
The importance of segmentation applied to CAPTCHA recognition

Vinı́cius Mauricio de Almeida
Federal University of Ouro Preto (UFOP)

Department of Computer Sciences (DECOM)
viniciusmdea@gmail.com

Vinı́cius A. P. Queiroz
Federal University of Ouro Preto (UFOP)

Department of Computer Sciences (DECOM)
vini.apq@gmail.com

Abstract

In this work, we present a multi-binarization method for
CAPTCHA segmentation, and a comparison with the results
obtained by a simple hand-crafted segmentation algorithm.

We also utilize Artificial Neural Networks fed with His-
togram Oriented Gradients features to train the classifier.

Our end-to-end system with the multi-binarization seg-
mentation presents an Accuracy of 3.15% on a CAPTCHA
database. The hand-crafted segmentation algorithm
presents a 59.35% accuracy on the same database.

Herein we present the results from the combinations
of binarization techniques and the most promising pre-
processing techniques to help segregate background from
foreground.

1. Introduction

Completely Automated Public Turing tests to tell Com-
puters and Humans Apart, (or, as they are more widely
known, CAPTCHAs) are a standard security techonology
in various websites and softwares [1]. Nowadays, there are
several methods for generating text-based CAPTCHAs, and
the approach that has proved to be the most effective against
anti-CAPTCHAs softwares is to rely on segmentation re-
sistance [8]. Therefore, it seems reasonable to test the ef-
ficiency of a given CAPTCHA generator by testing several
segmentation methods.

In this work, we test methods for CAPTCHA recogni-
tion. For this purpose, we divide the problem of in two
sub-problems: Segmentation of the image; and Character
Recognition. We experimented two methods for Image Seg-
mentation. The first one has been proved to obtain state-of-
the-art results for License Plate Segmentation [9]. The sec-
ond one is a simple hand-crafted segmentation algorithm.
Both methods were tested with the same Character Classi-
fier, based on Artificial Neural Networks and HoG.

2. Related Work

Text recognition is a well-known problem, and was ad-
dressed many times in the literature, with different applica-
tions, as license plate recognition [9], house numbers iden-
tification [3], document scans [2], and many others. There
are also lots of works that have their primary attention on
CAPTCHA recognition, as in [1, 8].

This article differs from the previous ones as it uses a
method that was proposed to be for general purpose [9] and,
as we will show, is not well suited for the CAPTCHA seg-
mentation problem. Because of that, we present a method
that suits better for this purpose.

3. Technical Background

This section is meant to provide the technical back-
ground on some of the concepts utilized in this work.

3.1. Segmentation

Image Segmentation is a process of division of a given
image as it suits better for its purpose. For the CAPTCHA
Recognition problem, it consists on retrieving pieces of im-
ages in which there is only one character. For this purpose,
it’s necessary to find the positions of the divisions being ap-
plied to the image, known as the Bounding Boxes. An im-
portant factor for a well applied segmentation is the knowl-
edge of the images’ nature, as a common distribution of the
objects, or the presence of different objects that are con-
nected. With this knowledge, it is possible to define the
best segmentation method. The most popular segmentation
method for text recognition is known as Connected Compo-
nent Analysis, and it relies on the binarization of the image.

3.2. Binarization

For a given image, it is considered to be in the binary
form if it agrees with the following condition:

P (i, j) =

{
1 if foreground
0 if background (1)

1



Figure 1. Example of a binarized CAPTCHA by Otsu’s method

where P (i, j) is the boolean intensity value of the pixel
localized in the i-th row and j-th column and, concretely,
foreground would correspond to the objects which we are
interested in and background everything else. Note that 1
corresponds to a white pixel, and 0 to a black pixel.

Binarization algorithms consists on a sequence of com-
mands that, given a grayscale or colored image, outputs a
binary image, where the foreground pixels are set to 1 and
background pixels are set to 0. There are several algorithms
that does what is described here, and each one has it’s ad-
vantages. These algorithms can be divided in two main
branches: Local and Global.

The most common global methods rely on the histogram
of the image, and usually, does not perform well when un-
even lighting is present [9]. As CAPTCHAs usually does
not have this issue, we test Otsu’s method in our algorithm
and it performs quite well, as we show in Section . . .

Local methods have better performances when the im-
ages presents noise and/or uneven lighting conditions. But
it has the disadvantage of the necessity of choosing the pa-
rameters. A poor choice of parameters for local binarization
algorithms can result in very poor binarization, and thus,
bad segmentation [9].

