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One of the most challenging issues in iris recognition is the design of techniques able to ensure high accu-
racy even in adverse conditions. This paper deals with an approach to iris matching based on the combi-
nation of local features: Linear Binary Patterns (LBP) and discriminable textons (BLOBs) are presently
exploited. The techniques have been refined ad hoc, to allow the extraction of significant discriminative
features, even with images captured in variable visible light conditions, and affected by noise due to dis-
tance/resolution or to scarce user collaboration (blurring, off-axis iris, occlusion by eyelashes and eye-
lids). The obtained results strongly motivate further investigations along this line, most of all the

addition of more local features.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Iris is in the list of the most reliable biometrics which are pres-
ently used or investigated. In fact, it is able to provide a comparable
or even higher accuracy than other biometrics, e.g. fingerprints.
However, this is only possible by ensuring strong constraints for
subject cooperation and quality of the captured image. Therefore,
present research trend is towards high accuracy, though trying to
significantly relax the constraints. The main goal is a matching sys-
tem with a sufficient robustness with respect to different kinds of
distortion, such as blurring, off-axis, reflections and occlusions due
to eyelids or eyelashes. As a matter of fact, in a semi-controlled set-
ting, due either to lower user’s cooperation, or to limited perfor-
mances of the capture device, the system must work over noisy
iris images, which are often partially compromised. To face this
problem, we propose the Noisy Iris Recognition Integrated Scheme
(N-IRIS). It adopts and combines two local feature extraction tech-
niques, Linear Binary Patterns (LBP) and extraction of discriminable
textons (BLOBs), which differently and independently characterize
relevant regions of iris.

LBP produces a local texture descriptor by low computational
cost, which is appropriate to analyze images with high resolution
or in real-time, and is robust to monotone variations of gray levels,
which is useful in applications such as iris recognition. In fact most
approaches to iris recognition are based on statistical classifiers
and local features.

While LBP identifies quite regular patterns, the uniqueness of
the iris texture is generally characterized by the irregular distribu-
tion of local feature blocks such as furrows, crypts and freckles or
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spots. Such features can be considered as blobs: a group of image
pixels which form a structure which can be darker or lighter than
the surrounding region. The extraction of the blobs from an iris im-
age is obtained through different LoG (Laplacian of Gaussian) filter
banks. We will refer to this technique as BLOB.

After investigating possible adaptations of the single ap-
proaches to the case at hand, we combined LBP and BLOB, and
based recognition on a weighted mean of matching results at score
level (Fig. 1). Experimental results show that such combination of
the two techniques, though not particularly complex, provides bet-
ter accuracy results than those obtained from the single ap-
proaches. This suggests that different kinds of iris features may
call for different suited codings for a better matching. Possible fu-
ture studies will focus on the combination of more kinds of fea-
tures, as well as the design of more sophisticated schemes for
the integration of different information.

2. Image preprocessing and segmentation

The first processing phases of any iris-based identification sys-
tem are iris location and segmentation. The precision of the sepa-
ration between the useful region for identification and those that
can be considered as noise elements (reflections, eyelids, eye-
lashes) is of paramount importance. The higher such precision,
the more informative the obtained iris code, and therefore the bet-
ter the expected recognition result.

Two main regions can be identified inside the iris: the pupillary
region, which is the innermost one and determines pupil’s contour,
and the ciliary region which is the outermost one and surrounds
the pupillary region. These regions are separated by a third one
called collarette. Further important elements which are taken into
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Fig. 1. The architecture of N-IRIS.

account during segmentation as well as coding are sclera, eyelids
and eyelashes. These latter two may often hinder a correct seg-
mentation, and may lead to a poor coding if they are included in
the pupil code. On the other hand, useful structures for recognition
are crypts, circular and radial furrows, freckles and spots with var-
ious extent.

Though strictly correlated, according to the preceding consider-
ations, segmentation and matching represent two well distinguish-
able steps. As a matter of fact, also international challenges
addressing iris recognition, e.g. NICE, have been divided into two
different phases. NICE I explicitly and uniquely addressed the prob-
lem of segmenting noisy iris images, and the best results were ob-
tained by the approach presented by Tan et al. (2010). On the other
hand, NICE II uniquely focused on noisy irises matching, by preven-
tively providing both iris images and the corresponding precom-
puted segmentation mask images, obtained by the algorithm
presented by Tan et al. (2010) (Fig. 2 shows some examples). N-
IRIS exploits such segmentation mask to refine and transform the
iris region into a rectangular region, from which features are then
extracted.

