(4

ELSEVIER

European Journal of Operational Research 132 (2001) 224-242

EUROPEAN
JOURNAL
OF OPERATIONAL
RESEARCH

www.elsevier.com/locate/dsw

Theory and Methodology

A memetic algorithm for the total tardiness single machine
scheduling problem

Paulo M. Franga *, Alexandre Mendes, Pablo Moscato

Faculdade de Engenharia Elétrica e de Computacao — FEEC, Universidade Estadual de Campinas — UNICAMP, C.P. 6101,
13081-970 Campinas-SP, Brazil

Received 19 May 1999; accepted 18 April 2000

Abstract

In this paper, a new memetic algorithm (MA) for the total tardiness single machine scheduling (SMS) problem with
due dates and sequence-dependent setup times is proposed. The main contributions with respect to the implementation
of the hybrid population approach are a hierarchically structured population conceived as a ternary tree and the
evaluation of three recombination operators. Concerning the local improvement procedure, several neighborhood
reduction schemes are developed and proved to be effective when compared to the complete neighborhood. Results of
computational experiments are reported for a set of randomly generated test problems. The memetic approach and a
pure genetic algorithm (GA) version are compared with a multiple start algorithm that employs the all-pairs neigh-
borhood as well as two constructive heuristics. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Scheduling; Memetic algorithms; Hybrid genetic algorithms; Single machine scheduling; Sequence-

dependent setup times

1. Introduction

Under the generic denomination of single ma-
chine scheduling (SMS), we understand one of the
first studied class of problems in the scheduling
area, as the survey papers by Graham et al. [12]

* Corresponding author. Tel.: +55-19-788-3774; fax: +55-19-
289-1395.
E-mail addresses: franca@densis.fee.unicamp.br (P.M.
Franga), smendes@densis.fee.unicamp.br (A. Mendes), moscato
@densis.fee.unicamp.br (P. Moscato).

and Graves [13] show. There are many different
kinds of SMS problems (generally due to different
input data and objective functions). One of the
simplest to state, but not easy to solve, is the
problem of sequencing » jobs, given its processing
times and due dates (distinct for each job), and
with the objective function being to minimize the
total tardiness. Tardiness is a regular performance
measure, which means that an optimal schedule
cannot have idle times between jobs [1,15]. Due to
this fact, a valid solution of the problem can be
defined as a permutation of the jobs. Using the
permutation space representation, the solution

0377-2217/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.

PII: S0377-2217(00)00140-5

P.M. Franga et al. | European Journal of Operational Research 132 (2001) 224-242 225

space has n! configurations and all of them repre-
sent valid solutions of the problem.

The original SMS problem can be extended by
the inclusion of sequence dependent setup times,
precedence constraints for the jobs, ready times,
etc. From an objective function’s point of view (in
a real-world scenario), we may want to minimize
the makespan, the total tardiness, the mean tar-
diness, the number of tardy jobs, or even a com-
bined set of these objectives, which would
characterize a multi-criteria problem. Therefore, it
is easy to see the large variety of problems, which
we may face in practice (see Chapter 7 in Ref. [9]).

The SMS problem with sequence-dependent
setup times is present in many industrial manu-
facturing systems, as pointed out in Ref. [24]. In
this problem, the processing of a job requires a
setup time, which depends on the predecessor job.
In real-world situations, this setup may involve
tooling change, cleaning, transportation of parts
(if jobs i and j are done in different parts), etc. The
extended problem inherits some characteristics of
the original one (without sequence-dependent set-
ups), such as no idle times being allowed between
jobs, but the dominance rules which usually lead
to effective solution methods are not valid any-
more in this case.

The SMS problem we will address in this paper
can be described as follows:

Input: Let n be the number of jobs to be pro-
cessed in one machine. Let {py,...,p,} be the list
of processing times for each one of them, and
{dy,...,d,} be the list of due dates for each job.
Let {s;;} be a matrix of setup costs, where s;; is the
time required to setup job j after the machine has
just finished processing job i.

Task: Find a permutation that minimizes the
total tardiness of the schedule, which is calculated
as
T = Zmax[o,ck — dk},

k=1

where ¢; represents the completion time of job k
(i.e., the time when the machine finishes processing
job k).

It is well known that the problem of sequencing
jobs in one machine without setup times is already

NP-hard [8]. Despite its application to real world
settings, the SMS problem addressed in this article
has received little attention in the scheduling lit-
erature. Ragatz [24] proposes a branch-and-bound
(B&B) method but only small instances can be
solved to optimality. The papers of Raman et al.
[25] and Lee et al. [16] use dispatching rules based
on the calculation of a priority index to build an
approximate schedule, which is then improved by
the application of a local search procedure. Two
papers using metaheuristics have been proposed so
far. Rubin and Ragatz [26] developed a new
crossover operator and applied a genetic algorithm
(GA) to a set of test problems. The results ob-
tained by the GA approach were compared with
the ones from a B&B and with a multiple start
(MS) algorithm and they concluded that MS out-
performed B&B and GA in many instances, con-
sidering running time and quality of solutions as
performance measures. Of course, the instances in
which MS outperformed B&B were the ones where
the exact method did not find an optimal solution
before a limit on the number of nodes was reached.
The B&B was truncated in such cases, returning
sub-optimal schedules. Given these results, Tan
and Narasimhan [27] chose the MS technique as a
baseline benchmark for conducting comparisons
with the simulated annealing (SA) approach they
proposed. Their conclusion was that SA outper-
formed MS in all but three instances, with per-
centage improvements not greater than 6%.

In this paper, we propose a GA and a memetic
algorithm (MA) to solve the SMS problem with
sequence-dependent setup times. The MA algo-
rithm implemented combines the strengths of the
hierarchical population approach with the inten-
sification power of an ad hoc local search proce-
dure. MAs are being used for several NP
optimization problems such as quadratic assign-
ment [17], graph bipartitioning [19], scheduling
and timetabling [3-6,23]. Several recombination
schemes (crossovers) jointly with mutation and
local search procedures are evaluated and the re-
sults are compared against the constructive heu-
ristic ATCS [16]. We also compare our results with
an MS application using the all-pairs neighbor-
hood and with a dispatching rule, which combines
the earliest due date (EDD) with an insertion

226 P.M. Franga et al. | European Journal of Operational Research 132 (2001) 224-242

procedure. In fact, as in Ref. [27], we use the MS
algorithm as a benchmark to make comparisons.
We also report computational experiments in or-
der to evaluate the relative effectiveness of a vari-
ety of recombination operators especially tailored
for this problem.

2. Generation of instances

We decided to describe the methodology used
to generate the test instances in the beginning of
the paper, as it is necessary in order to understand
some partial results and parameter settings shown
in the next sections. Instances were generated
based on the rules of Tan and Narasimhan [27]
and Lee et al. [16]. The size of the instances varies
between 20 and 100 jobs. The generation of pro-
cessing times and setup times follows a discrete
uniform distribution: DU (0, 100). Due dates are
generated according to two parameters: due date
range and due date mean. The due date range is
defined according to a due date factor, R, and is
described by

Ad = Rnpy,,

where pp, is the mean processing time.

The due dates mean is defined by the tardiness
factor T, which measures the percentage of jobs
that are not expected to accomplish their due
dates. The equation for the due dates mean is

dm = (1 — O)npy.

