

Prior information translates to constraints which further define our problem, so

reducing the number of candidate solutions to be considered. GLS also exploits

information learnt during search by imposing extra constraints on the basis of this

information. GLS is essentially a meta-heuristic based on local search. In the

following sections, we examine the various components of GLS.

2.3 Local Search

Local search is the basis of many heuristic methods for combinatorial optimisation

problems. In section 1.3, we presented an overview of local search. A variety of

moves and local search procedures have been used for the problems in this study. For

38

the purpose of describing GLS in the general case, local search is considered a general

procedure of the form:

s2 ← procedure LocalSearch(s1,g),

where s1 is the initial solution, s2 the final solution (local minimum) and g the cost

function to be minimised.

In contrast to other general meta-heuristics such as SA and tabu search, GLS is not

modifying the internal mechanisms of local search. Instead, it makes iterative calls to

a local search procedure modifying the cost function between successive calls. Before

that, the cost function of the problem is augmented to include a set of penalty terms

which enable us to constrain solutions dynamically. This augmentation of the cost

function with penalty terms is explained in the next section.

2.4 Solution Features

GLS employs solution features to characterise solutions. A solution feature can be any

solution property that satisfies the simple constraint that is a non-trivial one. What it is

meant by that is that not all solutions have this property. Some solutions have the

property while others do not. Solution features are problem dependent and serve as the

interface between the algorithm and a particular application.

Constraints on features are introduced or strengthened on the basis of information

about the problem and also the course of local search. Information pertaining to the

problem is the cost of features. The cost of features represents the direct or indirect

impact of the corresponding solution properties on the solution cost. Feature costs

may be constant or variable. Information about the search process pertains to the

solutions visited by local search and in particular local minima. A feature fi is

represented by an indicator function in the following way:

39

Eq. 2.1 ()I s
s i

i = 

î

1

0

,

,

solution has property

otherwise
, s∈ S.

2.5 Augmented Cost Function

Constraints on features are made possible by augmenting the cost function g of the

problem to include a set of penalty terms. The new cost function formed is called the

augmented cost function and it is defined as follows:

Eq. 2.2 () ()h s g s p I si i
i

M

() = + ⋅ ⋅
=
∑λ

1

,

where M is the number of features defined over solutions, pi is the penalty parameter

corresponding to feature fi and λ (lambda) is the regularisation parameter. The

penalty parameter pi gives the degree up to which the solution feature fi is constrained.

The regularisation parameter λ represents the relative importance of penalties with

respect to the solution cost and is of great significance because it provides a means to

control the influence of the information on the search process. GLS iteratively uses

local search and it simply modifies the penalty vector p given by:

Eq. 2.3 p = (p1, ..., pM)

each time local search settles in a local minimum. Modifications are made on the basis

of information. Initially, all the penalty parameters are set to 0 (i.e. no features are

constrained) and a call i s made to local search to find a local minimum of the

augmented cost function. After the first local minimum and every other local

minimum, the algorithm takes a modification action on the augmented cost function

and re-applies local search, starting from the previously found local minimum. The

modification action is that of simply incrementing by one the penalty parameter of one

40

or more of the local minimum features. Prior and historical information is gradually

inserted into the augmented cost function by selecting which penalty parameters to

increment.

Sources of information are the cost of features and the local minimum itself. Let us

assume that each feature fi defined over the solutions is assigned a cost ci. This cost

may be constant or variable. In order to simpli fy our analysis, we consider feature

costs to be constant and given by the cost vector c:

Eq. 2.4 c = (c1, ...,cM)

which contains positive or zero elements. A particular local minimum solution s*

exhibits a number of features. Indicators of the features fi exhibited take the value 1

(i.e. ()I si * = 1).

2.6 Penalty Modifications

In a local minimum s*, the penalty parameters are incremented by one for all features fi

that maximise the utility expression:

Eq. 2.5 () ()util s f I s
c

pi i
i

i
* *, = ⋅

+1
 .

In other words, incrementing the penalty parameter of the feature fi is considered an

action with utilit y given by Eq. 2.5. In a local minimum, the actions with maximum

utilit y are selected and then performed. The penalty parameter pi is incorporated in Eq.

2.5 to prevent the scheme from being totally biased towards penalising features of

high cost. The role of the penalty parameter in Eq. 2.5 is that of a counter which

counts how many times a feature has been penalised. If a feature is penalised many