First of all, we approximate iris and pupil boundary by circum-
ferences (centre and radius) as accurately as possible, so as to allow
to pass from the image Cartesian space to the iris region polar
space. Possible distortion introduced in this phase invalidate all
the following steps. A naive approach would suggest to extract
contours from objects in the mask and approximate them by cir-
cumferences, possibly solving an ellipse fitting problem. However,
as Fig. 2 (b and c) shows, this problem may hide traps that a so triv-
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Fig. 2. Column (a) shows, from top to bottom, iris masks of increasing difficulty;
column (b) shows mask processing by ellipse fitting; column (c) shows mask
processing by N-IRIS.

ial algorithm is not able to handle. The second column (b) of Fig. 2
demonstrates that ellipse fitting is too sensible to discontinuities
introduced in the iris and pupil contours by occlusions due to
reflections or eyelids. Curves resulting from contour approxima-
tion tend to get completely deformed just to precisely adhere to
the available boundary portion. A further problem arises in all
those cases which are similar to the iris in the third row of
Fig. 2; the black region contour represents a single object without
discontinuities. This makes it difficult to distinguish pupil frontier
points from pupil contour ones.

N-IRIS adopts a more articulate solution. To address problems
caused by images like that in the third row of Fig. 2, segmentation
starts from identifying the pupil contour first, and proceeds by sep-
arating the pupil from the iris region. The mask is scanned row by
row from top to bottom. Each row is scanned from the first to the
last column, by marking the first and the last black pixels. These
pixels represent the iris frontier. Frontier points undergo the algo-
rithm by Taubin (1991) to approximate planar curves, surfaces and
non planar space curves through implicit equations (more details
on this method are discussed in the cited paper). Once the centre
and radius of the circumference representing the iris are known,
a further concentric circumference internal to it is considered, with
radius equal to 1/5 of that of the iris. All pixels which fall outside
such circle are deleted, and the procedure of circle fitting is re-
peated on this new image to determine the centre and the radius
of the circumference which approximates the pupil.

Before proceeding to actual feature extraction, one needs to
transform the iris region in a suitable form, also considering future
matching operations. A first possible problem regards capture dis-
tance, so that the iris diameter may not be constant. This dimen-
sion must be normalized, yet avoiding to loose details or to
introduce “ghost” information. Iris shape influences matching,
therefore the chosen representation must provide for possible
translations and rotations. Pupil can be differently dilated in differ-
ent capture sessions, due to different lighting conditions, and this
must be taken into account. Finally, pupil is seldom exactly located
at the center of the iris. One has therefore to transform the iris so
that the iris representation is constant in dimensions and that rel-
evant features are approximately located in the same points. In this
work we exploit the Rubber Sheet Model by Daugman (2004),
which transforms the iris in radial coordinates while fixing the fi-
nal dimensions of the obtained (rectangular) image. Due to antici-
pated scarce resolution of iris images at hand, we adopted a radial
resolution (number of pixels along a radial line) of 40 pixels, and an
angular resolution (number of radial lines around the iris region) of
360 pixels (see the implementation by Pigini (2010)). The same
normalization is separately performed on the segmentation mask
associated to each image. The mask is such that M (x,y)=1 if I
(x,y) is a pixel of noise, and M (x,y)=0 otherwise, so that only infor-
mation in relevant iris regions is coded (Fig. 3).
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Fig. 3. Feature extraction and coding based on normalized iris image and
segmentation mask.



1008 M. De Marsico et al./Pattern Recognition Letters 33 (2012) 1006-1011

3. Extracting local features

After pupil and iris contours identification, and after noisy ele-
ments have been accounted for (e.g. eyelashes, which occupy dif-
ferent positions and extent in different captures of the same
subject), the relevant iris annulus must be coded. The different nat-
ure of its useful visual structures seems to call for different coding
schemes, and for the fusion of their results as in multimodal fea-
ture extraction. The present work describes a preliminary phase
of this process, where we exploited a version of LBP to record the
textural regularities present in the iris, and blob identification for
coding lighter or darker spots inside the iris region. Future devel-
opments will investigate the addition of appropriate versions of
more local operators.

N-IRIS tries to merge the specific strengths of the two selected
techniques. Our first attempts aimed at investigating the useful-
ness of local texture analysis based on Local Binary Pattern (LBP)
[Ahonen et al. (2006), Ojala et al. (2002), Mdenpaa et al. (2000)].
In particular, we evaluated the solution in Sun et al. (2006) and fi-
nally devised our own version, based on experimental evidence on
the best strategy to be adopted. In order to further enhance the ob-
tained results, we also investigated the combination of our imple-
mentation of LBP with the work by Chenhong and Zhaoyang (2005,
2008), that we refer to as BLOB. We implemented the described
algorithm to extract discriminable textons, representing image re-
gions which are lighter or darker than the surrounding zone, and
also made some attempts to enhance it. Then, we merged the
matching criteria stemming from the two techniques, to exploit
the respective strengths.