We chose three values for r and R: 0.2, 0.6 and 1.0.
By combining these values, we obtain nine differ-
ent configurations of these parameters. Rubin and
Ragatz [26] show that when using their B&B al-
gorithm, an instance with the due dates generated
over a wide range (a large value of R) is easier to
solve than one with the due dates concentrated in a
narrow range. Similarly, when the mean of the due
dates lies near the beginning or near the end of the
schedule the problem is easier to solve for their
B&B. If the mean lies near the middle of the
schedule, the problem becomes harder.

3. Comparison heuristics — MS, EDD insertion and
ATCS

In order to compare our population ap-
proaches, we choose three other methods: MS,
EDD insertion (EDDy,) and ATCS. The MS al-
gorithm implemented in this work consists of it-
eratively generating an initial random solution
followed by a hill climbing procedure that uses an
all-pairs neighborhood. Therefore, the solution
found is a local minimum. The neighbors are ob-
tained by systematically swapping all pairs of jobs
in the given sequence. The process is iterated many
times until a stop criterion (a time limit criterion
has been used) is satisfied and then the best solu-
tion ever found is reported. It is one of the simplest
methods and uses almost no adaptive procedure at
all, with the exception of a local search scheme.
Despite this fact, MS implementations have shown
good performances for sequencing problems and
are often used as benchmarks.

The EDD, is a dispatching rule often used in
problems with due dates. The version implemented
consists, in a first phase, of sequencing the jobs
according to the EDD rule, i.e., in a non-de-
creasing order of the due dates. In the second
phase, the schedule is constructed by inserting each
job of the EDD sequence in all possible positions
of the partial schedule, choosing the one that leads
to the smaller total tardiness. It is a simple con-
structive and greedy procedure similar to the NEH
algorithm first proposed for the flow-shop prob-
lem [22]. The third phase consists of a local search
procedure based on both all-pairs and insertion
neighborhoods. In an insertion move, a job of the
given sequence is systematically tested for insertion
between any two jobs of the sequence. The move is
performed if it reduces the tardiness.

Lee et al. [16] proposed the dispatching rule
ATCS as an extension of Raman’s rule [25]. It
takes into account the means and dispersions of
the due dates, setup times and processing times. It
consists of three distinct phases. The first one is the
calculation of three parameters that rely on certain
characteristics of the instance such as size, due
dates, setup times and processing times. In the
second phase, a schedule is generated based on the
parameters calculated in the previous phase.

P.M. Franga et al. | European Journal of Operational Research 132 (2001) 224-242 227

Finally, in the third phase, a local search proce-
dure based on swap and insertion neighborhoods
is applied.

4. GA and MA implementations

GAs received recognition in the mid 1970s,
particularly after John Holland’s book titled Ad-
aptation in Natural and Artificial Systems was
published [14]. Since then, due to their simplicity
and efficiency, GA became increasingly popular.
In the 1980s, a new class of knowledge-augmented
GAs, sometimes called hybrid GAs, started to
appear in the computing literature. Recognizing
important differences and similarities with other
population-based approaches, some of them were
categorized as MAs in 1989 [21] and this denom-
ination has become widely accepted [7,20]. Some
MAs have been understood as GAs, which only
use, as parents, configurations that are local min-
ima of a local search algorithm. However, this is
not always the right generalization, a representa-
tive example being a class of MAs known as
scatter search, which can be traced back to the year
1977 [10]. Below, we show a pseudo-code repre-
sentation of a local search-based MA.

The initialization phase begins at initializePop-
ulation and ends just before the repeat command.
It is responsible for generating an initial popula-
tion (Pop) of approximate solutions, requiring the
creation, optimization and evaluation of each ini-
tial individual performed by FirstPop, Local-
Search-Engine(-) and EvaluateFitness(-) methods,
respectively.

procedure Local-Search-based Memetic Algo-
rithm;
begin
initializePopulation Pop using FirstPop;
initializeOffspring offspring;
forEach individual i € Pop do i:=Local-
Search-Engine(i);
forEach individual i € Pop do EvaluateFit-
ness(i);
repeat /*generation loop */
for i:=1 to #recombinations do
selectToMerge (parent_A, par-

ent_B) c Pop;
new_indiv:=Recombine (parent_A,
parent_B);

if (selectToMutate new_indiv) then
new_indiv:=Mutate(new_indiv);
new_indiv:=Local-Search-En-
gine(new_indiv);
EvaluateFitness(new_indiv);
addInOffspring individual rew_indiv

to offspring;

endFor;
addInPopulation offspring offspring to
Pop;

until (termination-condition = True);

end;

The second phase includes the so-called gener-
ation loop. At each step, two parent configurations
(parent_A, parent_B) are selected for recombina-
tion (selectToMerge) and an offspring is generated
with the Recombine(:,”) method. Then, if it is se-
lected to mutate (selectToMutate), a mutation
procedure is applied to it. The next steps are the
optimization of the individual through a local
search procedure, its evaluation and insertion
(addInOffspring) into the offspring. After all re-
combinations are done, the offspring is inserted
into the population. Finally, a termination condi-
tion is checked for true and a new generation
begins.

Next, we will survey all the main characteristics
of the MAs we have implemented. We will specify
the hierarchical population structure, representa-
tion, recombination schemes, mutation, selection,
fitness function and the inclusion and exclusion of
individuals from the population. The effectiveness
of any population approach relies on suitable
choices of these characteristics as well as on the
settings of the parameters associated with them.

4.1. Solution representation

When using a GA or an MA, it is very impor-
tant to keep in mind that the representation of a
solution can greatly influence the effectiveness of
the algorithm. When representing a solution as a
“chromosome” or “genotype’’, one should avoid,

228 P.M. Franga et al. | European Journal of Operational Research 132 (2001) 224-242

for instance, that small changes in the values of the
alleles create solutions with values of the fitness
function too far from the ones of the original
parents. In that case, it is wise to consider other
solution representation. Such a sensitive scheme
may interfere with the convergence process of the
population and the quality of the offspring.

The representation for the SMS we have
chosen is quite intuitive with a solution mapped
into a chromosome with the alleles assuming
different integer values in the [1,n] interval. Any
solution can be mapped into this permutation
representation and consequently the size of the
search space is n! This approach can be found
in most GA articles dealing with sequencing
problems.

4.2. Crossover

Three different crossover operators were im-
plemented, one of them being hybrid. The first
crossover we have implemented is well known as
order crossover (OX) [11]. After choosing two
parents through the selectToMerge procedure, a
fragment of the chromosome from one of them is
copied into the offspring. The selection of the
fragment is made uniformly at random. In the
second phase, the empty positions are sequentially
filled according to the chromosome of the other
parent and following the sequence of jobs.

ParetA 132[7 86945 1__7869__(®B
ParentB 178456239 14_7869__()

1457869 __()
Offspring _ _ _ 7869 _ _(A) 14578692 _(B)

2" phase - final offspring

In the above example, the fragment is selected
from parent A and consists of jobs 7-8—6-9 at
positions 4-7. The child’s empty positions are then
filled according to the order they appear in the
chromosome of parent B. This scheme tends to
perpetuate what is called the relative order of the
jobs.

The second crossover we implemented was
proposed by Rubin and Ragatz [26]. It was spe-
cifically designed for this problem and since they
did not name it, we will refer to it as RRX. The
RRX does not only preserve the relative order of
the jobs, but also preserves some jobs in their ab-
solute positions in the sequence. It divides the jobs
into two sets and mixes them according to the
information in both parents, with no random de-
cisions. Following this scheme, exactly eight indi-
viduals are generated, two of them being clones of
the parents. As a fixed sized population is adopted,
it is necessary to select some of the offspring to be
incorporated into the population. They made
comparisons with several policies and all per-
formed similarly. For this reason, they suggested a
random choice of one of the offspring.