3.2.1 Otsu

Otsu’s [5] is a binarization global method, which chooses an
optimal threshold by minimizing the intraclass variance. It
presents a good performance, mainly when compared with
other global methods. In [9], a comparison was made be-
tween different binarization methods for license plates, and
Otsu’s shows the best performance between global meth-
ods.

3.2.2 Niblack

Niblack proposed a local binarization [4], which calculates
the pixel value, T , through the means, m, and standard de-
viation, s, of neighboring pixels, in a square region of width
N , as this formula goes:

T = m+ ks (2)

Niblack had the better accuracy between the local binariza-
tion methods to segmentate license plates [9].

Figure 2. Example of a binarized CAPTCHA by Niblack’s method

Figure 3. Example of a binarized CAPTCHA by Sauvola’s method

Figure 4. Example of a binarized CAPTCHA by Wolf’s method

3.2.3 Sauvola and Wolf

Both Sauvola and Wolf are other local binarization methods
derived from Niblack’s method, with a proposed enhance-
ment in images with backgrounds in the presence of noise
and uneven lighting.

In Sauvola [6], the standard deviation s of the analised
region wrapped by a square matrix of width N is divided
by the dynamic of the standard deviation of the neighbour-
ing pixels, and then decremented one unit, following this
formula:

T = m · [1 + k(s/R− 1)] (3)

Wolf’s proposed algorithm [7] modificates Sauvola’s
formula, in the attempt of improving the binarization in im-
ages with thin edges. In this algorithm, we have the multi-
plication of the second term of the formula by the difference
between the lowest pixel intensity M and the mean, m, of
the bounded region, as this formula:

T = m+ k · (s/R− 1) · (m−M) (4)

3.3. Connected Component Analysis

The Connected Component Analysis (CCA) is a method
widely used to count objects, and is also utilized to segmen-
tate distinct objects in a scene, and find it’s correspondent
bounding boxes. Most segmentation methods rely on previ-
ous binarization of the image [1] and this one is not differ-
ent.

In summary, if a pixel has one of it’s neighbours (4-
connected or 8-connected, for a 2D image), as a foreground

2



Figure 5. Example of a CCA applied to labeling components in a
binary image

Figure 6. Example of HoG applied to extract features from an im-
age

pixel, this pixel will also be a foreground pixel. It then enu-
merates all the different objects with distinct labels. The
corresponding bounding box is then delimited using the cor-
ner pixels of the object.

In this work, we use an 8-connected CCA labeling on
multiple binary images.

3.4. Histogram Oriented Gradients

Histogram Oriented Gradients (HoG) is an algorithm
used to extract features from an image, which is invariant
to geometric and photometric transformations. It is very
flexible, as you can change the geometry of the extracting
cell and it’s size.

3.5. Artificial Neural Networks

Artificial Neural Networks (ANN) is an analogy made
from human neurons and how they are connected between
each other. It is known that the human brain is actually
made of lots of neurons connected in a complex way, and
they forward propagate the electric impulses received from
multiple “input sensors”, and each area of the brain pro-
cesses these impulses in different ways.

In ANN, to simulate the different areas from the brain,
it is assigned a weight to each neuron. We train Artificial
Neural Networks to find out which weights are best suited
for each classification problem.

Figure 7. Example of a Artificial Neural Network, with L = 4,
K = 4, s1 = 3, s2 = 5, etc. . .

To train the ANN, it is first needed to initialize the
weights for each neuron. It is very important that these
weights are not symmetrical, as this prevents the algorithm
to fail. Thus, instead of initializing all weights as zeros, it is
recommended to randomly initialize all weights.

Secondly, it calculates the output hypothesis, passing
through the input values (x(i)), and applying them to the ac-
tivation functions of each layer l, (al(x(i))) multiplying by
each neuron weights. This process is called forward propa-
gation.

Then, the algorithm evaluates the error caused by each
neuron, by evaluating a cost function that compares the out-
put hypothesis and the ground truth. Lastly, it subtracts the
error from each weight. This process is called back propa-
gation.

This algorithm is computed several times, with a goal to
minimize the cost function, given as

J(Θ) =
1

m

m∑
i=1

K∑
k=1

[
−y(i)

k log ((hΘ(x(i)))k −

(1 − y
(i)
k ) log (1 − (hΘ(x(i)))k)

]
+

λ

2m

[
L−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(Θ
(l)
ji )2

]
(5)

where Θ
(l)
ji is the weight matrix of layer l, containing the

weights for each connection between neuron j in layer l and
neuron i in layer (l+1); m is the number of examples; K is
the number of labels, or outputs; L is the number of layers;
sl is the number of neurons (or units) in the layer l; and λ is
the regularization coefficient.

