Guided Local Search for
Combinatorial Optimisation Problems

Christos Voudouris

A thesis submitted for the degree of Ph.D

Department of Computer Science

University of Essex

1997



To my wife, Sella



Acknowledgements

| would like to expressmy gratitude to my supervisor Edward Tsang for his constant
suppat and guidance throughou my yeas at Essex University. He introduced me to
the fields of constraint satisfadion and combinatorial optimisation and he enormously
helped in the evolution and refinement of the ideas presented in this thesis by his
constant feedbadk and supervision. | would like to thank my manager at BT
Laboratories Nader Azarmi, withou his encouragement and suppat this thesis may
have never been completed. Many thanks to John Ford for his comments on an ealier
draft of this thesis and for supervising me during my last months of study.

I would like to thank the Department of Computer Science for the harmonious
environment and the Computing Service a the University of Essx for the excdlent
computer fadlities withou which it would have been impossble to perform the
computational experiments reported here. Many thanks to BT plc which suppated me
during my final year.

This reseach has been condcted in the framework of the GENET projed funded by

the EPSRC grant (GR/H75275).



Abstract

In this thesis, we present the heuristic technique of Guided Locd Seach for
combinatorial optimisation poblems. The tedhnique sits on top d locd seach
procedures and hes as a main aim to guide these procedures in exploring efficiently
and effedively the vast seach spaces of combinatorial optimisation poblems. Thisis
adhieved by exploiting prior information knavn abou the problem in conjunction
with historicd information gathered duing the seach process Information is
converted to constraints which take the form of penalti es and modify the st function
to be minimised. Locd seach is guided by these anstraints, focusing on solutions of
high quality. Guided Locd Seach can be combined with the neighbouhoodreduction
scheme of Fast Locd Seach which significantly speeds up the operations of the
algorithm.

In this thesis, Guided Locd Seach is applied to the Travelling Salesman Problem,
Quadratic Assgnment Problem, Radio Link Frequency Asdgnment Problem,
Workforce Scheduling and Function Optimisation. Experimental evaluation and
comparisons with a variety of other heuristic methods on benchmarks instances of the
these problems dhows that Guided Loca Seach compares very favourably to famous
general and speddised heuristic dgorithms outperforming many of them on the

benchmark instances considered.



Table of Contents

LANErOAUCTION ceeeiieii e e e e s 12
1.1 Combinatorial Optimisation and NP-Hard Problems..........cccccoiiiiiieeceeee 12
1.2 Exact and Heuristic Search TEChNIGUES..........uuuuuiiiiiiiiaaeiieeiee e ee e e e e 15
1.3 LOCAI SEAICH ...ttt r e 16
1.4 Simulated ANNEAING (SA) .. i ittt e e e e e e e s e e bbb eeeaneaeeeaaaeaas 18

1.4.1 CoOlNG SCREAUIES. .....uuiiiiiieiie e 20
1.5 TADU SEAICH (TS). . uuuuuttitiiiieieii ittt et e e e e e et e e e e e e e s aaa e e e e e e snbnbaeeaaaaeens 21
1.5.1 The Basis for Tabu SEarCh...........ccvviiiiiiiiiie e 21
1.5.2 RECENCY-BASEA MEMIOIY. ... .ttt eeeette ittt e e e ettt e ee ettt e e e e e e s e bbb e e e aaeaaeeaaeas 22
1.5.3 INtenSification Strat@QIES......ccuuuiiiiiiiiiie et ee et e e e e e e e e eeeaaeas 23
1.5.4 DiversifiCation Strat@QIeS ... ... e ittt a e 24
1.5.5 Candidate LiSt Strat@QIeS. ... . e ittt a e 25
1.6 GENELIC AIGOTTNMIS.....eeiiiiiie e ee e e e 27
1.6.1 A BaSiC GA AlGOItNML.....ceoiiiiiiiiieee e 27
1.6.2 HYDEIO GAS.. ..ottt ettt ettt et esb b e st e e amte e beesneeaneeenneaa 29
1.7 GENET and Other Weighting Methods for CSPS..........cccoiuuiiiiiiieiieeeeee e 30
1.7.1 The GENET Neural NEtWOIK.........c.coiiiiiiiiieiiieie ettt see e 32
1.8 OVErVIeW Of the TRESIS.......eieiieeii e e e 33

2. Guided Local SEArCh ... 35
2.1 History of Guided LOCal SEANCR.........c.uiiiiiii e 35
2.2 Guided Local Search PriNCIPIES.......oouiiiiiie et 37
2.3 LOCAI SEACH...cci ittt e et e e e e e b e 37
2.4 SOIULION FEAIUMES .....eeiiie ittt ettt ee et e s sttt e e ettt e e s aee s nbb e e e s ennbe e e e e nnnees 38
2.5 Augmented COSt FUNCHON. ......coiiiiiiiiiii ettt eee s nareeee e 39

2.6 Penalty MOIfICALIONS. ........eiiiiie et e e e e e e nend 40



2.7 Regularisation ParameLer............iiii ittt ere ettt 42

2.8 Fast Local Search and Other IMProVEMENLS. ... ....cciiiiiiiiiieeeiee i mee e 43
2.9 Connections with Other General Optimisation TEChNIQUES.........ccuvvviiiiiiccmniiiee e 47
2.9.1 Simulated ANNEAING. ........cuuiiiieeiiiieeee ettt mnree e siree e e semnnnee e T
2.9.2 TADU SEAICH. ...ttt 48
2.10 GLS APPIICALIONS. ... eeeeeiieeiiitii e ettt ettt e e ee ettt e e e st e e e e e et b e e e e eaeeaabbe e e e e sbneeeeae 51
3. Travelling Salesman Problem ..........cccoooiioiiiiiiiii e e 52
I A I g T o (0] o] =T 4 OO PP PR PUPRRN 52
3.2 Local Search HeuristiCs fOr the TSP.........coiiiiii e 53
3.3 Fast Local Search Applied t0 the T.SP.........oooiiiiii e e e e e e e e e e e e aaae e 57
3.3.1 Local Search Procedures for the T.SP..........c.ovviiiiiemme s 58

3.4 Guided Local Search Applied t0 the T.SP.......ccooviiiii e e e 60
3.4.1 Solution Features and Augmented Cost FUNCLIQN...........ccovviviiiieee e 60
3.4.2 Combining GLS with TSP Local Search Procedures.........cccoeevvieeeeeecennnnccinneeenn 61
3.4.3 HOW GLS WOIKS 0N the TSP.....cciiiiiiiie it me e 62

3.5 Evaluation of GLS iN the TSR.......co e e 63
3.5.1 EXperimental SEHNG.........covveiiiiiiii it e e e e e e 64
3.5.2 Regularisation ParameEer...........oocuuiiiiiiiiiieieie ettt e e 64

3.6 Guided Local Search and 2-QPL...........ccoeiiiiiiiiieee e 66
3.6.1 Comparison with General Methods for the TSP............ooovviiiiiccceeeeeeee e, 68
3.6.2 Simulated ANNEAIING..........oeeiieieitii s ceeeree et e e e e e eeeeeeeeeeeeeeeeeeeesmnn s 69
3.6.3 TaADU SEAICH........eiiiiiii e 70
3.6.4 Simulated Annealing and Tabu Search Compared with.GLS..............c.ovvvieeeeeeeenenn. 71