Finally, a third recombination strategy consists
of both crossovers acting together. This is a hybrid
scheme in which half of the recombination in every
generation is done according to the OX crossover
and the other half according to the RRX cross-
over.

The number of new individuals created during
one generation is related to the crossover_rate
parameter and is expressed by pop_size * cross-
over_rate, where pop_size is the number of indi-
viduals in the population.

4.3. Mutation

Many researchers believe that mutation does
not play an important role in the evolutionary
process and that when a good crossover scheme is
at hand, no mutation is needed at all. As the
crossovers implemented lead to a quick loss of
diversity, mutation does play an important role in
preserving the diversity of the population. Indeed,
for some instances and representations, mutation
has its relevance [18]. We implemented a tradi-
tional mutation strategy based on job swapping.
According to the Mutate(.) function, two positions
are randomly selected and the alleles in these po-
sitions swap their values. The function is applied
to each individual with a probability of mut_rate
and once applied it mutates only two alleles. More
changes per chromosome were tested, but led to

P.M. Franga et al. | European Journal of Operational Research 132 (2001) 224-242 229

worse results. In fact, when the number of mutated
alleles increases, valuable information tends to be
lost, worsening the overall performance. The val-
ues for the parameter mut_rate will be addressed
later.

4.4. Local search

Local search algorithms rely on a neighbor-
hood definition that establishes a relationship be-
tween solutions in the configuration space. In this
work, two neighborhood definitions were chosen
and they were both used in the MS and in the MA
approaches. One can define the neighborhood of a
solution (a job sequence) as the set of solutions
that is reachable by executing any possible move
allowed by the neighborhood generation scheme.
One of the neighborhoods implemented was the
all-pairs. 1t consists of all possible swaps of pairs of
jobs in a given solution. A hill-climbing algorithm
can be defined by reference to this neighborhood;
i.e., starting with an initial permutation of all jobs,
a swap is confirmed every time it causes a reduc-
tion in the total tardiness. Other cycle of swaps
recurrently takes place, until no further improve-
ment is achieved.

The second neighborhood implemented was the
insertion neighborhood. It consists of removing a
job from one position and inserting it in another
one. Jobs are removed and inserted starting from
the beginning of the sequence. The hill-climbing
procedure is the same we used for the all-pairs
scheme.

4.5. Fitness function

The fitness function is a key element to guide
the evolutionary process. A function that leads to
a reliable evaluation shall prevent the algorithm
from discarding good solutions or selecting bad
ones for reproduction with a higher probability
that would be desirable.

As in our problem the objective is to minimize
the total tardiness, the fitness function chosen was

fi= @+

where T; is the total tardiness of solution i. The
inversion is due to the fact that a large total tar-
diness means a low fitness and vice versa. The total
tardiness was increased by one in order to avoid a
division by zero when it equals zero. A similar
fitness function was also used in Refs. [6,26].

4.6. Population structure

GAs using structured population approaches
are common in implementations in which com-
putational tests are executed in parallel computers.
Usually in this case, each processor is responsible
for one individual or a subset of them. Results
obtained in parallel computers (with structured
populations) are in general much better than the
ones obtained in sequential machines (which gen-
erally employ non-structured populations). Even
though our computational implementation and
tests have been carried out on a single-processor
computer, we decided to implement a hierarchical
population structure based on a ternary tree. In
contrast with the non-structured version, where all
individuals can recombine with each other, the
population is divided into clusters, restricting
crossover possibilities.

The structure consists of several clusters, each
one having a leader solution and three supporter
solutions, as shown in Fig. 1. The leader of a
cluster is always fitter than its supporters. As a
consequence, top clusters tend, on an average, to
have fitter individuals than bottom clusters. As
new individuals are constantly generated, replac-
ing old ones, periodic adjustments are necessary to
keep this structure well ordered.

The number of individuals in the population is
restricted to the numbers of nodes in a complete
ternary tree, i.e. (3* — 1)/2, where k is the number

/ ? Leader
O @) o
O/O‘\O o/é\o O/(‘)\O D
: N\

Supporters

Fig. 1. Population structure.

230 P.M. Franga et al. | European Journal of Operational Research 132 (2001) 224-242

of levels of the tree. That is, 13 individuals are
necessary to construct a ternary tree with three
levels, 40 to make one with four levels and so on.

In order to demonstrate the effectiveness of a
structured population scheme compared to an
non-structured one, we conducted tests using a
small set of instances. Before doing this, the pa-
rameter settings for both implementations have to
be calculated.

4.6.1. Parameter setting: Structured population

Parameter tuning was applied only to the size of
the population, crossover rate and mutation rate,
considering the following ranges:

Population size 13, 40 or 121 individuals (ter-
nary tree with 3, 4 or 5 levels)
from 0% to 100% (in 10% steps)

from 0% to 100% (in 10% steps)

Crossover rate
Mutation rate

The procedure initially fixes all parameters at
specific values within the ranges above. These ini-
tial values do not influence the final result of the
procedure. So, we vary the population size values
within the range and keep the best one, i.e., the
value that led to the best total tardiness. After this
phase has ended, we fix the size of the population

Table 1
Best parameters found for the structured population

as the best value found and start varying the
crossover rate. The process continues this way and
finishes when the mutation rate has been fixed.
This completes the first cycle of the parameter
tuning. The best total tardiness found and the best
parameters are saved and another cycle begins,
now with the parameters set as the best ones found
in the previous cycle. At the end of each cycle, the
best total tardiness value is compared to the value
of the best total tardiness ever found and, if an
improvement is detected, the best parameter values
are updated. This strategy showed that after three
cycles, there were almost no changes in the best
parameter values.

Parameters were tested for GA and MA with
OX crossover. The MA used an all-pairs-based
local search. Values of t and R were fixed at 0.6.
Tests with other configurations of 7 and R revealed
no significant variations in the results. The best
parameters found are presented in Table 1.

4.6.2. Parameter setting: Non-structured population

Parameter tuning followed the same method-
ology for the structured population approach,
with the range of population size being [10, 150] in
10-individual steps. The best parameters found
appear in Table 2.

n Genetic algorithm

Memetic algorithm

Population size Crossover rate

Mutation rate

Population size Crossover rate Mutation rate

20 121 0.3 0.8 40 0.2 0.1
40 121 0.4 0.7 40 0.3 0
60 40 0.3 0.6 13 0.2 0.1
80 40 0.5 0.8 13 0.3 0
100 13 0.5 0.8 13 0.2 0
Table 2

Best parameters found for the non-structured population

n Genetic algorithm

Memetic algorithm

Population size Crossover rate

Mutation rate

Population size Crossover rate Mutation rate

20 100 0.5 0.7
40 70 0.4 0.8
60 70 0.4 0.9
80 50 0.5 0.8
100 30 0.6 0.7

80 0.3 0.1
60 0.5 0.1
50 0.4 0.0
40 0.3 0.0

20 0.3 0.1

P.M. Franga et al. | European Journal of Operational Research 132 (2001) 224-242 231

Based on the results shown in Tables 1 and 2,
there does not seem to be a correlation between
parameter values and problem size (possibly due
to the fixed step size of 10% chosen for the
variations) except for the size of population. This
can be explained by the total tardiness criterion
used to determine the parameter settings. In each
category we had several configurations with al-
most the same total tardiness. Therefore, one
should not take these parameters as absolute
values, but just as guiding values that should be
used in the future for other comparisons. The
most important results displayed by these tests
are the importance of mutation and the large
population size found for both GAs. One should
not be puzzled by the 70-80-90% values obtained
for the GA mutation rates as they are only re-
lated to the percentage of new individuals that are
mutated. As scheduling problems represent indi-
viduals as a permutation vector, mutation must
be associated with the exchange of job positions,
for instance, the two jobs involved in a swap
move. Usually mutation rates range from 0% to
5% at maximum, but this percentage is generally
related to the percentage of jobs (or genes) that
are mutated. On an instance of size n = 100, a
1.6% mutation rate applied to jobs would be
equivalent to a 80% mutation rate applied to in-
dividuals. One can interpret these high GA mu-
tation rates as an indication that GAs, when
submitted to a parameter optimization procedure,
tend to MAs, assuming that systematic and high
mutation rates keep a close relation with a local
search scheme.

