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a b s t r a c t

As biometrics has evolved, the iris has remained a preferred trait because its uniqueness, lifetime stability
and regular shape contribute to good segmentation and recognition performance. However, commer-
cially deployed systems are characterized by strong acquisition constraints based on active subject coop-
eration, which is not always achievable or even reasonable for extensive deployment in everyday
scenarios. Research on new techniques has been focused on lowering these constraints without signifi-
cantly impacting performance while increasing system usability, and new approaches have rapidly
emerged. Here we propose a novel fusion of different recognition approaches and describe how it can
contribute to more reliable noncooperative iris recognition by compensating for degraded images cap-
tured in less constrained acquisition setups and protocols under visible wavelengths and varying lighting
conditions. The proposed method was tested at the NICE.II (Noisy Iris Challenge Evaluation – Part 2) con-
test, and its performance was corroborated by a third-place finish.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The use of the iris as main biometric trait has emerged as one of
the most recommended methods due not only to the possibility of
noncontact data acquisition and to its circular and planar shape that
facilitates detection, segmentation and compensation for off-angle
capture but also for its predominately randotypic appearance.
Although these factors contribute to high effectiveness in the cur-
rently deployed iris-recognition systems, their typical scenarios
are quite constrained: subjects stop and stare relatively close to
the acquisition device while their eyes are illuminated by a near-
infrared light source, enabling the acquisition of high-quality data.
As reported in the study conducted by Aton Origin for the United
Kingdom Passport Service,1 imaging constraints are a major obstacle
for the mass implementation of iris-based biometric systems. Notably,
several researchers are currently working on minimizing the con-
straints associated with this process, in a way often referred to as non-
cooperative iris recognition, referring to several factors that can make
iris images nonideal, such as at-a-distance imagery, on-the-move sub-
jects, and high dynamic lighting variations.

In this study, we stress multiple recognition techniques, each
one based on a different rationale and exploiting different proper-
ties of the eye region. Furthermore, we show how their fusion can
increase the robustness to the degraded data typically captured in
unconstrained acquisition setups.
ll rights reserved.
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The recognition techniques used in our proposition can be di-
vide in two main categories. In one approach, we use wavelet-
based iris-feature-extraction methods, complemented with a
zero-crossing representation (Hoyle et al., 2010, 2009) and the
analysis of iriscode-matching bit distribution (Santos and Proença,
2010). Complementarily, we expanded the extraction of features to
the ocular region outside the iris, as recent studies (Savvides et al.,
2010; Miller et al., 2010; Park et al., 2009) have suggested using
these data, which appear to be a middle ground between iris and
face biometrics and incorporates some advantages of each.

The performance of the fusion method we propose is high-
lighted by its third-place finish at the NICE.II (Noisy Iris Challenge
Evaluation – Part 2), an international contest involving almost sev-
enty participants worldwide.

The remainder of this paper is structured as follows: Section 2
describes the steps for iris-boundary localization and normaliza-
tion, feature extraction and matching for the different approaches,
and how their outputs are joined; Section 3 details the experimen-
tal process followed by a discussion of the obtained results; finally,
Section 4 states the conclusions.
2. Proposed methodology

This section describes the five steps of our approach: iris-
boundary detection, iris normalization, feature extraction, match-
ing and decision ensemble (as schematized in Fig. 1). Furthermore,
for feature extraction and matching, five recognition techniques
are detailed.
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mailto:gmelfe@ubi.pt
mailto:edhoyle@pads.ufrj.br
http://www.ips.gov.uk/cps/rde/xchg/ips_live/hs.xsl/publications.htm
http://dx.doi.org/10.1016/j.patrec.2011.08.017
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec


FEAT. EXTRACTION

2-D Dyadic Wavelet 
Zero-Crossing 

1-D Wavelet 
Zero-Crossing 

Scale-Invariant 
Feature Transform

Local Binary 
Patterns

Comparison 
Maps

DECISION 
ENSEMBLE

IRIS & MASK 
NORMALIZATION

SEGMENTATION 
MASK

IRIS IMAGE

MATCHING

Dissimilarity Using 
cientCoeficientCorrelation

CoeficientCorrelation
Dissimilarity Using 

Distance-Ratio 
Based Scheme

Euclidean 
Distance

Spatial and 
Frequency Analysis

BOUNDARIES 
DETECTION

Fig. 1. Proposed methodology.

