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Abstract

Iris segmentation aims to isolate the valid iris texture
regions useful for personal identification from the back-
ground of an iris image. Most state-of-the-art iris segmen-
tation methods are based on edge information. However,
generic edge detection methods may generate a large num-
ber of noisy edge points which can mislead iris localization.
Therefore a robust iris segmentation method based on spe-
cific edge detectors is proposed in this paper. Firstly, a set
of visual features including intensity, gradient, texture and
structure information is used to characterize the edge points
on iris boundaries. Secondly, AdaBoost is employed to
learn six class-specific boundary detectors for localization
of left/right pupillary boundaries, left/right limbic bound-
aries and upper/lower eyelids respectively. Thirdly, inner
and outer boundaries of the iris ring are localized using
weighted Hough transforms based on the output of the cor-
responding detectors. Finally, the edge points on the eyelids
are detected and fitted as parabolas by robust least squares
fitting. Extensive experiments on the challenging CASIA-
Iris-Thousand iris image database demonstrate the effec-
tiveness of the proposed iris segmentation method.

1. Introduction
Iris images usually contain not only iris texture regions

useful for identity verification but also the neighboring
background regions such as pupil, sclera, and eyelids. So
iris segmentation is necessary to isolate the valid iris regions
from the background for iris pattern analysis and recogni-
tion. Although iris segmentation is important to iris recog-
nition, it has become a bottleneck of iris recognition due to
the following reasons: 1) It is difficult to detect the bound-
aries of iris rings due to intensity variations of iris images,
occlusions of eyelids and eyelashes and specular reflections.
As shown in Figure 1, various noises (such as eyeglass
frames, specular reflections, eyelids and eyelashes occlu-
sions, etc.) in iris images are grand challenges for accurate
iris segmentation; 2) Iris segmentation is the most compu-

Figure 1. Top Row: Examples of segmentation results by the pro-
posed method on various challenging iris images which are from
CASIA-Iris-Thousand database [1]; Bottom Row: Edges detected
by Canny edge detectors.

tationally expensive procedure in iris recognition owing to
the complexity of computer vision algorithms for iris seg-
mentation.

Iris segmentation is a hot research topic of iris recogni-
tion. There are two typical methods for iris segmentation
which are proposed by Daugman and Wildes respectively.
Daugman [4] used Integrodifferential operators as circular
edge detectors to fit inner and outer boundaries. His later
work [5] also used Integrodifferential operators to detect
curvilinear eyelids boundaries. Wildes [18] created a binary
edge-map via gradient based edge detection at first and then
localized the boundaries by Hough transforms.

Both the iris segmentation methods developed by Daug-
man and Wildes are based on the assumption of sharp inten-
sity variations on iris boundaries. The basic idea is to find
the edge points in an iris image and then use a circle model
to fit these points. It means the low level visual cues of an
iris image, i.e. edge information are important for iris seg-
mentation. These methods tend to obtain incorrect localiza-
tion results in the presence of a large number of noisy edge
points or low-contract boundaries. As Figure 1 illustrates,
many noises are with high gradient but the genuine limbic
boundaries are blurry in practical applications. Therefore,
reliable boundary detection becomes the focus of iris seg-
mentation and many researchers have paid much attention
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Figure 2. The flowchart of the proposed iris segmentation method.

to reduce impacts of noises. Liu et al. [11] used intensity
thresholds to select candidate edge points. He et al. [8] de-
tected pupillary and limbic edge points in polar coordinates
and used histogram filtering before eyelids boundaries fit-
ting to rule out noisy points. Liu et al. [12] presented a
RANSAC-like algorithm to exclude invalid points. While
some researchers did not only use gradient to get boundary
information, Tang and Weng [16] trained a SVM classifier
for limbic boundary detection using gradient and shape fea-
tures. In [13], Proença and Alexandre detected edges not
in original but in clustered images to create more accurate
edge maps. Recently, active contours have been employed
to iris segmentation without modeling boundaries as para-
metric curves [14, 19], which also depend heavily on edge
information.

Edge information is critical for many computer vision
problems and many general edge detectors have been devel-
oped [2, 3]. Such detectors can achieve good performance
for general purposes, but they do not work efficiently for
some specific applications [6, 9]. Then the class-specific
boundary detectors are required, which have been devel-
oped in the past few years and achieved encouraging per-
formance [6, 9, 15]. The detectors are trained by machine
learning methods driven by labeled samples.

Inspired by the above referred work, we propose a ro-
bust iris segmentation method based on Learned Boundary
Detectors (LBD for short). The flowchart of the proposed
method is shown in Figure 2. It includes three main mod-
ules, namely, boundary detectors training, pupillary and
limbic boundaries localization and eyelids localization. At
first, we train six boundary detectors for left/right pupillary
boundaries, left/right limbic boundaries and upper/lower
eyelids by Gentle AdaBoost [7]. Then, pupillary and lim-
bic boundaries are localized successively using weighted
Hough transforms based on the output of LBD. At last, edge
points of upper and lower eyelids are detected by LBD and
fitted as parabolas via robust least squares fitting.