3.1. Liner Binary Patterns - LBP

The Local Binary Pattern (LBP) was introduced by Timo Ojala
and Harwood (1996) to analyze image texture. In its basic version,
the operator associates to each pixel in the image a value, which is
computed according to its 3 x 3 neighbourhood. This value is the
decimal representation of the binary string (number) obtained by
comparing the value of the pixel with each value in its neighbour-
hood. If the central pixel has a lower value than one of its neigh-
bours, a 1 is recorded in the string for such neighbour, and a 0
otherwise (Fig. 4). A variation is presented by Ojala et al. (2002),
where the basic operator is extended to process pixel neighbour-
hoods of variable dimension, and to be invariant to rotations. The
circular neighbourhood of a pixel is exploited, and sample points
are identified by interpolation. The resulting operator is called
LPBP,R where P is the number of sample points, and R is the radius
of the neighbourhood.

In the work by Sun et al. (2006), a further variation of LBP is
used for iris recognition. The normalized iris image is divided into
blocks. For each of them, an histogram is computed, and then a
graph structure is created and stored for matching. We use a less
computationally expensive solution by dividing the iris image into
horizontal (or vertical) bands (Fig. 5). For each band, the histogram
of LBP values is computed. The resulting code C will be stored as a
sequence of histograms plus the related noise mask M: C=
(Hy,Ha,. . .,HpanassM). We assume that such a mask is always pro-
duced at the end of the image segmentation process. It is used dur-
ing matching to take into account the amount of noise which is

13 | 15 | 18

o]
10 |14 20\# o [ 1 ololalo/alalalal - 4
ol vl el ol gl o

Fig. 4. Computation of LBP.
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Fig. 5. Division in: (a) horizontal bands, (b) vertical bands.

present within the compared bands. The higher the number of
noise pixels in the matched bands, the less reliable the similarity
measure between the histograms.

Given two codings Cl= (Hy,Ha,...,HpgngssM) and C2 =
(K1,Ks, . . ., Kpangs, N), and any histogram similarity measure (e.g.
correlation, intersection or Bhattacharyya), matching is performed
by computing the mean of the following values:

noisey,
totpixel

5(H,,,1<b)(1 )Vb € {1,...,|bands|} )

where noise, represents the mean number of noise pixels in the b-th
band of masks M e N. Bands specialize blocks: a generic block is
m(rows) x n(columns) pixels, an horizontal band is a 1 x n block
and a vertical band is a m x 1 block. Once blocks are ordered
row-first, formula (1) always holds.

Our most significant experiments with LBP on UBIRIS.v1 and
UBIRIS.v2 are reported in Section 5. They aimed at testing both dif-
ferent types (block, vertical, horizontal) and numbers of bands; a
division in five horizontal bands was optimal for both databases.
We observe that the number of bands is mostly related to the nor-
malization parameters. Once these are fixed, results are not af-
fected by this choice. It is also interesting to notice that the most
accurate solution in terms of type of bands is also the most bound
to anatomical features, since horizontal bands in the polar image
correspond to circular bands in the original image, and therefore
are expected to be quite significant in coding iris features.

3.2. BLOB

Differential operators can address the problem of identifying
lighter or darker regions in the iris. The combination of the Lapla-
cian operator (effective as contour detector, but very sensible to
noise) with a Gaussian filter (to preliminarily smooth the image)
presents two advantages: noise reduction, due to smoothing, and
better blob setting off, due to increased size of the Gaussian filter.
This is the core idea of what we call BLOB, presented by Chenhong
and Zhaoyang (2005, 2008), where iris blobs are modeled by a
Gaussian 2-dimensional non-symmetric function, with length fea-

tures /t; and /t;:

X

1 1

X1,X2) = 8(X1:t1)8(Xa; ty) = ——e%1 -
f(X1,%2) = g(x1;t1)2(X2: t2) Tt L,
To identify blobs of different sizes, the representation must be given

both in space and in scale. For the semi-group property of Gaussian
kernels g(-;ta) * g(-;tg) = g(-; ta + tg) the authors derive:
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o
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L=g(xi;t +t)g(X2;t2 + 8) 3)

If an image undergoes a space-scale smoothing, values of spatial
derivatives generally decrease with scale. Then it is necessary to
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use a normalized differential operator V2. The authors show that

norm*

the normalized response of a blob detector at scale t is:

V2, L =t(V2L) (4)

norm

The solution by Chenhong and Zhaoyang (2005, 2008) to extract
and code blob features is: fix the different scales, compute V7L
for each scale (Fig. 6), and fuse the results by taking, for each pixel,
the maximum value among all scales. Popular computational tricks
allow to fuse Gaussian and Laplacian in a single LoG operator. Here
the sizes of the convolution kernels at different scales were found
using cross-validation, e.g. regression.

