Iris Recognition

BCC448 – Pattern Recognition

Students:

Filipe Eduardo Mata dos Santos Pedro Henrique Lopes Silva

Introduction

- System work over noisy iris images
 - semi-controlled setting,
 - lower user's cooperation,
 - limited performances of the capture device.
- Noisy environments

Introduction

- Methods:
 - LBP
 - BLOB
 - LBP-BLOB

Verification problem

lris

Rectangular Region

Segmentation/Normalization

• Segmented iris

• Image Cartesian space to region polar space

• Normalize the iris

Extracting local features

- LBP
- BLOB

- Local texture descriptor
- Low computational cost
 appropriate to analyze images with high resolution or in real-time
- Identifies quite regular patterns,

• Timo Ojala and Harwood (1996)

- Ojala et al. (2002),
 - Extended to process pixel neighbourhoods of variable dimension
 - Invariant to rotations

- Sun et al. (2006)
 Divide into blocks
 Histogram
- Used:
 Divide into bands

 Number of bands is related to the normalization parameters

• Histogram similarity measure

- orrelation,
- intersection,
- Bhattacharyya.

- Uniqueness of the iris texture
 - Irregular distribution of local feature blocks
 - furrows, crypts,
 - spots.
- Identifying lighter or darker regions in the iris
- Chenhong and Zhaoyang (2005, 2008),

• LoG filter banks.

- Laplacian Operator:
 - Contour detector
 - Sensible to noise
- Gaussian filter
 - Smooth the image
- Noise reduction(smoothing)

• Matrix

- Positive values: dark spots,
- Negative values: light ones.
- Hamming distance

• Application the LoG

LBP-BLOB

- Fusion of LBP and BLOB methods
- Mean
- One method works better than the other on specific images.
- Hamming distance of binary codes of the same size
 Pair of LBP codes
 - Pair of BLOB codes

Experiments

TRAIN	TEST
200	400

CASIA

UBIRIS

Results CASIA

Results UBIRIS

Conclusions

• Future studies

 focus on the combination of more kinds of features

• Use Deep Learning.

Doubts?

