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Abstract

This paper presents a comprehensive survey on the literature considering round robin tournaments. The terminology
used within the area has been modified over time and today it is highly inconsistent. By presenting a coherent explanation
of the various notions we hope that this paper will help to obtain a unified terminology. Furthermore, we outline the con-
tributions presented during the last 30 years. The papers are divided into two categories (papers focusing on break min-
imization and papers focusing on distance minimization) and within each category we discuss the development which has
taken place. Finally, we conclude the paper by discussing directions for future research within the area.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

As long as there has been competitive sport, there
has been a need for sports schedules. During the last
30 years, sports scheduling has turned into a
research area of its own within the operations
research and computer science communities. While
it may seem trivial to schedule a tournament, and
combinatorial mathematics has methods for sched-
uling simple tournaments, when additional require-
ments are added the problem becomes a very hard
combinatorial optimization problem. In fact, for
many types of problems, instances with more than
20 teams are considered large-scale and heuristic
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solution methods are often necessary in order to
find good schedules.

The challenging problems and the practical
applications provide a perfect area for developing
and testing solution methods. In the literature we
find methods ranging from pure combinatorial
approaches to every aspect of discrete optimization,
including integer programming (IP), constraint pro-
gramming (CP), metaheuristic approaches, and var-
ious combinations thereof. The solution methods
have evolved over time and today methods exist
capable of finding optimal or near-optimal solutions
for hard practical instances.

In addition to the theoretical gains from develop-
ing efficient solution methods capable of solving
practical applications, sports scheduling has an eco-
nomic aspect. Professional sports are big business
and the revenue of a sports league may be affected
.
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Fig. 1. Examples of timetables for tournaments with six and
seven teams.
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by the quality of the schedule since a substantial
part of the revenue often comes from TV networks.
The TV networks buy the rights to broadcast the
games but in return they want the most attractive
games to be scheduled at certain dates.

In this paper we give a comprehensive survey of
the sports scheduling literature concerned with
scheduling round robin tournaments. The literature
is partitioned into papers on break minimization
and papers on distance minimization. For both
parts we present the main contributions and outline
the development which has taken place. In order to
keep the paper within reasonable size we have
restricted ourselves to papers on round robin tour-
nament problems in which the definition of the
home or away status is relevant. This means that
the problem of finding balanced tournament designs
is not considered but for readers interested in this
subject we refer to [7,8,20,21,29,30,45,52,60].

The rest of the paper is organized as follows. In
Section 2, we present the terminology used within
sports scheduling and, in Section 3, the various con-
straint types are outlined. The literature on break
minimization and distance minimization are dis-
cussed in Sections 4 and 5, respectively. Finally, Sec-
tion 6 gives some concluding remarks and points
out directions for future research.

2. Terminology

In this section, we define the sports scheduling
terminology. It is important to stress that the termi-
nology is far from consistent in the literature and
some commonly used phrases have multiple mean-
ings. However, to avoid misunderstandings, we will
use the definitions from this section throughout the
paper although it may conflict with papers to which
we refer.

A round robin tournament is a tournament where
all teams meet all other teams a fixed number of
times. Most sports leagues play a double round
robin tournament where teams meet twice but sin-
gle, triple and quadruple round robin tournaments
do also occur.

When scheduling a tournament, the games must
be allocated to a number of time slots (slots) in such
a way that each team plays at most one game in
each slot. When the number of teams n is even at
least ðn� 1Þ slots are required and when n is odd
at least n slots are required to schedule a single
round robin tournament. In the case the number
of available slots equals the lower bound, we say
that the tournament is compact while it is relaxed

when more slots are available. Note that these terms
correspond to the terms temporally constrained and
temporally relaxed defined in [36].

The allocation of games to slots can be presented
as a timetable. Each row of the timetable corre-
sponds to a team while the columns correspond to
slots. The entry of row i and column s is the oppo-
nent of team i in slot s. Fig. 1 shows a timetable for
a compact single round robin tournament with six
teams and a timetable for a corresponding tourna-
ment with seven teams.

In the literature, teams often have an associated
venue and when they play at their own venue, they
play home games while they play away games at all
other venues. In slots without a game they are said
to have a bye. It is assumed that each time two
teams meet, one of the teams plays home while the
other plays away. For single round robin schedules,
it is often required that the deviation between the
number of home games and away games played
by each team is no more than 1. Such a schedule
is termed balanced. For double round robin sched-
ules, it is typically required that the two games
between every pair of opponents occur in opposite
venues. Such a schedule is forced to be balanced.
For multi round robin schedules, a common
requirement is that the schedule is both balanced
and that for every pair of teams, the deviation
between venues of games for that pair be no more
than 1.

The sequence of home games, away games and
byes according to which a team plays during the
tournament is known as a home away pattern (pat-
tern). If byes occur in the tournament, a pattern is
normally represented by a vector with an entry for
each slot containing either an H, an A, or a B. In
compact tournaments with an even number of
teams, all teams play in each slot and the B is omit-
ted. In this case H and A are often replaced by 1 and
0, respectively. In many tournaments it is consid-
ered attractive to have an alternating pattern of



Fig. 4. Example of a mirrored double round robin schedule.
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home and away games and a pattern is said to have
a break in slots differing from such an alternating
sequence. This means that a break corresponds to
two consecutive home games or two consecutive
away games. Two patterns are said to be comple-

mentary if the first pattern has an away game when
the second pattern has a home game and vice versa.
Fig. 2a shows two complementary patterns for a
compact single round robin tournament with six
teams. Notice that both patterns have a break in
slot 3.

To represent the assignments of home and away
games for a tournament with n teams, we use a home

away pattern set (pattern set). This is a set of exactly
n patterns and each pattern is associated with one of
the teams. Fig. 2b shows an example of a pattern set
for a tournament with six teams. Notice that this
pattern set exclusively consists of pairs of comple-
mentary patterns. When this is the case, the pattern
set satisfies the complementary property and it is said
to be complementary. If all teams have the same
number of breaks it is an equitable pattern set.

Furthermore, the pattern set can be associated
with the timetable for six teams displayed in Fig. 1
since, in every game, one of the opponents plays
home while the other plays away. A pattern set
for which a corresponding timetable exists is said
to be feasible. Fig. 3 gives an example of three pat-
terns which would make a pattern set infeasible

since the three mutual games can only be played
in slots 1 and 2.

The combination of a pattern set and a corre-
sponding timetable constitutes a schedule for a tour-
nament. A schedule is mirrored when the first and
the second half are identical except the home games
Fig. 2. (a) Two complementary patterns, (b) example of a pattern
set for a tournament with six teams.

Fig. 3. Example of an infeasible subset of patterns.
and away games are exchanged. Furthermore, we
say that a schedule for a single round robin tourna-
ment is irreducible when at most one opponent in
each game has a break. A schedule can be repre-
sented as in Fig. 4 showing a mirrored double round
robin schedule. In the figure, a + denotes a home
game while a � denotes an away game. A sequence
of consecutive away games is called a trip while a
sequence of consecutive home games is called a
home stand. An entire row of the schedule defines
a tour for the corresponding team.

When solving a sports scheduling problem it may
be advantageous to postpone the assignment of
games until a schedule has been obtained. In that
case placeholders are used to represent the teams
in the pattern set and in the timetable until a sche-
dule has been found.

Since round robin tournaments have a corre-
spondence to graphs, we also introduce a few graph
theoretical concepts. Consider a graph G ¼ ðV ;EÞ
where V is a finite set of nodes and E is the set of
edges in G. A matching in G is a set of independent
edges (non-adjacent edges) and a matching in which
all the nodes in V are incident to an edge is called a
perfect matching. The graph induced by a complete
matching is a 1-regular graph (the degree is 1 for all
nodes). This is called a 1-factor and a partitioning of
the graph G into factors is called a factorization.

In the rest of the paper, we let n denote the num-
ber of teams, T the set of teams and S the set of
slots. Since most of the sports scheduling literature
focuses on compact tournaments with an even num-
ber of teams this is assumed to be the case unless
otherwise stated.
3. Constraints

Practical sports scheduling applications are very
often characterized by a large number of conflicting
constraints arising from teams, TV networks, sports
associations, fans and local communities. Conse-
quently, a section discussing the various constraints
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applicable to a particular sports league has become
a standard part of papers considering practical
applications since each league has their own special
requirements. In this section we will give a short
outline of the most typical constraints and we give
references to papers facing these constraints.