Fig. 2. Illustration of the steps taken during the segmentation stage.
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2.1. Iris boundaries detection

The first task was to locate the circles that best approximate iris
and pupil boundaries, a necessity in the majority of methods used
for this work. To accomplish this, we utilized a binary mask repre-
senting only parts containing iris information, created using the
method proposed by Tan et al. (2010), winner of the NICE.I contest.

The steps taken in boundary approximation (Fig. 2(h)) were as
follows:

� A contour is extracted from the segmentation mask Fig. 2(b),
created with Tan et al. method (Tan et al., 2010). A pixel is part
of such contour if it is nonzero, and connected to at least one
zero-valued pixel.
� From the contour Fig. 2(c) of the segmentation mask Fig. 2(b), a

Hough transform (Ballard, 1981) is applied to obtain the circle
best fitting the iris Fig. 2(d).
� Convert the eye image Fig. 2(a) to grayscale and enhance it

through histogram equalization Fig. 2(e).
� To the enhanced image Fig. 2(e), a Canny edge detection (Canny,

1986) is applied inside the circular region Fig. 2(f) concentric
with the iris and 2/3 its radius, producing the edges shown in
subFig. 2(g).
� Finally, a Hough transform is used on the resulting edge map

Fig. 2(g) to obtain the circle that best fits the pupil.

Although this method produces good iris-boundary approxima-
tions, the estimated pupil limits sometimes diverge from ideal con-
tours (e.g. Fig. 3). The main reason for this occurrence is poor
lighting conditions when imaging heavily pigmented irises, which
results in a low contrast ratio between the iris and the pupil.

2.2. Iris normalization

The iris-normalization process aims to obtain invariance with
respect to size, position and pupil dilatation in the segmented iris
region, which is accomplished by assigning each pixel to a pair of
real coordinates (r,h) over the double dimensionless pseudopolar
coordinate system. For this purpose, we proceeded with the rub-
ber-sheet model originally proposed by Daugman (2004).

Iðxðr; hÞ; yðr; hÞÞ ! Iðr; hÞ ð1Þ

xðr; hÞ ¼ ð1� rÞxpðhÞ þ rxsðhÞ
yðr; hÞ ¼ ð1� rÞypðhÞ þ rysðhÞ

ð2Þ

where r and h denote the radius and the angle, respectively, and
x(r,h) and y(r,h) are defined as linear combinations of both the set
of pupillary boundary points (xp(h),yp(h)) and the set of limbus
boundary points along the outer perimeter of the iris (xs(h),ys(h))
bordering the sclera.

Eqs. (1) and (2) give a transformation similar to that depicted in
Fig. 4: subfigure (a) is the normalized iris image; subfigure (b)



Fig. 3. Illustration of unsuccessful inner boundary detection.

Fig. 4. Normalized images. Iris data are represented in grayscale.

Fig. 5. Wavelet and zero-crossing representations.

2 For interpretation of color in Figs. 4 and 5, the reader is referred to the web
ersion of this article.
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represents the normalization of its mask (occlusions being the
black region); and subfigure (c) is the normalized iris image where
the occlusion has been zeroed. In either case, no interpolation was
used, being chosen the nearest pixel to fill eventual gaps.

2.3. Feature extraction

Feature extraction and representation varies according to the
employed method, as detailed herein.

2.3.1. 1-D wavelet zero-crossing representation
The representation method applied here is an extension of the

Boles method (Boles and Boashash, 1998; Boles, 1997). Other stud-
ies (Hoyle et al., 2010, 2009) have shown that the proposed exten-
sion significantly improves the recognition performance.