The rightmost term of formula (7) is called the regular-
ization term, parameterized by λ, and used to avoid overfit-
ting on training data (that is, labels most training data well,
but fails on predictions over the test sets).

3



Figure 8. Examples of CAPTCHAS from the benchmark

4. The Benchmark
We created a database from a public website’s

CAPTCHAs. It consists on RGB, 180x50 pixels, with 6
characters, which some of them are collapsed, some back-
ground pepper noise and randomly curved lines crossing
characters with the same pixel intensity. Although the im-
ages are RGB, visually they are actually grayscale, which,
in fact, hampers the binarization. The characters do not vary
much of position and height, but they do in width.

The benchmark is filled with 2000 CAPTCHAs of this
style, and are manually labeled by humans. When there is
uncertainty about any character in the image, this character
is labeled as a ‘?’.

5. System Architecture
First, we train a Character Recognition (CR) ANN with

an architecture as follows: 776 features extracted from a
HoG algorithm with 7x7 cell window as input 1; one hidden
layer of 150 units; λ = 10; a maximum of 1000 iterations;
sigmoid activation functions for all layers; and 36 output
units, corresponding to each digit and letter.

The training set is made of 9793 images of this database
characters, with 32x32 pixel resolution, obtained from the
segmentation by means of William R. Schwartz algorithm.
We obtained a 92% accuracy on the training set and also on
the validation set, made of 2116 of different images with the
same characteristics from the training set.

Then, the segmentation problem is branched:

5.1. Multi-binarization segmentation

We test several combinations of binarization algorithms
and morphological operations over the binarized images, as
suggested by [9]. All binarized images passed through a
inverting operation, so that characters and noise would be
white pixels and background in black pixels.

For each generated image, we apply CCA followed by
Non-Maximum Suppression (NMS). For this purpose, we

1Available at http://www.vlfeat.org/

Method CAPTCHA Character Proc.
Accuracy Accuracy Time

Niblack(N = 41,k = 0.4)
Eroded-twice 1.30% 26.10% 893s
Opened-twice

Otsu
Eroded-once 1.85% 32.57% 1035s

Opened-twice
Sauvola(N = 51,k = 0.6)

Eroded-twice 1.70% 30.53% 1215s
Opened-twice

Otsu
Sauvola(N = 51,k = 0.6) 2.45% 33.78% 2070s

Eroded-twice
Opened-twice

Niblack(N = 11,k = 0.0)
Niblack(N = 11,k = 0.2)
Niblack(N = 31,k = 0.6) 3.15% 38.60% 3916s
Niblack(N = 41,k = 0.4)

Eroded-twice
Opened-twice

Table 1. Results obtained from the multi-binarization segmenta-
tion method

use the CR module described above to output the chance of
a given image delimited by the bounding box to be a char-
acter. We take the maximum probability of all the 36 labels
for this. If there is overlap of over a half of any bounding
box area, we choose the one that has the biggest probability
of being a character. We also utilize the compactness [9]
value of the image, as a tiebreaker feature.

If the probability of the bounding box being a character
is less than 30%, we also remove it from the candidates,
even if there is no overlapping. We make a height boundary
too, so that, if the candidate blob has less than 15 or over 35
pixels pixels of height, it is discarded. If the bounding box
has more than 1/6 of the image width, it is also discarded.

To classify the bounding box and find the probability of
it being a character, we first have to rescale the segmented
image to 32x32 pixels, and then apply HoG on it.

5.2. Hand-crafted method

We noticed that the CAPTCHAs in our benchmark fol-
lows a pattern: in every image, the character distribution
along the ‘x’–axis is the same, and they all have six charac-
ters. Thus, we applied a simple segmentation algorithm and
obtained relatively good results.

The algorithm simply divides the image in six pieces,
each of which has the same sizes for all images. Empir-
ically, a vector is created containing the initial and final
bounding boxes positions on the ‘x’–axis. And all the the
bounding boxes have 34 pixels in the ‘y’–axis.

4

http://www.vlfeat.org/


Figure 10. Cumulative character hit count for the multi-binazarition method

Figure 11. Cumulative character hit count for the hand-crafted method

6. Experiment Results and Analysis

The tests were realized over 2000 CAPTCHAs of the
benchmark, each of which containing

Table 8, attached with this document, shows the con-
fusion matrix for the hand-crafted segmentation based

method. We note that most of the errors were due to the
confusion between ‘O’ and ‘0’, ‘V’ and ‘W’, ‘T’ and ‘I’ and
‘O’ and ‘C’. This can be due to the human confusion when
labeling the captchas, as there is not a big difference be-
tween the caracters in this CAPTCHA database. For the ‘O’

5



Figure 9. Example of a CAPTCHA segmented with the hand-
crafted method

and ‘C’ case, it can be due to the fact that the last character
is usually cropped, or because of overlapping characters.