Place constraints ([58,48,46,25,41,50,12,39,38,4,
13,9,5,17,11,54,62])
Constraints ensuring that a team plays home or
away in a certain slot. This kind of constraint is
normally imposed when a venue is unavailable
due to other events.
Top team and bottom team constraints ([48,36,46,
25,23,12,38,4,13])
In some leagues special considerations are taken
for teams which have just qualified for the league
and teams which are known to be strong.
Break constraints ([59,36,25,23,38,4,13])
Often leagues want to avoid a schedule where
teams have a break in slot 2 or a break in the last
slot.
Game constraints ([36,23,49,16,34,35,33,37,26,
38,4,13,9,62])
These are constraints fixing a certain game to a
particular time slot. The constraints are normally
imposed by TV networks who want ‘‘big’’ games
at certain dates.
Complementary constraints ([59,46,12,38,4,13,9])
When two teams share a venue, a complementary
constraint is used to make sure that the two
teams play home at different slots. Of course both
teams play home in some sense when they meet
but playing the official home game may be
important since revenue is often earned by the
home team.
Geographical constraints ([55,48,12,38,4,13])
To avoid slots in which many home games are
gathered in a small area games should be scat-
tered throughout the region in which the tourna-
ment is played.
Pattern constraints ([36,46,25,23,41,33,50,12,38,
4,13,10,2,9,5,17,44,11,54,62])
Some applications have special requirements on
the patterns such as restrictions on the number
of consecutive breaks or certain sequences of
home games, away games and byes which should
be avoided. They also include requests for equita-
ble pattern sets saying that all teams must have
the same number of breaks.
Separation constraints ([36,23,39,38,4,17,11,62])
When we consider tournaments where teams
meet more than once and the schedule is non-
mirrored, most leagues have a lower bound on
the number of slots between two games with
the same opponents. This constraint is not rele-
vant to mirrored schedules since such schedules
always have at least n � 2 slots between such
games.

In many applications the constraints are sepa-
rated into hard constraints and soft constraints.
All the hard constraints must be satisfied in a feasi-
ble solution, while the soft constraints are penalized
such that penalties are incurred if the constraints are
violated. In addition to minimizing the number of
violated soft constraints the objective of a sports
scheduling problem is normally to minimize either
the number of breaks or the travel distance. In the
following two sections we will discuss the papers
on minimizing breaks and minimizing travel dis-
tance, respectively. For an online overview and clas-
sification of the literature we refer to the website
http://www.informatik.uni-osnabrueck.de/knust/
sportlit_class/.

4. 1-Factorizations and minimizing breaks

A rich line of research has been to exploit the
close relationship between 1-factorizations of
graphs with tournaments. When venues are added,
this leads to oriented 1-factorizations.

When teams return home after each away game
instead of travelling from one away game to the
next, alternating patterns of home and away games
are usually preferred. Such patterns consider the
fans by avoiding long periods without home games
and they ensure regular earnings from home games.

The need for alternating patterns has led to a
large amount of research originating from graph
theoretical approaches for minimizing the number
of breaks in a pattern set and leading to highly
sophisticated solution methods for practical appli-
cations facing numerous constraints. During the last
30 years, focus has moved from constructive meth-
ods applicable for general tournaments without
additional constraints to decomposition methods
capable of handling all the constraints applicable
for a certain sports league.

4.1. Constructive methods

In the 1980s, Rosa and Wallis [43], de Werra
[43,55–59] and Schreuder [47] published a number

http://www.informatik.uni-osnabrueck.de/knust/sportlit_class/
http://www.informatik.uni-osnabrueck.de/knust/sportlit_class/


Fig. 6. Schedule corresponding to the 1-factorization from
Fig. 5.
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of papers on the relationship between graphs and
tournaments and used the relationship to obtain
results for schedules. De Werra [56] presents the
relationship between a tournament and a graph in
the following way.

Consider a compact single round robin tourna-
ment with an even number of teams n – in case
the number of teams is uneven a dummy team can
be added. This tournament can be associated with
the complete graph Kn by letting each node corre-
spond to a team and letting each edge correspond
to the game between the teams associated with the
end nodes. A 1-factorization F ¼ ðF 1; . . . ; F n�1Þ of
Kn where F 1; . . . ; F n�1 are 1-factors then corre-
sponds to a partitioning of the games into n � 1
slots since each node will be incident to exactly
one edge in each 1-factor. We refer to Mendelsohn
and Rosa [31] for a survey on 1-factorizations.

One direct approach to creating a timetable is to
form it slot-by-slot. Rosa and Wallis [43] show that
such an approach may fail. They define a premature

set to be a partial timetable (only the first k slots are
determined) which cannot be extended to a full
timetable and ask the question: How much can go
wrong if we assign games one slot at a time without
looking ahead? In other words do premature sets
exist? Indeed, they do exist and Rosa and Wallis
prove the following corollary.

Corollary 1 [43]. For n even, there is a premature set

of k one-factors in Kn whenever n
2 6 k 6 n� 3 and n

2 is

odd, and whenever n
2 < k 6 n� 3 and n

2 is even.

They also show that when the tournament is big
enough nothing can go wrong in the first slots.

Corollary 2 [43]. If n P 8 and even, there exists no

premature set of three 1-factors in Kn.

This corollary is followed by a conjecture which
is still an open question.

Conjecture 1 [43]. For any positive integer k, there
exists n(k) such that if n > nðkÞ, then any premature
Fig. 5. Oriented 1-fac
set of 1-factors of Kn contains more than k one-

factors.

The existence of premature sets precludes the
possibility of a ‘‘greedy’’ or slot-by-slot approach
to finding tournaments: such approaches can lead
to a premature set.

The home away assignments can be represented by
orienting the edges and letting an edge from node i to
node j correspond to a game where team i visits team
j. An oriented 1-factorization ~F ¼ ð~F 1; . . . ; ~F n�1Þ or
equivalently an oriented ðn� 1Þ-coloring then char-
acterizes a schedule for the single round robin tourna-
ment. Fig. 5 shows an oriented 1-factorization of K6

and Fig. 6 shows the associated schedule.
We present some of the most important results

obtained from the relationship between graphs
and schedules. The first and most basic result is
the following.

Proposition 1 [56]. In any oriented coloring of Kn,

there are at least n � 2 breaks.

The proof is straightforward when observing that
at most two teams can have a pattern without
breaks. However, the result is very important since
it gives a lower bound on the number of breaks in
a single round robin tournament. Furthermore, de
Werra was also able to show that the lower bound
was obtainable by constructing a 1-factorization
with exactly n � 2 breaks. The 1-factorization is
called the canonical 1-factorization and it is defined
as follows.
torization of K6.
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Definition 1 [56]. The canonical 1-factorization sat-
isfies that for i ¼ 1; . . . ; n� 1

F i ¼ fðn; iÞg [ fðiþ k; i� kÞ : k ¼ 1; . . . ; n=2� 1g;

where iþ k and i� k are expressed as one of the
numbers 1; . . . ; n� 1 (modðn� 1Þ).

To obtain a schedule with exactly n � 2 breaks,
the canonical factorization is oriented such that
the edge ði; nÞ is oriented from i to n if i is odd
and from n to i if i is even and the edge
ðiþ k; i� kÞ in F i is oriented from iþ k to i� k if
k is odd and the other way if k is even.

Proposition 2 [56]. There exists an oriented coloring

of Kn with exactly n � 2 breaks.

The canonical 1-factorization has subsequently
been widely used in the literature and the associated
schedule is referred to as the canonical schedule. The
factorization and schedule shown in Figs. 5 and 6
are the canonical factorization and the canonical
schedule for a tournament with six teams.

The canonical schedule can also be used for tour-
naments with an uneven number of teams by using a
dummy node and in this way de Werra was able to
construct a tournament without breaks.