The starting point for iris representation is the pixel-intensity
data for the normalized iris image. In this representation, two nor-
malized images are analyzed – with and without zeroed occlusion
– as shown in the Fig. 4. Each row of the normalized images forms a
vector which is later treated as a single-period sample of a one-
dimensional periodic signal. A 1-D Gaussian wavelet transform
(Daubechies, 1992) is applied to each row vector and decomposed
into different resolution levels. The zero-crossing representation is
then calculated for each row and resolution level. Zero crossings
occur where wavelet signals have abrupt changes in signal ampli-
tude. Once the zero-crossings have been located, the average value
between each two consecutive zero-crossing points in the wavelet
output is computed.

Illustrated in Fig. 5 are wavelets for one resolution level (blue2

and red dashed lines) and the respective zero-crossing representa-
tion (blue and red solid lines) from the same row of both the nor-
malized iris (blue) and zeroed image (red), as well as the final zero-
crossing representation (black line). As shown here, these wavelets
(and their respective zero-crossing representations) differ at the
regions where occlusion has been identified (the zeroed image).
The final representation (black solid line in Fig. 5) is produced by
starting from the zero-crossing representation (solid blue line) of
the normalized iris image (Fig. 4(a)) and zeroing where it differs
from the image (red solid line) for which occlusion was considered
(Fig. 4(c)).

The values from the black solid line used in the iris representa-
tion were extracted from a 200 � 16 pixels normalized iris image,
decomposed into three resolution levels (2, 3 and 4) for each row,
resulting in a matrix of 48 rows by 200 columns.

2.3.2. 2-D dyadic wavelet zero-crossing representation
The earlier representation method used a 1-D Gaussian wavelet

transform for each row of the normalized iris image. Here, a 2-D
Daubechies dyadic wavelet transform (Daubechies, 1992) is ap-
plied instead.

To extract features from the normalized iris image, it is first
convolved with a 2-D dyadic wavelet low-pass filter, minus the
estimated value of both normalized iris images (Figs. 4(a) and (c)).

The resulting information matrices are then processed using the
same technique for each row as detailed in Section 2.3.1, to obtain
the final zero-crossing representation (Fig. 5 – black line) and rep-
resent the iris in a 200 � 16 matrix.

2.3.3. Periocular
New trends in biometrics (Park et al., 2009; Woodard et al.,

2010) suggest the use of periocular information as an important
addition in noncooperative biometric recognition, as information
derived from this area is less prone to degradation in visible wave-
lengths than other traits (e.g., the iris). Representing a tradeoff be-
tween facial and iris recognition techniques, this method has the
advantage of not requiring any additional equipment, as usually
v
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such information is not discarded in iris databases. This technique
is also less vulnerable to problems resulting from a lack of proper
illumination or low-resolution acquisition, motion blur and vary-
ing imaging distances.

For the purpose of this work, we used the simple yet effective
analysis suggested by Park et al. (2009).

Distribution-based descriptors. The iris location and size being
known, images were aligned and normalized for both scale and
translation as a set of regions of interest (Fig. 6) were defined
according to those parameters. As shown here, iris size is propor-
tional to the sides of each square region, and the central one is con-
centric with the iris itself.

Local Binary Pattern Pietikainen (2005) descriptors were then
extracted, as depicted in Fig. 6. Using pixel intensities in a square
window iterated over the entire region of interest, the difference
between the central pixel and its eight neighbors was computed
and its signal used to produce a binary result (thresholded values).
Converting those results to decimal, values from each region were
then quantized into eight-bin histograms, which upon concatena-
tion produce the complete 280-feature array (35 regions � 8 bins
per region).

Scale-Invariant Feature Transform. Differing from the previ-
ous method, where features were only extracted from the region
closest to the eye, the Scale-Invariant Feature Transform (SIFT)
(Lowe, 2004) was applied to all available data, here seeking salient
regions (e.g., facial marks). SIFT is one of the most popular descrip-
tors for image point matching, as it can achieve invariance to scale
and rotation and is also robust to affine distortion. The method is
based on the extraction of key points represented by vectors
containing scale, orientation and location information. To achieve
those results, a publicly available SIFT implementation3 was used,
and its parameters optimized based on tests performed on the
training dataset.