3.7 Efficient GLS Variants for the TSP..........c.ooviiii e 72
3.7.1 Results for GLS with First Improvement Local Search............ccooooeiveeeeecicicicceiinennnnn 3
3.7.2 Results for GLS with Fast Local SearCh..............ocouvviiieeeeiniiiin e 74

3.8 Comparison with Specialised TSP algorithms..............vveiiiiiceerre e 76

3.8.1 Iterated Lin-KernigNan.............uuuuiiiiii e e er e e e e e e e e e e e aeeeae e aes e e e eeeas 76



3.8.2 GENEtiC LOCAl SEAICH... ... e e e e e e aaa e 83

K O] o [od [0 11 o] o - TSP O PP PP 84
4. Quadratic Assignment Problem.........cccooiiii e 86
4.1 TNE ProBIEML ... .o et r e e 86
4.2 Local Search for the QAPR.........uuee i ee e aaaa e 87
4.3 Guided Local Search Applied to the QAPR..........oo e a e e e e e e 38
4.4 The Issue of Features with Variable COStS..........ccevviiiiiemniie e 90
I B =TTy B = LT Y AT SPPPPRPT T 91
4.4.2 RESTAIT SUALEGY. . ieteetuieetiitii e ieree ettt e e e ettt e eeet e e e e e et s e e e e e e tsanseerbaanreeeseeed 91
4.4.3 Multiple Feature SetsS Strat@gy.......uuuuuiriii e e e eeeeiiiieesssss s s s s s s s e s e s e eeeeeeeeeeeeeeasenessennnne 92

4.5 Experimental Evaluation of Basic GLS and itS VarianiS.........ccooeeii s ceeeicssnsss e 95
4.6 Efficient Heuristic Methods for the QAR...........u i eee e 97
4.6.1 RODUSE TAD0O SEALCI.......oviiiiiiiiiei e e 98
4.6.2 Reactive Tabu SEANCH........c.coi i e 99

4.7 Comparison of GLS with Efficient QAP Heuristic Methads..............cccoovvvvieeeee e 100
4.7.1 Small To Medium Siz€ QABRS......o ittt 101
4.7.2 Large QAP S .. e it a e 102

4.8 CONCIUSIONS. ....cciiiiriite ettt e e e e et r e e s et e s et me e e e e e sn e e e e e nnrne e e s ennnenes 104
5. Radio Link Frequency Assignment Problem ..., 105
5.1 Partial Constraint Satisfaction Problem..............ccuuiiiiiiaciiii e 106
5.2 The Radio Link Frequency Assignment Problem............cccoooiiiee e 108
5.3 Local Search for Partial PCSPS.........cooiiiiiiii et 110
5.4 Guided Local Search for Partial CSPS........oocuviiiiiiiieiei e 111
oI R 0] 1 111 = 11 1K O PO P P OUPPPPRPPPPPP 112
5.4.2 ASSIGNMENT COSIS .. .uuiiiiiiiitiiiie e ittt ettt e e eee bt e e e sbb e e e e s atbe e e e s aeesanbeeeeeaa 114
5.4.3 Minimise the Number of Different Values Used.............ccccooiiimmmiiiiiiiiii e 114

5.4.4 Minimise Maximum Valu@ USEM...........oouuiiiiiiieee et 116



5.5 Fast Local Search for Partial CSPS.......cocuiiiiii et eee e e e e e eeenaae e 116

5.6 Performance of Guided Local Search on the RLFAP INStanCes.........cccccvviieecieeneeeeennne 118

5.7 Comparison with Extended GENET and a Tabu Search Variant............cccccooveeeieennnnn. 120

5.8 Comparison with the CALMA Project AlgOrithms.........ooocuviiiiiiiiemee e 122

5.9 DISCUSSIONN ...ttt ettt et e et et e e e oot ettt et e e e e e e aaa e e e e s e nbebeeeeeeaeeesa e aaesaesnnsbeeeeeeaeeeesannnsnannns 123
TN 0 @0 od 1S3 o] o PRSPPI 123

6. Workforce SCheduling .....ccoooo oo e 125
6.1 BT's Workforce Scheduling Problem.............coooviiiiee e 126

6.2 Local Search for Workforce ScCheduling............oiieiiii i ieeecicccccs s eeee e 127

6.3 Fast Local Search for Workforce Scheduling..............eiiiiiiiceeiiiiiiiiere e 128

6.4 Guided Local Search for Workforce Scheduling.............oouviieiiccciiiiieieeeeeeeeeeeeee e 129

6.5 Experimental Results and Comparison with GAs, SA and CLP............cccvvvviieeeeeeeeeeee, 130

6.6 The Role of FLS in BT’'s Workforce Scheduling Problem...............ccccoiiieceevieeeeeveeiiiiiiinns 132

B.7 REIMAIKS ...t et e e e e e e s bbbt e e e e e e e e b e 133

SRSl ©d0] o [od [0 15 o] 0 KT TP PP PPPPPPT 134

7. Nonconvex OptiMISAtiON ......cooviiiiiiiiii e e 135
7.1 Nonconvex Optimisation and Global Optimisation Methads.............ccccvviieeciniieienniieen, 135

7.2 Local Search for Continuous Optimisation Problems...........ccccoiiiiceeiinii e, 136

7.3 The Sine Envelope Sine Wave (FB) FUNCLON.............ccooiiiiimmmiiie e 137

7.4 Guided Local Search for Global OptimiSation.............cooiiiiieeerieeiiiieee e 139

7.5 Experimentation with the F6 FUNCHOM...........ocuviiiiiiieie e 141

AL ©o] g Tod 013 o] o £ EERR 144

8. Summary and CONCIUSIONS .......oouiiiiiiii e s 145
8.1 Summary of the Research CondUCLEd...........cooiiiii e ee e 146

8.2 Concluding Remarks on GLS and FLS..........ooooiiiiiiiirir et a e e e e e 147
8.2.1 Guided LoCal SEAICN.......ccoi e 148

8.2.2 The ROIE Of PAr@mMEUBT.........ieieiiie ettt eem e et e e et e e e et e e e eaneeaas 149



8.2.3 FASt LOCAI SEAICH.....c.u it e e e e e e e e eaas

8.3 FULUIE RESEAICK. .. .ceee ittt e e e et e e et e e e et e e e s et e e seb e eenaaaees

References

Appendix A



List of Figures

Figure 2.1 Guided Local Search in pSEUdOCOAE. ..........uiiiiiiiiieeii e 41
Figure 2.2 Guided Local Search combined with Fast Local Search in pseudocade....................... 46
Figure 3.1 K-Opt MOVES Or the TSR........eiiiiiiii e e 54
Figure 3.2 The first three steps of the Lin-Kernighan edge exchange mechanism.................ccc..... 55
Figure 3.3 Lin-Kerhighan’s infeasibility MOVES............ocuiiiiiiiii e 56
Figure 3.4 Performance of GLS variants using first improvement local search procedures........... 73
Figure 3.5 Performance of GLS variants using fast local search procedures..............cccoeeeeieennnne 74
Figure 3.6 Improvements introduced by the application of GLS to the simple FLS-20pt............... 75
Figure 3.7 Iterated Lin-Kernighan as described by Johnson in [JOh90]............cooiimmiiiiiiinennd 76