We obtain a matrix with both positive and negative values,
where the former represent dark spots and the latter light ones.
The result is binarized by setting all negative values to 0 and all po-
sitive values to 1. An example is in Fig. 6. Matching between two
binary codes can be performed using Hamming distance weighted
by the segmentation masks, as discussed by Daugman (2004). We
also considered shifts of 10 pixels to address rotation variations.
The final distance is the one computed on the alignment returning
the maximum match. We also tested an alternative strategy, by
chaining the separate scale (binary) codings in a longer code, in-
stead of fusing them. Matching was performed by comparing codes
at the same scale and taking the mean of obtained values as dis-
tance. We will refer to this modality as chain, as opposed to the ori-
ginal one (fusion). It seemed to rely on more discriminative
information, but this did not produce the expected improvements.

3.3. LBP-BLOB

LBP-BLOB is the name we gave to the fusion of LBP and BLOB
methods. The two codes are simply chained, and results from the
two matching procedures are fused at score level, so that, at pres-
ent, coding and matching of one method do not affect the other. Gi-
ven I a normalized iris image and M its normalized segmentation
mask, we call ¢;gp and cprop respectively the LBP and BLOB coding
of the couple (I,M), which is performed only on the I element.
We define the final method for coding and matching as:

e Coding of the pair (I,M) is c = {c.gp,Cpros}
e Matching between codings c¢; and c;, is given by:

O1p(C1.18P, C2.8p) | OBLoB(C1,BL0B, C2.810B) (5)

(S(C],Cz) = 5 )

Our fusion strategy was assessed by experiments on a larger set
than the competition one (see details by Sammartino (2010). On
this sufficiently substantial test bed, we observed that LBP and
BLOB show a quite uncorrelated behaviour in terms of ability to
discriminate between genuine and impostor matches. Though this
is not a formal proof of the actual lack of correlation between the
two techniques, it is an expected result if we consider that they

Fig. 6. Application of LoG filter at increasing scales (from Chenhong and Zhaoyang
(2008)).

rely on different theoretical frameworks, aiming to capture differ-
ent relevant characteristics (texture regularity and the presence of
significant “hot spots”). For the same reason, we can expect that
one method works better than the other on specific images. In
our future research lines, a related study represents a core point.
For the time being, the previous observations can explain, in the
present setting, why the simple sum of the two scores improves
the performances of the single classifiers, as confirmed by experi-
mental results.

In a similar way, we have no systematic study on the score dis-
tributions produced by the two techniques. In a future work, we
will further investigate such aspect. This might also allow to re-
place the simple score sum with a probabilistic framework, e.g.
Bayesian. However, some considerations are worth adding. Both
the distance of a pair of LBP codes and the distance of a pair of
BLOB codes are computed as the Hamming distance of a pair of
binary codes of the same size. The codes in each pair have a similar
expected amount of ‘0’ and "1’ due to the nature of the variations in
the objects to be matched (irises). For this reason, the Hamming
distances computed separately on each pair should not present
scale variations due to the different coding methods, but rather
due to an especially high difference among specific couples of
irises. Moreover, both distances are computed by considering the
same segmentation mask.

4. Experimental framework

The experiments to assess N-IRIS performances were mainly
performed on the databases UBIRIS v1s2 (version 1 and session
2) (Proenca and Alexandre, 2005) and UBIRIS v2 (version 2) (Pro-
enga et al., 2009), and following the protocols defined by the pro-
gram committee of NICE II. In both cases RGB colour images are
captured in visible light. UBIRIS v1 contains 1877 images with
800 x 600 pixels resolution, acquired from 241 subjects in two dis-
tinct sessions. UBIRIS v2 contains 11102 images of 400 x 300 pix-
els from both irises of 261 subjects. Tuning exploited 1000 images
and corresponding segmentation masks provided to this aim by
NICE 1II, together with a dedicated JAVA platform. N-IRIS was then
tested by the NICE II evaluation commission on new images and
masks, never provided before. The results were measured in terms
of decidability, and through classical accuracy “figures of merit”
Receiving Operating Curve (ROC), Equal Error Rate (EER), and Rec-
ognition Rate (RR). Decidability is defined as a function of mean
and variance of intra- and inter-class scores. The higher the index,
the better the discrimination ability of the system. If D' and DF de-
note the set of similarities resulting from intra- and inter-class
matches, w(D') and u(DF) the respective mean values, and o(D')
and o(DF) the standard deviations, the decidability index is:

i (D) ~ (")
\/0.5 * (a(D’)2 n o*(DE)Z)