2.3.4. Comparison maps
This approach (Santos and Proença, 2010) can be regarded as an

extension to the widely known Daugman method (Daugman,
2004), which is the most widely acknowledged, with great accep-
tance over the scientific community.
3 VLFeat open-source library http://www.vlfeat.org/.
This method begins with the detection and segmentation of the
iris. For our approach, we used the procedures detailed above for
the iris-boundary detection and normalization, except for the nor-
malized iris sizes, which were 450 � 64 pixels for both the iris
(Fig. 4(a)) and the noise mask (Fig. 4(b)).

Later, features were extracted through the convolution of the
normalized data with a bank of 2-D Gabor wavelets, followed by
a quantization stage that produced a binary iriscode, in which every
complex-valued bit h{Re,Im} depends on the sign of the 2-D integral.

We decided on the use of a very small yet optimized wavelet
bank, for which performance was optimized using the training
data. For such optimization, we parameterized the wavelets cy-
cling through a range of scales, orientations and frequencies we
found fit, searching for the configuration that maximized the
decidability (13).
2.4. Matching

In this section, the matching process is described for each one of
the feature-extraction methods.
2.4.1. 1-D and 2-D wavelet zero-crossing representation
To compute the dissimilarity between two irises, their zero-

crossing representations are compared. Boles (1997) proposed four
functions to measure the dissimilarity between the signals. In this
work, we used the dissimilarity measure defined by Eq. (3).

dlmðf ; gÞ ¼ 1�
PE�1

e¼0 Zlf ðeÞ � ZlgðeþmÞ
kZlfkkZlgk

ð3Þ

In the above equation, dlm(f,g) denotes the dissimilarity of irises
f and g associated with the lth row of their representation matrices
for a displacement m, the vectors Zlf and Zlg are the lth row of the
zero-crossing representations of irises f and g, respectively, E is the
number of elements of Zlf and Zlg and m, e 2 [0,E � 1]. The symbol
k � k denotes the vector-norm operation. Note that dlm(f,g) is equal
to 1 minus the correlation coefficient between Zlf(e) and Zlg(e).
Thus the dissimilarity dlm(f,g) may take values between 0 and 2,
whereby 0 corresponds to a perfect match.

Eq. (3) is computed for each row of the representation matrices
and determine which mean is taken as the dissimilarity (Dm) be-
tween irises f and g for a given value of m.

This work proposes the use of a weighted mean rather than a
simple mean, whereby the weights are given by the number of
nonzeroed values in Zjf(n) and Zjg(n) according to:

Dm ¼
PL

l¼1dlmðf ; gÞ � KlPL
l¼1Kl

ð4Þ

where dlm(f,g) is given by (3) and Kl is the number of nonzeroed val-
ues in the lth row of the zero-crossing representations of both
images.

It is important to notice that m in Eq. (3) represents the shifts of
the second signal. Varying m in (3) from 0 to E � 1 yields E dissim-
ilarity values (Dm). The overall dissimilarity D between irises f and
g is given by:

D ¼minðDmÞ ð5Þ
2.4.2. Periocular
From periocular analysis, two types of results were produced.
To compute the matching between two feature vectors u and v

with n elements produced by the distribution-based descriptor, we
used a Euclidean distance (6):

http://www.vlfeat.org/


(a) Iriscode match sample

(b) Iriscode match with high concordance (de
limited region)

Fig. 7. Illustration of two iriscode matching results. Black pixels express concordant
bits in the correspondent biometric signatures.

4 NICE.II - http://www.nice2.di.ubi.pt.
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dðu;vÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðui � v iÞ2
vuut ð6Þ

As for the features extracted by the SIFT, the distance-ratio-
based matching scheme (Lowe, 2004) was applied.

2.4.3. Comparison maps
With two binary codes (codeA and codeB) and the corresponding

segmentation masks (maskA and maskB), the Hamming distance (8)
is applied as comparison measure.

c ¼ ðcodeA� codeBÞ \maskA \maskB ð7Þ

HD ¼ kck
kmaskA \maskBk ð8Þ

where � is the logical XOR operation, \ is the logical AND and c is
the ‘‘comparison map’’.