Corollary 3 [56]. Knþ1 has an oriented coloring

without breaks.

Notice, that the removal of team 6 in Fig. 6 pro-
duces a schedule for five teams without breaks.

Multi-period schedules were also considered and
the following two results were obtained.

Proposition 3 [56]. A mirrored double round robin

tournament has at least 3n� 6 breaks.

This can be proved by noting that teams with one
break in the first half have a corresponding break in
the second half and a third break at the beginning of
the second half.

Proposition 4 [56]. A mirrored double round robin
tournament with exactly 3n� 6 breaks exists and if

n 6¼ 4 no team has two consecutive breaks.

Again the canonical schedule was used for con-
structing a mirrored double round robin tourna-
ment with exactly 3n� 6 breaks although small
modifications were necessary to avoid consecutive
breaks. The resulting schedule is known as the mod-

ified canonical schedule.
In [55], de Werra gives a characterization of

canonically feasible break sequences. A break
sequence is a sequence telling at which slots the
breaks occur. A given sequence is said to be canon-
ically feasible if there exists an oriented coloring
derived from a canonical 1-factorization having
breaks occurring in pairs for colors which can be
associated with the break sequence. De Werra also
considers tournaments facing geographical con-
straints which require that, when teams are located
close to each other, they should have complemen-
tary patterns if possible. De Werra treats a number
of specific problems occurring when geographical
constraints are considered and presents constructive
methods for obtaining schedules.

Schreuder [47] formulates necessary and suffi-
cient conditions for a single round robin tourna-
ment by using 0–1 variables xi1i2s which is 1 if
team i1 plays home against team i2 in slot s. The
conditions look as follows:X

i12T

ðxi1i2s þ xi2i1sÞ ¼ 1 8i2 2 T 8s 2 S;X
s2S

ðxi1i2s þ xi2i1sÞ ¼ 1 8i1; i2 2 T ; i1 6¼ i2:

These constraints can be used to formulate round
robin scheduling problems using integer program-
ming although more sophisticated methods are
needed in order to solve problems of realistic size.

In [57] de Werra concentrates on irregularities in
schedules. He notices that when no breaks occur
between two time slots s1 and s2 the edges of the ori-
ented graph Kn, corresponding to the games played
in the slots s1; . . . ; s2, will form a regular bipartite
graph. This property is used to obtain schedules
minimizing the number of irregular slots (slots con-
taining a break) and to distribute the irregular slots
evenly.

De Werra summarizes most of the previous
results in [58] where, for the first time, place con-
straints are considered. In order to solve the sched-
uling problem with place constraints, schedules
with placeholders are generated and, for each
schedule, teams are assigned to placeholders by
constructing a factor in a bipartite graph. The
bipartite graph contains a node for each team, a
node for each placeholder, and an edge between a
team i and a placeholder j if the pattern of place-
holder j satisfies the place constraints of team i. If
a factor can be constructed in the bipartite graph
we have a feasible solution and otherwise we move
on to the next schedule. This is the first step
towards the decomposition methods presented in
the following section.
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However, before moving to the decomposition
methods, let us mention de Werra et al. [59] facing
a problem with two leagues A and B. League A

plays a double round robin while league B plays a
single round robin before it is partitioned into two
leagues C and C 0 which both play an additional sin-
gle round robin. The partitioning of league B is not
known in advance since it depends on the outcome
of the games. The objective is to spread breaks
evenly and minimize the total number of breaks.
The problem is constrained by teams from different
leagues using the same venue, and breaks in the last
slot are not allowed. Since team specific require-
ments are not considered, it is possible to construct
an optimal solution for the problem.

4.2. The constrained minimum break problem

In the beginning of the 1990s the focus moved
from the graph theoretical results to practical appli-
cations. This change meant that the constraints out-
lined in Section 3 were taken into account and
solution methods capable of handling these con-
straints had to be developed. The problem of finding
a schedule minimizing the number of breaks and at
the same time take additional constraints into
account is known as the constrained minimum break

problem. However, the problem may change signifi-
cantly from one application to another since differ-
ent constraints are considered.

To solve the problem two metaheuristic appro-
aches were applied by Willis and Terrill [61] who
use simulated annealing and Wright [63] who uses
tabu search for scheduling cricket tournaments.
However, the majority of the papers use a decompo-
sition approach. A sports scheduling problem natu-
rally decomposes into four steps and, although the
order of the steps vary and some steps are com-
bined, these four steps are used in almost all solu-
tion methods for solving variations of the
constrained minimum break problem. The four
steps are:

Step 1 Generate patterns.
Step 2 Find a pattern set for placeholders.
Step 3 Find a timetable for placeholders.
Step 4 Allocate teams to placeholders.

Schreuder [48] solves a mirrored double round
robin problem for the Dutch professional football
league and uses a 2-phase approach which resembles
the method used by de Werra [58]. In this method
Phase 1 combines Steps 1–3 by constructing the
canonical schedule for placeholders and Phase 2
corresponds to Step 4 and allocates teams to place-
holders. The problem of assigning teams to place-
holders is formulated as a quadratic assignment
problem and a heuristic solution method is pre-
sented for solving the problem.

In 1998 Nemhauser and Trick [36] schedule the
basketball tournament for the Atlantic Coast Con-
ference consisting of nine university teams from
the United States. In their approach all four steps
are used but instead of using a combinatorial
design, as seen in the earlier approaches, they use
IP combined with enumeration techniques to obtain
pattern sets. In Step 1 they generate mirrored pat-
terns having a reasonable chance of being used in
a feasible pattern set and in order to satisfy a spe-
cific constraint, slots 8 and 10 are interchanged.
After the patterns have been generated, an IP model
is used in Step 2 to generate pattern sets. The IP
model chooses nine patterns which minimize the
number of breaks and it requires that in each slot,
four patterns have a home game, four patterns have
an away game and one pattern has a bye. All feasi-
ble solutions to the model are generated and it leads
to 17 pattern sets. For each pattern set all feasible
timetables are generated using another IP model
and this leads to 826 timetables. Finally, teams are
allocated to placeholders by enumerating through
the 9! possible allocations. Almost 300 million
schedules had to be considered but only 17 were fea-
sible and from these schedules a final schedule was
chosen.

After the IP/enumeration approach by Nemha-
user et al. [46], Henz [25,23] and Régin [41] intro-
duced CP approaches for solving sports scheduling
problems.

Schaerf [46] considers the problem of scheduling
a mirrored double round robin tournament with
complementary constraints, place constraints, geo-
graphic constraints and top team constraints. The
constraints are split into hard constraints which
must be satisfied and soft constraints enforcing a
penalty when violated. To solve the problem, he
uses the 2-phase approach known from de Werra
[58] and Schreuder [48] in which Phase 1 combines
Steps 1, 2 and 3 while Phase 2 corresponds to Step
4. Phase 1 is handled by using the modified canoni-
cal schedule since this schedule minimizes the
number of breaks and avoids consecutive breaks
but it is noted that Phase 2 is independent of
the schedule chosen in Phase 1. The assignment



Fig. 7. Timetable and corresponding maximum cut graph.
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problem considered in Phase 2 is solved using CP.
The variables and constraints used to formulate
the problem are outlined and computational results
are presented. The CP model takes longer time than
the heuristic method presented by Schreuder [48]
but in return it gives the optimal solution.

In contrast to Schaerf [46], Henz [25] uses CP to
solve all four steps. The individual steps are solved
in the order 1, 2, 3, 4 and in the order 1, 2, 4, 3.
Henz reports that, in most cases, the best perfor-
mances are obtained by solving Step 4 before Step
3. CP models are presented for each of the four
steps and a generic constraint-based round robin
planning tool known as Friar Tuck is presented.
Friar Tuck uses the finite domain constraint pro-
gramming system Mozart 1.0 and allows the user
to fine-tune the solution process and the constraints.
In [23] Henz uses the CP approach explained in [25]
to solve the Basketball league considered by Nem-
hauser and Trick and shows that the CP approach
clearly outperforms the combined IP and enumera-
tion technique used previously. Henz is able to find
all solutions to the problem in less than one minute
while Nemhauser and Trick used more than
24 hours.