Figure 3.8 Improvements in solution quality by the GLS and DB meta-heuristics in a set of 20 TSPLIB
o]0 1= 0 0 PR 80

Figure 3.9 Overall ranking of the algorithms in terms of solution quality when tested on a set of 20

TSPLIB PrODIEMS.....ceiieiiie ettt e e e e e 82
Figure 5.1 Local Search for PCSPs in pSeUdoCOde...........ccuuviiiiieaciiiieie e eee e 111
Figure 6.1 Algorithm for mapping job permutations into complete schedules................ccccemueeeen. 128
Figure 7.1 Cross section of FB fUNCHIOM............coiiiiiiiiiieeie e 138
Figure 7.2 Changes in cost due to penalising the features exhibited by a local minimum............. 140
Figure 7.3 All the points visited during the first 10,000 iterations of local search....................c..... 142

Figure 7.43-D VIieW Of FIQUIE 7.3 ... ettt me e e e 143



List of Tables

Table 2.1 Links between Guided Local Search and Tabu Search methads............cccoccemiiiienn 50
Table 3.1 Local search procedures implemented for the study of GLS on the . TSP....................... 59
Table 3.2 Suggested ranges for parameter a when GLS is combined with different TSP heuristic65
Table 3.3 Performance of 2-Opt based variants of GLS on small to medium size TSP instances.67
Table 3.4 GLS, Simulated Annealing, and Tabu Search performance on TSPLIB instances........71
Table 3.5 GLS with FLS-20pt compared with variants of Iterated Lin-Kernighan........................... 79
Table 3.6 GLS with FLS-20pt compared with variants of Iterated Lin-Kernighan (long.runs)......... 81
Table 3.7 GLS with FLS-20pt compared with Genetic Local Search on five TSPLIB instances....83
Table 4.1 Comparison of GLS variants for the QAR ............uuiiiiiiiieeeee e 96
Table 4.2 Comparison of Multiple-GLS with Robust Tabu Search and Reactive Tabu Search....102
Table 4.3 Comparison of Multiple-GLS with Ro-TS, Re-TS and GH on large QAPs...........cc........ 103

Table 5.1 Characteristics of RLFAP instances. The domains of variables consist of 6-44 integerl@8lues.

Table 5.2 Associations between features penalised and variables activated.............ccccoeeeeeeen.. 118
Table 5.3 Average performance of GLS on the RLFAP iNStances.........cccccovviiieecieiiie e, 119
Table 5.4 Best solutions for RLFAP found by GLS........cooiiiiiiiiiiim e 119

Table 5.5 Comparison of GLS with tabu search and extended GENET. Results for tabu search and
extended GENET are from Boyce et al. [BDSTA].....cccciiiuimiiiiiiiiiemiiee et 121

Table 5.6 GLS and extended GENET on insoluble instances. Results for extended GENET are from
5T 1 L USSR 121

Table 5.7Comparison of GLS with the CALMA project algorithms. Results for the CALMA project

algorithms are from Tiourine et al. [THLOS . .......oiciiiiiiiiiieeee e 124
Table 6.1 Results obtained in BT's benchmark workforce scheduling prablem...................ccc...... 132
Table 6.2 Evaluation of the efficiency Of FLS.........oooiiiiiiiiie e 133
Table 6.3 Ordering heuristics used in starting PerMUEALoN. .............coeiiimriiee e 133

Table 7.1 GLS performance on F6 (Time in CPU seconds on a DEC Alpha 3000/600 175MHz)141
Table A.1 ReSUILS fOr GLS 0N the TSP e et e et e e e e e e e ean s 165
Table A.2 Results for Iterated Local Search onthe TSP.......ccooovvvviiiiiieeeee e 165

Table A.3 Results for Repeated Local Search on the . TSP.........cooooiiiiiiiicc e, 166



Chapter 1

Introduction

In this thesis, we ae going to present atechnique cdled Guided Locd Seach (GLS)
which is gitable for a dass of difficult computational problems known as
combinatorial optimisation problems. In this introductory chapter, we will explain the
terminology used in the field, examine @mbinatorial optimisation poblems and

outline some of the most popular techniques suggested so far for tackling them.

1.1 Combinatorial Optimisation and NP-Hard Problems

Combinatorial optimisation poblems appea in many areas such as resource
alocaion, routing, packing and scheduling. The objedive is that of assgning values
to a set of dedsion variables such that a function d these variables is minimised
perhaps in the presence of some @nstraints. A combinatorial optimisation problem

can be formulated as follows [Ree96]:

Eqg. 1.1 minimise f(x), xUX O R,

subjecttogi(x) = by, i =1,...,m.
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where X is a vedor of dedsion variables and () and g([)) are general functions. The
condtion x[JX is assumed to constrain dedsion variables to discrete values. Here, we
have presumed that the problem is that of minimisation bu the modificaion d Eqg. 1.1
for maximisation problems is straightforward.

A class of problems of particular interest in combinatorial optimisation is that of
‘hard’ combinatorial optimisation problems. This classincludes problems famous for
their difficulty such as the Travelling Salesman Problem (TSP, the Quadratic
Asdggnment Problem (QAP) and the Vehicle Routing Problem (VRP). Bad in the late
60s, many reseaches recognised the difficulty of such problems and tried to identify
whether ‘pdynomial’ agorithms (i.e. algorithms which require apolynomial number
of steps) can be devised to solve them. Nobody since then has been able to devise
such an agorithm for any of these problems and that despite many man-centuries of
reseach effort invested onthe subjed by some of the most brilli ant reseachers. In
fad, there seans to be the cae that problems sich as the TSP are inherently difficult
to solve, exhibiting an exporentia growth in computing time with the size of the
problem.

The hypaothesis that no pdynomia algorithm exists for solving these problems has
been further suppated by advances in the field of computational complexity. We
briefly describe the findings. The interested reader is referred to classcd texts on the
subjed by Papadimitriou and Steiglitz [PS82] and Garey and Johrson [GJ79] for a
more formal and extensive description of these findings.

In brief, problems which have known pdynomia algorithms are said to bein the dass
P. A superset of class P is the dass NP where NP stands for “nondeterministic
polynomial”. NP consists of al problems that can be solved in pdynomial time on a

non-deterministic Turing machine. This includes al problems in P but also ‘hard’
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problems such as the TSP, QAP, VRP, Satisfiability etc. for which all known
algorithms require exponential time.

Hard problems can be transformed ore to the other in pdynomial time. This property
has been used to define aseparate sub-classin NP that of NP-complete problems. All
famous hard combinatorial problems such as the TSP, QAP, Satisfiability, Graph
Colouring, Graph Partitioning, Vehicle Routing etc. belong to this class (see[CK95]
for a comprehensive list of NP-complete problems). If we were to find a paynomial
algorithm for any of these problems, we would have founda polynomial algorithm for
al problemsin NP. No pdynomial algorithm has been foundso far and that despite
considerable dforts and thus it is widely conjedured that no NP-complete problem is
polynomially solvable.