Instead of using the Hamming Distance alone (which is simply
the ratio of concordant iriscode bits) as a single comparison mea-
sure, the resulting ‘‘comparison maps’’ (Fig. 7(a) and Eq. (7)) from
the similarity between iriscodes are then subjected to both spatial
and frequency-domain analysis in a search for high-concordance
areas (Fig. 7(b)).

Spatial-domain analysis. For the spatial-domain analysis, we
proceeded with a set of convolutions with Haar-based wavelets
of different sizes, which allowed us to ascertain the concordance
level of regions with different sizes.

Let c be a comparison map of M � N dimensions. Let h be a Haar-
based mother wavelet with size s � s. The similarity r in local
regions of c is given by:

rs ¼ hs � c; s ¼ f2kg; k ¼ 2;3; . . . ;16 ð9Þ

where ⁄ denotes the bidimensional convolution and rs has the same
dimensions of c.

Let xs = max{rs(i, j)}, i = 1, 2, . . . , N; j = 1, 2, . . . , M.
Let H be the 25-bin histogram of rw

2
where w is the maximum

size of the Haar-wavelet, such that H = {h1,h2, . . . ,h25}.
Using xi and hi values, features were produced and used as de-

tailed in the Classification subsection.
Frequency-domain analysis. For the frequency-domain analy-

sis, the Fourier transform F of the comparison map c of M � N
dimensions was computed as follows:

Fðu;vÞ ¼ 1
N

XM

x¼0

XN

y¼0

cðx; yÞe�j2pðux=Mþvy=NÞ ð10Þ

where j is the square root of �1 and e denotes the natural exponent.
The results were then regularly windowed in sixteen subre-

gions, and statistical features were extracted from each region.
For the central part, where the most relevant information lies,
we considered a P � N window centered in the P �M matrix that
contains the noticeable central shape such that P = 2M/8. Ten fea-
tures Fi are then extracted, representing the distribution of an
evenly spaced ten-bin histogram:

Ti ¼ minðAÞ þ i
DA
10

ð11aÞ

Fi ¼
XP

m¼1

XN

n¼1

sgnðAðm;nÞ � TiÞ ð11bÞ

with DA = max (A) �min (A) and i = 1, 2, . . . , 10.
Classification. Combining the best features (according to their

individual decidability) and performing a dimensionality reduction
through Local Fisher Discriminant Analysis (Sugiyama, 2006), a
logistic regression (Hosmer and Lemeshow, 2000) was used to
describe the function that eventually produced the final result for
this method.

2.5. Decision ensemble

With several outputs coming from the different representation
methodologies, a logistic regression model (Agresti, 2002; Cantor,
2002; Hosmer and Lemeshow, 2000) was used to describe the rela-
tionship between them and a final response. This weight fitting
methodology efficiency was verified on identical situations, with
multiple classifiers of different accuracies (Monwar and Gavrilova,
2008, 2009; Santos and Proença, 2010).

The way this logistic regression works is equivalent to a single-
output neural network with a logistic-activation function trained
under log loss; this model is described by Eq. (12):

log
p

1� p

� �
¼ b0 þ b1x1 þ b2x2 þ � � � þ b5x5 ð12Þ

where the fraction p/(1 � p) is called the odds of a positive match,
that is, the ratio between that probability and its complementary.
The bi value is the weight relating the outputs xi from the previously
described methods to the odds.

3. Analysis of results

To assess the performance of the proposed method, experi-
ments were conducted using 1,000 iris images from the UBIRIS.v2
(Proença et al., 2010) database used for the NICE.II4 contest, and
their respective segmentation masks. Although this contest was
based only on identification mode (performance was ranked through
the decidability measure), our experiments were carried out in two
modes: verification mode (one-to-one matching) and identification
mode (one-to-many matching).

In verification mode, we selected the well-known receiver-
operating characteristic curves (ROC), the area under curve
(AUC), the equal-error rate (EER) and the decidability (Daugman
and Williams, 1996) index, given by Eq. (13):

d0 ¼ jlinter � lintrajffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

inter
þr2

intra
2

q ð13Þ

where linter and lintra denotes the means of the interclass and intra-
class comparisons and rinter and rintra are the respective standard
deviations.