With respect to the MAs, the conclusion we
draw is that mutation should be set at very low
rates. Crossover rates are almost the same for all

Table 3

approaches, with a slightly higher rate for the GA
and for the non-structured population. The num-
ber of individuals decreases with the number of
jobs mainly because, in a limited processing time
environment, it is better to have few individuals
and make more generations than to have more
individuals and few generations.

4.6.3. Structured population versus non-structured
population

In this section we present results for the struc-
tured and the non-structured versions of the MA.
Here, we try to show the importance of a hierar-
chical population structure, since very few papers
address this issue, with the possible exception of
Refs. [2,23]. Next, we present a table comparing
the results obtained by both approaches when
compared to the ones obtained by the MS algo-
rithm used as a benchmark. All methods use the
same all-pairs-based local search and the same
computational time: 2 minutes. Numbers are per-
centage improvement over the MS strategy. Values
of 7 and R were fixed at 0.6.

Each entry in Table 3 represents the average
value for five different instances. The results indi-
cate that the performance increases when popula-
tion structure is used. For small instances, the
values are similar for both structured and non-
structured populations, but for instances with 80
jobs and especially 100 jobs, the gap is quite rele-
vant. These initial computational experiments
show a clear performance superiority of the MA
over the GA. Notice that the GA and MA im-
plemented shared the same characteristics, the
only difference being the Local-Search-Engine(-)
method that is switched off in the GA.

Comparison between the non-structured and the structured populations

n Genetic algorithm

Memetic algorithm

Non-structured population

Structured population

Non-structured population Structured population

20 -2.3 =27
40 -2.8 -3.0
60 -9.2 =7.0
80 -11.2 -6.3
100 -17.0 -8.6

Mean -8.5 -5.5

1.9 1.7
13.2 13.4
12.4 14.1
10.1 12.6
6.1 11.9
8.7 10.7

232 P.M. Franga et al. | European Journal of Operational Research 132 (2001) 224-242

4.7. Neighborhood reductions

Given the large size of the all-pairs and inser-
tion neighborhoods, and the computational com-
plexity required for calculating the total tardiness
for each solution, the implementation of reduction
schemes is mandatory. The search within a given
neighborhood requires the computation of all so-
lutions that belong to it. In our problem, the
analysis of each solution obtained through a swap
or an insertion move is quite hard. For other se-
quencing problems, like TSP for instance, the
calculation of the objective function’s variation
(for k-opt procedures, for example) can be done in
constant time. All that is necessary is to remove
the old edges and add the new ones. However,
when the objective function is the total tardiness,
any change in the sequence of jobs may affect the
tardiness of all jobs that are placed after the ones
that have been moved. Therefore, each new eval-
uation requires a very time-consuming loop to
recalculate the total tardiness.

Reduced neighborhoods can be obtained from
rules that specify which moves might be worth
testing or not. Thus, the number of those recal-
culation loops may decrease dramatically,

Configuration before swap:

> <>
Vo Vi Vap

Vipb=si1i+pi . s‘“
Vb = 8iis1
Vgh = Sj-l,j + p] V]b
Vb = 841

Configuration after swap:

Via=si1j+ D Sii1)
Vo= S+l IEI

Vi =sj1i+ D

Via =Sijn Vla

Sii+1

j
SJ i+1

<>
Vza V3a V4a

depending on how restrictive the reduced scheme
is. A well-designed reduction scheme should re-
duce the number of evaluations as much as pos-
sible without loosing the strength of the search.
That is, only movements that may return good
results should belong to the reduced neighborhood
and therefore deserve to be evaluated. Analo-
gously, bad moves must be promptly identified
and discarded. Some authors refer to these re-
duction schemes as candidate list strategies.

To reach this goal, we based our reduction rules
on the setup times’ values. We have observed that
most good schedules have a common characteris-
tic: the setup times between jobs in these solutions
are very small. That is reasonable, since schedules
with small setup times between jobs will be less
lengthy, generating few delays.

4.7.1. Neighborhood reductions for the all-pairs and
insertion schemes

We designed four reduction rules for the all-
pairs neighborhood and two rules for the insertion
neighborhood. They are based on comparisons of
the setup times and processing times involved in
the move. Consider a swap move as shown in
Fig. 2.

Sj-1 JJ+1
_>. — ™ |j+1

Fig. 2. Swap move.

P.M. Franga et al. | European Journal of Operational Research 132 (2001) 224-242 233

Table 4 Table 5
Reduction rules for swap moves Reduction rules for the insertion moves
Reduction Rules Reduction Rules
Al (Via < Vp) V (Vg < Vap) V (Vaa < V)V I (Via < Vip + V) A (Vaa + Vaa < Vap)
(Vaa < Vip) 12 (Via < Vip + Vo) V (Vaa + Vaa < Vap)
A2 [(Vla< Vis) V (Ve < Vap)] A [(Vaa < Vap)V
(Vaa < Vap)]
A3 [(Fa < Vi) A (Va < V)]V [(Vaa < i) strictive, selecting candidates if one of these con-
(Ve < Jar)] ditions holds
A4 (Via 4 Vaa < Vip 4 Vap) V (Vg + Via <)
Vap + Vap)

Our first rule A1 — see Table 4 — establishes that
a swap move will be performed (and the total
tardiness recalculated) only if at least one of the
new setup times, jointly with the processing times,
introduced in the new sequence is smaller than the
old ones. The rules A2 and A3 are similar to Al,
but more restrictive. The rule A4 is based on the
sum of the setup times and the processing times
involved in the move before and after it.

The rules for the insertion neighborhood are
also based on the exchange of the setup times and
processing times, as shown in Fig. 3 and Table 5.
The first rule 11 — see Table 5 — establishes that an
insertion move will be evaluated only if one verifies
that the deletion of job i as well as its insertion
behind job j are advantageous. Rule 12 is less re-

Configuration before insertion:

4.7.2. Computational evaluation

Table 6 shows the results attained by the six
neighborhood reductions as well as a composite
neighborhood that used the best schemes for swap
and insertion. Figures are percentage deviation
obtained by each rule with respect to MS using an
all-pairs neighborhood, all of them running for the
same amount of time (2 minutes).