There is a subtle difference here. The @owve results refer to the ‘dedsion’ version d
combinatorial optimisation poblems where the problem is not that of finding the
optimal solution bu finding an answer to a question such as ‘is there asolution with
cost lessthan C?. It is obvious that an algorithm for the dedsion version can be used
to solve the optimisation version by asking a series of questions to this algorithm.
Concluding, optimisation poblems as such are not in NP. For the optimisation
versions of NP-complete problems, we will use the term NP-hard" adopted by many
authors [RB93]. In addtion to that and uress otherwise stated, the terms
combinatoria problems and combinatorial optimisation problems will be used to refer

to NP-hard optimisation problems.

In general, a problem is said to be NP-hard if any problem in NP is polynomialy transformable to it even if the
problem itself is not in NP. If the problem also belongs in NP then it is NP-complete. If you could reduce an NP
problem to an NP-hard problem and then solve it in polynomial time, you could solve all NP problems in
polynomial time.

14



1.2 Exact and Heuristic Search Techniques

The simplest approach to solve a NP-hard ogimisation problem is to list al the
feasible solutions, evauate their objedive function values and chaose the best. This
approach of complete enumeration, although widely applicable, isunusable in pradice
because of the vast number of possible solutions to any problem of reasonable size.
In the ealy days of combinatorial optimisation, most of the dforts were focused on
Linea Programming (LP). The problem was reformulated by using integer variables
usually taking the values 0 or 1 to produce an integer programming (IP) formulation.
Such a problem can be then solved by variants of a method generaly known as
“Branch & Bound (B&B). Branch and Bound is an efficient enumeration scheme
which avoids complete enumeration d solutions by building a seach tree of the
solutions to be evaluated. Thistreeis pruned during seach, so reducing the number of
solutions that need to be evaluated before the optimal solution is foundand proved to
be optimal.

The worst case computational complexity of 1P algorithms grows exporentially with
the size of the problem. As aresult of that, general 1P codes usualy do nd scae well
to large instances of problems. Furthermore, for some problems it is difficult to find
an IP formulation and even if ore is foundit sometimes results in a large number of
variables and constraints. IP is much more difficult than LP and that because the
problems of concern are NP-hard optimisation problems.

Given the difficulty of NP-hard opimisation problems, many reseachers have
focused on ancther class of techniques known as heuristic techniques or simply
heuristics. These techniques saaificethe proof of optimality for solutions and instead
focus on finding good rea optimal solutions at a reasonable computational cost. In
the ealy days of Operations Reseach, heuristics were treaed with scepticism.
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Nowadays, mainly due to the theoreticd developments in computational complexity
indicating the inherent difficulty of NP-hard problems, heuristics have gained a
prominent position amongst optimisation methods. Following Reeves [Re€96], we

give the following general definition for a method to qualify as a heuristic:

Definition 1-1:

A heuristic technique is a method which seeks good (i.e. nea optimal solutions) at a
ressonable @mputational cost withou being able to guarantee optimality, and
paossbly not feasibility. Unfortunately, it may not even be possble to state how close

to optimality a particular heuristic solution is.

Degspite the rather pesgmistic definition, modern heuristics can find hgh quality
solutions for problems many times larger that those solved to opimality by exad
seach methods. From a historicd perspedive, the ‘gamble’ with heuristics has paid
off leading to many red world systems tackling NP-hard ogimisation problems in
resource dlocaion, routing, scheduling and many other domains. In the rest of the
chapter, we examine some the most famous heuristic techniques garting with Local

Search [PS82] perhaps the oldest heuristic method.

1.3 Local Search

Locd Seach, aso referred to as Neighbouhood Search o Hill Climbing, is the basis
of many heuristic methods for combinatorial optimisation poblems. In isolation, it is
a simple iterative method for finding good approximate solutions. The ideais that of
trial and error. For the purposes of explaining locd seach, we will consider a slightly

different definition of a combinatorial problem to that givefemq 1.1
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A combinatorial optimisation problem is defined by a pair (S g), where Sis the set of
all feasible solutions (i.e. solutions which satisfy the problem constraints) and g is the
objedive function that maps ead element sin Sto ared number. The goal isto find

the solutiors in Sthat minimises the objective functignThe problem is stated as:
Eq. 1.2 min g(s), $1S.

In the cae where constraints difficult to satisfy are dso present, penalty terms may be
incorporated in g(s) to drive toward satisfying these @nstraints. A neighbouhood N

for the problem instandg, g) can be defined as a mapping fr&to its powerset:
Eq. 1.3 N:S - 25

N(s) is cdled the neighbourhood of sand contains all the solutions that can be reatied
from s by a single move. Here, the meaning of a move is that of an operator which
transforms one solution to another with small modificaions. A solution x is caled a

local minimum of g with respect to the neighbourhobidff:
Eq. 1.4 a(x) < g(y), Oy ON(x).

Locd seach is the procedure of minimising the ast function g in a number of
successve stepsin ead of which the arrent solution x is being replacel by a solution

y such that:
Eq. 15 a(y) < g(x), y ON(X).

A basic locd seach algorithm begins with an arbitrary solution and ends upin alocd
minimum where no further improvement is possble. In between these stages, there ae
many diff erent ways to condict locd seach. For example, best improvement (greedy)

locd seach replaces the aurrent solution with the solution that improves most in cost
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after seaching the whoe neighbouhood. Ancther example is first improvement locd
seach which accepts a better solution when it isfound.The computational complexity
of alocd seach procedure depends on the size of the neighbouhood and aso the
time needed to evaluate amove. In genera, the larger the neighbouwhood,the more the
time one needs to search it and the better the local minima.

Locd minima ae the main problem with locd seach. Although these solutions may
be of good quality, they are nat necessarily optimal. Furthermore if loca seach gets
caught in a locd minimum, there is no obvous way to proceel any further toward
solutions of better cost. Methods that build onlocd seach to remedy this problem are
sometimes referred to as meta-heuristics. One of the first methods in this classis
Repeated Local Search where locd seach is restarted from a new arbitrary solution
every time it reades alocd minima until a number of restarts is completed. The best
locd minimum found ower the many runs is returned as an approximation d the
global minimum. Modern meta-heuristics tend to be much more sophsticated than
repeaed locd seach pusuing arange objedives that go beyond simply escgping from
locd minima. In the following sedions, we examine some of the most successul

modern meta-heuristic techniques.

1.4 Simulated Annealing (SA)

Simulated Anneding (SA) is perhaps the most widely used meta-heuristic. Mainly
becaise of its smplicity, SA has attraded the interest of many reseachers and
praditioners from a wide range of disciplines. The technique has its origins in
statisticad medhanics and it was inspired by the physicd processof anneding used for
the “coding” of solids such that they form perfed crystals. Metropdis et al.

[MRRTTS53] first described an agorithm for simulating the aneding process
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Kirkpatrick et a. [KGV83] propcsed the use of this smulation algorithm for
searching the solutions of a combinatorial problem.

SA could be described as a randamised scheme which reduces the risk of getting
trapped in locd minima by allowing moves to inferior solutions. Given the
neighbouhood N(s) of a cmbinatorial problem, moves are randamly seleded from
this set. A move from a soluti@to solutions’ is only accepted if:

» s’is better thars or

-(g9(s)-g(s)
« s’isworse thasbute T >R,

where T is a @ntrol parameter cdled ‘temperature’ and R[0,1] is a uniform randam
number. The temperature parameter T is initially set to a high value, alowing many
norrimproving moves to be acceted and it is gradually reduced to a value where
nealy all nonimproving moves are rejeded. In this way, the dgorithm avoids getting
trapped in locd minima until the final stages of seach when the temperature is very
low and the algorithm has already settled in a good solution.