2. Technical details

2.1. Boundary detectors training

To determine whether a pixel is a specific boundary or
not, a large image patch centered at the pixel is considered
to take into account multiple scales information. Then a
classifier is trained from labeled samples using features ex-
tracted from the image patch [6].

In order to discriminate genuine edge points on iris
boundaries from noisy edge points, it is necessary to define
visual features specific to iris boundaries. Intensities, edges,
textures and structures are useful features for iris boundary
description. Considering both discriminative abilities and
computational cost, we choose mean, variance and haar-
like [10] features at multiple locations, scales and aspect ra-
tios. They are all extracted in three kinds of images, namely,
gray images, gradient images in the horizontal and vertical
directions. Mean values of gray and gradient contain infor-
mation of intensities and edges. Variance measures textures
generally while haar-like features describe structures. All
these features can be calculated efficiently in integral im-
ages. More than 10,000 features are calculated in each im-
age patch, which provides an over-complete feature set for
learning.

Boosting is one of the most popular methods for fea-
ture selection and classifier construction. We choose Gentle
AdaBoost [7] to construct a strong classifier for boundary
detection, because it uses adaptive Newton steps in opti-
mization and often outperforms other boosting variants, es-
pecially when noises exist in the training data. Given N
training data (x1, y1), ..., (xn, yn), ..., (xN , yN ) with x a K
dimensional feature vector and yn = ±1. The weak classi-
fier we used for the k-th feature is:

f(xk) = akδ(xk > θk) + bk, (1)

where parameters (ak, bk, θk) can be determined by mini-
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mizing weighted square error [17]:

min
ak,bk,θk

N∑
n=1

wn(yn − f(xkn))
2
, (2)

bk =

∑
n
wnynδ(x

k
n ≤ θk)∑

n
wnδ(xkn ≤ θk)

, (3)

ak + bk =

∑
n
wnynδ(x

k
n > θk)∑

n
wnδ(xkn > θk)

, (4)

where wn is the weight for the n-th training sample. After
M rounds, a strong classifier is constructed:

sign[F (x)] = sign[

M∑
m=1

fm(x)]. (5)

The learned strong classifiers will be used as boundary de-
tectors in the following iris segmentation procedures. Set-
tings and results of the training will be detailed in Section
3.

2.2. Pupillary and limbic boundaries localization

In near infrared iris images, pupillary boundaries usually
have higher contrast than limbic boundaries and can be de-
tected by general edge detectors. Therefore, we first use the
Canny edge detector to find the pupillary candidate edge
points. Along with valid pupillary boundary edge points,
many invalid points will also be included due to noises.
Then the previously learned left and right pupillary detec-
tors are used to find out the genuine pupillary boundary
edge points. Points with nonpositive detection scores F (x)
(Equation 5) will be excluded in the later step. Moreover,
positive F (x) can be regarded as confidence of a point to be
the valid points.

Pupillary and limbic boundaries are modeled as circles
and their parameters are determined by weighted Hough
transforms. The Hough transform used in traditional iris
segmentation treats every vote equally. In our case, we use
F (x) as the weight of a vote. This can increase the contribu-
tions of better valid points and then get more robust results.
As we have known the left and right pupillary points, we can
constrain voting angle ranges by restricting the left points
only vote to centers on its right and vice versa. The angle
ranges constraints can reduce not only the Hough space to
search but also the impacts caused by noises.

Limbic boundary is localized in a similar way after
pupillary localization. The main differences are: 1) Can-
didate edge points are sampled in the regions depending on
the center and radius of the pupil, not on Canny detected
edges; 2) Voting angle ranges are more tightly restricted

(a) (b)

(e) (h)

(c) (d)

(f) (g)

Figure 3. Intermediate results in pupillary and limbic boundaries
localization (better viewed in color). (a) Original iris image; (b)
Canny edge image; (c), (d), (f), (g) Yellow pixels are detected
by learned left pupillary, right pupillary, left limbic and right lim-
bic boundary detectors respectively; (e), (h) Pupillary and limbic
boundaries fitted as circles by weighted Hough transforms.

since a limbic boundary center should be near to the pupil-
lary center.

Figure 3 shows some intermediate results in pupillary
and limbic boundaries localization. Genuine boundary
points have been detected by the learned boundary detec-
tors and most of noisy points have been excluded. It paves
the way for the following accurate boundary fitting.

2.3. Eyelids localization

Upper eyelid is often occluded by eyelashes and lower
eyelid tends to be of low contrast. Moreover, their bound-
aries are not as regular as pupillary and limbic boundaries.
These facts make eyelids localization more difficult.

