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Abstract

The generalized assignment problem is a classical combinatorial optimization problem known to be NP-hard. It can
model a variety of real world applications in location, allocation, machine assignment, and supply chains. The problem
has been studied since the late 1960s, and computer codes for practical applications emerged in the early 1970s. We pro-
pose a new algorithm for this problem that proves to be more effective than previously existing methods. The algorithm
features a path relinking approach, which is a mechanism for generating new solutions by combining two or more ref-
erence solutions. It also features an ejection chain approach, which is embedded in a neighborhood construction to create
more complex and powerful moves. Computational comparisons on benchmark instances show that the method is not
only effective in general, but is especially effective for types D and E instances, which are known to be very difficult.
� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

We introduce an effective metaheuristic algo-
rithm for the generalized assignment problem
(GAP), which is one of the representative combi-
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natorial optimization problems known to be NP-
hard (e.g., [29]). This problem has many important
applications, notably including scheduling, supply
chain, location and vehicle routing problems. Con-
sequently, the challenge of designing good exact
and/or heuristic algorithms for GAP has signifi-
cant practical as well as theoretical value (e.g.,
[6,24,28,33]).

Our algorithm features a path relinking ap-
proach [9,10,12,19,23] associated with adaptive
ed.
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memory programming (tabu search), which pro-
vides an ‘‘evolutionary’’ mechanism for generating
new solutions by combining two or more reference
solutions. The idea of path relinking was proposed
by Glover [9,10], and some of its basic aspects were
also introduced in an earlier paper by Ibaraki et al.
[16]. For more about the general principles of the
path relinking approach, see e.g., [19,23]. Prelimi-
nary results of our path relinking approach were
reported in [31,32]. To the best of our knowledge,
our paper [32] (a preliminary extended abstract of
this paper) was the first paper that reported com-
putational results of a path relinking approach
for the GAP, in which results for benchmark in-
stances with up to 200 jobs were reported. Alfan-
dari et al. [1] independently proposed another
effective path relinking algorithm slightly earlier,
although without reporting any computational re-
sults in the original version of their paper. (The full
version [2] containing computational results ap-
peared somewhat later, and we compare their
method with ours in Section 4.) Our algorithm also
features an ejection chain approach, likewise asso-
ciated with tabu search [11,33], where Lagrangian
relaxation provides adjusted cost information to
guide the neighborhood search to promising solu-
tions. Rego and Glover suggested in Section 4.3 of
[27] that combining ejection chain methods and
path relinking would be fruitful. Moreover, we
incorporate an automatic mechanism for adjusting
search parameters, to maintain a balance between
visits to feasible and infeasible regions.

Computational comparisons are conducted on
benchmark GAP instances known as types B, C,
D and E. These test problems are taken from the
OR-Library, 1 which is the primary repository
for such problems, and are supplemented by addi-
tional test instances generated by ourselves. The
proposed algorithm is compared with many exist-
ing heuristic algorithms including the recent path
relinking approach by Alfandari et al. [2,3], tabu
search by Dı́az and Fernández [6], a Lagrangian
heuristic algorithm by Haddadi and Ouzia [14],
tabu search by Yagiura et al. [33], variable depth
search algorithms by Yagiura et al. [34,35], an-
1 URL of OR-Library: http://mscmga.ms.ic.ac.uk/jeb/orlib/
gapinfo.html.
other variable depth search algorithm by Racer
and Amini [26], tabu search by Laguna et al.
[18], MAX–MIN ant system by Lourenço and
Serra [20], genetic algorithm by Chu and Beasley
[4] and a mixed integer programming solver
CPLEX 6.5. The results show that our GAP
method is highly effective, especially for instances
of types D and E, which have been established as
the most difficult problem classes.

Our algorithm is confirmed by extensive com-
putational experiment to be efficient and robust,
both in relation to parameter settings and varia-
tions in problem structures. The outcomes indicate
that useful benefits result by combining path
relinking and ejection chain strategies associated
with adaptive memory methods, and by making
use of classical relaxation methodology. The
resulting method yields a powerful and effective
tool for practical applications.

2. Generalized assignment problem

2.1. Definition of the problem

Given n jobs J = {1,2, . . .,n} and m agents
I = {1,2, . . .,m}, we undertake to determine a min-
imum cost assignment subject to assigning each job
to exactly one agent and satisfying a resource con-
straint for each agent. Assigning job j to agent i in-
curs a cost of cij and consumes an amount aij of
resource, whereas the total amount of the resource
available at agent i is bi. An assignment is a map-
ping r : J ! I, where r(j) = i means that job j is as-
signed to agent i. For convenience, we define a 0–1
variable xij for each pair of i 2 I and j 2 J by

xij ¼ 1 () rðjÞ ¼ i:

Then the generalized assignment problem (GAP) is
formulated as follows:

minimize costðrÞ ¼
X
i2I

X
j2J

cijxij

subject to
X
j2J

aijxij 6 bi 8i 2 I ;

X
i2I

xij ¼ 1 8j 2 J ;

xij 2 f0; 1g 8i 2 I and 8j 2 J :
ð1Þ

http://tcslab.csce.kyushu-u.ac.jp/~isibashi/Research/parallel-prec.html
http://tcslab.csce.kyushu-u.ac.jp/~isibashi/Research/parallel-prec.html
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GAP is known to be NP-hard (e.g., [29]), and the
(supposedly) simpler problem of judging the
existence of a feasible solution for GAP is NP-
complete, since the partition problem [8] can be re-
duced to this problem with m = 2.

2.2. Generation of instances

As we will discuss some computational results
in Section 3, we first explain the instances used
for the experiments. There are five types of bench-
mark instances called types A, B, C, D and E
[4,18,21]. Out of these, we use four types B, C, D
and E, since type A is too easy to see differences
among the tested algorithms. Type B instances
are also easier than types C, D and E, and hence
we report limited results for this type. Instances
of these types are generated as follows:

Type B: aij are random integers from [5,25], cij
are random integers from [10,50], and

bi ¼ 0:7 0:6ðn=mÞ15þ 0:4max
i2I

X
j2J ; imin

j ¼i

aij

8<
:

9=
;;

where imin
j ¼ minfi j cij 6 ckj 8k 2 Ig.

Type C: aij are random integers from [5,25], cij
are random integers from [10,50], and
bi ¼ 0:8

P
j2J aij=m.

Type D: aij are random integers from [1,100],
cij = 111 � aij + e1, where e1 are ran-
dom integers from [�10,10], and
bi ¼ 0:8

P
j2J aij=m.

Type E: aij = 1 � 10 lne2, where e2 are random
numbers from (0,1], cij = 1000/aij �
10e3, where e3 are random numbers
from [0,1], and bi ¼ 0:8

P
j2J aij=m.

Types D and E are somewhat harder than other
types, since cij and aij are inversely correlated. 2

We tested the following two sets of problem
instances.
2 Types D and E instances should be solved as minimization
problems; otherwise they are trivial.
MEDIUM: Total of 24 instances of types B, C,
D and E with n up to 200, where
each type consists of six instances.
Among them, types B, C and D
instances were taken from OR-
Library, 3 and type E instances were
generated by ourselves, which are
available at our site. 4

LARGE: Total of 27 instances of types C, D
and E with n up to 1600, where each
type consists of nine instances. All
of these instances were generated
by ourselves, and are available at
our site.
3. Algorithm

3.1. The path relinking algorithm

Our algorithm, called PREC (path relinking
and ejection chains), is an extension of local
search. Local search starts from an initial solution
r and repeatedly replaces r with a better solution
in its neighborhood N(r) until no better solution
is found in N(r). The resulting solution r is locally
optimal in the sense that no better solution exists
in its neighborhood. Shift and swap neighbor-
hoods, denoted Nshift and Nswap respectively, are
usually used in local search methods for GAP,
where

N shiftðrÞ ¼ fr0 j r0 is obtained from r by

changing the assignment of one jobg;
N swapðrÞ ¼ fr0 j r0 is obtained from r by

exchanging the assignments of two jobsg:

The size of these neighborhoods are O(mn) and
O(n2), respectively.

Our algorithm uses an ejection chain neighbor-
hood, which was proposed in our previous work
[33]. Though the details of this neighborhood are
explained in our previous paper, we will briefly
3 URL of OR-Library: http://mscmga.ms.ic.ac.uk/jeb/orlib/
gapinfo.html.

4 URL of our site: http://www-or.amp.i.kyoto-u.ac.jp/~yag-
iura/gap/.

http://tcslab.csce.kyushu-u.ac.jp/~isibashi/Research/parallel-prec.html
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illustrate its basic idea, since the use of ejection
chains is one of the keys to the success of our algo-
rithm. An ejection chain move considered in this
paper is a sequence of shift moves, in which every
two successive moves share a common agent. The
ejection chain neighborhood is the set of solutions
obtainable by such ejection chain moves. More
precisely, the ejection chain neighborhood is the
set of solutions r 0 obtainable from r by shifting l

(l = 2,3, . . .,n) jobs j1, j2, . . ., jl simultaneously, in
such a way that satisfies

r0ðjrÞ ¼ rðjr�1Þ; r ¼ 2; 3; . . . ; l;

where r 0(j1) is arbitrary. In other words, for
r = 2,3, . . ., l, job jr is shifted from agent r(jr) to
agent r(jr�1) after ejecting job jr�1. An ejection
chain move is called cyclic if r 0(j1) = r(jl) holds,
i.e., the first job j1 is inserted into the agent from
which the last job jl is ejected. The length of an
ejection chain move is the number of shift moves
l in the sequence. Both the shift and swap neigh-
borhoods are subsets of the ejection chain neigh-
borhood, since a shift move is an ejection chain
move of length one, and a swap move is a cyclic
ejection chain move of length two. However, the
size of the ejection chain neighborhood can be-
come exponential unless intelligently controlled.
Therefore, in our implementation, we consider
only a special subset of alternatives that is divided
into three neighborhoods called shift, double shift,
and long chain, where a double shift move is an
ejection chain move of length two, and a long
chain move is an ejection chain of any length.