There have been many studies on the cnwvergence properties of SA. Reseach using
the theory of Markov chains has proved that if the temperature is lowered slowly
enough, SA will eventually converge to a global minimum. Unfortunately, the same
reseach shows that this will, in general, require more iterations than exhaustive
seach. For detall ed information onconvergence results for SA, the reader is referred
to two excdlent books by van Laahoven and Aarts [LA88] and Aarts and Korst
[AK89]. Addtiondly, Johmson et al. [JAMS89, JAMS91] provide excdlent
experimental results for SA on avariety of problems which also may be very useful to

the interested reader.
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1.4.1 Cooling Schedules

In pradice the temperature is lowered acording to a scheme referred to as the

annealing (or cooling) schedule. A cooling schedule specifies [Osm95]:

 the initial starting value of the temperature paramgter

» the cooling rata and the temperature update rule,

» the number of iterations to be performed at each temperature,

 the termination criterion of the algorithm.

The performance of SA strongly depends on the cding schedule. Not surprisingly,

many different types of coding schedules have been suggested. Osman [Osm95|

classifies SA cooling schedules in three categories:

»  Stepwise temperature reduction. In this case, the temperature remains constant for
anumber of iterations (i.e. seledion d arandam move followed by the accetance
test) before it is updated acwrding to the update rule. The update rule commonly
used is a geometric reduction function which reduces the temperature to a(t) = ali
where a < 1. That is why this type of codling is often cdled geometric cooling.
Best performances are reported in the literature for values of ain therange 0.8< a
< 0.99[Dow93]. The number of iterations at ead temperature is related to the size
of the neighbourhood but may also vary from temperature to temperature.

» Continuous temperature reduction [LM86]. In this type of coding schedule, the
temperature is reduced after every iteration. The reduction d the temperature is
very slow and it is conduwcted acwrding to the rule a(t) = t/(1+bld) where b is a
small value.

* Non-monotonic temperature reduction [Dow93, Osm93]. The temperature is

reduced after each iteration though occasional increases are also allowed.
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The SA agorithm terminates when the number of uphll moves acceted beames

negligible or some other type of stopping criterion is satisfied.

1.5 Tabu Search (TS)

Tabu Seach (TS) has been developed by Glover [Glo86 and, independently, by
Hansen [Han86. TS is a meta-heuristic that combines alocd search procedure with a
number of anti-cycling rules which prevent the search from getting trapped in locd
minima. Over the yeas, the method hes evolved and incorporated many new elements
which further enhance its overall performance.

In this sdion, we will present the most important elements of TS. The interested
reader may refer to ore or more of the excdlent survey papers available on the
tedhnique [Gl089,Gl090,GTW93, GL93, Gl094,Gl095,Glo9q. These survey papers
examine in more detail the dements of TS described in this chapter and also outline

some less frequently used elements not examined here.

1.5.1 TheBasisfor Tabu Search

The basis for tabu seach is described by Glover in [Glo95 as follows. Given a
function f(x) to be optimised over a set X, TS beginsin the same way as ordinary locd
seach, procealing iteratively from one point (solution) to ancther until a cosen
termination criterionis satisfied. Each x[IX has an associated neighbouhoodN(x) O X
and each solutior ON(X) is reached fromt by an operation calledraove.

TS goes beyondlocd seach by employing a strategy of modifying N(x) as the seach
progresses, efficiently repladng it by another neighbourhood N'(X). A key asped of
tabu seach is the use of spedal memory structures which serve to determine N'(x),

and hence to organise the way in which the space is explored.
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We will start our brief acount of TS by examining the so-cdled recency-based
memory which can be used as a stand-alone device or as the basis for more advanced

TS schemes.

1.5.2 Recency-Based Memory

Recency-based memory is utilising information pertaining to the moves exeauted by
locd seach to avoid reversing changes creaed by these moves. The information used
is the “atributes’ of solutions (i.e. solution poperties) that change state (i.e. deleted
or added) when a move is exeauted. These dtributes are used to define the “tabu
status’ of moves at future iterations, that is, moves which are forbidden to be
exeauted. For example, if a move m changes the value of a 0-1 variable x; from 0 to 1
then the solution attribute x; = O can be used to prevent the reversal of the danges
credaed by the move. After move m is exeauted the solution attribute x; = 0 becomes
tabu-adive rendering tabu (i.e. forbidden) all moves that reinstate this attribute in the
solution. These restrictions are temporary and they last only for a small number of
iterations. For that purpose, tabu-adive dtributes are assgned appropriate tabu-
tenures which determine for how many iterations locad seach is prevented from
reinstating these dtributes. This mechanism is smetimes implemented using a data
structure called &abu list [Glo89].

A move may change the state of more than ore solution attribute. In such cases, tabu
restrictions on moves can be defined by rendering a move tabu orly if al (or some
number) of its comporent solution attributes are tabu-adive [Gl095. By dedding on
the combinations of attributes that render a move tabu, we have the flexibility to
strengthen or wegken the tabu restrictions. The dhoices may vary from a digunction

between the dtributes (more restrictive) to a cnjunction (less restrictive). Another
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way of controlli ng tabu restrictionsisto assgn dfferent tabu-tenures to different types
of attributes. Furthermore, tabu-tenures may vary during seach leading to a dynamic
and robust form of search [Tai91, GTW93].

Another part of recency-based memory are the so-cdled aspiration criteria which
mainly aim at adding flexibility to compensate for the hard nature of constraints in
recency-based memory. Aspiration criteria ae sets of condtions which if satisfied
overrule the tabu restrictions. The most commonly used aspiration criterion is to
accet amove which is classfied as tabu if the move generates a solution bketter than
any previousdy seen. The interested reader may refer to [GL93] where a more
extensive account is given on the different types of aspiration criteria.

In many applicaions, recency-based memory is sufficient to produce high quality
solutions. However, this type of memory is of a short-term nature and therefore
insufficient to suppat a long-term strategy necessxy for a more systematic
exploration d the seach space For that purpose, a set of additional tabu seach
elements have been developed which are known as long-term memory comporents.
The two main goals for these cmporents are the intensification and dversification o

search.

1.5.3 Intensification Strategies

The purpose of intensificaion strategies is to concentrate the seach ongood regions
of the seach space or good solution fedures. This usually manifests itself in a
solution rearding medhanism which kegps a cpy of high quality solutions found
during the seach. These solutions, often referred to as dlite solutions, are used eah
time the seach progresses dowly to restart it from the good regions which lie aound

these dite solutions. The state of the receicy-based memory (when the dite solution
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was recrded) may also be saved and partially or fully restored when starting from this
elite solution. Such approades have been succesgully used in vehicle routing [ XK 96]
and telecommunications network design problems [XCG95].

Ancther form of intensificaion is based on identifying “consistent and strongly
determined” variables. A strongly determined variable is one whose value caana be
changed except by indwcing a disruptive dfed on the objedive function value or the
values of the other variables. On the other hand, a cmnsistent variable is one that is
frequently assgned the same value in good solutions. The ideais to identify the most
consistent and strongly determined variables and asdgn to these variables ther
“preferred” values by reference to a set of elite solutions. This is usually dore in the
framework of a multi-start approach where new starting points are generated by
assgning consistent and strongly determined variables to their “preferred” values.