The mean is calculated for the following values
of (z, R): (0.6,0.2); (0.6,0.6); (0.6,1.0); (1.0,0.2);
(1.0,0.6); (1.0,1.0). We did not consider t =0.2
because of the instability verified in this case. The
MS often obtains values near zero when 7 = 0.2,
and thus any deviation returns high percentage
values. This instability could easily invalidate the
results. The row labeled Size indicates the fraction
of the size of the reduced neighborhood compared
to the full-sized neighborhood.

pi
Vlb =Si.1,i T Di Si-1i Siit+l Sj-1,j
S e]
Vab = Sijs1
\%
3b = Sj-1
i1 Vi Vi
Configuration after insertion:
Via = Sicnist . Sitiel - Sj-Li Sij —
e - L O
Vou=sj1i+ Pi
V‘%a =S
: J
Vla V2a V3a

Fig. 3. Insertion move.

234 P.M. Franga et al. | European Journal of Operational Research 132 (2001) 224-242

Table 6
Neighborhood reduction evaluation

% deviation of MA/OX/Structured population with respect to MS/all-pairs local search

n All-pairs Al A2 A3 A4 Insertion 11 12 A2/12
20 0.8 0.9 0.6 0.4 1.0 0.4 -1.1 0.7 0.9
40 10.2 10.3 10.0 8.2 9.3 6.0 -5.1 6.3 11.3
60 9.4 10.4 10.8 9.3 10.5 4.6 -10.4 6.5 11.9
80 7.7 8.6 10.0 9.4 9.5 2.0 -17.7 4.6 11.1

100 5.9 6.0 8.0 7.2 8.2 -0.4 -23.0 2.1 10.7

Mean 6.8 7.2 7.9 6.9 7.7 2.5 -11.5 4.0 92

Size * 0.51 0.05 0.05 0.21 * <0.01 0.50 0.24

A very small influence of t and R in the
neighborhood reduction performance was ob-
served. All configurations led to quite similar re-
sults. This can be explained by the fact that the
reduction is based on the setup time values, which
do not depend on 7 and R.

The reduction schemes have been shown to
improve the MA, especially for medium-sized in-
stances. The rules Al, A2, A3 and A4 performed
better than the full size neighborhood, although
their sizes vary only from 5% up to 51% of the full
scheme. With the insertion neighborhood, we no-
ticed a different behavior. The reduction scheme 11
had a very poor performance — probably because
of its extremely reduced size — while the 12 per-
formed better. The hybrid including the best two
rules (A2/12) attained the best performance. Ac-
cording to it, each individual is submitted to an
A2-based local search and the resulting sequence
goes through an I2-based local search. The final
solution is then reported. The size of this hybrid
neighborhood is about a fourth of the all-pairs and
insertion neighborhoods together, meaning that
almost four times more generations are executed in
the same amount of time. The computational time
necessary for crossover does not change with the
reduction, requiring only a small fraction of the
total CPU time.

4.8. Selection to recombination

4.8.1. Non-structured population

The selectToMerge procedure followed the
roulette wheel scheme [11]. Consider the total fit-
ness of the population as being the sum of the

fitness of all individuals. Dividing the individual
fitness by this total fitness, one will obtain the
fraction of the population’s fitness that this indi-
vidual has contributed to. For example, consider
three individuals, with fitness 10, 15 and 30. The
total fitness is 55 and the fraction of each indi-
vidual is 0.18, 0.27 and 0.55, respectively. There-
fore, the interval for each individual in the roulette
wheel is [0,0.18], [0.18,0.45] and [0.45,1.0].

A random number between 0 and 1 is generated
and the individual in whose interval the number
lies is selected. Initial tests showed that the best
individual among the population was participating
in almost all crossovers, especially because we were
keeping the best individual ever found always
present in the gene pool. This is a common prob-
lem with roulette schemes. Therefore, we added a
selection restriction to force diversity.

Each individual has an associated variable re-
combine, which can assume values true or false. If
it is true, then the individual may be selected for
recombination, otherwise it is forbidden. For the
best individual, before each recombination, this
variable is set true with a probability of 0.5, which
means it may take part in 50% of the crossovers at
maximum. This limited pressure on the best indi-
vidual is worth doing, improving slightly but
constantly the results, when compared to the or-
dinary roulette wheel scheme.

For all other individuals, the variable recombine
is set to true at the start of the recombination loop
and each time a non-incumbent individual is se-
lected, its variable is set false. Finally, if more than
80% of the population is forbidden to recombine
and the generation loop has not ended yet, all re-
combine variables are set to true.

P.M. Franga et al. | European Journal of Operational Research 132 (2001) 224-242 235

4.8.2. Structured population

Recombination in the structured population
can only be made between a leader and one of its
supporters within the same cluster. The selectTo-
Merge procedure always selects a leader — and
consequently the cluster — without using the rou-
lette wheel or any other biased selection scheme.
Then, it chooses (uniformly at random) one of the
three supporters present in the same cluster of the
selected leader. No restriction to the number of
recombinations an individual can take part in was
implemented. The only intensification procedure is
that the best individual must take part in ap-
proximately 10% of the recombinations, that is,
10% of the crossovers occur with individuals from
the uppermost cluster.

4.9. Offspring insertion into population

4.9.1. Non-structured population

We used an intermediate population approach
with a deterministic insertion policy. All individ-
uals created during the crossover and mutation
processes are saved as an intermediate population
and only at the end of the recombination loop they
are inserted into Pop. The addInPopulation func-
tion replaces the less adapted individuals accord-
ing to the non-decreasing sequence of fitness.

A diversity control mechanism was also incor-
porated in the addInPopulation. It consists of
copying individuals from the intermediate popu-
lation to Pop only if they had a total tardiness
value that is different from the ones associated
with all other individuals in Pop. This prevents the
population from having duplicated individuals,
greatly reducing the diversity loss.

At the end of the insertion process, the inter-
mediate population is erased. This policy can be
classified as elitist since it always preserves the
incumbent solution in the gene pool.

4.9.2. Structured population

According to the addInPopulation function for
the structured population, if the fitness of an off-
spring is better than the leader selected by select-
ToMerge, the new individual substitutes it.
Otherwise, it takes the place of the supporter that

took part in the recombination. If the new indi-
vidual is already present in the population, then it
is not inserted as we adopted a policy of not al-
lowing duplicated individuals to reduce loss of
diversity. After the offspring has been inserted, the
population is restructured. Since the fitness of any
individual must be greater or equal to the fitness of
all the individuals which form the subtree below it,
the upper subgroups will have individuals with
better fitness than the lower groups and the best
solution will be the leader of the uppermost sub-
group. The adjustment is done by comparing the
leader of each subgroup with its supporters. If any
supporter turns out to be better, then they swap
places. Any simple tree-ordering algorithm can
execute this job.

5. Computational experiments

As pointed out in Section 3, our GA and MA
approaches for the SMS problem have also been
compared with three other heuristics — MS,
EDD;,; and ATCS. For each implementation of
the GAs and MAs, we tested three different
crossovers as described in Section 4.2. The popu-
lation is structured for all the genetic and memetic
approaches. The genetic RRX approach is not the
same as Rubin and Ragatz [26]. We use just the
RRX crossover proposed by them embedded in a
different GA/MA framework developed by us. At
the end of this section, we report tests comparing
our MA with their original GA/RRX. We also
used a fixed CPU time of 2 minutes per algorithm,
except for the ATCS and the EDD;,, which re-
quired always less than 2 seconds. All methods
were coded in Sun Java JDK 1.2 and executed
using a PC-compatible PENTIUM 11-266 MHz
with 128 Mb RAM.