These neighborhoods are further suppressed to
manageable sizes by using heuristic rules based
on the Lagrangian relaxation of GAP, in which
the assignment constraints (i.e.,

P
i2I xij ¼ 1

8j 2 J ) are relaxed. For the double shift neigh-
borhood, the number of candidates for j2 is re-
stricted to max{m, logn} when j1 is fixed, and for
the long chain neighborhood, only one candidate
for jl is considered when j1, j2, . . ., jl�1 are fixed.
See Appendix A for more details of this part. As
a result, the sizes of shift, double shift, and long
chain neighborhoods become O(mn), O(nmax{m, -
logn}) and O(n2), respectively. In [33], we also
showed that the expected size of the long chain
neighborhood was O(n(3/2)+e) for an arbitrarily
small positive e under a simplified random model,
and observed that this expected size accurately
represented reality. In our algorithm, these three
neighborhoods are used alternately to form an
improving phase, which is called EC probe in this
paper.

When the search visits the infeasible region, we
evaluate the solutions by an objective function
penalized by infeasibility:

pcostðrÞ ¼ costðrÞ þ
X
i2I

aipiðrÞ; ð2Þ

where piðrÞ ¼ maxf0;
P

j2J ;rðjÞ¼iaij � big denotes
the amount of infeasibility at agent i. The para-
meters ai (>0) are adaptively controlled during
the search by using the algorithm in [33]. Here
we briefly explain the basic idea of the adaptive
control of the penalty weights. The initial values
of ai are decided by solving a quadratic program-
ming problem (abbreviated as QP), whose main
aim is to balance the estimated change in the cost
and penalty after shift moves. The definition of the
QP is slightly complicated and is omitted here [33].
Then, whenever an EC probe stops at a locally
optimal solution rlopt, ai values are updated by
the following rule. If no feasible solution is found
during the previous EC probe after the last update
of ai, we increase the penalty weights by
ai :¼ ai(1 + D Æ pi(rlopt)/bi) for all i 2 I, where D is
chosen so that maxi2ID Æ pi(rlopt)/bi = dinc holds
(dinc is a parameter). Otherwise (i.e., if at least
one feasible solution is found during the previous
EC probe after the last update of ai), we decrease
the penalty weights by ai :¼ ai(1 � ddec) for all
i 2 I that satisfy pi(rlopt) = 0, where ddec is a
parameter. In the computational experiments in
Section 4, dinc and ddec are set to 0.01 and 0.1,
respectively, as in [33].

EC probes are applied to solutions generated by
path relinking, which is a methodology to generate
solutions from two or more solutions, and will be
described in the next paragraph. As it is preferable
to apply path relinking to solutions of high qual-
ity, we keep a reference set R (jRj = q is a param-
eter) of good solutions. Initially R is prepared by
applying EC probes to randomly generated solu-
tions. (To generate a random solution r, r(j) is
chosen from [1,m] uniformly at random for each



6

552 M. Yagiura et al. / European Journal of Operational Research 169 (2006) 548–569
j 2 J.) Then it is updated by reflecting outcomes of
the local search. If feasible solutions are found
during the search, the incumbent solution (i.e.,
the best feasible solution) is always stored as a
member of R. Other solutions in R are maintained
as follows. Whenever an EC probe stops, the lo-
cally optimal solution rlopt is exchanged with the
worst (with respect to pcost) solution rworst in R

(excluding the incumbent solution), provided that
rlopt is not worse than rworst and is different from
all solutions in R.

Path relinking is applied to two solutions rA
(initiating solution) and rB (guiding solution) ran-
domly chosen from R, where a random shift is
applied to rB with probability 1/2 (no shift with
the remaining probability 1/2) before applying
the path relinking (for the purpose of keeping the
diversity of the search), and the resulting solution
is redefined to be rB. Let the distance between
two solutions r and r 0 be

distðr; r0Þ ¼j fj 2 J j rðjÞ 6¼ r0ðjÞg j; ð3Þ
i.e., the number of jobs assigned to different
agents, and let d = dist(rA,rB) be the distance be-
tween solutions rA and rB. We generate a sequence
r0,r1, . . .,rd of solutions from two solutions rA
and rB as follows. Starting from r0 :¼ rA, for
k = 1,2, . . .,d, we define rk to be the solution in
Nshift(rk�1) with the best pcost among those whose
distances to rB are smaller than that from rk�1. To
be more precise, denoting

N 0
shiftðr; rBÞ ¼ r0 2 N shiftðrÞ j distðr0; rBÞf

¼ distðr; rBÞ � 1g;

rk is defined by

rk ¼ argmin
r2N 0

shift
ðrk�1;rBÞ

pcostðrÞ; k ¼ 1; 2; . . . ; d; ð4Þ

where rd = rB holds by definition. Let S be the
best c (a parameter) solutions with respect to pcost

from N 0
shiftðr0; rBÞ [ fr2; r3; . . . ; rd�1g. 5 (The rea-

son for including N 0
shiftðr0; rBÞ instead of using

only r1 will be discussed in Section 3.3.) S is the
set of solutions generated by the current path
relinking, to which EC probes are applied. The
5 We set S :¼ N 0
shiftðr0;rBÞ [ fr2; r3; . . . ;rd�1g in case

j N 0
shiftðr0;rBÞ [ fr2;r3; . . . ;rd�1g j6 c holds.
next path relinking is initiated whenever all solu-
tions in S are exhausted as the starting solutions
for EC probes.

To make the computation efficient, we use a
heap (with pcost as the key) to choose S from
N 0

shiftðr0; rBÞ [ fr2; r3; . . . ; rd�1g. Then the compu-
tation time of the path relinking to generate set S
from rA and rB is O(n + d2 + d logc).

The proposed algorithm PREC is formally
described as follows, where the algorithm EC
probe starts from a solution r, and returns a
locally optimal solution with respect to the ejec-
tion chain neighborhood, which is denoted as
EC_PROBE(r). 6

Algorithm PREC
Step 1: Let R be q randomly generated solutions.
Then, for each r 2 R, replace r with rlop-
t = EC_PROBE(r). Let S :¼ ;.

Step 2: If S5 ;, proceed to Step 3. Otherwise
(S = ;), randomly choose two solutions
rA and rB from R (rA 5 rB). With prob-
ability 1/2, replace rB with a solution ran-
domly chosen from Nshift(rB). Then let S
be the best c solutions from N 0

shiftðr0;
rBÞ [ fr2; r3; . . . ; rd�1g, where d = dis-
t(rA,rB) and rk (k = 1,2, . . ., d � 1) is
defined by (4) (with r0 = rA).

Step 3: Choose a solution r 2 S randomly. Let
S :¼ S n {r} and rlopt: = EC_PROBE(r).

Step 4: Let rworst be the solution that maximizes
pcost among those in R (excluding the
incumbent solution). If pcost(rlopt) 6 p-
cost(rworst) holds and rlopt is different
from all solutions in R, replace rworst with
rlopt.

Step 5: If the stopping criterion is satisfied, output
the incumbent solution and stop. Other-
wise return to Step 2.

Notes. The penalty weights ai in (2) are up-
dated whenever EC_PROBE(r) returns a
solution. Once a feasible solution is found
When the solution r is chosen from S, the solution is
improved first by the cyclic double shift neighborhood in
EC_PROBE as in [33]. This strategy was confirmed to be
effective to avoid short cycling. See [33] for more discussion.
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during the search, the incumbent solution
is always stored as a member of R. The
incumbent solution in R is updated (i.e.,
the previous incumbent solution is
replaced with the new one) whenever the
incumbent solution is updated during the
search.

As for Step 5, various stopping criteria are pos-
sible. In the computational experiment in Section
4, we stop the search when the CPU time exceeds
a prespecified time limit in order to make fair
comparisons.
3.2. Algorithms TSEC and PREC

Here we briefly explain our previous algorithm
TSEC (tabu search and ejection chains) [33] in or-
der to contrast the algorithms and clarify the con-
tribution of this paper. Both algorithms TSEC and
PREC use EC probe and the adaptive control
mechanism of the penalty weights. Thus the only
difference is the way they generate starting solu-
tions for EC probes. Algorithm TSEC applies an
EC probe to a solution generated by applying a
shift move to a good solution rseed. Solution rseed
is initially generated randomly, and is replaced
with the locally optimal solution rlopt obtained
by the previous EC probe whenever pcost(rlopt) 6
pcost(rseed) holds. Then the next EC probe is ap-
plied to the solution generated by applying the
shift move that minimizes pcost among those not
executed yet from the current rseed. As the path
relinking part is simple, algorithmic contribution
of this paper may not be large, but the improve-
ment in the performance is drastic as will be shown
in Section 4. The worst result of PREC is often
better than the best result of TSEC when each of
them are run five times for each instance. The per-
formance of TSEC is already very good compared
to other existing metaheuristic algorithms, and
designing an algorithm that outperforms TSEC is
not easy. One of the main messages of this paper
is that even a simple implementation of path
relinking approach is already quite powerful, and
useful benefits result by combining path relinking
and ejection chain strategies associated with strate-
gic oscillation realized by adaptive control of pen-
alty weights.

3.3. Rules in algorithm PREC

We tested many variations of the rules used in
algorithm PREC, which will be described below.

Definition of S. It might be more natural to con-
sider only those solutions r1,r2, . . .,rd�1 on the
path as the candidates to be included in S, a strat-
egy adopted in our previous paper [32]. Including
solutions in N 0

shiftðr0; rBÞ is motivated by the suc-
cess of our TSEC algorithm [33]. The adopted ap-
proach was confirmed to be more powerful for
large-scale instances of types D and E if longer
computation time is allowed, though the difference
in the performance was not large.