Régin [41] also presents CP approaches for solv-
ing sports scheduling problems. At first he gives a
general discussion of symmetry breaking con-
straints, the use of implicit constraints, global con-
straints and pertinent and redundant constraints.
This discussion is followed by a CP model for gener-
ating a single round robin schedule with a minimal
number of breaks when no additional constraints
are present. Notice, that the canonical schedule also
solves this problem. Régin shows how symmetry
breaking is able to enhance performance signifi-
cantly and the problem size solvable in approxi-
mately 1 minute increases from 6 to 60 teams. Next
Régin considers a problem which is later known as
the break minimization problem.

Definition 2. Given a timetable, the break minimi-
zation problem consists of finding a feasible pattern
set which minimizes the number of breaks.

For this problem most of the symmetry breaking
constraints added to the first model become invalid
but Régin is able to derive new constraints and
again significant improvements can be obtained.
In this case a problem with 16 teams can be solved
in approximately 1 minute.

Subsequently, Trick [49] motivates the use of the
break minimization problem by discussing the order
of the four solution steps. He argues that the steps
should be ordered such that the most critical aspects
of the schedule are considered early in the solution
process. Solving Steps 1 and 2 before Steps 3 and
4 makes sense when for instance many place con-
straints are considered. On the other hand, when
game constraints or other constraints associated
with the timetable become more important, Steps
3 and 4 should be solved before Steps 1 and 2. Trick
presents a 2-phase solution method which solves
Steps 3 and 4 in Phase 1 and solves the break min-
imization problem corresponding to Steps 1 and 2 in
Phase 2. The method combines CP and IP by using
CP for Phase 1 and IP for Phase 2. Two CP models
for solving Phase 1 are discussed and both models
are able to find a 20-team schedule in less than 1 sec-
ond and able to find 500 20-team schedules in
around one minute. In Phase 2 the symmetry break-
ing constraints presented by Régin [41] are used in
an IP model and the computation times show
improvements for large instances (more than 16
teams) compared to the CP model presented by
Régin.

The papers by Régin [41], Trick [49] were
followed by a number of papers focusing on the
break minimization problem alone. Elf et al. [16]
show that solving the break minimization problem
is equivalent to a maximum cut problem in an undi-
rected graph G. Given a timetable, the graph G is
constructed by adding a node vis for each team i

and each slot s such that vis corresponds to entry
ði; sÞ in the timetable. An example is shown in Fig. 7.

For each team i and each slot s in 2; . . . ; jSj the
nodes vis�1 and vis are connected by an edge corre-
sponding to the horizontal edges in Fig. 7. The ver-
tical edges combine nodes vi1s and vi2s when team i1
plays against team i2 in slot s. By assigning a weight
of 1 to all the horizontal edges and a weight M to
the vertical edges, Elf et al. are able to show that
a maximum cut in G corresponds to an optimal
solution to the break minimization problem when
M P nðn� 2Þ þ 1. The reasoning behind the argu-
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ment is that a cut separates the vertices into two
sets. One of the sets will correspond to home games
and the other to away games. In order to obtain a
feasible home–away assignment we must ensure
that, when two nodes play against each other, one
belongs to the set of home games while the other
belongs to the set of away games. This is handled
by assigning big weights to all the vertical edges in
G. Maximizing the number of horizontal edges in
the cut, corresponds to minimizing the number of
breaks since an edge which is not part of the cut
leads to a break.

After the graph G has been constructed, Elf et al.
show how to transform this graph into a smaller
graph by contracting the vertical edges one by one
and changing the signs of some of the horizontal
edges. This leads to a graph with nðn�1Þ

2
nodes and

nðn� 1Þ edges. The modified graph speeds up the
solution process since a maximum cut for the mod-
ified graph can be directly transformed to a maxi-
mum cut for the original graph G. A maximum
cut is found by applying a branch and cut algorithm
described by Barahona et al. [3]. The computational
tests show great reductions in computation times
compared to the CP and IP approaches presented
by Régin and Trick, respectively, and instances with
up to 26 teams can be solved within reasonable time
(1215.9 second).

A similar idea is used by Miyashiro and Matsui
[34] who also consider the break minimization prob-
lem. They use two graphs G1 and G2 both having a
node set equal to the node set of G. The edges of G1

correspond to the horizontal edges of G while the
edges of G2 correspond to the vertical edges of G.
Instead of using weights equal to M, they notice
that the problem is a special case of MAX RES
CUT discussed by Goemans and Williamson [19]
and therefore solvable by an approximation algo-
rithm based on positive semidefinite programming
proposed by Goemans and Williamson [19]. The
problem can also be stated as a special case of
MAX 2SAT but solving the MAX 2SAT problem
is equivalent to solving the MAX RES CUT prob-
lem when the algorithm of Goemans and William-
son is applied. In contrast to the previous methods
on the break minimization problem, this is an
approximative method and this makes it capable
of finding solutions for problems with up to 40
teams compared to the 26 teams considered by Elf
et al. [16].

At the end of the paper by Elf et al. [16], it is con-
jectured that instances with only n � 2 breaks are
solvable in polynomial time and that the break min-
imization problem in general is NP-hard. The sec-
ond conjecture is still an open problem.

The first conjecture was proved affirmatively in
[32] where Miyashiro and Matsui consider the
problem of finding a pattern set with exactly
n � 2 breaks for a given timetable or showing that
such a pattern set does not exist. The problem is
reduced into n decision problems P1k for k ¼
1; . . . ; n where P1k is similar to the original problem
except for an extra constraint requiring that team k

has a pattern without breaks and starts with a
home game. If a pattern set exists for one of the
problems P11; . . . ; P1n, we have a solution and
otherwise no feasible pattern set exists with n � 2
breaks. Since 2SAT problems can be solved in poly-
nomial time, Miyashiro and Matsui are now able to
show that the original problem can be solved in
polynomial time by transforming each of the prob-
lems P11; . . . ; P1n into a 2SAT problem. The trans-
formation is accomplished by constructing a
pattern set and using boolean variables xis which
are true when team i plays according to the con-
structed pattern set in slot s and false otherwise.
The conclusion is that, for a given timetable, it is
possible to find a feasible pattern set with n � 2
breaks in polynomial time or show that such a pat-
tern set does not exist.

Corollary 4 [32]. The following problem is solvable

in polynomial time.

Instance: A timetable with n teams where n is even.

Task: Find a pattern set with at most n � 2

breaks that is consistent with the given
timetable if it exists and return ‘‘infeasi-

ble’’ otherwise.
Furthermore, Miyashiro and Matsui [33] show
that the result is also valid for pattern sets with n
breaks.

Corollary 5 [33]. The following problem is solvable

in polynomial time.

Instance: A timetable with n teams where n is even.

Task: Find a pattern set with at most n breaks

that is consistent with the given timetable

if it exists and return ‘‘infeasible’’

otherwise.
The procedure is very similar to the procedure
used in [32]. Again the problem is transformed to
a number of 2SAT problems and since they can be
solved in polynomial time, it is possible to solve
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the original problem in polynomial time. In addition
to the corollary an interesting property combining
break minimization and break maximization is pre-
sented. Given a pattern set H represented by a his

for each team i and each slot s, the pattern set eH
is defined such that ~his ¼ his if s is uneven and
~his 6¼ his if s is even. Due to the construction, each
team has a break in each slot s, s P 2, in exactly
one of the pattern sets and this leads to the follow-
ing lemma.

Lemma 1 [33]. Let H be a pattern set for a

tournament with n teams where n is even. Then the

number of breaks in H plus the number of breaks in eH
equals nðn� 2Þ.

Lemma 1 implies the following theorem.

Theorem 1 [33]. Given a timetable, then a feasible

pattern set minimizes the number of breaks if and only

if eH maximizes the number of breaks.

This implies that minimizing and maximizing
the number of breaks for a given timetable is
equivalent.