As a benchmark, we took the results of the MS
with all-pairs local search. The other approaches
were compared to it and the Tables 7-15 show the
mean relative performance of all strategies for a set
of five runs each. This relative performance is
calculated as

RP,, = (1 - Tlé) x 100,

MS

236

Table 7

(t,R) = (0.2,0.2)

P.M. Franga et al. | European Journal of Operational Research 132 (2001) 224-242

n Genetic algorithm Memetic algorithm ATCS EDD;,,
RRX 0X RRX/0OX RRX 0X RRX/0OX
20 -28.3 4.8 5.0 3.9 8.6 6.7 -80.0 -110.0
40 -20.5 12.1 -3.6 5.4 324 239 -23.8 -334
60 -62.3 3.1 -7.2 21.9 42.9 36.4 -10.5 -14.5
80 -70.1 -0.5 -15.4 18.9 38.2 30.3 -3.0 -1.5
100 —-112.1 -10.2 -32.7 19.9 42.0 40.0 3.3 5.7
Mean —-58.6 1.9 -10.8 14.0 32.8 27.5 -22.8 -31.7
Table 8
(t,R) = (0.2,0.6)
n Genetic algorithm Memetic algorithm ATCS EDD;,
RRX 0X RRX/OX RRX 0oX RRX/0OX
20 —45.2 2.4 -22.0 13.0 13.2 13.2 -112.1 -307.9
40 -37.8 33 6.8 26.6 54.2 50.5 -70.2 -76.2
60 -60.4 -14.9 -20.7 35.7 86.0 78.6 —40.6 —67.7
80 -92.6 =222 -74.4 36.4 82.5 74.7 -15.9 -15.1
100 -123.7 -36.5 -98.8 23.1 60.2 54.6 -9.8 0.3
Mean -71.9 -13.6 —41.8 26.9 59.2 54.3 —49.7 -93.3
Table 9
(z,R) = (0.2,1.0)
n Genetic algorithm Memetic algorithm ATCS EDD;,
RRX OX RRX/OX RRX OX RRX/OX
20 —42.1 -23.0 -30.2 9.9 12.6 10.0 -95.1 -251.9
40 —-88.9 -10.1 —44.2 16.0 67.5 62.6 -111.2 —-181.1
60 —-143.7 —47.7 —-66.1 65.8 100.0 96.1 -137.6 —-208.9
80 —-168.1 -119.2 —-140.8 45.6 88.7 86.6 -25.2 —-100.1
100 -203.4 -170.5 -196.3 52.4 86.7 80.7 10.2 —-65.0
Mean -129.2 -74.1 -95.5 37.9 71.1 67.2 -71.8 —-161.4
Table 10
(t,R) = (0.6,0.2)
n Genetic algorithm Memetic algorithm ATCS EDDj,
RRX O0X RRX/0OX RRX O0X RRX/0X
20 -8.8 -39 -3.6 1.7 17 1.7 -20.5 —40.4
40 -11.2 -5.4 -2.0 3.2 16.2 14.1 -13.1 -15.5
60 -16.7 -32 -9.6 5.7 14.7 13.1 -1.1 -3.8
80 -23.6 -1.9 -10.7 4.0 12.8 9.4 4.2 2.4
100 -27.2 -33 -16.1 5.3 13.1 11.0 5.3 3.2
Mean -17.5 -35 -8.4 4.0 11.7 10.4 -5.0 -10.8

P.M. Franga et al. | European Journal of Operational Research 132 (2001) 224-242 237

Table 11
(t,R) = (0.6,0.6)
n Genetic algorithm Memetic algorithm ATCS EDD;,,
RRX 0X RRX/0OX RRX 0X RRX/0OX
20 -10.1 -2.7 -33 1.2 2.1 1.8 -29.2 -20.3
40 -15.4 -3.0 -5.4 34 18.5 15.6 -9.8 -9.9
60 -16.6 -7.0 -7.2 43 15.6 15.0 —4.2 —4.5
80 -18.7 —-6.3 -12.5 5.8 16.2 15.8 2.3 2.7
100 -22.6 -8.6 -17.5 5.3 15.5 12.2 5.3 49
Mean -16.7 =55 -9.2 4.0 13.6 12.1 -7.1 -5.4
Table 12
(z,R) = (0.6,1.0)
n Genetic algorithm Memetic algorithm ATCS EDD;,
RRX 0X RRX/O0X RRX (0):¢ RRX/O0X
20 -89 1.0 -22 0.5 0.5 0.5 -239 -32.1
40 -19.7 -3.6 —4.7 3.5 15.5 15.5 -14.7 -11.9
60 -18.7 -3.7 -8.8 4.1 16.7 15.6 -2.7 -6.7
80 -30.3 -89 -10.3 3.8 18.4 14.0 -34 —4.1
100 -39.3 -12.9 -27.3 2.7 17.5 11.0 1.0 1.2
Mean -23.3 -5.6 -10.6 29 13.7 11.3 -8.7 -10.7
Table 13
(z,R) = (1.0,0.2)
n Genetic algorithm Memetic algorithm ATCS EDD;
RRX (0):¢ RRX/O0X RRX (0,4 RRX/O0X
20 -2.5 -1.3 =32 0.2 0.2 0.2 -8.3 -159
40 -10.7 -29 —4.8 1.7 6.2 5.9 =35 -8.1
60 -12.4 -2.0 -3.1 2.0 7.3 6.4 33 -1.4
80 -15.2 —4.2 -5.4 1.4 6.8 5.0 4.1 -0.8
100 -16.4 -39 -9.8 1.7 6.2 5.2 4.7 1.0
Mean -11.4 -29 =52 1.4 5.3 4.5 0.5 -5.0
Table 14
(t,R) = (1.0,0.6)
n Genetic algorithm Memetic algorithm ATCS EDDjy
RRX 00X RRX/0X RRX 0X RRX/0X
20 -6.3 -1.3 -2.1 0.7 0.7 0.7 -9.2 -12.8
40 -7.5 -3.1 -0.9 2.1 4.7 4.8 -4.4 -6.7
60 -7.6 =35 -33 2.5 7.9 6.8 1.2 -2.0
80 -10.6 -32 -5.6 1.3 6.5 5.4 2.6 -2.8
100 -12.7 =57 -9.4 1.5 6.2 3.9 3.8 1.2

Mean -8.9 =33 -4.3 1.6 5.2 4.3 -1.2 -4.6

238 P.M. Franga et al. | European Journal of Operational Research 132 (2001) 224-242

Table 15
(t,R) = (1.0,1.0)
n Genetic algorithm Memetic algorithm ATCS EDD;,,
RRX OX RRX/OX RRX OX RRX/OX
20 —4.2 -2.5 -2.9 0.1 0.3 0.3 -4.7 -16.2
40 =52 -29 =22 2.6 6.7 6.1 -3.5 =25
60 -7.8 -2.1 -33 2.5 9.1 7.1 —-0.1 -1.3
80 -9.6 -3.1 —-6.1 1.8 6.0 4.3 1.5 0.3
100 -12.5 -3.7 -8.3 3.1 5.9 4.8 1.8 -0.1
Mean -7.8 -2.9 -4.5 2.2 5.6 4.7 -0.2 -3.2

where RP,, is the relative performance of the
method in comparison with the MS, T, the total
tardiness obtained by the method being analyzed
and the T is the total tardiness obtained by MS
using the all-pairs neighborhood. The neighbor-
hood chosen for the MAs was A2/12. Each table
refers to a combination of (t, R), considering the
values 0.2, 0.6 and 1.0.