We also tested another definition of S, in which
S is set to the best c solutions from N 0

shiftðr0;
rBÞ [ N 0

shiftðr1; rBÞ [ � � � [ N 0
shiftðrd�2; rBÞ. This ap-

proach was observed to be as powerful as the other
two strategies; however, the computation time to
generate set S becomes O(n + d2 logc). Note that
this computation time may not be negligible in
comparison with the time for EC probe, since
d = X(n) may hold and the practical neighborhood
size of EC probe is much smaller than O(n2).

As we adopted a nonstandard strategy, some
readers might be interested in the details of the
comparison. We therefore show the details in
Appendix B. An important observation is that
the difference in the performance is not large,
and in this sense, algorithm PREC is robust
against the selection strategies of S. Indeed, the
performance of PREC is already much better than
that of TSEC even with other two strategies.

Perturbation on the guiding solution rB. In Step
2, a random perturbation is applied to the guiding
solution rB with probability 1/2. We tested to set
this probability 0, i.e., no perturbation is added
to rB, and observed that the performance was
not much different. Hence this perturbation may
not be necessary; however, we included it just in
case to keep the diversity of the reference set R.
(For example, if the assignment of a job becomes
the same for all solutions in R, it cannot be chan-
ged during the generation of paths by the path
relinking approach. We would like to add a
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mechanism to avoid such risk.) More strategic way
to keep the diversity might be possible, but we
adopted a simple one.

More than one guiding solution. Instead of only
one guiding solution rB, we also tried to use more
than one guiding solution. In this case, for
k = 1,2, . . .,d = dist(rA,rB), rk is chosen from
those solutions obtainable from rk�1 by a shift
move, where the candidates of shift moves are re-
stricted to those that satisfy the following two con-
ditions: (i) the distance from rk�1 to at least one
guiding solution becomes smaller, and (ii) the
assignment of the job to be shifted has not been
changed while generating r1,r2, . . .,rk�1. We com-
pared algorithm PREC with 1, 2, 3, 4, 6 and 9
guiding solutions, and observed that the perform-
ance was not much different. Hence we set the
number of guiding solutions to one for simplicity.

Distance between solutions in R. In Step 4 of
algorithm PREC, we accept the new solution rlopt
to be included in R if pcost(rlopt) 6 pcost(rworst)
holds and rlopt is different from all solutions in
R. Actually, our program code is more flexible in
that it can keep the distance between any pair of
solutions in R at least dmin (a prespecified parame-
ter). The rule is as follows. Let R 0 � R be the set of
solutions whose distance from rlopt is less than
dmin. The reference set R is unchanged if one of
the following three conditions is satisfied: (i) R 0 in-
cludes the incumbent solution or rlopt, (ii) there is
a solution r 2 R 0 that satisfies pcost(r) < pcost-
(rlopt), or (iii) pcost(rworst) < pcost(rlopt) holds,
where rworst is the solution that maximizes pcost

among those in R (excluding the incumbent solu-
tion). Then we let R :¼ R [ {rlopt} n R 0 if R 0 5 ;;
otherwise rworst is replaced with rlopt. With this
scheme, jRj < q may hold after updating the refer-
ence set. In this case, in Step 3, EC probe is applied
to a randomly generated solution instead of a solu-
tion from S, and the new solution rlopt is added to
R provided that it has distance dmin or more to all
solutions in R. This is repeated until jRj = q holds.
According to preliminary comparison with
dmin = 1, 2 and 5, not much difference in the per-
formance was observed, and hence we set dmin = 1
for simplicity.

Strategy to choose rA and rB from R. In Step 2
of algorithm PREC, we choose rA and rB from R
randomly. We also tried the following determinis-
tic rule. The initiating solution rA is the one with
the minimum pcost among those having at least
one solution not combined yet with rA. Then the
guiding solution rB is chosen among those not
combined with rA yet according to the following
preference: (i) Let freq(r) denote how many times
r is used for path relinking. Then a solution with
the minimum freq(rB) is chosen. (ii) If more than
one solution has the same value of (i), we choose
a solution rB that maximizes the distance between
rA and rB. (iii) If more than one solution has the
same value in both (i) and (ii), a solution with
the minimum pcost is chosen. According to our
preliminary computational results, not much dif-
ference was observed between the two strategies,
and hence we adopted the random rule that is
simpler.

Summary. The above comparisons are based on
limited computational results (see Appendix B for
details) on some instances from set MEDIUM (in-
stances with up to n = 200 and m = 20), and care-
ful comparisons for larger instances (e.g., set
LARGE) might lead to different conclusions.
More sophisticated strategic rules may also be pos-
sible, and can result in better performance. Pursu-
ing such possibilities is of course one of the
important directions of further research. An inter-
esting indication of the above comparisons is that
the path relinking approach is quite powerful even
in its simplest form and is not sensitive to slight
changes in the rules and parameters involved in
its framework.

3.4. Historical notes

After submitting our paper on EC probe [33]
(but without path relinking) to a journal in 1999,
we investigated how locally optimal solutions are
distributed for the maximum satisfiability problem
(MAXSAT) and GAP [30]. The observation told
that locally optimal solutions were mutually quite
distant for type D instances (see Appendix C for
details), suggesting that intensification only might
not be sufficient for achieving high performance.
This motivated us to incorporate a population-
based approach to EC probe to diversify the
search, independently of the work by Alfandari
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et al. [1–3], where path relinking (algorithm APT)
was also investigated. Note that preliminary re-
sults of our path relinking approach were pre-
sented in 2001 [31], and a preliminary version of
this paper has appeared as [32] in 2002, slightly
after Alfandari, Plateau and Tolla presented their
work (without any computational result in the
proceedings) in 2001 [1]. The paper [32] already
contained computational results for benchmark in-
stances with up to 200 jobs.
4. Computational results

In this section, algorithm PREC is evaluated on
benchmark instances. PREC was coded in C and
run on a workstation Sun Ultra 2 Model 2300
(two UltraSPARC II 300MHz processors with
1GB memory), where the computation was exe-
cuted on a single processor. SPECint95 of this
workstation is 12.3 according to the SPEC site 7

(Standard Performance Evaluation Corporation).
The parameters in PREC were set to q = 20 and
c = 10. 8
4.1. Path relinking and uniform crossover

We first compared the path relinking approach
(PREC) with the uniform crossover for combining
solutions of the reference set. Uniform crossover is
one of the traditional methods to generate a new
solution by combining two (or more) solutions,
which is often used in genetic algorithms [5,13].
The uniform crossover in our computation gener-
ates a new solution rnew from two solutions rA
and rB by randomly choosing rnew(j) from
{rA(j),rB(j)} with probability 1/2 for each j2J
independently.
7 URL of SPEC site: http://www.specbench.org/.
8 According to our preliminary experiment on a few

instances, we observe that the performance of algorithm PREC
is not sensitive against these parameter values. We therefore did
not tune them carefully. The performance of PREC might
become better if these parameters are carefully tuned, but we
believe that the difference in the solution quality is small.
Table 1 compares the two approaches, which
are exactly the same except for the mechanisms
of combining solutions, i.e., the �uniform crosso-
ver� algorithm is composed of the same five steps
of the PREC algorithm, except that Step 2 is mod-
ified as explained above. The results of our previ-
ous paper [33], in which EC probe was proposed,
are also exhibited for comparison purposes (de-
noted TSEC). Algorithm TSEC is basically the
same as PREC except that it applies EC probes
to solutions generated by applying a shift move
to good solutions as explained in Section 3.2. Each
algorithm was executed five times for each in-
stance, and the minimum, average and maximum
costs are reported. The time limit for each run is
150 (resp., 300) seconds for instances with
n = 100 (resp., 200). The mark �*� means that the
best average cost is attained among the three meth-
ods. For the type C instances, which are quite easy
for all methods, no significant differences emerge.
However, for the type D and E instances, the path
relinking clearly dominates the uniform crossover.
In fact, for the type D and E instances, the worst
result (as shown in the column ‘‘max’’) obtained
by path relinking is often better than the best result
(as shown in the column ‘‘min’’) obtained by uni-
form crossover (e.g., type D, n = 100, m = 20).
Similar tendency is observed if the uniform cross-
over approach is compared with TSEC. The per-
formance of the uniform crossover approach is
worse than TSEC especially for types D and E in-
stances with larger m. This indicates that the ran-
dom perturbation by uniform crossover changes
the structure of the solution too drastically and
the intensification ability of the search is lost.