This approach has been successfully applied to the vehicle routing problem [RT95].

1.5.4 Diversification Strategies

Diversificaion strategies are designed to drive the seach into new regions. Often they
are based on modifying choice rules to lring attributes into the solutions that are
infrequently used. More of these schemes are based on type of memory cdled
frequency-based memory. In short, frequency-based memory is a long-term memory
which either

* reqords the frequency at which solution attributes occur in the solutions generated
(residence frequencies)

» or records the frequency different moves are exectrtausifion frequencies).
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Residence frequencies are used to encourage the incorporation in the solution o
infrequently used attributes while transition frequencies are used to encourage the
execution of less frequently performed moves.

One way to use the information rearded in residence frequencies is to periodicdly
restart the seach from solutions that incorporate the less frequently used solution
attributes. More often, residence frequencies are used in a cntinuous fashion by being
diredly incorporated in the st function multiplied by a penalty fador. Attributes
with high frequencies have higher penalties than those with lower frequencies. Thus
the use of the later is encouraged while the use of the former is discouraged.
Transition frequencies are used in asimilar way to residence frequencies and penalties
are usualy introduced that discourage the exeaution d frequently exeauted moves
while encouraging the execution of less frequently executed moves.

Residence or transition frequencies have been succesdully used in problems sich as
maximum clique [SG96], bin padking [LG93], network design [XCG95], quedratic
assgnment [Sko9(, madine scheduling [LG93lh, wvehicle routing [GHL94,

TBGGP95, XK96] and others.

1.5.5 CandidateList Strategies

For many problems, the amourt of computationa effort required to seach the
complete neighbouhoodin every iteration is prohibitive. Candidate list strategies are
aming at reducing this effort by restricting the number of solutions examined on a
given iteration. The different types of candidate list strategies are the following

[Glo95]:
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* Random Strategy. The neighbouhoodis randamly sampled urtil enough moves are
evaluated to give some assurance that some good choices were examined.

* Subdivison Srategy. Moves that involve more than ore mporent are
decomposed and moves which incorporate good components only are examined.

» Aspiration Plus Strategy. This approach establi shes a threshold based onthe seach
history for the quality of moves to be seleded and examines moves until finding
one which satisfies this threshold.

» Elite Candidate Lists. A list of elite moves is constructed after searching a large
part of the neighbouhood. At subsequent iterations only solutions from this elite
list are examined urtil the quality of moves drops below a spedfied threshold. At
this point a new list is constructed and the process is repeated.

* Sequential Fan Strategy. The ideais to generate some p best alternative moves at a
given step and then to creae afan of solution streams, ore for ead aternative. The
best avail able moves for ead strean are ayain examined and orly the p best moves
overal provide the p new streams at the next step. This technique is very much
oriented towards parallel processing.

Candidate list strategies conclude our acourt of Tabu Seach. Other elements not

examined here include strategic oscill ation, path relinking, eedion chains,

vocabulary building and probabili stic tabu seach. The reader may refer to [GL93,

Glo95, Glo9q for information onthese variants. Additionally, the reader may also

refer to [ XCG96] onthe use of statisticd tests to determine the many parameter values

that need to be spedfied when various elements of TS are integrated together to solve

a combinatorial problem.
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1.6 Genetic Algorithms

Genetic Algorithms (GAs) are a ¢assof methods based ona highly abstrad model of
natural evolution. They were developed by Holland in the 70s [Hol 75, Gol89, Dav91]
and since then they have been applied to numerous domains. Only recently their
potential applicaion to combinatorial optimisation poblems has been investigated.
We first examine some of the terminology used in the GA literature.

A solution to a cmbinatorial optimisation poblem is often cdled a chromosome,
string or vector. Variables of the problem are cdled genes and their passble values
alleles. The position d a variable in a dromosome is cdled its locus. Each
chromosome eicodes a solution to the optimisation poblem and it is evauated
acording to some fitness function. The fitnessfunction is related to the ast function
of the combinatorial optimisation poblem. The fitness value given to a diromosome
by this function represents the suitability of this chromosome (after deaoding) as a
solution to the combinatorial problem. For a review of Genetic Algorithm techniques

in the context of combinatorial optimisation the reader may refer to [Ree93].

1.6.1 A Basic GA Algorithm

A basic GA agorithm for a combinatorial problem functions in the following way.
Initialy, a finite popdation d solutions is generated randamly or by other means.
After that, an iterative process is applied to the popdation which at eat step
transforms the aurrent popuation to a new popuation. Thisinvolves sleding pairs of
parent solutions from the popuation acording to a seledion scheme which takes into
acourt their fitnessvaues and combining them to generate off spring solutions. The
combination d the parents is performed by a speda type of operator cdled the

crossover or recombination operator. After the generation d the ‘children’ random
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changes are inflicted uponthem by a secnd type of operator cdled the mutation
operator. The dildren are finally inserted in the popdation by either replaang their
parents (Canonicd GAS) or the wedest individuals in the popuation (Steady State
GAS?). This completes one iteration d the GA which transforms one generation o
solutions to the next. The dgorithm iterates until a termination criterion is stisfied
based either on computational resources, the cnwvergence of the popuation (high
simil arity between the solutions contained in the popuation) or bath. In the foll owing,

we examine more closely the various elements of a GA.

1.6.1.1 Initial Population
The initial popdation is normally generated at random. Y et in most of the successul

GAs for combinatorial optimisation, solutions in the initial popuation are
heuristicdly generated (by a cnstruction heuristic, locd search, a sometimes by locd
seach applied to a solution generated by a cnstruction heuristic) and they are dready
of good quality. Particular attention must be paid that the size of thisinitia popuation

is not too small to avoid premature convergence of the GA.

1.6.1.2 Genetic Operators
As mentioned above, the aossover operator is used to combine two parent solutions.

There ae many versions of this operator. The simplest case is that of the 1-point
crosover. A cut-point X is sleded at randam and ead off spring consists of the pre-
X sedion from one parent followed by the post-X sedion from the other. The 1-point
crosover can be extended to 2-point crosover, 3-point crosover or even k-point
crosover. Another useful crossover operator is the uniform crossover where the value

of each variable in each parent is equally likely to be passed to the offspring.

2 Steady State GAs also generate one child instead of two children as in Canonical GAs.
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Many combinatorial optimisation problems require spedal types of operators which
can combine sequences or permutations (often used to represent solutions) to produce
feasible off spring solutions. An example of such an operator for the TSPis the PMX
operator (Partialy Mapped Crosoover). Many other spedal operators exist for
different types of combinatorial optimisation poblems (see [Ree93] for some
examples).

In addition to crosover and after the generation d the dnildren, a mutation operator is
employed to modify the popdation d solutions by introduwcing small randam
modificaions to solutions randamly seleded from the popdation. If bit vedors are
used for representing the solutions, this frequently means flipping the bits of some of

the solutions. In general, the probability of mutation is very low.

1.6.2 Hybrid GAs.

As Davis gates in the Handbook & Genetic Algorithms [Dav91], “ Traditional genetic
algorithms, athough robust, are generally not the most succesful optimisation
algorithm on any particular domain”. For that reason, Davis and many others have
argued that hybridising GAs with the most succesdul optimisation methods for
particular problems gives one the best of both worlds.