Notation

RRX crossover strategy proposed by Rubin
and Ragatz [26]

0oX order crossover strategy

ATCS dispatching rule proposed by Lee et al.
[16]

The 100% improvement indicates that the MA
found a total tardiness equal to zero in all runs
while the MS did not find any.

Analyzing the results obtained by the GAs and
the MAs, we can conclude that OX is the best

crossover operator in this study. The RRX cross-
over performed poorly, probably because of the
quick loss of diversity. The MS outperformed GA
with OX in all but few cases, although with a small
gap, rarely greater than 10%. On the other hand,
the MA always outperforms the MS. For 1 = 0.2,
the improvements were extremely high. That is
because in these cases, the optimal total tardiness
equals zero or lies near zero. Therefore, any devi-
ation will return very high improvements. The
ATCS dispatching rule performed well, showing
better results than EDD;, in all but one data set.
Its performance was shown to be better as the
number of jobs increases. For more than 80 jobs
the ATCS rule can rival MS and be better than
the GA in almost all parameter configurations.
Table 16 summarizes the mean deviation observed
for each combination of T and R.

In an overall evaluation of the various methods
implemented, we can say that the MAs appear as
the best ones (OX crossover is preferable), fol-

Table 16

Mean deviation
(t,R) Genetic algorithm Memetic algorithm ATCS EDD;,

RRX 0X RRX/O0X RRX (0):¢ RRX/O0X

(0.2,0.2) —-58.6 1.9 -10.8 14.0 32.8 27.5 -22.8 -31.7
(0.2,0.6) -71.9 -13.6 —41.8 26.9 59.2 54.3 —49.7 -93.3
(0.2,1.0) —-129.2 -74.1 -95.5 37.9 71.1 67.2 -71.8 -161.4
(0.6,0.2) -17.5 -3.5 -8.4 4.0 11.7 10.4 -5.0 -10.8
(0.6,0.6) -16.7 -5.5 -9.2 4.0 13.6 12.1 -7.1 -5.4
(0.6,1.0) -233 -5.6 -10.6 2.9 13.7 11.3 -8.7 -10.7
(1.0,0.2) -11.4 -2.9 =52 1.4 5.3 4.5 -0.5 -5.0
(1.0,0.6) -89 -33 —4.3 1.6 52 43 -1.2 —4.6
(1.0,1.0) -7.8 -2.9 -4.5 2.2 5.6 4.7 -0.2 -3.2
Mean -31.8 -12.1 -21.1 10.5 24.2 21.8 -18.6 -32.7

P.M. Franga et al. | European Journal of Operational Research 132 (2001) 224-242 239

lowed by the GA with OX operator. ATCS is the
next method, followed by the other GAs. The
worst performance was obtained by the EDDjy
rule.

5.1. Tests with the instances of Rubin and Ragatz

Table 17 shows the computational results ob-
tained on the problems used in the article of
Rubin and Ragatz [26], where the RRX crossover
was proposed. The instances vary from 15 to 45
jobs and the results include our GA and MA

Table 17
Comparisons with Rubin and Ragatz’s problems

with OX operator, the ATCS rule and the genetic
algorithm presented in Ref. [26] — column labeled
“Genetic RRX”. In their work, they used upper
bounds and optimal values as comparison
benchmarks — optimal values for small problems
found by a branch-and-bound method [24] and
upper bounds provided by its current incumbent
solution value obtained after two million nodes
for the larger ones. Two stopping criteria based
on CPU time were implemented for GA and
MA: 2 minutes of CPU time for each run (GA,,
and MA,,) and the approximate equivalent CPU
time used for Genetic RRX (GAgrr and MARgR).

n MAgm MARR GAzm GARR ATCS Genetic RRX
15 0 0 -4.9 -11.1 -74.4 —-11.1
0 0 0 0 0 0
0 0 -0.6 -1.1 -2.4 -0.6
0 0 0 0 —4.1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 -0.1 -0.2 -4.5 -0.7
0 0 0 -0.5 -5.8 -0.3
25 1.8 1.7 -0.8 =25 -6.4 -3.8
0 0 0 0 0 0
0.4 0.3 -0.2 -0.3 -0.6 -0.1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 -1.3 =22 -4.5 -1.8
17.7 16.8 17.0 1.1 9.1 53
35 70.0 61.7 11.0 9.7 -61.7 =21
0 0 0 0 0 0
4.0 3.7 2.2 0.5 1.0 0.4
1.5 1.4 -0.7 -1.0 -4.0 -0.1
18.3 16.4 -5.8 -11.0 =27.1 -10.9
0 0 0 0 0 0
2.2 2.2 -0.9 -0.3 -3.0 -0.7
33.1 31.3 29.6 21.0 29.0 21.1
45 9.0 8.5 -47.0 -55.5 —69.2 =524
0 0 0 0 0 0
1.6 1.4 -1.2 -1.2 -1.3 -0.8
5.0 3.6 0.8 -0.3 1.5 0.4
4.1 0.7 -42.9 -51.7 -82.1 -41.1
0 0 0 0 0 0
5.9 5.0 3.9 0.3 -0.2 0.7
6.0 4.7 3.7 -1.1 -0.3 0.9
Average 5.6 5.0 -1.2 -33 -9.7 -3.0

240 P.M. Franga et al. | European Journal of Operational Research 132 (2001) 224-242

The equivalent time was calculated taking into
consideration the different circumstances be-
tween Rubin and Ragatz’s experiment and ours,
respectively,
e processor: Intel 486/33 MHz and Intel Pentium
11/266 MHz,
e language: WATFOR-77 and Java.
In our experiment, the equivalent CPU time used
was taken as 10% of the CPU time reported by
Rubin and Ragatz for the Genetic RRX.
The figures in Table 17 correspond to the av-
erage relative performance calculated as

T,
RP,, = (1 —Ti) x 100,

B&B

where RP,, is the average relative perfor-
mance of the algorithm, T, the total tardiness
obtained by the algorithm under consideration
and the Tpep is the total tardiness obtained by
the B&B method (optimum or upper bound). The
values were obtained over five runs, except the
ones of the Genetic RRX extracted from Ref. [26],
which correspond to averages calculated over 20
runs.

The results indicate that both MAs performed
much better than all GAs and ATCS. This be-
havior confirms the foregoing using the random
instances we generated for the previous set of
experiments. The original Rubin and Ragatz’s
results are a little better than our genetic OX ones
but it is worth remarking that their algorithm
uses a local search embedded in the mutation
procedure, while ours does not. An interesting
observation is that almost the same results can be
obtained when one executes the MA during 2
minutes or a very small fraction of this time. This
is because of the small dimension of this instance
set. For larger instances, the MA needs more time
to reach good solutions.

6. Summary and conclusions

This paper shows the performance of an MA
when compared to other heuristic approaches for
the total tardiness SMS problem with sequence-
dependent setup times. The MA returned the best

results of all, even when the crossover introduced
by Rubin and Ragatz (RRX) was used. We also
noticed that the RRX performed significantly
worse than the already well-known order cross-
over (OX). The later turned to be the best re-
combination operator for this sequencing problem
in our study. The performance of the RRX
crossover was rather disappointing, given that it
had been especially crafted by Rubin and Ragatz
[26] for this particular problem. We tested the al-
gorithms with several random instances from 20 to
100 jobs and with 9 configurations for the due
dates averages and generation interval. In a com-
plementary computational experiment, aimed to
cross-validate the previous findings, the instances
used in Ref. [26] were solved with our algorithms
and the results compared against the ones ob-
tained by the original GA with the RRX cross-
over. The MA outperformed the other methods
also in this case.