4.2. Comparison with other heuristics

Algorithm PREC was compared with eight
existing heuristic algorithms:

• tabu search based on ejection chains by Yagiura
et al. [33] (denoted TSEC),

• two algorithms of branching variable depth
search by Yagiura et al. [34] (denoted BVDS-l
and BVDS-j),

• variable depth search by Yagiura et al. [35]
(denoted VDS),

http://tcslab.csce.kyushu-u.ac.jp/~isibashi/Research/parallel-prec.html


Table 1
Comparison of PREC, uniform crossover and TSEC (with time limits 150 and 300seconds for n = 100 and 200, respectively, five runs
per instance)

Type n m PREC Uniform crossover TSEC

Min Avg. Max Min Avg. Max Min Avg. Max

C 100 5 1931 1931.0* 1931 1931 1931.0* 1931 1931 1931.0* 1931
C 100 10 1402 1402.0* 1402 1402 1402.0* 1402 1402 1402.0* 1402
C 100 20 1243 1243.0* 1243 1243 1243.0* 1243 1243 1243.0* 1243
C 200 5 3456 3456.0* 3456 3456 3456.0* 3456 3456 3456.0* 3456
C 200 10 2807 2807.0 2807 2806 2806.8 2807 2806 2806.2* 2807
C 200 20 2391 2391.6 2392 2391 2391.0* 2391 2391 2391.6 2392

D 100 5 6353 6353.0* 6353 6353 6354.0 6356 6354 6355.6 6357
D 100 10 6348 6354.2* 6359 6359 6363.4 6370 6356 6359.6 6364
D 100 20 6205 6213.4* 6221 6259 6269.0 6275 6215 6220.0 6226
D 200 5 12,744 12,744.6* 12,745 12,744 12,744.6* 12,746 12,744 12,745.6 12,747
D 200 10 12,437 12,439.4* 12,442 12,464 12,468.0 12,473 12,445 12,445.4 12,446
D 200 20 12,264 12,267.6* 12,275 12,349 12,356.4 12,363 12,277 12,284.4 12,289

E 100 5 12,681 12,681.0* 12,681 12,681 12,681.2 12,682 12,681 12,681.4 12,682
E 100 10 11,577 11,577.0* 11,577 11,577 11,577.0* 11,577 11,577 11,577.0* 11,577
E 100 20 8443 8446.0 8450 8526 8547.4 8563 8439 8440.6* 8443
E 200 5 24,930 24,930.0* 24,930 24,930 24,930.2 24,931 24,930 24,930.0* 24,930
E 200 10 23,307 23,308.4 23,310 23,312 23,313.0 23,315 23,307 23,308.0* 23,310
E 200 20 22,379 22,380.0* 22,381 22,451 22,493.0 22,528 22,379 22,384.0 22,391

9 We also tested CPLEX 8.1.0, but the results of CPLEX 6.5
were slightly better on average.

556 M. Yagiura et al. / European Journal of Operational Research 169 (2006) 548–569
• variable depth search by Racer and Amini [26]
(denoted RA),

• tabu search by Laguna et al. [18] (denoted
LKGG),

• tabu search for the general purpose constraint
satisfaction problem by Nonobe and Ibaraki
[25] (denoted NI),

• a MAX–MIN ant system combined with local
search and tabu search by Lourenço and Serra
[20] (denoted RLS).

TSEC, BVDS-l, BVDS-j, VDS and RA were coded
in C language by ourselves, while the codes of
LKGG, NI and RLS were provided by the
authors. The codes of LKGG and NI are written
in C, and that of RLS is written in FORTRAN
77. The parameters for BVDS-l, BVDS-j and
VDS are set to the values reported in [34]. RA does
not include any parameter. The parameters for
LKGG and NI are set to the default values. The
RLS codes include various types of algorithms,
which can be combined by choosing appropriate
options. Here we chose the option ASH+LS+TS
as recommended in [20], and other parameters
were set to the default values. For comparison pur-
poses, we include in Table 2

• the results of the genetic algorithm by Chu and
Beasley [4] (denoted CB), and

• the tabu search by Dı́az and Fernández [6]
(denoted DF),

though we did not run these algorithms on our
computer. We also tested a commercial solver
CPLEX 6.5, 9 whose results are shown in column
CPLEX.

In order to observe the effectiveness of the path
relinking component, we also tested a simplified
version of algorithm PREC in which standard
local search with the shift and swap neighbor-
hoods is used instead of EC probe. This is called
algorithm PRSS (path relinking with shift and
swap). The other part of algorithm PRSS is exactly
the same as PREC.



Table 2
The best costs obtained by the tested algorithms (with time limits 150 and 300seconds for n = 100 and 200, respectively, one run per instance except CB and DF)

Type n m LB PREC PRSS TSEC BVDS-l BVDS-j YYI RA LKGG NI RLSa CBb DFc CPLEX

B 100 5 1839 1843* 1843* 1843* n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1843* 1843* 1843*
B 100 10 1407 1407* 1407* 1407* n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1407* 1407* 1407*
B 100 20 1166 1166* 1166* 1166* n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1166* 1166* 1166*
B 200 5 3550 3552* 3552* 3552* n.a. n.a. n.a. n.a. n.a. n.a. n.a. 3553 3552* 3552*
B 200 10 2826 2827* 2827* 2827* n.a. n.a. n.a. n.a. n.a. n.a. n.a. 2831 2828 2827*
B 200 20 2339 2339* 2339* 2339* n.a. n.a. n.a. n.a. n.a. n.a. n.a. 2340 2340 2339*

C 100 5 1930 1931* 1931* 1931* 1931* 1931* 1931* 1938 1931* 1931* 1942 1931* 1931* 1931*
C 100 10 1400 1402* 1402* 1402* 1402* 1403 1402* 1405 1403 1403 1407 1403 1402* 1402*
C 100 20 1242 1243* 1245 1243* 1244 1244 1246 1250 1245 1245 1247 1244 1243* 1243*
C 200 5 3455 3456* 3456* 3456* 3456* 3457 3457 3469 3457 3465 3467 3458 3457 3456*
C 200 10 2804 2807 2807 2806* 2809 2808 2809 2835 2812 2817 2818 2814 2807 2806*
C 200 20 2391 2391* 2394 2392 2401 2400 2405 2419 2396 2407 2405 2397 2391* 2391*

D 100 5 6350 6353* 6356 6357 6358 6362 6365 – 6386 6415 6476 6373 6357 6358
D 100 10 6342 6356 6373 6358 6367 6370 6380 6532 6406 6487 6469 6379 6355* 6381
D 100 20 6177 6211* 6235 6221 6275 6245 6284 6428 6297 6368 6358 6269 6220 6280
D 200 5 12,741 12,744* 12,745 12,746 12,755 12,755 12,778 – 12,788 12,973 12,923 12,796 12,747 12,750
D 200 10 12,426 12,438* 12,468 12,446 12,480 12,473 12,496d 12,799 12,537 12,889 12,746 12,601 12,457 12,457
D 200 20 12,230 12,269* 12,345 12,284 12,440 12,318 12,335d 12,665 12,436 12,793 12,617 12,452 12,351 12,393

E 100 5 12,673 12,681* 12,681* 12,682 12,681* 12,682 12,685 12,917 12,687e 12,686f 12,836 n.a. 12,681* 12,681*
E 100 10 11,568 11,577* 11,577* 11,577* 11,585 11,599 11,585 12,047 11,641e 11,590f 11,780 n.a. 11,581 11,593
E 100 20 8431 8444 8474 8443* 8499 8484 8490 9004 8522e 8509f 8717 n.a. 8460 8565
E 200 5 24,927 24,930* 24,933 24,930* 24,942 24,933 24,948 25,649 25,147e 24,958f 25,317 n.a. 24,931 24,930*
E 200 10 23,302 23,310 23,311 23,307* 23,346 23,348 23,340 24,717 23,567e 23,396f 23,620 n.a. 23,318 23,321
E 200 20 22,377 22,379* 22,398 22,391 22,475 22,437 22,452d 24,117 22,659e 22,551f 22,779 n.a. 22,422 22,457

a Computation time is reported in [33].
b Results in [4].
c Results in [6].
d Results after 1000seconds on Sun Ultra 2 Model 2300.
e Results after 20,000seconds on Sun Ultra 2 Model 2300.
f Results after 5000seconds on Sun Ultra 2 Model 2300.
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Table 3
Best costs of the tested algorithms for larger instances (with time limits 3000, 10,000, and 50,000seconds for n = 400, 900 and 1600,
respectively, one run per instance except DF)

Type n m LB PREC PRSS TSEC MLS BVDS-l LKGG NI DFa CPLEX

C 400 10 5596 5597* 5597* 5597* 5645 5605 5608 5613 5598 5597*
C 400 20 4781 4782* 4783 4782* 4868 4795 4792 4793 4786 4782*
C 400 40 4244 4245 4246 4244* 4327 4259 4251 4247 4248 4244*
C 900 15 11,339 11,341* 11,342 11,341* 11,459 11,368 11,362 11,365 n.a. 11,343
C 900 30 9982 9984* 9988 9985 10,187 10,022 10,007 10,000 n.a. 9991
C 900 60 9325 9328* 9335 9328* 9533 9386 9341 9340 n.a. 9365
C 1600 20 18,802 18,803* 18,804 18,803* 19,011 18,892 18,831 18,822 n.a. 18,805
C 1600 40 17,144 17,145* 17,148 17,147 17,457 17,262 17,170 17,165 n.a. 17,157
C 1600 80 16,284 16,289* 16,294 16,291 16,594 16,380 16,303 16,301 n.a. 16,324

D 400 10 24,959 24,969* 25,002 24,974 25,330 25,032 25,145 26,004 25,039 25,003
D 400 20 24,561 24,587* 24,654 24,614 25,165 24,780 24,872 25,496 24,747 24,682
D 400 40 24,350 24,417* 24,563 24,463 — 24,724 24,726 25,405 24,707 24,675
D 900 15 55,403 55,414* 55,539 55,435 56,277 55,614 56,423 57,504 n.a. 55,474
D 900 30 54,833 54,868* 55,131 54,910 56,101 55,210 55,918 57,630 n.a. 55,002
D 900 60 54,551 54,606* 54,810 54,666 — 55,123 55,379 56,699 n.a. 54,937
D 1600 20 97,823 97,837* 97,961 97,870 99,358 98,248 100,171 101,122 n.a. 97,921
D 1600 40 97,105 97,113* 97,460 97,177 99,114 97,721 99,290 100,574 n.a. 97,323
D 1600 80 97,034 97,052* 97,341 97,109 — 98,146 98,439 100,471 n.a. 97,512

E 400 10 45,745 45,746* 45,751 45,746* 46,163 45,878 172,185 46,243 45,781 45,757
E 400 20 44,876 44,879* 44,894 44,882 45,628 45,079 137,153 45,492 45,007 45,138
E 400 40 44,557 44,574* 44,608 44,589 45,673 44,898 63,669 45,574 44,921 44,829
E 900 15 102,420 102,422* 102,426 102,423 103,512 102,755 463,142 104,932 n.a. 102,497
E 900 30 100,426 100,434* 100,449 100,442 102,200 100,956 527,451 104,173 n.a. 100,762
E 900 60 100,144 100,169* 100,244 100,185 102,395 100,917 479,650 105,494 n.a. 100,769
E 1600 20 180,642 180,646* 180,649 180,647 182,590 181,143 936,609 187,207 n.a. 180,880
E 1600 40 178,293 178,302* 178,321 178,311 181,029 179,036 1,026,259 187,451 n.a. 178,599
E 1600 80 176,816 176,857* 176,969 176,866 180,744 178,205 1,026,417 189,774 n.a. 177,926

a Results in [6].
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The results of some algorithms for types B and
E instances are not available (i.e., not reported in
their papers), and are denoted �n.a.� in the table.
Note that algorithm PREC was run only once
for each instance in the computational results in
this section (i.e., in Tables 2–4) in order to make
the comparison fair (the same random seed was
used for all instances).