As we are only concerned with eyelids which occlude
the iris region, the eyelids detection areas are restricted
in the rectangles as shown in Figure 4 (a). We first de-
tect candidate eyelids points by Canny detector with low
thresholds to ensure almost all valid points are included.
And then, the previously learned eyelid boundary detec-
tors are employed to test every candidate points. The points
passed the test are processed for further noise removal by:
1) Only one point with maximum F (x) in each column is
remained; 2) Isolated points are filtered out. After these
steps, remaining points are most valid points. Assuming
there are P remaining points for upper or lower eyelid and
their positions are denoted in column and row coordinates
as (c1, r1), ..., (cp, rp), ..., (cP,rP ). We model the eyelids as
parabolas:

f(c) = κ(c− vc)
2 + vr, (6)

where κ affects the parabola’s curvature,(vc, vr) denotes the
vertex. Parabolas’ parameters can be solved by minimizing
the least squares error. However, a few noisy points may
still exist due to complex texture of iris or eyelashes (see
Figure 4 (c) for example). These outliers impact the least
squares fitting seriously. Therefore, we apply the robust
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Figure 4. Eyelids localization (better viewed in color). (a) Local-
ized pupillary and limbic boundaries. The black rectangles denote
the regions for upper and lower eyelids localization. (b) Yellow
pixels are detected by the learned upper eyelid detector; (c) Eye-
lids points after further noise removal; (d), (e) The upper eyelid is
fitted as a parabola by robust least squares fitting or least squares
fitting respectively.

least squares fitting to solve the parameters:

min
κ,vc,vr

∑
p

wp(rp − f(cp))
2
, (7)

where wp varies with the residual rep = rp − f(cp) as a
Cauchy function:

wp =
1

1 + (rep/t)
2 , (8)

where t is a constant set according to applications. It
gives small weights to noisy outliers which are far from the
boundary. As a result, fitting results will be more robust.

Figure 4 shows the intermediate results in upper eyelid
localization. Because some outliers existed on the right eye-
lashes in (c), fitted upper eyelid in (e) is somewhat upswept.

3. Experimental results
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Figure 5. Classification error rates of different boundary detectors
in training sets and test sets vs. number of weak classifiers.

Experiments are carried out on CASIA-Iris-Thousand
database [1] to evaluate the effectiveness of the proposed
method. The database includes 20,000 iris images from
2,000 eyes of 1,000 persons. Because a large number of
subjects wore glasses during image capture, many iris im-
ages in the database are with large specular reflections and
glasses frames (Figure 1 shows some examples) that make
iris segmentation particularly difficult.

3.1. Boundary detectors training

We manually labeled 50 images which are randomly
selected from the first 25 eyes in CASIA-Iris-Thousand
database. Then training data are sampled from the labeled
pixels. The patch size is set to 17× 17 experimentally. The
training set is only a small subset of the whole database.

To determine the number of features used in the later de-
tection procedure, we divide labeled samples into a training
set (about 8,000 samples) and a test set (about 2,000 sam-
ples) for each detector. The False Positive Rate (FPR) and
False Negative Rate (FNR) curves of left pupillary, left lim-
bic and upper eyelid boundary detectors are shown in Figure
5 (error rates for other three detectors are similar). Accord-
ing to the error rates, we choose 20 features for pupillary
boundary and eyelids detection, and 12 features for limbic
boundary detection.
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Figure 6. Top, middle and bottom rows are the first six features
of left pupillary, left limbic and upper eyelid boundary detectors
selected by Gentle AdaBoost, respectively. The patch size is 17×
17 with black regions as backgrounds. gx and gy denote features
extracted from the horizontal or vertical gradient image.

Figure 6 shows the first six features for left pupillary,
left limbic and upper eyelid boundaries detection selected
by Gentle AdaBoost (selected features for other three detec-
tors are similar). In the top row, we observe that intensity
information is primarily important for pupillary boundary
detection since pupils are usually dark in near infrared iris
images. Textures and gradients in the horizontal direction
are also useful because rich iris textures are often around a
pupil and their gradients are high. The selected haar point
feature is due to spots near the pupillary boundary. For left
limbic boundary detection in the middle row, because inten-
sities change gradually around the boundary, haar-like fea-
tures in the horizontal direction, gray variance and gradient
variance are selected. Moreover, the sizes of the selected
features for limbic boundary detection tend to be larger than
that for pupillary and eyelids boundaries. In the bottom row,
on account of eyelashes and shadows around the upper eye-
lid, gradient and intensity features are selected. The haar-
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like feature in the vertical direction describes the fact that
the intensity of a eyelid boundary is generally lower than
the intensity in iris regions.