Type Accuracy Hit Count

CAPTCHA Accuracy 59.35% 1187
Character Accuracy 90.44% 10853

Character Accuracy accepting ‘?’ 91.20% 10945
Table 2. Hand-crafted segmentation algorithm accuracies

As can be seen in Figure 10, the CR module starts to de-
cay its efficiency by the 1000 CAPTCHA mark. This is due
to the fact that the ANN is trained with character images ex-
tracted from the first thousand. Therefore, it is expected that
the recognition on the second half of the database would de-
crease slightly, and perceived.

The best results were obtained from the combination of
Niblack(N = 11, k = 0), Niblack(N = 11, k = 0.2),
Niblack(N = 31, k = 0.6) and Niblack(N = 41, k = 0.4)
binarized images, just as in [9], with it’s respective opened-
twice images and eroded-once images, obtaining the overall
accuracy of 3.15% for CAPTCHA recognition and 38.60%
for Character Recognition.

The low Character Recognition hit rate, in relation to the
validation set, is due to the training being made with im-
ages with different characteristics than those obtained from
the proposed method in this article. As they were resized,
and may be cropped or augmented in relation to the train
database, it may cause confusion to the classifer. To have
a higher CR hit rate, the first step would be to make a new
character database extracted with this segmentation algo-
rithm, so that it would be possible to make more accurate
recognition and thus, improving the overall performance of
the system. Our lack of time made this new database cre-
ation and labeling impossible.

Now, analyzing the hand-crafted method, we perceive a
higher accuracy on both character recognition and, there-
fore, the end-to-end system accuracy. Thus, proving that
the segmentation requires primary attention when devel-
oping anti-CAPTCHAs softwares. Therefore, to generate
CAPTCHAs that actually fulfill their purposes, they should
have a powerful anti-segmentation resistance.

Table 3. Final results comparison

Method Multi-binarization Hand-crafted

CAPTCHA Accuracy 3.15% 59.35%
Character Accuracy 38.60% 90.44%
Character Hit Count 1187 10853

7. Conclusions
In this article, we showed what are the best combina-

tions of morphological operations and binarization meth-
ods applied to one CAPTCHA database and some cares
that should be made when working in similar projects.A
thorough analysis of related works would be well suited to
obtain better performances on this problem, by other ap-
proaches.

We also proved that combinations of binarization is a
powerful resource, as they can be applied to general pur-
poses, without the need of previous knowledge of the im-
ages‘ nature.

Finally, we showed that Combination of Niblack’s
method proved to be the best choice for this purpose, just
as in [9],

8. Acknowledgments
We would like to thank Dr. David Menotti for the guid-

ance, the incentive, and all the knowledge provided, so that
we could accomplish this task.

References
[1] E. Bursztein, M. Martin, and J. C. Mitchell. Text-based

captcha strengths and weaknesses. CCS’11, pages 125–137,
2011.

[2] A. K. Jain and S. Bhattacharjee. Text segmentation using ga-
bor filters for automatic document processing. Machine Vision
and Applications, 5(3):169–184, 1992.

[3] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.
Ng. Reading digits in natural images with unsupervised fea-
ture learning. NIPS, 2011.

[4] W. Niblack. An Introduction to Image Processing. NJ:
Prentice-Hall, Englewood Cliffs, 1986.

[5] N. Otsu. A threshold selection method from gray level his-
tograms. IEEE Trans. Syst., Man, Cybern., 9(1):62–66, 1979.

[6] J. Sauvola and M. Pietikäinen. Adaptive document image bi-
narization. Pattern Recog., 33:225–236, 2000.

[7] C. Wolf, J. Jolion, and F. Chassaing. Text localization, en-
hancement and binarization in multimedia documents. Proc.
ICPR, 2:1037–1040, 2002.

[8] J. Yan and A. S. E. Ahmad. A low-cost attack on a microsoft
captcha. CCS’08, pages 543–554, 2008.

[9] Y. Yoon, K. Ban, H. Yoon, J. Lee, and J. Kim. Best com-
bination of binarization methods for license plate character
segmentation. ETRI Journal, 35(3):491–500, 2013.



0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ?