Table 2 shows the best costs obtained by these
algorithms within 150seconds for n = 100, and
300seconds for n = 200, respectively, unless other-
wise stated below the table. The computation time
of RLS and CB are longer than this time limit as
discussed in [33]. According to the estimate in
[6], the total time of each run of algorithm DF is
smaller than ours; however, the results in column
DF are the best of 30 runs, and if this fact is taken
into consideration, the total time of DF is larger
than ours. (See the remark at the end of this sub-
section.) Table 2 also shows the lower bounds (de-
noted LB) obtained by solving the Lagrangian
relaxation of GAP. Each �*� mark indicates that
the best cost is attained, and �––� means that no
feasible solution was found.

Table 3 shows similar results for larger in-
stances from set LARGE, where the time limits
are set to 3000seconds for n = 400, 10,000seconds
for n = 900 and 50,000seconds for n = 1600. For
these instances, we only tested algorithms TSEC,
MLS, BVDS-l, LKGG and NI, since the results
of BVDS-j and YYI are similar to BVDS-l, and
RA and RLS are not competitive with others in
Table 2. The results of DF and CPLEX are also
shown. The computation time for DF is larger
than other algorithms as discussed in the remark
below.



Table 4
The best costs obtained by the tested algorithms with a small time limit (with one run per instance)

Type n m PREC HO APT

Best cost Time to best Time limit Best cost Execution time Best cost Time to best Execution time

B 100 5 1843* 1.45 2 1843* 29.33 1843* 10.0 26.3
B 100 10 1407* 0.42 9 1407* 96.61 1407* 7.3 48.1
B 100 20 1166* 2.90 7 1166* 74.97 1166* 11.4 32.8
B 200 5 3552* 1.78 26 3552* 262.38 3553 121.9 194.6
B 200 10 2827* 25.94 30 2832 481.86 2829 37.6 180.2
B 200 20 2339* 10.17 30 2341 475.44 2340 132.7 196.0

C 100 5 1931* 0.78 4 1932 41.64 1931* 6.6 44.8
C 100 10 1402* 2.43 6 1405 64.92 1402* 31.5 51.2
C 100 20 1244* 5.25 12 1248 125.12 1244* 47.5 114.7
C 200 5 3456* 16.53 24 3457 244.31 3458 146.1 231.8
C 200 10 2807* 13.99 30 2810 531.34 2810 104.3 174.9
C 200 20 2394* 4.41 30 2397 749.73 2396 146.4 247.0

D 100 5 6357* 1.41 3 6358 37.13 6365 71.5 79.8
D 100 10 6373 4.02 9 6369* 91.01 6372 77.3 92.3
D 100 20 6228* 10.62 15 6261 183.62 6267 108.8 131.6
D 200 5 12,746* 23.30 30 12,747 304.18 12,747 318.1 339.3
D 200 10 12,445* 15.66 30 12,460 531.35 12,457 105.2 258.0
D 200 20 12,298* 25.77 30 12,320 1324.58 12,333 308.7 528.4

E 100 5 12,685 3.12 15 n.a. n.a. 12,681* 96.1 133.4
E 100 10 11,577* 11.29 15 n.a. n.a. 11,597 71.9 82.2
E 100 20 8447* 12.46 15 n.a. n.a. 8541 79.4 104.3
E 200 5 24,933 17.66 30 n.a. n.a. 24,931* 184.0 268.2
E 200 10 23,313* 24.37 30 n.a. n.a. 23,316 372.9 493.7
E 200 20 22,389* 29.46 30 n.a. n.a. 22,453 435.8 688.9

Note: CUP time for PREC is on a Sun Ultra 2 Model 2300 (300MHz), that for HO is on a Dell/Phoenix 486DX (120MHz), and that
for APT is on a Sun SPARC station with an UltraSPARC processor (400MHz).
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From the tables, we can observe that PREC is
very effective, especially for the type D and E in-
stances. PREC obtained the best solution for most
of the tested instances. It is also interesting to note
that the performance of our path relinking ap-
proach is already competitive with other existing
metaheuristic algorithms even without EC probe.
The result of PRSS is slightly worse than PREC
and TSEC, but is better than BVDS-l, BVDS-j,
YYI, RA, LKGG, NI, RLS and CB. The solution
quality of PRSS and DF is similar for instances
from set MEDIUM, but PRSS obtained better
solutions than DF for all instances from set
LARGE. The performance of PRSS and CPLEX
is similar for the types B, C and D instances, but
PRSS obtained better solutions than CPLEX for
most of the type E instances.

Since some recent papers [3,14] reported com-
putational results for the instances from set MED-
IUM using smaller computation time than in
Table 2, we also tested our algorithm PREC with
a shorter time limit. For each instance, the time
limit of PREC was set to the minimum of the fol-
lowing two: (i) 15 (resp., 30) seconds for n = 100
(resp., 200), and (ii) a tenth of the execution time
reported in [14]. The results are shown in Table
4. Column HO is the result by the Lagrangian heu-
ristic algorithm by Haddadi and Ouzia [14], and
column APT is the result by the path-relinking ap-
proach by Alfandari et al. [3]. Column �best cost�
shows the cost of the best solution obtained within
the time limit, column �time to best� shows the
CPU seconds when the best solution was found
first, column �time limit� is the time limit, and col-
umn �execution time� is the CPU time when the
algorithm stopped (algorithms HO and APT did
not use CPU time for the stopping criteria).
CPU time of HO is on a Dell/Phoenix 486DX



560 M. Yagiura et al. / European Journal of Operational Research 169 (2006) 548–569
(120MHz), and that for APT is on a Sun SPARC
station with an UltraSPARC processor (400MHz).
According to our rough estimate of the speed of
these computers, a 486DX (120MHz) is about 10
times slower than our computer, and an UltraSP-
ARC (400MHz) is slightly faster than our compu-
ter (see the remark below). Hence the time limit
of algorithm PREC is not larger than the execu-
tion time of HO and APT. From the table, we
can observe that PREC clearly dominates HO
and APT.

Although PREC outperformed APT in Table 4,
the reader will be interested in the comparison of
PRSS and APT, because they are both based on
the path relinking approach and use standard shift
and swap neighborhoods. These two algorithms
are contrasted as follows: (i) PRSS uses more
sophisticated method than APT to control the
Table 5
Comparison of algorithms PRSS and APT (with one run per instanc

Type n m PRSS

Best cost Time to best Time lim

B 100 5 1843* 1.41 26
B 100 10 1407* 0.18 48
B 100 20 1166* 7.24 32
B 200 5 3552* 2.59 194
B 200 10 2827* 91.64 180
B 200 20 2339* 18.21 196

C 100 5 1931* 1.34 44
C 100 10 1402* 1.86 51
C 100 20 1245 17.99 114
C 200 5 3456* 2.12 231
C 200 10 2807* 48.47 174
C 200 20 2394* 191.32 247

D 100 5 6356* 14.24 79
D 100 10 6373 74.12 92
D 100 20 6235* 129.33 131
D 200 5 12,745* 249.89 339
D 200 10 12,468 246.32 258
D 200 20 12,334 518.30 528

E 100 5 12,681* 3.82 133
E 100 10 11,577* 14.64 82
E 100 20 8479* 102.63 104
E 200 5 24,933 201.00 268
E 200 10 23,307* 368.17 493
E 200 20 22,393* 524.50 688

Note: CUP time for PRSS is on a Sun Ultra 2 Model 2300 (300M
UltraSPARC processor (400MHz).
penalty weights, and (ii) the rules of the path
relinking component in PRSS (e.g., to update the
reference set) are randomized and are simpler,
while those in APT are deterministic and are
slightly more complicated. The results are shown
in Table 5, where both PRSS and APT were run
only once for each instance and the time limit for
PRSS was set to the execution time of APT (frac-
tional part was rounded down). According to our
estimation, the speed of the computer used for
APT is slightly faster than ours, and hence the time
limit of PRSS is slightly shorter than the total exe-
cution time of APT (see the remark below). The
meaning of columns �best cost,� �time to best,� �time
limit� and �execution time� are the same as in Table
4. PRSS obtained better solutions than APT for 13
instances, while APT obtained better solutions
than PRSS for five instances. For the other six in-
e)

APT

it Best cost Time to best Execution time

1843* 10.0 26.3
1407* 7.3 48.1
1166* 11.4 32.8
3553 121.9 194.6
2829 37.6 180.2
2340 132.7 196.0

1931* 6.6 44.8
1402* 31.5 51.2
1244* 47.5 114.7
3458 146.1 231.8
2810 104.3 174.9
2396 146.4 247.0

6365 71.5 79.8
6372* 77.3 92.3
6267 108.8 131.6

12,747 318.1 339.3
12,457* 105.2 258.0
12,333* 308.7 528.4

12,681* 96.1 133.4
11,597 71.9 82.2
8541 79.4 104.3

24,931* 184.0 268.2
23,316 372.9 493.7
22,453 435.8 688.9

Hz), and that for APT is on a Sun SPARC station with an
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stances to which PRSS and APT obtained the
same cost, PRSS tends to find the best cost
faster. In summary, the performance of PRSS is
slightly better than APT. Recall that the rules
for the path relinking component in PRSS are sim-
pler than those in APT, which may indicate that
path relinking is not sensitive to details in the
rules.