(6)

5. Results and discussion

All color images were converted in gray scale by assigning each
pixel the weighted mean of the three primary channels of its RGB
color. We tested LBP by dividing the images in horizontal or verti-
cal bands and in blocks. LBP (n,m) will denote LBP execution on an
image subdivided in n columns and m rows.

BLOB was run in single scale configuration, with fusion of differ-
ent scale results, and with chaining (see Section 3.2). Scale t varied
in the set T={2,4,6,8,12,16,24}. In fusion and chain modes, we
considered pairs (tq,t;) and triplets (ty,ts,t3) of scales from T. BLOB
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Fig. 8. Results from LBP, BLOB and LBP-BLOB with different configurations on UBIRIS v2 database.

(t1) will denote single scale execution of BLOB at scale t;, BLOB (¢,
t,, mode) will denote the execution of BLOB in mode mode € {chain,
fusion} for the pair of scales (ty,t;), and BLOB (ty, t;, t3,mode) will de-
note the execution of BLOB in mode mode < {chain, fusion} for the
triplet of scales (ty,t,t3). A configuration for LBP-BLOB combines
single configurations for LBP and BLOB: LBP-BLOB (n,m,t;), LBP-
BLOB (n,m,t,t;,mode) LBP-BLOB (n,m, ty, t5, t3,mode).

Figs. 7 and 8 show the results from LBP and BLOB with different
configurations, as well as different combinations of such configura-
tions, on both UBIRIS v1 and UBIRIS v2. The subdivision in five hor-
izontal bands seems an optimal LBP configuration for both
databases. BLOB in fusion mode (the original one) provides better
results than BLOB in chain mode. Moreover, BLOB works better
with a single scale when using UBIRIS.v2. Though sounding
strange, this is a consequence of the scarce clearness of most
images in this database. For such images, using more scales pro-
vides poor benefit. On the contrary, the double scale in fusion mode
seems the best BLOB configuration for UBIRIS.v1. BLOB seems to
perform better than LBP, but this trend is reversed on low resolu-
tion images. This underlines a better ability by LBP to extract rele-
vant features in these cases. We noticed that normalization fails in
some critical situations, were the useful iris region is especially
scarce and, at the same time, iris and pupil boundaries are not well

separated as in the last row of Fig. 2. Matching problems encoun-
tered with LBP are related to excessive blurring, since the histo-
gram undergoes a substantial alteration, while BLOB problems
are related to irises with high off-axis angles which significantly al-
ter blobs shape. Both Figs. 7 and 8 show that the LBP-BLOB per-
forms better than the single methods. The combined method was
tested within the provided JAVA framework on a dataset of 1000
images that the NICE Il program committee extracted from UBIRIS
v2, and its performances were measured in terms of decidability
value. On such dataset, the method achieved a decidability value
of 1.4825, while on the dataset used during the independent eval-
uation within NICE II, the obtained decidability value was 1.2565.
We had no access to the latter dataset, so we cannot justify this
difference.

6. Conclusions

This work presents an approach for matching irises captured in
the visible light spectrum and in uncontrolled settings. The ob-
tained images are subject to distortions such as occlusions from
eyelids, reflexions or blurring. The approach exploits techniques
for the local extraction of characteristic features from the iris
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pattern. Linear Binary Patterns (LBP) and BLOB have been adapted
and combined in an original and specific way, to address the diffi-
cult operational conditions due to the strongly relaxed capture
constraints. The obtained results are quite satisfactory both in
terms of ROC and of decidability value, most of all against the pres-
ent research scenario, as the independent tests performed by NICE
Il program committee have demonstrated. This is a strong motiva-
tion to further improve performances. A very promising research
line that we are following is the use of more local features, able
to set off different iris peculiarities, as for example the directional-
ity of extracted patterns. A second research line regards the strat-
egy to combine results from different feature detectors and
matchers, that might better exploit strengths and limits of each
of them on images with different characteristics and capture
settings.
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