The idea of including in the initial popdation solutions constructed by a
problem-spedfic heuristic, mentioned above, can be viewed as a primitive form of
hybridisation.

Severd GA approadies which have produced very good results for famous
combinatorial optimisation poblems go ore step further, utilising locd seach
algorithms to optimise the solution generated by crossover or mutation operators (see

[MGK88, FF94, FM96]). These GA algorithms essentially work on loca minima

29



constructed by locd seach trying to recombine them to produce new and hogefully
better locd minima. The rationae is that locd minima solutions consist of good
solution fragments which if properly combined by crossover type operators will | ead
to solutions where these fragments are combined even better and therefore be of
higher quality. This leads to a type of seach intensification aroundthe aeas of good
solutions. Diversificaion d seach is aso important and is performed by the
particular mutation operator used. From another viewpoint, Hybrid GAs can be seen
as a type of locd seach which explores the space of good solution fragment
combinations. There ae similarities there with tabu seach variants which aso try to
identify and recombine good solution fragments [RT95]. These tabu seach variants
are sometimes e as part of a wider framework of techniques cdled Adaptive

Memory Programming [Gl096].

1.7 GENET and Other Weighting M ethods for CSPs

Guided Locd Seach (GLS) studied in this thesis is a meta-heuristic which guides
locd seach in exploring the vast seach spaces of combinatorial problems. The
tedhnique etends to general optimisation poblems methods applied with
considerable successto Constraint Satisfadion [Tsa93]. In this ®dion, we will briefly
refer to these methods and in particular to the GENET neura network [WT91, Tsa93,
DTWZ94] which is a direct predecessor of GLS.

The Constraint Satisfadion Problem (CSP is that of assgning values to a number of
variables with finite domains such that a set of linea or nonlinea constraints
involving one or more variables are satisfied. CSPis in general NP-Hard and it is
closely related to the propasitional satisfiability or SAT problem [GJ79]. In contrast to

most combinatorial optimisation poblems, the goal in CSFs is to find ore or all
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feasible solutions. Red world CSPs usualy invalve difficult nonlinea constraints
spanning two o more variables of the problem. Amongst other techniques, locd
search has been considered for solving CSPs.

A locd seach approach to constraint satisfadion treds a CSP as an optimisation
problem. The objedive function, which is to be minimised, is the number of
constraints being violated. A typica locd seach method assgns an arbitrary value to
eat variable in the CSP. Then it proceels iteratively to reduce the number of
constraint violations by re-assgning values to variables, using a heuristic known as
the min-conflict heuristic [MJPL92]. This iterative improvement of the number of
unsatisfied constraints leads either to a solution to the CSP or to a locd minimum
where some mnstraints are still being violated bu no further improvement is possble
by changing the value of any of the variables. Locd minima ae of little use in CSPs
since they violate hard problem constraints.

A succesgul approach to escgpe locd minima, proposed in the ontext of CSF, is to
assgn weights to the problem constraints (clauses for SAT) and increase these
weightsin alocd minimafor the violated constraints (unsatisfied clauses for SAT) in
a effort to ‘fill up’ the local minimum until local search escapes from it.

Various algorithms based onthis sheme have been developed in the last few yeas
and applied either to the CSP or the SAT problem. Amongst them GENET [WT91,
Tsa93, DTWZ94], Weighted GSAT [SK93, Frad6], and also the Bre&kout Method
[Mor93]. Here, we briefly examine GENET which was the point of origin for this

work.
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1.7.1 The GENET Neural Network

GENET is a onredionist approad to constraint satisfadion with a basic operation
that resembles the min-conflicts heuristic. Basicaly a CSPis represented by a network
in which the nodes represent possble assgnments to the variables and the elges
represent constraints. One of the innowations in GENET was the use of and
manipulation d weights assgned to the alges (constraints). All edges are inhibitory
conredions which have weights initialised to -1. GENET will continuowly seled
assgnments which receve the least inhibitory inpu (which roughly means violating
the least number of constraints). The operation d the network is designed in such a
way that will ensure its convergence to some states, which could be solutions or locd
minima (in terms of number of constraints violated). Each time the network converges
to a locd minimum, the weights associated with the violated constraints are
deaeased, and the network is then alowed to converge ajain. Since GENET always
makes moves which improve the number of constraint violations, deaeasing the
weights allows it to escgpe from the locd minimum to states which have lower cost.
Such conwvergence-leaning cycles continue until a solution is found @ a stoppng
condition is satisfied.

GENET's medhanism for escgping from locd minima resembles reinforcement
leaning [BSA83]. Basicdly, patternsin alocd minimum are stored in the constraint
weights and are discouraged to appea theredter. For this reason, the mecdanism was
named "leaning’. GENET's leaning scheme can be viewed as a method to transform
the objedive function (i.e. the number of constraint violations) so that a locd
minimum gains an artificially higher value. Consequently, locd search will be ale to

leave the local minimum state and search other parts of the space.
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In the CSP context, modifying the weights for unsatisfied constraints in locd minima
modifies the st function d the problem though that does not affed the st of an
optimal solutionwhich if exists stisfies all the constraints by definition and therefore
always has zero cost.

Guided Locd Seach (GLS) presented in this thesis utilises a similar approad to
tackle famous combinatorial problems. In these problems, modificaions to the st
function, athough they may affed the st of many solutions of a combinatorial
problem including the optimal can effedively guide locd seach in the seach space
Apart from escaping locd minima in away smilar to GENET and aher techniques
for CSPand SAT problems, GLS introduces additional functionality for distributing
the seach efforts over the various areas of the seach space taking into acourt the
promise of these aea to contain the optimal solution. Furthermore, it uses
sophisticaed neighbouhood reduction techniques which can speed upthe dgorithm

many times.

1.8 Overview of the Thesis

In this thesis, we describe the technique of GLS and examine its applicdion to a
comprehensive set of traditional and modern red world combinatorial optimisation
problems. The performance of the tednique is experimentally evaluated on
benchmark instances of these problems. Extensive wmparisons are @mnducted with
general and spedalised heuristic dgorithms including all the genera heuristic
methods examined in this chapter. The thesis is gructured as follows. In the next
chapter, we present GLS and dscuss various extensions to the method. Following

that, five applications of the algorithm are examined in the following order:
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» Travelling Salesman Problem (chapter 3),

* Quadratic Assignment Problem (chapter 4),

* Radio Link Frequency Assignment Problem (chapter 5),

» Workforce Scheduling (chapter 6),

» Non-convex Optimisation (chapter 7).

The thesis concludes with chapter 8 where the work on GLS is simmarised and future
research directions are suggested.

Most of the findings in chapter 5 have @peaed in the Procealings of the 2™
International Conference on Pradicd Applicaion d Constraint Techndogy [VT96]
while the results in chapter 6 have gpeaed in the journal of Operations Research
Letters [TV97]. Earlier results for GLS on the Travelling Salesman Problem,
Quadratic Assgnment Problem and Nonconvex Optimisation have been reported in

two Essex University technical reports [VT95a, VT95b].
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Chapter 2

Guided Local Search

Embarking on this reseach amost threeyeas ago, the main ojedive was to extend
GENET for Constraint Satisfadion Problems (CSPs) to a more genera class of
problems known as Partial Constraint Satisfadion Problems (PCSFs). Through the
process of trying to apply GENET to PCSPs, we soon redised that a more general
optimisation technique was hidden under GENET s neural network architedure. This
tedhnique, namely Guided Locd Seach, is the subjed of this chapter and the @re of

the thesis.