The results in this section are summarized as
follows:

• The proposed PREC algorithm is very effective
and its performance is the best among the tested
algorithms.

• Though the rules for the path relinking compo-
nent is simple, our path relinking approach is
efficient even without EC probe. Algorithm
PRSS dominates most of the existing metaheu-
ristic algorithms except for PREC and TSEC
(i.e., those using EC probe).
Remark (comparison of machines). Algorithm
DF was run on a workstation Sun SPARC station
10/30 with 4 HyperSPARC processors (100MHz),
whose SPECint95 is 2.35, while algorithm PREC
was run on a Sun Ultra 2 Model 2300 (300MHz),
whose SPECint95 is 12.3. The average execution
time for each run was reported to be at least 83.6,
316.1 and 875.0 seconds for instances with n = 100,
200 and 400, respectively, which are approximately
equivalent to 16, 60 and 170seconds on our
computer. Since they reported the best of 30 runs,
the total computation time of algorithm DF is
estimated to be at least 480, 1800 and 5000seconds
on our computer for n = 100, 200 and 400,
respectively.

Next we estimate the speed of a Dell/Phoenix
486DX (120MHz). Since we could not find the
data for SPECint95, we estimated its speed via
SPECint92 of a similar computer. The SPECint92
of a 486DX4 (100MHz) is 54.59, and the ratio
(SPECint92)/(SPECint95) is about 0.025 for simi-
lar CPUs. Hence we estimated that the SPECint95
of a 486DX (120MHz) is at least 1.36 and it is
about 10 times as slow as our computer.

Finally, we estimate the speed of an Ultra-
SPARC (400MHz). Again, we could not find
the data for SPECint95 of the same CPU, but
the value for similar CPUs (e.g., UltraSPARC-
II, UltraSPARC-IIi, etc.) ranges from 15 to
18. We therefore estimated that an UltraSPARC
(400MHz) is slightly faster than ours.

4.3. Detailed results of our algorithm

To make more rigorous comparison of PREC
and TSEC, we show their detailed results in Table
6, where the time limits are set as in Table 9 of [33].
(As the results for type B instances were not re-
ported in [33], we use the same time limit as in Ta-
ble 2 for type B instances.) The table shows the
minimum, average and maximum cost, the number
of runs where the best solution is found, and the
average computation time to find the best solution
(over those runs in which the best cost is found)
among five runs of PREC and TSEC. We also
show the best known solutions found during our
computational experiments, where the values with
�a� are known to be optimal. If the values in col-
umns �best known� and �min� of PREC are differ-
ent, the best known solutions were found by
PREC by a different parameter setting except for
those with a mark �b�, which were found by Ishiba-
shi [17] (see the remark below). A mark �c� indicates
that the maximum value of PREC among the
five runs is better than the minimum value of
TSEC.

For many of the instances whose optimal solu-
tions are known, algorithm PREC found the opti-
mal solutions in all of the five runs. It is also
observed that the performance of PREC is better
than TSEC for types D and E instances. In partic-
ular, the number of �c� marks is one for type C in-
stances, 11 for type D instances and three for type
E instances, which indicates that PREC is effective
especially for type D instances. One of the conceiv-
able reasons for this result can be given from the
observation on the distribution of locally optimal
solutions, whose data are shown in Appendix C.
The average distance between locally optimal solu-
tions is small for type C instances but is large for
type D instances, and that for type E instances is
in the middle of types C and D instances. This
indicates that intensification of the search works
well for type C instances but more diversification



Table 6
Detailed results of algorithms PREC and TSEC

Type n m LB Best known PREC TSEC Time
limitCost of five runs #Best

found
Avg. time
to best

Cost of five runs #Best
found

Avg. time
to bestMin Avg. Max Min Avg. Max

B 100 5 1839 1843a 1843 1843.0* 1843 5/5 0.95 1843 1843.0* 1843 5/5 0.81 150
B 100 10 1407 1407a 1407 1407.0* 1407 5/5 0.33 1407 1407.0* 1407 5/5 0.22 150
B 100 20 1166 1166a 1166 1166.0* 1166 5/5 3.64 1166 1166.0* 1166 5/5 9.00 150
B 200 5 3550 3552a 3552 3552.0* 3552 5/5 2.35 3552 3552.0* 3552 5/5 3.13 300
B 200 10 2826 2827a 2827 2827.0* 2827 5/5 18.97 2827 2827.0* 2827 5/5 16.00 300
B 200 20 2339 2339a 2339 2339.0* 2339 5/5 11.53 2339 2339.0* 2339 5/5 5.19 300
C 100 5 1930 1931a 1931 1931.0* 1931 5/5 0.52 1931 1931.0* 1931 5/5 0.6 3000
C 100 10 1400 1402a 1402 1402.0* 1402 5/5 3.20 1402 1402.0* 1402 5/5 3.0 3000
C 100 20 1242 1243a 1243 1243.0* 1243 5/5 35.83 1243 1243.0* 1243 5/5 22.5 3000
C 200 5 3455 3456a 3456 3456.0* 3456 5/5 12.09 3456 3456.0* 3456 5/5 3.7 6000
C 200 10 2804 2806a 2806 2806.4 2807 3/5 2710.87 2806 2806.0* 2806 5/5 403.8 6000
C 200 20 2391 2391a 2391 2391.0* 2391 5/5 1268.83 2391 2391.0* 2391 5/5 301.8 6000
C 400 10 5596 5597a 5597 5597.0* 5597 5/5 52.5 5597 5597.0* 5597 5/5 103.4 3000
C 400 20 4781 4782 4782 4782.0* 4782 5/5 306.6 4782 4782.4 4783 3/5 1956.3 3000
C 400 40 4244 4244a 4244 4244.6* 4245 2/5 904.0 4244 4244.6* 4245 2/5 1602.0 3000
C 900 15 11,339 11,340 11,340 11,340.8 11,341 1/5 4526.8 11,340 11,340.4* 11,341 3/5 5837.2 10,000
C 900 30 9982 9982a 9982 9982.8* 9984 3/5 4841.5 9984 9984.6 9985 2/5 5186.7 10,000
C 900 60 9325 9327 9328 9328.0* 9328 5/5 4006.7 9328 9329.0 9330 1/5 9259.0 10,000
C 1600 20 18,802 18,802a,b 18,803 18,803.0* 18,803 5/5 3924.2 18,803 18,803.2 18,804 4/5 19,484.3 50,000
C 1600 40 17,144 17,145 17,145 17,146.2* 17,147 1/5 33,571.0 17,147 17,147.4 17,148 3/5 19,102.4 50,000
C 1600 80 16,284 16,285b 16,287 16,288.2* 16,289c 2/5 46,018.6 16,291 16,292.4 16,294 2/5 25,493.9 50,000
D 100 5 6350 6353a 6353 6353.0* 6353 5/5 83.62 6353 6353.0* 6353 5/5 649.2 3000
D 100 10 6342 6348 6348 6349.2* 6351 3/5 988.07 6349 6351.8 6354 1/5 2440.7 3000
D 100 20 6177 6190b 6192 6196.0* 6201c 1/5 2254.88 6206 6210.6 6214 1/5 1591.9 3000
D 200 5 12,741 12,742 12,742 12,743.0* 12,744 1/5 5712.49 12,743 12,743.2 12,744 4/5 3564.8 6000
D 200 10 12,426 12,432b 12,433 12,436.6* 12,441 1/5 5520.51 12,440 12,441.6 12,443 1/5 5829.9 6000
D 200 20 12,230 12,241b 12,245 12,252.6* 12,259c 1/5 5777.10 12,277 12,278.6 12,281 3/5 1757.7 6000
D 400 10 24,959 24,963b 24,967 24,969.2* 24,971c 1/5 1497.1 24,974 24,976.4 24,979 1/5 2611.8 3000
D 400 20 24,561 24,574b 24,578 24,586.6* 24,592c 1/5 2238.6 24,604 24,609.0 24,616 1/5 81.6 3000
D 400 40 24,350 24,392b 24,409 24,419.6* 24,433c 1/5 2017.9 24,456 24,461.2 24,464 1/5 1385.9 3000
D 900 15 55,403 55,409b 55,413 55,414.6* 55,420c 3/5 3543.4 55,425 55,433.4 55,436 1/5 114.2 10,000
D 900 30 54,833 54,852b 54,868 54,874.0* 54,878c 1/5 7082.8 54,903 54,908.8 54,912 1/5 241.0 10,000
D 900 60 54,551 54,568b 54,595 54,603.4* 54,610c 1/5 9733.3 54,656 54,666.6 54,680 1/5 1844.0 10,000
D 1600 20 97,823 97,832b 97,837 97,838.8* 97,840c 1/5 42,608.0 97,867 97,872.4 97,877 1/5 153.8 50,000
D 1600 40 97,105 97,105a,b 97,106 97,111.0* 97,115c 1/5 48,721.3 97,160 97,166.0 97,177 1/5 1300.7 50,000
D 1600 80 97,034 97,035b 97,047 97,051.0* 97,054c 1/5 44,257.0 97,097 97,103.0 97,110 2/5 6002.2 50,000
E 100 5 12,673 12,681a 12,681 12,681.0* 12,681 5/5 40.36 12,681 12,681.0* 12,681 5/5 97.3 3000
E 100 10 11,568 11,577a 11,577 11,577.0* 11,577 5/5 10.09 11,577 11,577.0* 11,577 5/5 31.5 3000
E 100 20 8431 8436a 8436 8437.6* 8440 3/5 1800.95 8436 8438.4 8439 1/5 1144.2 3000