3.2. Localization performance

We compare our Learned Boundary Detectors (LBD)
based segmentation method with the state-of-the-art method
proposed by He et al. [8]. To illustrate the effect of weights
used in Hough transforms, we also compare weighted
Hough transforms with Hough transforms without weights.

In order to state conveniently, we will use some abbrevi-
ations of different segmentation methods in the rest of the
section. Each abbreviation is described as follows:

He PP: Pupillary and limbic boundaries are localized by
the Pulling and Pushing method (PP) proposed by He et
al. [8].

He PP+EL: Eyelids are localized by the method de-
scribed in [8] after He PP.

LBD noHW: Pupillary and limbic boundaries are local-
ized by LBD based method. Hough transforms without
weights are used to determine the parameters of iris rings.

LBD HW: Weighted Hough transforms are used to de-
termine the parameters of iris rings.

LBD HW+EL: Eyelids are localized by the proposed
eyelids localization method after LBD HW.

To evaluate the pupillary and limbic boundaries local-
ization accuracy of each method, we first create bench-
marks of pupillary and limbic boundaries manually on
the whole database. As the boundaries are modeled as
circles, a benchmark for an iris image can be denoted
as (OpBen, RpBen, OlBen, RlBen) which means the center
and the radius of the pupil, the center and the radius of the
limbus respectively. Given one algorithm generates a lo-
calization result (OpAlg, RpAlg, OlAlg, RlAlg) for the same
image, we then calculate the localization difference rateDR
between the result obtained by the algorithm and the bench-
mark by:

DR =

{
DRt

1
if DRt ≤ 1
otherwise

, (9)

where:

DRt = max{DROp, DRRp, DROl, DRRl}, (10)

in which:

DROp = ∥OpAlg −OpBen∥2/RpBen, (11)

DRRp = |RpAlg −RpBen| /RpBen, (12)

DROl = ∥OlAlg −OlBen∥2/RlBen, (13)

DRRl = |RlAlg −RlBen| /RlBen. (14)
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Figure 8. Examples of segmentation results. From Top to Bottom:
Segmentation results by He PP [8] and LBD HW+EL.

TheDR is normalized by radiuses for size invariant and cut
to 1 when it is greater than 1 because a totally miss localiza-
tion occurs. The DR provides a comprehensive evaluation
for pupillary and limbic boundaries localization considering
both positions and radiuses.

The accuracy rateAR of pupillary and limbic boundaries
localization is defined according to the DR:

AR(DR ≤ Th) =

N∑
n=1

δ(DRn ≤ Th)

N
. (15)

where DRn is the DR for the n-th image, Th is a thresh-
old, N is the total number of tested images. The accu-
racy rate curves varying with the Th are shown in Figure 7.
LBD HW achieves slightly better results than He PP’s and
LBD noHW’s when Th < 0.1. As Th > 0.1, LBD HW
and LBD noHW achieve comparable results which are bet-
ter than He PP’s.

The top row in Figure 8 shows some serious localiza-
tion errors generated by He PP. The edges caused by eye-
glass frames, large specular reflections, eyelids and can-
thuses mislead the localization. Segmentation results in the
bottom row illustrate the robustness of our method.

Figure 9 shows more detailed localization results. Noises
created by eyelashes may still influence He PP+EL even
though horizontal rank filtering and histogram filtering have
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Figure 9. Additional examples of segmentation results. From
Top to Bottom: Segmentation results by He PP+EL [8] and
LBD HW+EL.

been adopted before eyelids fitting. LBD HW+EL obtains
better fine localization results for blurry and noisy bound-
aries.

We implement our algorithm by MATLAB and run it in a
PC with 2.4 GHz CPUs. The average time cost per iris seg-
mentation is about 4.2s, which is slower than He PP+EL.
In a word, the proposed method improves the segmentation
accuracy at the cost of speed.

4. Discussions and conclusions
In this paper, we have presented a robust iris segmen-

tation method based on learned boundary detectors. There
are three major contributions. Firstly, we construct class-
specific boundary detectors for iris boundary detection by
Gentle AdaBoost. The detectors pave the way for the fol-
lowing iris segmentation procedures. Secondly, we use the
output of detectors as the voting weight in Hough trans-
forms to get more stable results. We further constrain the
voting angle ranges as we have known approximate posi-
tion relations between the detected boundary points and the
center. Thirdly, eyelids are fitted as parabolas by robust
least squares fitting which are much less sensitive to out-
liers. Extensive experiments on the challenging CASIA-
Iris-Thousand iris image database have shown the proposed
method achieves state-of-the-art iris segmentation accuracy.

The proposed method can be improved further. The
speed can be accelerated by designing more efficient fea-
tures and classifiers. We currently model the pupillary and
limbic boundaries as circles. However, the boundaries are
hard to be fitted as circles in some cases (e.g. off-angle
eyes). Therefore, more elastic models will be considered
in our future work.
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