0 231 0 0 0 0 0 4 1 2 3 0 1 0 3 0 0 0 0 0 0 0 0 0 0 40 1 3 0 0 0 1 0 1 1 0 0 0
1 0 291 1 0 7 0 0 0 0 0 1 0 0 0 0 0 0 0 9 6 0 5 0 0 0 0 3 0 0 1 0 0 0 0 1 0 0
2 1 0 310 6 0 0 0 1 0 2 0 0 0 2 2 0 0 0 0 1 0 1 0 0 0 3 0 0 0 0 0 0 1 0 0 11 0
3 0 0 1 272 0 0 0 0 3 2 0 10 0 2 0 0 0 0 0 5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
4 0 4 0 0 324 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 1 0 313 0 0 1 3 0 3 0 1 0 0 0 0 0 1 0 0 0 2 0 0 0 0 7 0 0 0 0 0 0 1 0
6 2 0 0 0 0 2 331 0 1 2 1 3 1 1 0 1 7 2 0 0 0 0 0 1 1 0 2 0 3 0 0 0 0 0 0 0 0
7 0 0 3 2 1 0 0 307 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 11 0
8 0 0 0 8 0 0 1 0 319 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
9 2 0 1 1 1 3 0 0 2 307 0 1 1 2 0 0 0 0 0 0 0 0 0 0 2 2 0 0 5 0 0 0 1 0 0 0 0
A 0 0 0 0 0 0 0 0 0 0 351 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
B 0 0 0 4 0 0 1 0 2 1 0 289 0 6 4 1 0 1 1 0 0 0 0 0 0 3 0 4 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 1 0 0 0 260 0 1 0 12 0 0 0 0 1 0 0 9 0 5 0 0 1 0 1 0 0 0 0 0
D 0 0 1 0 0 1 0 0 0 4 0 7 0 304 3 1 0 0 6 0 0 1 0 0 0 4 1 1 2 1 2 0 0 0 0 0 0
E 1 0 1 0 0 2 0 0 0 0 0 4 0 0 304 9 0 0 1 0 0 3 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0
F 0 0 0 0 0 0 0 0 0 0 0 1 0 1 23 279 0 0 2 1 0 0 0 0 0 4 0 2 0 3 0 0 0 0 0 0 0
G 0 0 0 0 0 0 3 0 0 0 0 0 7 0 0 0 316 0 0 0 0 0 1 0 1 0 1 0 2 0 0 0 0 0 0 1 0
H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 0 341 4 0 1 0 0 2 0 0 0 0 0 1 1 0 0 0 1 0 0
I 1 12 1 0 1 0 0 0 0 0 0 0 0 0 1 5 0 6 262 2 0 8 0 0 0 0 0 1 0 10 1 0 0 0 0 0 0
J 0 7 0 3 1 0 0 0 0 2 0 0 0 0 0 1 0 0 6 284 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0
K 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 332 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0
L 0 5 1 0 0 0 1 0 0 0 0 0 0 2 14 0 0 0 4 0 0 283 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 307 9 0 0 0 0 0 0 0 1 1 0 0 0 0
N 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 3 0 2 0 1 359 0 0 0 0 0 0 0 0 1 0 0 0 0
O 88 0 1 0 0 0 5 0 0 3 1 0 40 6 1 0 11 0 1 0 0 1 0 1 218 0 33 0 2 0 2 0 2 0 0 1 0
P 0 0 1 0 0 0 0 1 1 1 0 7 0 5 2 7 0 3 3 0 0 0 2 0 0 295 0 5 0 0 0 0 0 0 0 0 0
Q 3 1 0 0 0 0 0 0 0 0 0 0 15 1 0 0 2 0 2 0 0 1 0 0 7 0 297 0 1 0 1 0 0 0 0 1 0
R 0 0 0 0 0 1 0 0 1 0 0 2 0 0 1 1 0 3 0 0 3 0 0 1 0 4 2 319 0 1 0 0 0 0 0 0 0
S 0 0 0 2 1 7 1 0 4 3 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 301 0 0 0 0 0 0 1 0
T 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 20 1 0 0 0 0 0 0 0 0 0 311 0 0 0 0 1 0 0
U 3 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 1 0 0 0 3 1 0 1 0 0 0 0 0 340 0 0 0 0 0 0
V 1 1 0 0 0 0 0 3 0 0 0 1 1 0 0 0 0 0 0 2 0 0 2 1 0 0 0 0 1 1 1 287 19 0 5 0 0
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 21 249 0 0 0 0
X 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 0 0 0 1 0 327 2 0 0
Y 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 5 0 0 0 0 0 0 2 0 4 0 0 356 0 0
Z 0 0 8 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 277 0
? 0 1 1 2 3 1 3 2 0 0 0 7 10 2 0 1 2 1 3 3 0 0 0 0 3 2 3 0 1 5 3 16 15 0 0 2 0

Table 4. Confusion Matrix generated using the hand-crafted segmentation method