562
M
.
Y
a
g
iu
ra

et
a
l.
/
E
u
ro
p
ea
n
J
o
u
rn
a
l
o
f
O
p
era

tio
n
a
l
R
esea

rch
1
6
9
(
2
0
0
6
)
5
4
8
–
5
6
9



E
20

0
5

24
,9
27

24
,9
30

a
24

,9
30

24
,9
30
.0
*

24
,9
30

5/
5

29
.6
7

24
,9
30

24
,9
30
.0
*

24
,9
30

5/
5

20
.0

60
00

E
20

0
10

23
,3
02

23
,3
07

a
23

,3
07

23
,3
07
.4

23
,3
08

3/
5

55
4.
15

23
,3
07

23
,3
07
.0
*

23
,3
07

5/
5

86
6.
8

60
00

E
20

0
20

22
,3
77

22
,3
79

a
22

,3
79

22
,3
79
.0
*

22
,3
79

5/
5

74
1.
88

22
,3
79

22
,3
79
.0
*

22
,3
79

5/
5

62
7.
8

60
00

E
40

0
10

45
,7
45

45
,7
46

45
,7
46

45
,7
46
.0
*

45
,7
46

5/
5

10
72
.8

45
,7
46

45
,7
46
.0
*

45
,7
46

5/
5

86
3.
6

30
00

E
40

0
20

44
,8
76

44
,8
77

44
,8
77

44
,8
78
.2
*

44
,8
79

c
1/
5

23
30
.3

44
,8
82

44
,8
83
.4

44
,8
85

1/
5

26
65
.3

30
00

E
40

0
40

44
,5
57

44
,5
62

b
44

,5
65

44
,5
72
.4
*

44
,5
86

1/
5

12
15
.6

44
,5
79

44
,5
84
.6

44
,5
89

1/
5

26
02
.0

30
00

E
90

0
15

10
2,
42
0

10
2,
42
1

10
2,
42
1

10
2,
42
1.
2*

10
2,
42
2

4/
5

33
95
.0

10
2,
42

2
10

2,
42
3.
0

10
2,
42

4
1/
5

47
01
.0

10
,0
00

E
90

0
30

10
0,
42
6

10
0,
42
9b

10
0,
43
1

10
0,
43
3.
8*

10
0,
43
5c

1/
5

64
45
.1

10
0,
43

8
10

0,
44
0.
6

10
0,
44

3
2/
5

52
55
.6

10
,0
00

E
90

0
60

10
0,
14
4

10
0,
15
3b

10
0,
16
9

10
0,
17
8.
0*

10
0,
19
4

1/
5

99
99
.9

10
0,
17

7
10

0,
18
1.
2

10
0,
18

5
1/
5

81
39
.7

10
,0
00

E
16

00
20

18
0,
64
2

18
0,
64
6

18
0,
64
6

18
0,
64
6.
2*

18
0,
64
7

4/
5

19
,3
58
.8

18
0,
64

7
18

0,
64
7.
4

18
0,
64

8
3/
5

19
,1
42
.6

50
,0
00

E
16

00
40

17
8,
29
3

17
8,
29
4b

17
8,
29
8

17
8,
30
0.
8*

17
8,
30
3c

1/
5

46
,4
94
.2

17
8,
31

1
17

8,
31
3.
2

17
8,
31

6
2/
5

35
,0
26
.0

50
,0
00

E
16

00
80

17
6,
81
6

17
6,
82
8b

17
6,
84
8

17
6,
85
6.
4*

17
6,
87
2

1/
5

25
,1
61
.3

17
6,
85

6
17

6,
86
2.
8

17
6,
86

9
1/
5

49
,7
90
.3

50
,0
00

a
A
n
ex
ac
t
o
p
ti
m
al

so
lu
ti
o
n
.

b
A

so
lu
ti
o
n
fo
u
n
d
b
y
Is
h
ib
as
h
i
[1
7]
.

c
T
h
e
m
ax
im

u
m

va
lu
e
o
f
P
R
E
C

is
b
et
te
r
th
an

th
e
m
in
im

u
m

va
lu
e
o
f
T
S
E
C
.

M. Yagiura et al. / European Journal of Operational Research 169 (2006) 548–569 563
is necessary for types D and E instances, especially
for type D instances.

Remark. The algorithm in [17] is a distributed
computation version of PREC, where a PC cluster
consisting of 16 computers each with a Pentium 4
2.26GHz was used, and the time limit was set to
300, 500, 1000, 3000 and 5000seconds, respec-
tively, for instances with n = 100, 200, 400, 900
and 1600, except that 10,000seconds were used
for the instances with m = 80 and n = 1600. Here
we estimate the speed of a Pentium 4 2.26GHz.
Since we could not find the data for SPECint95,
we estimate its speed via SPECint2000. The SPE-
Cint2000 of a Pentium 4 2.26GHz is 830–909,
and the ratio (SPECint2000)/(SPECint95) is about
10 for similar CPUs. Hence a Pentium 4 2.26GHz
is about seven times as fast as our computer. Based
on these, the execution time of the algorithm in
[17] is roughly estimated to be 7 · 16 = 112 times
of the above time limits if it is run on our computer
sequentially; e.g., 1,120,000seconds for the in-
stances with m = 80 and n = 1600, which is much
larger than the time limits in Table 6.
5. Conclusion

The proposed path relinking approach (PREC)
proves to be highly effective for the generalized
assignment problem. Isolating the path relinking
component of our algorithm and comparing it to
the use of a uniform crossover component dis-
closes that the outcomes from path relinking are
significantly superior to those of uniform crosso-
ver. More extensive comparisons of the PREC
algorithm, testing against other leading heuristic
approaches for GAP, confirm the high perform-
ance of PREC; it found better solutions than other
methods for most of the tested types D and E
instances.
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Appendix A. Details of the EC probe

We construct ejection chains by exploiting the
information from a Lagrangian relaxation problem

of (1):

LðvÞ ¼min
X
i2I

X
j2J

ðcij � vjÞxij �
X
j2J

vj

s:t:
X
j2J

aijxij 6 bi 8i 2 I ;

0 6 xij 6 1 8i 2 I and 8j 2 J ;

ðA:1Þ
where v = (v1,v2, . . .,vn) 2 Rn is a Lagrangian
multiplier vector given to the constraintP

i2I xij ¼ 1; j 2 J , and

cijðvÞ ¼ cij � vj

is called the Lagrangian relative cost. Problem
(A.1) decomposes into m real-valued knapsack
problems, and thus can be solved in O(mn) time
(a linear-time algorithm can be found in, e.g.,
[22]). For any v, L(v) gives a lower bound on the
objective value of problem (1), and the Lagrangian
dual problem is to find a v 2 Rn that maximizes the
lower bound L(v). Any optimal solution v* to the
dual of the linear programming (LP) relaxation of
(1),

max
X

j2J
vj �

X
i2I

biui

s:t: vj � aijui 6 cij 8i 2 I and 8j 2 J ;

ui P 0 8i 2 I ;

ðA:2Þ

is an optimal solution to the Lagrangian dual [7].
However, computing such v* by solving (A.2) is
expensive for large scale instances. Hence we use
the subgradient method [7,15], which is often used
for finding a near-optimal v. Let ~v denote the
Lagrangian multiplier vector obtained by the sub-
gradient method. Computation time to obtain ~v is
negligible compared to the whole execution of
algorithm PREC.

For a good multiplier vector v (such as v* or ~v),
the Lagrangian relative cost cij(v) tends to repre-
sent desirability of assigning job j to agent i (smal-
ler cij(v) means the assignment is more preferable).
The rules to restrict the candidates in the double
shift and long chain neighborhoods are based on
this observation. Let

availðjÞ ¼
arðjÞ;j � prðjÞðrÞ; if arðjÞ;j > prðjÞðrÞ;
arðjÞ;j; otherwise;

�

which defines the amount of resource made avail-
able by the ejection of job j. In a double shift
move, after ejecting the first job j1 from
i1 = r(j1), the candidates of jobs j2 for the second
shift move are restricted to those j whose cijð~vÞ is
the nth (n is a parameter) or smaller among jobs
that satisfy ar(j),k 6 avail(j) and r(j) 5 i1, where
we set n = max{m, logn}. In a long chain move,
after ejecting the lth job jl from il = r(jl)
(l = 1,2, . . ., n), the (l + 1)st job to be shifted into
il is the job j that minimizes cijð~vÞ among those that
satisfy ar(j),k 6 avail(j) and r(j)5 il. If such job j

has already been shifted in the current chain (i.e.,
j 2 {j1, j2, . . ., jl}), then long chain moves of length
l + 1 or more starting from the current j1 are not
searched. (Actually, the rules in [33] to generate
the double shift and long chain moves are slightly
more complicated, but we simplified them here to
explain the main idea more clearly.) As a result,
the sizes of shift, double shift, and long chain
neighborhoods become O(mn), O(nmax{m, logn})
and O(n2), respectively. Sophisticated data struc-
tures are used to find the candidates for the next
shift move at each iteration of generating ejection
moves. More details of the EC probe are found
in [33].
Appendix B. Comparison of rules in algorithm
PREC

In this section, we show comparative data on
various rules in algorithm PREC discussed in Sec-
tion 3.3.



10 For the definition of S, Strategy III was used in Tables 9
and 11 because these data were taken before we decided to use
Strategy II in the experiments in Section 4.
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Definition of S. We compared the three strate-
gies to choose S from the path from rA to rB:
The best c solutions are chosen as S from

Strategy I. r1,r2, . . .,rd�1.
Strategy II. N 0

shiftðr0; rBÞ [ fr2; r3; . . . ; rd�1g.
Strategy III. N 0

shiftðr0; rBÞ [ N 0
shiftðr1; rBÞ [ � � � [

N 0
shiftðrd�2; rBÞ.

