Seminary Iris Recognition

BCC448 – Pattern Recognition

Students:

Filipe Eduardo Mata dos Santos Pedro Henrique Lopes Silva

Paper

- "Noisy Iris Recognition Integrated Scheme"
- Authors:
 - Maria De Marsico
 - Sapienza Università di Roma, Roma, Italy
 - Michele Nappi
 - Daniel RiccioZhenan Sun
 - Tieniu Tan
 - Università di Salerno, Fisciano (SA), ItalyNational Laboratory of Pattern Recognition

Paper

- Qualis: A1 (Computer Science)
- Cited by 7
- Year: 2011
- Pages: 1006-1011

Introduction

• The main goal: robustness

- distortion,
- blurring,
- off-axis,
- reflections,
- occlusions due to eyelids or eyelashes

Introduction

- System work over noisy iris images
 - semi-controlled setting,
 - lower user's cooperation,
 - limited performances of the capture device.
- Noisy environments

Introduction

- Methods:
 - LBP
 - BLOB
 - BBP-BLOB

Combination X single techniques

Image Preprocessing and segmentation

- NICE I
 - Segmenting noisy iris images
- NICE II
 Noisy iris matching
- Rectangular region

Eye with iris marked

Rectangular Region

Image Preprocessing and segmentation

• Segmented iris

- Aproximate iris and pupil by circumferences
- Image Cartesian space to region polar space
- Normalize the iris

Extracting local features

- LBP
- BLOB

- Local texture descriptor
- Low computational cost
 appropriate to analyze images with high resolution or in real-time
- Identifies quite regular patterns,

• Timo Ojala and Harwood (1996)

- Ojala et al. (2002),
 - Extended to process pixel neighbourhoods of variable dimension
 - Invariant to rotations

- Sun et al. (2006)
 Divide into blocks
 Histogram
- Used:
 Divide into bands

 Number of bands is related to the normalization parameters

• Histogram similarity measure

- orrelation,
- intersection,
- Bhattacharyya.

- Uniqueness of the iris texture
 - Irregular distribution of local feature blocks
 - furrows, crypts,
 - spots.
- Identifying lighter or darker regions in the iris
- Chenhong and Zhaoyang (2005, 2008),

• LoG filter banks.

- Laplacian Operator:
 - Contour detector
 - Sensible to noise
- Gaussian filter
 - Smooth the image
- Noise reduction(smoothing)

• Matrix

- Positive values: dark spots,
- Negative values: light ones.
- Hamming distance

• Application the LoG

LBP-BLOB

- Fusion of LBP and BLOB methods
- Mean
- One method works better than the other on specific images.
- Hamming distance of binary codes of the same size
 Pair of LBP codes
 - Pair of BLOB codes

Experiments

• UBIRIS V1

- 1877 images
- 800x600 pixels resolution
- 241 subjects

• UBIRIS V2

- 11102 images
- 400x300 pixels resolution
- Both iris of 261 subjects
- Follow the protocols defined by NICE II

Results and discussion

- Color images were converted in gray scale
- BLOB seems to perform better than LBP
 trend is reversed on low resolution images
- normalization fails in some critical situations

Results and discussion

Results from LBP, BLOB and LBP-BLOB with different configurations on UBIRIS v1 database.

Results and discussion

Results from LBP, BLOB and LBP-BLOB with different configurations on UBIRIS v2 database.

Conclusions

- Future studies
 - focus on the combination of more kinds of features
- Very promising research line that we are following is the use of more local features, able to set off different iris peculiarities,

directionality of extracted patterns.

Doubts?