2.1 History of Guided Local Search

Partial CSPs are CSPs where no solution satisfies all the @nstraints and ore is
interested in solutions which minimise the number of constraint violations and

possbly other applicaion degpendent criteria (seesedion 5.1 for a formal definition).
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The RLFAP problem described in chapter 5 was one of the first problems we tried to
solve using extensions of GENET. The problem is a PCSP and requires the
minimisation d constraint violations combined with damain spedfic optimisation
criteria. Minimising constraint violations was within the capabiliti es of the GENET
neural network but minimising the other RLFAP optimisation criteria seamed dfficult
and required extra complexity in the neural network architedure. Becaise of that, we
dedded at the time to convert GENET to a pure dgorithm, abandoring any efforts to
solve the problem by extending the model of the neural network. This resulted in the
Tunrelling Algorithm [VT94] which was very succesdul in the RLFAP instances and
moreover preserved the good performance of GENET on classc CSPs. While
experimenting with the tunrelling algorithm, we had the ideato apply the method to
the Travelling Salesman Problem (TSP, utilising some of the work we did on the
modelling of RLFAP's optimisation criteria. To ou surprise, the method worked
extremely well on the TSP and some preliminary results on that were included in the
paper on the tunnelling algorithm [VT94].

The success on the TSP convinced us of the grea potential of the dgorithm. We
generalised the Tunrelling Algorithm even further, so that it could be gplied to the
bulk of combinatorial optimisation. The result of this generali sation was Guided Locd
Seach. Guided Locd Seach excealed all our expedation. We gplied the method to
seven Combinatorial Optimisation problems and oldained very good results bath in
terms of solution quality and running times. The method and five of its applicaions
will be presented in thisthesis. We start by introducing the principles of Guided Locd

Search.
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2.2 Guided Local Search Principles

Guided Locd Seach is a genera and compad optimisation technique suitable for a
wide range of combinatorial optimisation problems. Guided Locd Seach takes
advantage of problem and search-related information to guide local search in a seach

space This is made possble by augmenting the @st function d the problem to
include aset of penaty terms. Locd seach is confined by the penalty terms and
focuses attention on pomising regions of the search space lIterative cdls are made to
locd seach. Eadh time loca seach gets caught in alocad minimum, the penalties are
modified and local search is called again to minimise the modified cost function.
Penalty modificaions regularise the solutions generated by locd seach to be in
acordance with prior information a information gathered duing seach. The
approach taken by GLS is analogous to that of regularisation methods for ‘ill -posed’

problems [TAJ77, Hay94]. The ideabehind regularisation methods and GLS, to an
extent, is the use of prior information to help us lve an approximation problem.

Prior information translates to constraints which further define our problem, so
reducing the number of candidate solutions to be cnsidered. GLS also exploits
information leant during seach by impasing extra constraints on the basis of this
information. GLS is essntially a meta-heuristic based on locd seach. In the

following sections, we examine the various components of GLS.

2.3 Local Search

Locd seach is the basis of many heuristic methods for combinatorial optimisation
problems. In sedion 1.3, we presented an owerview of locd seach. A variety of

moves and locd seach procedures have been used for the problems in this gudy. For
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the purpase of describing GLS in the general case, locd seach is considered a general
procedure of the form:
S, « procedure L ocal Sear ch(sy,0),

where s is the initial solution, s, the final solution (locd minimum) and g the st
function to be minimised.

In contrast to ather general meta-heuristics sich as SA and tabu seach, GLS is naot
modifying the internal medhanisms of locd seach. Instead, it makes iterative cdls to
alocd seach procedure modifying the st function between successve cdls. Before
that, the st function d the problem is augmented to include aset of penalty terms
which enable us to constrain solutions dynamicdly. This augmentation o the st

function with penalty terms is explained in the next section.

2.4 Solution Features

GLS employs slution feaures to charaderise solutions. A solution feature can be any
solution property that satisfies the simple constraint that isanontrivial one. What it is
meant by that is that not al solutions have this property. Some solutions have the
property whil e others do nd. Solution feeures are problem dependent and serve & the
interface between the algorithm and a particular application.

Constraints on fedures are introduced o strengthened on the basis of information
abou the problem and also the @urse of locd seach. Information pertaining to the
problem is the aost of feaures. The st of fedures represents the dired or indired
impad of the crrespondng solution properties on the solution cost. Fedure sts
may be onstant or variable. Information abou the seach process pertains to the
solutions visited by locd seach and in particular locd minima. A feaure f; is

represented by an indicator function in the following way:
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(1, solutions has property i

Eq. 2.1 l.(s) = ,SLS
a () 8) otherwise

2.5 Augmented Cost Function

Constraints on feaures are made posshble by augmenting the st function g of the
problem to include aset of penalty terms. The new cost function formed is cdled the

augmented cost function and it is defined as follows:

Eq. 2.2 h(s) = g(s) + A D% p O.(s),

1=1

where M is the number of fedures defined over solutions, p; is the penalty parameter
correspondng to fedure fi and A (lambda) is the regularisation parameter. The
penalty parameter p; gives the degreeup to which the solution feaure f; is constrained.
The regularisation parameter A represents the relative importance of penalties with
resped to the solution cost and is of grea significance becaise it provides a means to
control the influence of the information onthe seach process GLS iteratively uses

local search and it simply modifies thenalty vector p given by:

Eq. 2.3 p=(p, - )

ead timelocd seach settlesin alocd minimum. Modificaions are made on the basis
of information. Initialy, al the penaty parameters are set to O (i.e. no feaures are
constrained) and a cdl is made to locd seach to find a locd minimum of the
augmented cost function. After the first locd minimum and every other locd
minimum, the dgorithm takes a modification action on the augmented cost function
and re-applies locd seach, starting from the previously foundlocd minimum. The

modificaionadionisthat of simply incrementing by one the penalty parameter of one
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or more of the locd minimum feaures. Prior and historica information is gradually
inserted into the augmented cost function by seleding which penalty parameters to
increment.

Sources of information are the st of fedures and the locd minimum itself. Let us
asume that eat fedure f; defined over the solutions is assgned a st ¢. This cost
may be anstant or variable. In order to smplify our analysis, we @nsider feaure

costs to be constant and given by ¢bg vector c:
Eq. 2.4 c=(cy ...,Gn)

which contains positive or zero elements. A particular locd minimum solution s

exhibits a number of feaures. Indicators of the feaures f; exhibited take the value 1

(.e. 1(s)=1).

2.6 Penalty Modifications
In alocd minimum s., the penalty parameters are incremented by one for all feauresf;

that maximise the utility expression:

- - G
Eq. 25 util(s, f) = I‘(S)Gh—p .

In ather words, incrementing the penalty parameter of the feaure f; is considered an
action with uility given by Eg. 2.5. In alocd minimum, the adions with maximum
utility are seleded and then performed. The penalty parameter p; is incorporated in EQ.
2.5 to prevent the scheme from being totally biased towards penalising feaures of
high cost. The role of the pendty parameter in Eq. 2.5 is that of a wurter which

courts how many times a feaure has been penalised. If a feaure is penalised many
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