Two of the strongest features of the MA im-
plementation proposed in this paper are the
neighborhood reductions and the hierarchically
structured population. Computational tests using
a non-structured population and less elaborated
neighborhoods, such as the full all-pairs neigh-
borhood, have led to a considerable loss of per-
formance, especially for large instances.

The ATCS dispatching rule had an equivalent
behavior compared to GA and MA with RRX in
almost all instances with 80 and 100 jobs. For
smaller instances, the ATCS dramatically loses
performance and cannot compete with evolution-
ary approaches. It is important to keep in mind
that ATCS has been specially tailored for the SMS
problem and is rather complicated to implement,
while EDD;, is a simple adaptation of an NEH-
type algorithm [22].

During the design process of the MA, another
conclusion could be drawn. The good performance
of the MA results from intensive set of tests with
several tentative approaches including selection of
neighborhoods and parameter settings, as well as
specific parent selection strategies and best-indi-
vidual intensification. All these aspects, when si-
multaneously considered had a fundamental role
in the performance, since the comparison has been
made against elaborated techniques. If any of

P.M. Franga et al. | European Journal of Operational Research 132 (2001) 224-242 241

these considerations had been set aside, MA re-
sults would have been similar or even worse than
those of ATCS and MS, especially for instances
with 80 or more jobs and 7 = 1.0.

We also believe that the MA performance can
be considerably increased if new components are
added into the current framework. Therefore,
further work on new population structures, im-
proved neighborhoods and other aspects might
lead to even better results.

Acknowledgements

This work was supported by the Conselho
Nacional de Desenvolvimento Cientifico e Tec-
nolégico (CNPq) and Fundagao de Amparo a
Pesquisa do Estado de Sao Paulo (FAPESP),
Brazil.

References

[11 K. Baker, G. Scudder, Sequencing with earliness and
tardiness penalties: A review, Operations Research 38
(1990) 22-36.

[2] R. Berretta, P. Moscato, The number partitioning prob-
lem: An open challenge for evolutionary computation?, in:
D. Corne, M. Dorigo, F. Glover (Eds.), in: New Ideas in
Optimization, McGraw-Hill, New York, 1999, pp. 261-
278.

[3] E.K. Burke, J.P. Newall, R.F. Weare, A memetic algo-
rithm for university exam timetabling, Lecture Notes in
Computer Science 1153 (1996) 241-250.

[4] EK. Burke, J.P. Newall, A multi-stage evolutionary
algorithm for the timetable problem, IEEE Transactions
on Evolutionary Computation 3 (1) (1999) 63-74.

[5]1 E.K. Burke, A.J. Smith, Hybrid Evolutionary Techniques
for the Maintenance Scheduling Problem, IEEE Power
Engineering Society Transactions, to appear.

[6] R. Cheng, M. Gen, Parallel machine scheduling problems
using memetic algorithms, Computers and Industrial
Engineering 33 (3-4) (1997) 761-764.

[7] D. Corne, F. Glover, M. Dorigo, in: New Ideas in
Optimization, McGraw-Hill, New York, 1999.

[8] J. Du, J.Y.T. Leung, Minimizing total tardiness on one
machine is NP-hard, Mathematics of Operations Research
15 (1990) 483-495.

[9] M. Gen, R. Cheng, in: Genetic Algorithms and Engineer-
ing Design, Wiley, New York, 1997.

[10] F. Glover, Scatter search and star-paths — beyond the
genetic metaphor, OR Spektrum 17 (2-3) (1995) 125-137.

[11] D.E. Goldberg, in: Genetic Algorithms in Search, Optimi-
zation and Machine Learning, Addison-Wesley, Reading,
MA, 1989.

[12] R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinooy
Kan, Optimization and approximation in deterministic
sequencing and scheduling: A survey, Annals of Discrete
Mathematics 5 (1979) 287-326.

[13] S.C. Graves, A review of production scheduling, Opera-
tions Research 29 (1981) 646-675.

[14] J. Holland, Adaptation in Natural and Artificial Sys-
tems, The University of Michigan Press, Ann Arbor,
MI, 1975.

[15] C. Koulamas, The total tardiness problem: review and
extensions, Operations Research 42 (6) (1994) 1025-1041.

[16] Y.H. Lee, K. Bhaskaran, M. Pinedo, A heuristic to
minimize the total weighted tardiness with sequence-
dependent setups, IIE Transactions 29 (1997) 45-52.

[17] P. Merz, B. Freisleben, A comparison of memetic algo-
rithms, tabu search, and ant colonies for the quadratic
assignment problem, in: Proceedings of the International
Congress of Evolutionary Computation (CEC’99), 1999, to
appear.

[18] P. Merz, B. Freisleben, Fitness landscapes and memetic
algorithm design, in: D. Corne, M. Dorigo, F. Glover
(Eds.), New Ideas in Optimization, McGraw-Hill, New
York, 1999, pp. 245-260, to appear.

[19] P. Merz, B. Freisleben, Memetic algorithms and the fitness
landscape of the graph bi-partitioning problem, in: A.-E.
Eiben, T. Bick, M. Schoenauer, H.-P. Schwefel (Eds.),
Proceedings of the Fifth International Conference on
Parallel Problem Solving From Nature, Lecture Notes in
Computer Science 1498, Springer, Berlin, 1998, pp. 765—
774.

[20] P. Moscato, An introduction to population approaches for
optimization and hierarchical objective functions: A dis-
cussion on the role of Tabu Search, Annals of Operations
Research 41 (1-4) (1993) 85-121.

[21] P. Moscato, On evolution, search, optimization, genetic
algorithms and martial arts: Towards memetic algorithms,
Technical Report, Caltech Concurrent Computation Pro-
gram, C3P Report 826, 1989.

[22] N. Nawaz, E.E. Enscore, I. Ham, A heuristic algorithm for
the m-machine, n-job flowshop sequencing problem,
OMEGA - International Journal of Management Science
11 (1) (1983) 91-95.

[23] B. Paechter, A. Cumming, M.G. Norman, H. Luchian,
Extensions to a memetic timetabling system, in: E.K.
Burke, P. Ross (Eds.), The Practice and Theory of
Automated Timetabling, Lecture Notes in Computer
Science 1153, Springer, Berlin, 1996, pp. 251-265.

[24] G.L. Ragatz, A branch-and-bound method for minimum
tardiness sequencing on a single processor with sequence
dependent setup times, in: Proceedings of the 24th Annual
Meeting of the Decision Sciences Institute, 1993, pp. 1375~
1377.

[25] N. Raman, R.V. Rachamadugu, F.B. Talbot, Real time
scheduling of an automated manufacturing center,

242 P.M. Franga et al. | European Journal of Operational Research 132 (2001) 224-242

European Journal of Operational Research 40 (1989) [27]1 K.C. Tan, R. Narasimhan, Minimizing tardiness on a

222-242. single processor with sequence-dependent setup times: A
[26] P.A. Rubin, G.L. Ragatz, Scheduling in a sequence simulated annealing approach, OMEGA - International

dependent setup environment with genetic search, Com- Journal of Management Science 25 (6) (1997) 619-634.

puters and Operations Research 22 (1) (1995) 85-99.