A variant of the second conjecture by Elf et al.
[16] regarding NP-hardness of the break minimiza-
tion problem is considered by Post and Woeginger
[37]. They consider partial timetables for single
round robin tournaments. The partial timetables
only contain a subset of the normal n � 1 slots
and they satisfy that two teams do not meet more
than once. Break minimization in a partial timetable
means finding a home away assignment for the par-
tial timetable such that the number of breaks is min-
imized. By using a polynomial time reduction from
an NP-hard version of the Max-Cut problem Post
and Woeginger are able to show the following
theorem.

Theorem 2 [37]. Break minimization in partial time-

tables with n teams and three slots is NP-hard.

The theorem leads to the following corollary.

Corollary 6 [37]. Break minimization in partial time-

tables with n teams and a fixed number r P 4 of slots

is NP-hard.
Table 1
Upper and lower bounds for maxTT n BminðTT nÞ with n 6 26

n 4 6 8 10 12 1

LB-EJR 2 4 8 12 18 2
LB-PW 2 – – – – –
UB-PW 2 4 12 16 30 3
Post and Woeginger also consider lower and
upper bounds on the solution values for the break
minimization problem. Let BminðTT nÞ be the optimal
solution value to the break minimization problem
given the timetable TT n with n teams. They are able
to obtain a lower bound on maxTT n BminðTT nÞ when
n ¼ 4k for some k P 1.

Theorem 3 [37]. For n ¼ 4k teams with k P 1, there
exists a timetable TT �n with BminðTT �nÞP 1

6 nðn� 1Þ.

An upper bound on BminðTT nÞ for an arbitrary
timetable TT n is also derived.

Theorem 4 [37]. Each timetable TT n for n teams

satisfies

BminðTT nÞ 6
1
4
nðn� 2Þ; if n is of the form 4k;

1
4
ðn� 2Þ2; if n is of the form 4k þ 2:

(

Furthermore, a corresponding pattern set can be com-

puted in polynomial time.

In Table 1 the lower bounds obtained by Elf at
al. [16] are denoted LB-EJR, the lower bounds for
schedules with n ¼ 4k are denoted LB-PW and the
upper bounds are stated UB-PW according to the
table from [37].

Finally, Post and Woeginger conjecture that the
upper bound on BminðTT nÞ for any even n and any
timetable TT n can be improved to 1

6
nðn� 1Þ. How-

ever, we are able to obtain a counterexample with
n = 8 to this conjecture by using a simple 2 phase
approach. Phase 1 consists of a basic CP model
for generating timetables [26] and in Phase 2 we
solve the break minimization problem by using the
IP model presented in [49]. The procedure iterates
between the two phases and, for each number of
teams n, we are able to obtain the lower bounds dis-
played in Table 2 within 15 minutes of computation
time. Table 2 also displays the upper bounds conjec-
tured by Post and Woeginger and we see that, for
n = 8, our lower bound exceeds the conjectured
upper bound.

The minimum break problem was motivated by
the scheduling approach used by Régin [41] and
Trick [49] but it only solves half the problem since
4 16 18 20 22 24 26

6 32 44 54 64 74 90
40 – – – – –

6 56 64 90 100 132 144



Table 2
Lower bound for maxTT n BminðTT nÞ and conjectured upper bound

n 4 6 8 10 12 14 16 18 20 22 24 26

LB-RT 2 4 12 14 20 26 32 40 – – – –
UB-Conj 2 5 9 15 22 30 40 51 63 77 92 108
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it requires a given timetable. The first part of this
approach regarding the timetabling problem has
been considered by Henz et al. [26]. They use vari-
ables ois to represent the opponent of team i in slot
s and they formulate the problem using the global
CP constraints alldifferent and one-factor.

alldifferentðoi1; . . . ; oin�1Þ 8i 2 1; . . . ; n;

one-factorðo1s; . . . ; onsÞ 8s 2 1; . . . ; n� 1:

The alldifferent constraint is satisfied when each of
the variables oi1; . . . ; oin�1 is instantiated to a unique
value and the one-factor constraint is satisfied when
ois 6¼ i 8i 2 1; . . . ; n and ois ¼ j implies that ojs ¼ i
8i; j 2 1; . . . ; n.

The two constraints make sure that any feasible
solution constitutes a timetable for a single round
robin tournament. However, since these are CP con-
straints they can be implemented in more than one
way and the choice of propagation technique used
for each of the constraints may have a great impact
on the size of the search tree and the computation
time used to solve the problem. Henz et al. provide
an extensive analysis of propagation techniques to
obtain guidelines for choosing the most effective
solution method. In the analysis it is concluded that
the propagation techniques used for the alldifferent

constraint should obtain arc-consistency (see [27])
since this will reduce both the search tree and the
runtime when compared to weaker consistency tech-
niques. For the one-factor constraint, three propa-
gation techniques are considered.

1. Arc-consistent propagation with respect to the
constraints:

ois 6¼ i; i ¼ 1; . . . ; n; s ¼ 1; . . . ; n� 1;

ooiss ¼ i; i ¼ 1; . . . ; n; s ¼ 1; . . . ; n� 1:

2. Arc-consistent propagation with respect to the
constraints:

ois 6¼ i; i ¼ 1; . . . ; n; s ¼ 1; . . . ; n� 1;

ooiss ¼ i; i ¼ 1; . . . ; n; s ¼ 1; . . . ; n� 1;

alldifferentðo1s; . . . ; onsÞ; s ¼ 1; . . . ; n� 1:
3. Arc-consistent propagation with respect to the
constraints:

one-factorðo1s; . . . ; onsÞ 8s 2 1; . . . ; n� 1:

The first of the three propagation techniques
leads to poor performances but, by adding the
redundant alldifferent constraint in the second tech-
nique, much better results are obtained. The compu-
tational tests show that, when a pattern set is given,
the second technique obtains the best results. The
additional time used to obtain arc consistency for
the one-factor constraint in the third technique out-
weights the time reduction achieved by the reduc-
tion in the search tree. However, when no pattern
set is given, the third propagation technique obtains
the best results. Notice that the propagation tech-
niques are more efficient when a pattern set is given
since the techniques are able to take advantage of
the restrictions enforced by the pattern set.

Trick [50] is able to show why the second propa-
gation technique works better than the third when
the pattern set is given. Let Di be the set of feasible
opponents for team i in a given slot s. Then Di is
said to be bipartite if the set of teams can be divided
into two sets X and Y such that

jX j ¼ jY j ¼ n
2
;

i 2 X ) Di � Y ;

i 2 Y ) Di � X :
Theorem 5 [50]. For a given slot s, if the Di are

bipartite, then arc-consistency for the constraints

ois 6¼ i; i ¼ 1; . . . ; n;

ooiss ¼ i; i ¼ 1; . . . ; n;

alldifferentðo1s; . . . ; onsÞ

implies arc-consistency for the constraint

one-factorðo1s; . . . ; onsÞ:
Di is always bipartite when the pattern set is

given, since the teams can be divided into the set
of teams playing home and the set of teams playing
away. This implies that, when the pattern set is
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determined before we find a timetable, there is no
point in using the third propagation technique since
arc-consistency for the one-factor constraint is
obtained by the second technique and it requires less
computation time. In the paper Trick provides
numerous comparisons of CP and IP models for
solving sports scheduling problems. These include
tightly constrained timetables, schedules with
home–away restrictions and schedules for more
than one division. The conclusion is that IP in gen-
eral performs best when an objective value is consid-
ered, while CP is best at handling the feasibility
problems. However, at a few feasibility problems,
IP outperforms the CP model since the propagation
techniques were unable to recognize infeasibility.

Although much work has concentrated on the
break minimization problem, some of the recent
papers on practical sports scheduling applications
find pattern sets before timetables. This approach
relies on good pattern sets in the first phase but find-
ing a characterization of feasible pattern sets is still
an open problem. However, Miyashiro et al. [35]
present a necessary condition for feasible pattern
sets and show that the condition characterizes feasi-
ble pattern sets with a minimum number of breaks
for schedules with up to 26 teams. For a subset of
teams bT � T they let the functions AðbT ; sÞ and
HðbT ; sÞ return the number of away games and home
games bT plays in slot s. The necessary condition can
then be stated as follows:X

s2S

minfAðbT ; sÞ;HðbT ; sÞgP
jbT jðjbT j � 1Þ

2

8bT � T :

The reasoning behind the condition is that any sub-

set of teams bT must play j
bT jðjbT j�1Þ

2
games in a single

round robin tournament and, in any slot s, the
teams cannot play more than minfAðbT ; sÞ;
HðbT ; sÞg mutual games. Miyashiro et al. also show
that, for pattern sets with a minimum number of
breaks and no more than 26 teams the condition
is both necessary and sufficient. In [35] it is shown
that, whether a given pattern set with a minimum
number of breaks satisfies the condition can be
checked in polynomial time.