The computational results with these strategies are
shown in Table 7. The solution quality of Strategy
II is slightly better than the other two for type D
and E instances, hence we adopted Strategy II.
However, the difference in the performance is quite
small. More important observation is that the per-
formance of PREC is better than TSEC (e.g., the
worst result (i.e., column max) of PREC is better
than the best result (i.e., column min) of TSEC
for all type D instances) even if Strategy I or III
is adopted.

We then observed the ratio

j N 0
shiftðr0; rBÞ \ S j = j S j

in order to see the behavior of Strategy II for type
C, D and E instances with n = 200 and m = 10.
The reader might guess that a large portion of S
is occupied by solutions from N 0

shiftðr0; rBÞ, since
the initiating solution r0 is usually good and many
promising solutions will be clustered around it.
However, this is not the case. When c was set to
10 (the value adopted in the computational exper-
iments in Section 4), the average ratios were about
1/3, 1/2 and 1/3 for type C, D and E instances,
respectively, and the ratio did not change much
when c was decreased to 5 except that the ratio be-
came about 1/4 for type E instance. That is, on
average, more than a half of S are taken from solu-
tions on the path r2,r3, . . .,rd�1.

Other rules. Tables 8–11 show comparisons of
other rules discussed in Section 3.3 for types C,
D and E instances from set MEDIUM (six in-
stances for each type). We ran the algorithm five
times for each instance with time limits 150 and
300seconds for n = 100 and 200, respectively,
and report the average error in % from the lower
bounds (LB in Table 2), where the average was
taken for 6 (instances) · 5 (runs) = 30 runs for
each instance type. The rules and parameters of
algorithm PREC are basically the same as in Sec-
tion 4 except for those investigated. 10

Table 8 compares the effect of perturbing guid-
ing solutions, Table 9 exhibits the effect of using
more than one guiding solution, Table 10 shows
the effect of changing the minimum distance be-
tween solutions in the reference set R, and Table
11 is the comparison between random and deter-
ministic rules to choose two solutions rA and rB
from R. The differences in the performance were
small and hence we adopted simple rules as dis-
cussed in Section 3.3.
Appendix C. Distribution of locally optimal

solutions

We consider the distribution of distances be-
tween locally optimal solutions, which motivated
us to apply path relinking to GAP, where the dis-
tance between two solutions is defined by (3). Sim-
ilar results were reported in [30]. For simplicity,
basic local search with Nshift, Nswap or Nshift [
Nswap was used, where (i) initial solutions were
generated randomly, (ii) the penalty weights ai of
(2) were set to a constant (ai = 2 for types C and
D and ai = 20 for type E, which are appropriate
to obtain feasible solutions frequently as reported
in [34,35]), and (iii) the first admissible move strat-
egy was adopted. Figs. 1–3 show the distribution
of distances between locally optimal solutions for
type C, D and E instances, respectively, of size
n = 400 and m = 20, where 1000 solutions were
generated and distances between all pairs are con-
sidered. For comparison purposes, we also include
the results for randomly generated solutions. The
expected distance between two random solutions
is n(1 � 1/m) = 380. From these figures, we can
observe that the average distance between locally
optimal solutions is much smaller than that of ran-
domly generated solutions, and the average dis-
tance becomes closer if we use larger
neighborhoods. This tendency is drastic for the



Table 7
Comparison of strategies to choose S in PREC (with time limits 3000, 10,000 and 50,000seconds for n = 400, 900 and 1600, respectively, five runs per instance)

PREC TSEC

Strategy I Strategy II Strategy III

Min Avg. Max Min Avg. Max Min Avg. Max Min Avg. Max

C 400 10 5597 5597.0* 5597 5597 5597.0* 5597 5597 5597.0* 5597 5597 5597.0* 5597
C 400 20 4782 4782.0* 4782 4782 4782.0* 4782 4782 4782.0* 4782 4782 4782.4 4783
C 400 40 4244 4244.6 4245 4244 4244.6 4245 4244 4244.4* 4245 4244 4244.6 4245
C 900 15 11,340 11,340.4* 11,341 11,340 11,340.8 11,341 11,340 11,340.8 11,341 11,340 11,340.4* 11,341
C 900 30 9982 9982.4* 9984 9982 9982.8 9984 9983 9983.8 9984 9984 9984.6 9985
C 900 60 9327 9327.4* 9328 9328 9328.0 9328 9327 9327.4* 9328 9328 9329.0 9330
C 1600 20 18,803 18,803.0* 18,803 18,803 18,803.0* 18,803 18,803 18,803.0* 18,803 18,803 18,803.2 18,804
C 1600 40 17,145 17,145.8* 17,146 17,145 17,146.2 17,147 17,145 17,145.8* 17,146 17,147 17,147.4 17,148
C 1600 80 16,287 16,288.2 16,289 16,287 16,288.2 16,289 16,288 16,288.0* 16,288 16,291 16,292.4 16,294

D 400 10 24,967 24,968.4 24,969 24,967 24,969.2 24,971 24,964 24,966.4* 24,969 24,974 24,976.4 24,979
D 400 20 24,586 24,587.6 24,590 24,578 24,586.6* 24,592 24,583 24,587.6 24,592 24,604 24,609.0 24,616
D 400 40 24,422 24,432.4 24,447 24,409 24,419.6* 24,433 24,416 24,425.4 24,432 24,456 24,461.2 24,464
D 900 15 55,413 55,417.4 55,422 55,413 55,414.6* 55,420 55,414 55,415.8 55,418 55,425 55,433.4 55,436
D 900 30 54,868 54,871.2* 54,877 54,868 54,874.0 54,878 54,866 54,871.4 54,877 54,903 54,908.8 54,912
D 900 60 54,599 54,609.8 54,621 54,595 54,603.4* 54,610 54,598 54,607.6 54,618 54,656 54,666.6 54,680
D 1600 20 97,841 97,843.2 97,844 97,837 97,838.8* 97,840 97,836 97,840.0 97,845 97,867 97,872.4 97,877
D 1600 40 97,114 97,115.2 97,117 97,106 97,111.0* 97,115 97,110 97,114.8 97,119 97,160 97,166.0 97,177
D 1600 80 97,047 97,054.2 97,064 97,047 97,051.0 97,054 97,045 97,050.4* 97,059 97,097 97,103.0 97,110

E 400 10 45,746 45,746.0* 45,746 45,746 45,746.0* 45,746 45,746 45,746.4 45,747 45,746 45,746.0* 45,746
E 400 20 44,877 44,880.4 44,884 44,877 44,878.2* 44,879 44,877 44,879.2 44,882 44,882 44,883.4 44,885
E 400 40 44,570 44,576.0 44,582 44,565 44,572.4* 44,586 44,569 44,574.4 44,584 44,579 44,584.6 44,589
E 900 15 102,421 102,421.0* 102,421 102,421 102,421.2 102,422 102,421 102,421.2 102,422 102,422 102,423.0 102,424
E 900 30 100,432 100,433.4 100,436 100,431 100,433.8 100,435 100,430 100,431.4* 100,433 100,438 100,440.6 100,443
E 900 60 100,171 100,178.0 100,188 100,169 100,178.0 100,194 100,163 100,171.2* 100,182 100,177 100,181.2 100,185
E 1600 20 180,646 180,646.4 180,647 180,646 180,646.2* 180,647 180,646 180,646.4 180,647 180,647 180,647.4 180,648
E 1600 40 178,300 178,302.2 178,306 178,298 178,300.8* 178,303 178,300 178,301.2 178,303 178,311 178,313.2 178,316
E 1600 80 176,847 176,860.8 176,895 176,848 176,856.4 176,872 176,849 176,856.0* 176,865 176,856 176,862.8 176,869
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Table 9
Effect of using more than one guiding solution (average error in
% from LB; with time limits 150 and 300seconds for n = 100
and 200, respectively, five runs per instance)

Type The number of guiding solutions

1 2 3 4 6 9

C 0.074 0.069 0.072 0.070 0.071 0.076
D 0.199 0.212 0.195 0.213 0.212 0.231
E 0.058 0.053 0.057 0.050 0.054 0.054

Table 8
Effect of perturbing guiding solutions (average error in % from
LB; with time limits 150 and 300seconds for n = 100 and 200,
respectively, five runs per instance)

Type With perturbation Without perturbation

C 0.073 0.073
D 0.212 0.209
E 0.062 0.050

Table 10
Effect of restricting the distance between solutions in the
reference set (average error in % from LB; with time limits 150
and 300seconds for n = 100 and 200, respectively, five runs per
instance)

Type Minimum distance

1 2 5

C 0.073 0.073 0.068
D 0.212 0.187 0.203
E 0.062 0.061 0.056

Table 11
Comparison of two strategies to choose initiating and guiding
solutions from R (average error in % from LB; with time limits
150 and 300seconds for n = 100 and 200, respectively, five runs
per instance)

Type Random Deterministic

C 0.074 0.071
D 0.199 0.205
E 0.058 0.051
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Fig. 1. The distribution of distances between locally optimal
solutions for the type C instance with n = 400 and m = 20.
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Fig. 2. The distribution of distances between locally optimal
solutions for the type D instance with n = 400 and m = 20.
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type C instance, but not so clear for the type D in-
stance, i.e., the average distance is relatively large
even after the local search. The distance for the
type E instance is in the middle of type C and D
instances. This indicates that, to solve type D in-
stances efficiently, pure intensification is not
appropriate and diversification mechanism is
needed. As algorithm TSEC is strongly biased to
intensification, this observation motivated us to
combine population-based approach to diversify
the search of EC probe. The above consideration
also explains the fact that algorithm PREC was
more effective than TSEC for type D and E in-
stances and that the difference was clearer espe-
cially for type D instances.
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