The ROC curve is a graphical plot of the sensitivity, or true po-
sitive rate vs. false positive rate. The AUC can be perceived as a
measure based on pairwise comparisons between classifications
of two classes. With a perfect ranking, all positive examples are
ranked higher than the negative ones and the area equal to 1.
Any deviation from this ranking decreases the AUC. The EER of a

http://www.nice2.di.ubi.pt


Table 1
Recognition rates of each test.

DEC EER (%) AUC

LBP 0.99 31.87 0.76
SIFT 0.87 32.09 0.74
1-D wavelet 1.44 23.12 0.85
2-D wavelet 1.29 25.04 0.82
Comparison maps 1.27 24.99 0.82
Fusion 1.74 18.48 0.90

Fig. 8. ROC curves for all matchers and their fusion.

Fig. 9. CMC curves for all matchers and their fusion.

Fig. 10. SIFT performance examples in intraclass comparisons.
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verification system means that the operating threshold for the ac-
cept/reject decision is adjusted so that the probability of false
acceptance and false rejection becomes equal.

In identification mode, where a subject is matched against a
database in a 1:N way, a good performance assessment is the
Cumulative Match Characteristic (CMC), as it shows the identifica-
tion probability against the N closest candidates.

The parameters specified in the method description were tuned
for best performance; here we chose those with maximal decid-
ability indices, i.e., those that maximize the average distance be-
tween distributions obtained for the two classical types of
biometric comparisons: data extracted from the same (intraclass)
and different eyes (interclass).

When applying the described methods independently on the
training dataset, we obtained the results presented in Table 1
and Figs. 8 and 9.

As shown in Table 1, with respect to decidability (which was the
criterion under consideration for the NICE.II contest), the best indi-
vidual results were with the 1-D and 2-D Wavelet methods, with
decidability (DEC) values of 1.44 and 1.29, respectively, closely fol-
lowed by comparison maps at 1.27. The same observation is valid
for the AUC values, whereas for EER the comparison maps slightly
outperform the 2-D wavelet. Periocular features, despite low indi-
vidual performance, proved to be of great help when fused with the
other methodologies. In fact, inspection of the CMC plot (Fig. 9),
where the separability between intra- and interclass distributions
is not as pronounced, shows that LBP is the best of all individual
methods, with a 56.4% rank-1 cumulative accuracy versus the
41.9% of the 1-D wavelet, beaten only by the fusion, with a 74.3%
rank-1 cumulative accuracy.
Fusing all the methods enhanced decidability to 1.74, repre-
senting an improvement of 20.8% over the best individual method.
Improvements in identification performance were even more sig-
nificant, as rank-1 was raised to 31.7%.

From these results, we can see that the entire method perfor-
mance cannot be accessed by a single operational mode. We thus
infer that, although some approaches improve recognition capabil-
ities in verification scenarios, and some others work well for iden-
tification mode, their fusion produces more suitable outcomes,
demonstrating the effectiveness of our method in both cases.

As the SIFT method uses more area for feature extraction than
the others, it is more likely to be affected by strong variations in
imaging conditions (e.g. pose or illumination; see Fig. 10(b)), thus
producing globally unsatisfactory results. However, its good per-
formance in some particular cases (e.g., Fig. 10(a)) led us to include
it, as its use improved the overall fused decidability by 4.5%.



990 G. Santos, E. Hoyle / Pattern Recognition Letters 33 (2012) 984–990
4. Conclusions

In this study, we presented a novel fusion of different recogni-
tion approaches to address the issue of noncooperative iris recog-
nition using nonideal visible-wavelength images captured in an
unconstrained environment.

We tested several different autonomous approaches; their indi-
vidual performances were evaluated in identification and verifica-
tion modes and then the methods were fused, resulting in
improved accuracy. We also showed that combining features ex-
tracted from the iris region itself with periocular information im-
proves the overall performance in both recognition modalities.

The robustness of our approach was corroborated by indepen-
dent evaluation in the NICE.II iris-recognition contest, where our
method placed third rank among almost seventy participants from
all over the world.
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