Croce and Oliveri [12] schedule the Italian soccer
league and again this is a problem with a lot of addi-
tional constraints. Each team is assigned to one of
two concurrent TV networks and the chosen TV
network holds the rights to all the home games of
the particular team. This means that the schedule
should be balanced with respect to TV coverage
such that both TV networks have a proportional
part of the home games in each slot. Furthermore,
the league contains teams sharing stadium and
therefore complementary constraints must be
imposed. The problem is solved by a 3-phase
approach but all four decomposition steps are actu-
ally used since all patterns with no more than four
breaks are generated before solving Phase 1. Phase
1 corresponds to Step 2, Phase 2 corresponds to
Step 3 and Phase 3 corresponds to Step 4. All phases
are solved by IP models and to obtain a good solu-
tion, the phases are solved iteratively according to
the following scheme.

1. 200 pattern sets are generated.
2. For each generated pattern set a feasible timeta-

ble is found if possible.
3. For each generated feasible timetable, teams are

allocated to placeholders.

The solution method is able to generate a number
of high quality schedules and the authors note that
preliminary contacts with the Italian Football (soc-
cer) League are ongoing.

Rasmussen and Trick [39] propose another itera-
tive approach using logic-based Benders decomposi-
tion called a pattern generating Benders approach
(PGBA). This is a 4-phase approach in which Phase
1 generates patterns, Phase 2 uses an IP model to
find a pattern set from the generated patterns, Phase
3 checks feasibility of the pattern set and assigns
teams to placeholders and, finally, Phase 4 generates
a timetable using a CP model. The resemblance to
Benders decomposition comes from a number of
feasibility checks in Phase 3. In case one of these
checks prove the pattern set to be infeasible, a
logic-based Benders cut is added to the IP model
from Phase 2 and the algorithm returns to Phase
2. This iterative process continues until a feasible
pattern set has been found or the IP model from
Phase 2 becomes infeasible. In the first case, a corre-
sponding timetable is found in Phase 4 and the algo-
rithm stops. In the second case, we return to Phase 1
and generate additional patterns since Phase 1 only
generates a subset of the feasible patterns initially.
The algorithm continues until an optimal solution
has been found or infeasibility has been proved.
The computational results show that the PGBA
leads to significant reductions in computation times
for hard instances.



Fig. 8. Graph showing the optimal trips for team i [10].
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Subsequently, Rasmussen [38] has used the
PGBA to schedule a triple round robin tourna-
ment for the best Danish soccer league. In the
original presentation of the PGBA only place con-
straints were considered but numerous constraints
are present in the practical application. These
include constraints relating to the timetable, which
makes the problem harder to solve since the sub-
problem becomes an optimization problem instead
of a feasibility problem. Therefore not only
feasibility cuts but also optimality cuts must be
added to the master problem. However, the
modified PGBA is able to obtain very good solu-
tions in short time and it has been used for sched-
uling the 2006/2007 season of the Danish soccer
league.

Recently, Bartsch at al. [4] have presented a new
approach based on renewable resources for solving
sports scheduling problems. They consider the
problems of scheduling the German and the Aus-
trian soccer leagues. Again various constraints
must be taken into account but in contrast to pre-
vious methods this is done by using partially
renewable resources. Bartsch et al. present models
based on this technique for both the German and
the Austrian leagues and they develop a specialized
heuristic 3-phase approach for solving the prob-
lem. In this approach, Phase 1 generates both a
pattern set and a timetable with placeholders,
Phase 2 assigns teams to placeholders and Phase
3 determines the exact date for each team since
each slot covers more than one day. The approach
has been used in practice in both Germany and
Austria.

Knust and von Thaden [28] use a resource-
based method to obtain balanced home/away
assignments for a given timetable. They define a
neighbourhood for a given home/away assignment
and show that all balanced pattern sets are con-
nected. This means that it is possible to move from
one balanced assignment to any other using a finite
number of steps. Knust and von Thaden also con-
sider preassignments meaning that some home–
away assignments have been fixed in advance.
They show that an balanced pattern set respecting
these preassignments can be found in polynomial
time if it exists.

A general approach for using resource-based
models is presented by Drexl and Knust [13]. In
their paper they show how various constraints can
be modelled using resources and they are working
on corresponding solution methods.
5. Minimizing travel distance

The minimization of travel distance becomes rel-
evant when teams travel from one away game to the
next without returning home. In this setup huge sav-
ings can be obtained when long trips are applied
and teams located close together are visited on the
same trip.

The interest in minimizing travel distances arose
from the increasing travel costs due to the oil crises
in the 1970s. This led to a request for efficient solu-
tion methods capable of finding good solutions for
practical applications and a number of papers on
distance minimization has appeared since 1976. In
2001 Easton, Nemhauser and Trick [14] proposed
the traveling tournament problem and this problem
has received most of the attention concerned with
minimizing travel distances since then. In the fol-
lowing two sections we will give an outline of the
papers applied for practical applications and the
papers focusing on the traveling tournament prob-
lem, respectively.
5.1. Practical applications

Campbell and Chen [10] presented the first paper
considering the problem of scheduling a basketball
conference of 10 teams. This is a relaxed double
round robin tournament and the teams are allowed
to play at most two consecutive away games with-
out returning home. To solve the problem, a 2-
phase approach is applied. In Phase 1, the optimal
trips for each team are derived and the authors
show that, for a tournament with an even number
of teams, it is equivalent to pair the teams two
and two such that the distances between the paired
teams are minimized. Fig. 8 shows why this holds
true. Each node in the graph corresponds to a team
and we want to minimize the total travel distance
for team i. Team i travels at least once from or to
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all other teams (the dotted edges) and hence these
edges can be discarded. Furthermore, the number
of trips of length 2 must be maximized when mini-
mizing the travel distance. This means that the opti-
mal solution corresponds to a pairing of the teams
(the remaining edges) which minimizes the total dis-
tance between the paired teams. This pairing is inde-
pendent of the team for which we minimize the
travel distance.

In Phase 2, the optimal pairing is translated into
a number of feasible sequences using a constructive
approach. This approach takes all the constraints
into account and the result is an optimal schedule
which minimizes the total travel distance.

Ball and Webster [2] solve a similar scheduling
problem for a basketball conference in their paper
from 1977. They first model the problem using an
IP formulation but the problem is too large to solve
and, instead, a heuristic solution method very simi-
lar to the method by Campbell and Chen is
developed.

The same year Cain, Jr. [9] presents a heuristic
approach for scheduling major league baseball.
The league consists of 12 teams partitioned into
two divisions and each team plays 162 games mak-
ing this problem one of the largest in the literature.
Furthermore, a very large number of constraints
and considerations are described which makes the
problem even harder. The solution method is a con-
structive approach decomposing the season into
three phases. For each phase, a pattern set is gener-
ated and, given the pattern set, an optimal timetable
is subsequently found by using a computer.

In 1980, Bean and Birge [5] return to a basketball
instance since they schedule the tournament for the
national basketball association (NBA). As Ball and
Webster, they first formulate the problem using IP
but again the problem becomes too large to solve
in reasonable time. Instead, they use a heuristic 2-
phase approach resembling the approaches used
by Campbell and Chen. However, in this problem
the teams are allowed to play five consecutive away
games and this relaxation makes the problem sub-
stantially harder. Furthermore, a large number of
place constraints are present since the venues are
used for other purposes. In Phase 1, a heuristic
method is used to minimize the travel distance for
each team individually. Due to the longer trips, it
is no longer possible to use the ‘‘pairing approach’’
from the earlier methods. In Phase 2, the trips are
scheduled one by one starting with the longest travel
distance. The trips are scheduled in order to cover
most of the home game requests and, in case a trip
cannot be scheduled, it is divided into partial trips.
After a feasible solution has been obtained, a
switching algorithm is applied to improve the
solution.

In 1991, Ferland and Fleurent [17] present a sup-
port system to help scheduling the National Hockey
League (NHL). This is a relaxed tournament with
21 teams, it is divided into two conferences and each
conference is divided into two divisions. The prob-
lem contains a number of constraints such as place
constraints, restrictions on how often teams can
play, restrictions on the minimum time between
two games with the same opponents and restrictions
on the traveling distances. The problem is modelled
mathematically but the size of the problem makes it
impossible to solve. Instead, a number of proce-
dures are presented which can be used while the
schedule is created manually. After this paper, the
NHL decided to expand the league from 21 teams
to 24 teams and Fleurant and Ferland [18] presented
an IP model for deciding the number of games
played between the four divisions.

Russell and Leung [44] considered a baseball lea-
gue in 1994 with eight teams divided into two divi-
sions. The problem is a compact scheduling
problem consisting of three segments: first a double
round robin tournament for each division, then a
double round robin tournament for the entire lea-
gue and, finally, another double round robin tour-
nament for each division. They apply a 2-Phase
approach generating schedules for placeholders in
Phase 1 and assigning teams to placeholders in
Phase 2. Due to the structure of the tournament,
it is possible to solve Phase 2 using total enumera-
tion within reasonable time and Phase 1 is solved
using an exchange heuristic. A feasible schedule is
obtained and from this schedule new schedules are
obtained by exchanging the slots. Furthermore,
the number of consecutive away slots is limited to
two, which means that the pairing technique from
[10,2] can be applied. They use this method to
obtain a new kind of schedule with more variation
compared to the traditional schedule format. How-
ever, the new schedule is rejected since it allows byes
and it increases travel distance.

In the paper, they note that minimizing travel
distance is correlated to maximizing the number of
breaks and they prove the following theorem.

Theorem 6 [44]. For a round robin tournament with

an even number of teams n P 6 where each team can
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play no more than two consecutive home or two

consecutive away games, the maximum number of

breaks is strictly less than n n
2� 1
� �

.

The first metaheuristic solution method is applied
by Costa [11] in 1995. It is an evolutionary tabu
search algorithm combining the mechanisms of
genetic algorithms and tabu search and it is used
to schedule the NHL also considered by Ferland
and Fleurant [17]. The algorithm consists of three
phases which are used repeatedly after initial sched-
ules have been obtained. The initial population of
schedules is generated by an algorithm similar to
the one used in [17] and the road trips are built
sequentially. The reproduction phase assigns a
probability for each schedule to be reproduced.
The probability is monotonically decreasing with
respect to the number of violated constraints. The
crossover phase contains the evolutionary part of
the algorithm since it generates new schedules from
existing schedules and the tabu search face contains
a traditional tabu. The neighbourhood of the tabu
search consists of all the schedules that can be
obtained by moving a single game from one day
to another.

Recently, two papers have appeared on minimiz-
ing travel distance for a practical application. The
first is by Voorhis [54] and once more college bas-
ketball is considered. The application is a double
round robin tournament with 10 teams allowing
trips of length 2 (called travel swings). The problem
is formulated as an IP model assigning games to
slots and it is solved using a depth first branching
algorithm. The algorithm starts with assigning trips
of length two to slots and afterwards the remaining
games are scheduled. For comparison the IP model
is also solved using CPlex but no feasible solutions
were obtained within 15 hours of CPU time. In con-
trast, the developed algorithm found nine schedules
in 1.33 hour of CPU time.

The second paper, by Wright [62], considers the
national basketball league of New Zealand. This is
a relaxed double round robin tournament with 10
teams and trips of length two are allowed. To solve
the problem, a subcost-guided simulated annealing
algorithm and the objective function reflects the
number of violated requests. The paper gives a
thorough comparison of variations of the algo-
rithm and concludes that it is advantageous to keep
a certain structure at the beginning of the search
but relaxing the structural constraints during the
search.
5.2. The traveling tournament problem

Easton et al. [14] presented the traveling tourna-

ment problem (TTP) in 2001. The problem is moti-
vated by the problem of scheduling major league
baseball and it is formulated to capture the funda-
mental difficulties of minimizing the travel distance
for a sports league. By using the TTP as bench-
mark problems, it is possible to develop and com-
pare solution methods which, afterwards, can be
specialized for the various constraints present in
practical applications. The TTP can be formulated
as follows.

Definition 3 [14]. The traveling tournament prob-
lem is as follows:

Input: n, the number of teams; D an n by n integer
distance matrix; L;U integer parameters.

Output: A double round robin tournament on the n

teams such that
– The number of consecutive home games

and consecutive away games are
between L and U inclusive, and

– The total distance travelled by the teams
is minimized.
Furthermore, two additional requirements are
mentioned. The first is a mirroring constraint
requiring that the schedule is mirrored and the sec-
ond is a no-repeater constraint requiring that two
teams cannot play two games against each other
in two consecutive slots. Notice that at most one
of the two requirements is relevant since the no-
repeater constraint is always satisfied in a mirrored
schedule.

In the paper two instance classes are presented:
Circle instances (circular distance):
An instance of the circular distance TTP with n

teams is obtained by generating an n-node circle
graph with unit distances (distance of 1 between
all adjacent nodes). The distance between two teams
i and j with i > j is then equal to the length of the
shortest path between i and j and it equals the min-
imum of i� j and j� iþ n.

National league instances (NL):
The MLB consists of two leagues called the

National League and the American League. In
order to create small instances reflecting the actual
structure of the MLB the teams of the National
League were used to obtain benchmark problems
with 4–16 teams called NL4, NL6, . . . ,NL16.
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Later Urrutia and Riberio [53] have presented a
third instance class:

Constant distance:

The constant distance instances are characterized
by a distance of 1 between all teams and Urrutia
and Riberio [53] show that, for this instance class,
minimizing travel distance is equivalent to maximiz-
ing the number of breaks.

All the instance classes are presented at [51]
together with the current best upper and lower
bounds. The benchmark problems considered here
all have L = 1 and U = 3.

Various solution methods have been presented
for solving the TTP. Easton et al. [14] present a
method based on the independent lower bound (IB),
which they define to be the sum of the minimum tra-
vel distances for each team when they are consid-
ered independently. The solution method generates
pattern sets with as many trips as possible and a cor-
responding timetable minimizing the travel distance
is found afterwards. In this setup, a strengthening of
the IB can be used to check optimality and, as long
as this bound is below the best solution, the algo-
rithm continues. This method is able to solve the
NL4 and NL6 to optimality.

Benoist et al. [6] apply a hybrid algorithm com-
bining Lagrange relaxation and CP. The algorithm
has a hierarchical architecture consisting of three
components. The main component is a CP model
capturing the entire problem and capable of solving
the problem by itself. However, a global constraint
is introduced in order to improve the bounds during
the search. This global constraint corresponds to the
second component and it contains a Lagrange
controller using either sub-gradient or modified
gradient techniques to adjust the lagrange multipli-
ers for the third component consisting of a pertur-
bated subproblem for each team. The subproblem
for a given team i schedules all the games associated
with team i such that team i’s travel distance is
minimized.

Subsequently, Easton et al. [15] present another
hybrid IP/CP solution method. This is a branch
and price (column generation) algorithm in which
the columns correspond to tours for the teams.
The master problem is a linear programming prob-
lem assigning teams to tours, while the pricing prob-
lem for generating tours is a CP problem. A parallel
version of the algorithm is implemented and it is to
date the only solution method which has been able
to prove optimality of an instance of NL8. How-
ever, the no-repeater constraint was not imposed
which means that the solution value can only be
used as a lower bound for the instance found at [51].

The next approach for the TTP was a simulated
annealing algorithm by Anagnostopoulos et al. [1]
called TTSA. From an initial schedule found by a
simple backtrack search TTSA searches for improv-
ing solutions using five kinds of moves: SwapHomes,

SwapRounds, SwapTeams, PartialSwapRounds and
PartialSwapTeams. By applying these moves, the
structure of the schedule is destroyed but for each
move a corresponding ejection chain is able to
restore the structure. In this way the algorithm is
able to satisfy all hard constraints during the search,
whereas the soft constraints may be violated. The
hard constraints include the round robin constraints
while the no-repeater is considered a soft constraint.
The number of violated soft constraints is incorpo-
rated in the objective function to force the algorithm
towards feasible solutions. TTSA randomly selects a
move and it is performed with probability 1 if it leads
to an improving solution and otherwise the proba-
bility depends on the resulting increase in travel dis-
tance plus the current ‘‘temperature’’. The TTSA
was able to improve all the current best known upper
bounds for the NL instances with more than 10
teams and, in a recent paper by Hentenryck and
Vergados [22], the TTSA is further refined to handle
mirrored tournaments. In this paper they also use a
randomized version of a hill-climbing algorithm to
obtain better initial schedules.

The first paper focussing solely on mirrored TTP
instances is by Ribeiro and Urrutia [42] and they
present a heuristic 3-phase approach for generating
mirrored schedules quickly. In Phase 1 they first use
the canonical schedule to obtain a timetable with
placeholders and afterwards they construct a matrix
of consecutive opponents. Each entry ði; jÞ of the
matrix gives the number of times another team
meets i and j consecutively and this is used in Phase
2 when teams are assigned to placeholders. A simple
heuristic assigns teams located close together to
placeholders who are met consecutively by many
teams. Finally, Phase 3 uses two steps to obtain a
pattern set. In Step 1 a constructive method gener-
ates an initial pattern set and afterwards Step 2 per-
forms local search to improve the pattern set.
Ribeiro and Urrutia also present a heuristic method
combining GRASP and iterated local search (ILS)
which they call GRILS-mTTP. The GRILS-mTTP
performs a number of iterations all starting with
the algorithm explained above for generating an ini-
tial schedule. Afterwards, a local search is applied to
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obtain a locally optimal solution and then GRILS-
mTTP iterates between a perturbation procedure
and a local search until some re-initialization crite-
rion is satisfied.

Henz [24] proposes to combine large neighbor-
hood search and CP to overcome the problem of
getting away from local optima. He uses five types
of moves which all relax a substantial part of the
given schedule. For instance the move called Relax

rounds does not only exchange two slots but it
relaxes all variables associated with a number of
slots. CP is then applied to obtain a new schedule
given the partial schedule which has not been
relaxed. In the paper it is noted that only prelimin-
ary results have been obtained and they are not
competitive to the conventional local search tech-
niques applied earlier.

As mentioned above Urrutia and Ribeiro [53]
present the instance class with constant distances
and show that minimizing travel distance for these
instances is equivalent to maximizing the number
of breaks. In the paper they also derive upper
bounds on the number of breaks for unconstrained
single round robin tournaments, equilibrated single
round robin tournaments, unconstrained double
round robin tournaments and double round robin
tournaments with a maximum of three consecutive
home games and three consecutive away games.
The limit on consecutive home games and away
games in the last kind resembles the bounds from
the benchmark TTP instances. By separating these
instances into three classes (n� 1Þmod3 ¼ 0,
ðn� 1Þmod3 ¼ 1 and ðn� 1Þmod3 ¼ 2 the follow-
ing bounds were obtained.

UBMTTP ¼

14; if n ¼ 4;

4ðn2 � nÞ=3� 4nþ 20; if ðn� 1Þmod3 ¼ 0

and n 6¼ 4;

4ðn2 � 2nÞ=3; if ðn� 1Þmod3 ¼ 1;

4ðn2=3� nÞ; if ðn� 1Þmod3 ¼ 2:

8>>>>>><>>>>>>:
The corresponding mirrored constant distance TTP
is solved by the GRILS-mTTP presented in [42] and
the algorithm is able to solve the instances with 4, 6,
8, 10, 12 and 16 teams to optimality by obtaining
solutions which reach the upper bound stated
above.

The constant distance TTP was also considered
by Ramussen and Trick [39] who used the PGBA
discussed in Section 4.2 to solve the problem. They
were able to prove optimality for all the mirrored
instances with 18 teams or less and all the non-mir-
rored instances with 16 teams or less by using the
algorithm for maximizing breaks instead of minimiz-
ing breaks. Hentenryck and Vergados [22] have also
used their TTSA approach and improved the best
solution for mirrored instance with 20 teams and
the best solutions for the non-mirrored instances
with 18–24 teams.

Lim et al. [29] apply a hybrid metaheuristic algo-
rithm combining simulated annealing and hill-
climbing for the TTP. After having found an initial
schedule using beam search the algorithm iterates
between two components for improving the current
schedule. The first component searches for improv-
ing schedules by using simulated annealing. The
moves in this component, called conditional local

jumps, exchange sets of matches in such a way
that all the constraints are satisfied. The second
component applies hill-climbing for finding a better
team assignment. This is done by means of local
exchanges and the algorithm moves in the direction
of decreasing travel distance. The fundamental idea
of the overall approach is to improve the schedule
when a good team assignment has been obtained
and to search for a better team assignment when
the schedule seems promising. The algorithm con-
tinues until no improvements have been obtained
for a fixed number of iterations or until a time limit
is reached. The computational results show that the
algorithm is able to improve the best solutions for
all the non-mirrored circular TTP instances with
10 teams or more.

As a generalization of the break minimization
problem when distances are considered instead
of breaks, Ramussen and Trick [40] define the time-

table constrained distance minimization problem

(TCDMP). The problem is defined as follows:

Definition 4 [40]. Given a timetable for a double
round robin tournament with n teams, a distance
matrix specifying the distances between the venues
and an upper bound UB on the number of consec-
utive home and consecutive away games, find a
feasible pattern set which minimizes the total
distance traveled by all teams.

In the paper four solution methods for the prob-
lem are presented and evaluated. The method
showing the best performances is a 2-phase hybrid
IP/CP approach which generates all feasible pat-
terns in Phase 1 using CP and assigns teams to pat-
terns in Phase 2 using IP. In an extended version of
the paper Ramussen and Trick also present a new
heuristic approach called the circular traveling
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salesman approach (CTSA) to solve the TTP. The
CTSA first solves the traveling salesman problem
containing all the teams in a given tournament.
Afterwards an instance of the circular distance
TTP is then formulated with the teams ordered
according to the TSP solution. To solve the circular
distance TTP the solutions obtained by Lim et al.
[29] are used and this gives a solution to the origi-
nal TTP instance. In spite of the simpleness the
CTSA is capable of obtaining solutions comparable
to the beam search used in [29] for obtaining initial
solutions.

6. Conclusion

This paper gives an outline of the terminology
used within sports scheduling, it presents an over-
view of the constraint types used in the literature
and it discusses the individual papers on both break
minimization and distance minimization. From this
survey it becomes clear that huge developments
have taken place within the area. The solution
methods become better at solving practical applica-
tions and the bounds for the benchmark instances
of the TTP are improved continuously. Neverthe-
less, the area still holds great opportunities for
new research. We can for example mention the
following.

The most obvious challenge within the area and a
great milestone to reach would be to prove optimal-
ity of the TTP instance NL8. Developing an efficient
way of improving the lower bounds for the TTP
problem and thereby reducing the current gap
between the lower and upper bounds would also
be extremely useful.

The area has proven to be very well suited for
hybrid solution methods and this research should
be continued in the future. Finding new ways of
integrating IP and CP or metaheuristics and IP/CP
would be beneficial not only to the sports scheduling
area but also for the operations research and the
computer science communities in general.

In the papers concerning practical applications
many authors mention that it is very hard for the
leagues to explicitly state all their requests. This
makes it very hard to parameterize the model cor-
rectly and often the solution method has to be
applied numerous times before a satisfactory solu-
tion has been obtained. Finding a way of changing
parameters during the search could be a help in this
process since then the solution method could con-
tinue instead of starting all over again.
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application of combinatorial optimization to statistical
physics and circuit layout design, Operations Research 36
(1988) 493–513.

[4] T. Bartsch, A. Drexl, S. Kröger, Scheduling the professional
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